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Abstract

Oblivious RAM compilers, introduced by Goldreich and Ostrovsky [JACM’96], compile any
RAM program into one that is “memory-oblivious” (i.e., the access pattern to the memory is
independent of the input). All previous ORAM schemes, however, completely break the locality
of data accesses (by shuffling the data to pseudorandom positions in memory).

In this work, we initiate the study of locality-friendly oblivious RAMs—Oblivious RAM
compilers that preserve the locality of the accessed memory regions, while leaking only the
lengths of contiguous memory regions accessed; we refer to such schemes as Range ORAMs.
Our main results demonstrate the existence of a statistically-secure Range ORAM with only
poly-logarithmic overhead (both in terms of the number of memory accesses, and in terms of
locality). In our most optimized construction, the overhead is only a logarithmic factor greater
than the best ORAM scheme (without locality).

To further improve the parameters, we also consider the weaker notion of a File ORAM :
whereas a Range ORAM needs to support read/write access to arbitrary regions of the memory,
a File ORAM only needs to support access to pre-defined non-overlapping regions (e.g., files
being stored in memory). Assuming one-way functions, we present a computationally-secure
File ORAM that, up to log log n factors matches the best ORAM schemes (i.e., we essentially
get “locality for free”.)

As an intermediate result, we also develop a novel sorting algorithm which is also asymp-
totically optimal (up to log log n factors) and enjoys good locality (can be implemented using
O(log n) sequential accesses). This sorting algorithm can serve as a practical alternative to the
previous sorting algorithms used in other oblivious RAM compilers and other applications, and
might be of an independent interest.

To the best of our knowledge, before our work, the only works combining locality and
obliviousness were for the special case of symmetric searchable encryption [Cash and Tessaro
(EUROCRYPT’14), Asharov et al. (STOC’16)]. Searchable encryption can be viewed as a
special case of a “read-only” File ORAM which leaks whether the same files are accessed again,
and whether files contain the same keyword; this leakage, however, has been shown to be harmful
in many applications, and is prevented by the definition of a File ORAM.
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1 Introduction

Oblivious RAM [25,27,45], originally proposed in the seminal work by Goldreich and Ostrovsky [25,
27], is a cryptographic primitive that provably hides a program’s access patterns to sensitive data.
ORAM is a powerful building block with numerous applications in both theoretical settings (e.g.,
multiparty computation [31, 38], Garbled RAMs [24, 39]) as well as in secure systems (e.g., secure
processors [21, 22, 40, 43], and cloud outsourcing [30, 46, 47, 58]). Thus far, bandwidth overhead has
been considered as the the primary metric in the study of ORAM schemes. Numerous works [25,27,
30, 37, 45] have shown how to construct ORAM schemes with poly-logarithmic bandwidth blowup
(namely, the ORAM must on average read and write poly-logarithmic blocks to in order to serve
a memory request for a single block), and for sufficiently large blocks, one can construct ORAM
schemes that almost tightly matches [52] the Goldreich and Ostrovsky logarithmic lower bound [25,
27].

An important performance metric that has been traditionally overlooked in the ORAM literature
is data locality. The majority of real-world applications and programs exhibit a high-degree of data
locality, i.e., if a program or application accesses some address it is very likely to access also a
neighboring address. This observation has profoundly influenced the design of modern computing
platforms — from on-chip cache to memory and disk, almost every layer in the storage hierarchy has
been highly optimized for locality. Specifically, caching and prefetching are prevalently adopted
in between layers of the memory hierarchy: when data is fetched from a slower storage medium
(e.g., DRAM) to a faster one (e.g., on-chip cache), typically, an entire cache-line worth of data is
fetched at once. In addition, due to physical limitations, some storage mediums such as rotational
hard-drives are significantly more efficient when accessing sequential regions rather than random
seeks.

Unfortunately, existing ORAM schemes (e.g., [15, 25, 27, 45, 48, 52]) are not locality-friendly.
Randomization in ORAM scheme is inherent due to the demand to hide the access pattern of the
program, and ORAM schemes (pseudo-)randomly permute blocks and shuffle them around the
memory. As a result, if a program wants to access a single region of Θ(N) contiguous blocks,
all known ORAM schemes would have to access more than N logN random (i.e., discontiguous)
memory locations, introducing significant delays due to lack of locality.

In this paper, we ask the question: can we design ORAM schemes with data locality? At first
sight, this seems impossible. Intuitively, an ORAM scheme must hide whether the client requests
N random locations or a single contiguous region of size N . As a result, such scheme cannot
preserve locality — and indeed we formalize this intuition and formally show that any ORAM
scheme that hides between these two access sequences with “good” locality must necessarily suffer
from impractical bandwidth overhead.

However, this does not mean that providing oblivious data accesses and preserving locality
simultaneously is a hopeless cause. In particular, in many practical applications, it may already be
public knowledge that a user is accessing contiguous memory regions. For example, a file server
allows a client to retrieve a file at a time; a database may support range queries over time-series
data, allowing a client to fetch all data, say, between a week ago and yesterday. We thus ask
the question, can we design ORAM schemes that preserve the (possibly already publicly known)
locality in the input request sequence? More specifically, we ask the following question.

Can we construct an ORAM scheme that preserves data locality while leaking only the
lengths of contiguous regions accessed?

At first sight, even this relaxed goal also seems impossible to achieve with non-trivial efficiency.
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On one hand, ORAM schemes need to break correlations between contiguous addresses, and do so
by putting blocks into random positions. On the other hand, locality is usually obtained by highly
structured memory layouts. Indeed, prior work considering obliviousness and locality [6, 12]
focused on constructing locality-friendly searchable symmetric encryption schemes, a strictly weaker
notion of security where much more leakage is allowed. In this setting, besides leaking the length
of the contiguous segment accessed, the schemes also reveal the access pattern. Hiding this pattern
while guaranteeing data locality is a much more challenging task.

1.1 Our Contributions

In this paper, we study oblivious RAMs with data locality and show that, somewhat surprisingly,
such schemes can be constructed. We show efficient ORAM schemes that preserve the locality of
the input request sequence: specifically, if the request is for a single contiguous region of size up to
N , then the ORAM scheme accesses no more than polylogarithmically many contiguous regions. In
comparison, existing ORAM schemes access super-linearly many contiguous regions in this scenario.

More specifically, we make the following contributions:

Modeling locality. First, we propose a relatively general notion of locality: we say that an
algorithm has (h, l)-locality, if the algorithm needs to sequentially access l contiguous memory
regions with h concurrent read/write heads. Roughly speaking, one may think of the number of
concurrent heads as the number of concurrent cache-lines that a memory architecture supports. If
multiple cache-lines have been prefetched, then sequentially reading the prefetched cache-lines is
very fast. Alternatively, one may think of h as the number of concurrent read/write heads when
the data is stored on a disk, where every movement of the heads introduces delays. We use the
term “locality-friendly” to denote a scheme or an algorithm in which l is “small”, and h is a small
constant.

Locality with no leakage. We study whether locality can be obtained without leaking the
length of the accessed region. We show that a scheme with good locality must incur expensive
bandwidth overhead, even when allowing large space blowup, and h = O(poly logN) heads. We
show:

Theorem 1.1 (Our lower bound — informal). Any ORAM scheme with (O(poly logN), O(poly logN))-
locality when accessing a region of size len has bandwidth blowup of len · Ω(N1−ε) for any constant
ε > 0. This holds even when allowing total memory size O(N2) and CPU storage O(poly logN),
where N is the size of the logical memory.

The lower bound implies that in order to obtain good locality and bandwidth, we must introduce
some leakage on the size of accessed region. We discuss this leakage later in this section.

Range ORAM. We investigate ORAMs with data locality. We show that if an incoming request
wants to access a possibly large contiguous memory region, then our oblivious simulation does not
need to access too many contiguous regions as long as the memory or storage medium has h = O(1)
number of read/write heads. More specifically, we show a locality-friendly ORAM construction
achieving poly-logarithmic bandwidth overhead and additionally satisfy (O(1), poly logN)-locality
where N denotes the ORAM’s logical memory capacity. We call this primitive as “Range ORAM”,
as this ORAM supports instructions of accessing ranges (regions) in the memory (as opposed to
just single blocks as in ordinary ORAM). We prove the following informally stated theorem:
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Theorem 1.2. There exists a statistically secure Range ORAM construction consuming O(N logN)
space with (amortized) len · Õ(log3N) bandwidth1 and (3, Õ(log3N))-locality, for accessing a range
of length len.

In comparison (see Table 1), for all existing ORAM schemes, accessing a single region of len
contiguous blocks, the ORAM scheme will end up accessing len ·ω(logN) blocks residing at discon-
tiguous physical locations. That is, by leaking only the length of the accessed range, we improve
locality by a linear factor over current ORAM schemes.

We additionally extend our results to perfect security by leveraging the same modular construc-
tion but instead using perfectly secure building blocks. This gives rise to the following corollary.

Corollary 1.3. There exists a perfectly secure Range ORAM construction consuming O(N logN)
space with (amortized) len·poly logN bandwidth and (O(1), poly logN)-locality, for accessing a range
of length len.

File ORAM. In order to simulate instructions with address spaceN , our Range ORAM consumes
O(N logN) space and incurs an additional logarithmic factor bandwidth in comparison with the
best known, non-local ORAM. This gives rise to the question of whether locality-friendly ORAMs
can be constructed with linear space, and matching the bandwidth cost of the best known non-local
ORAM? We study this question for a relaxed notion of Range ORAM, and answer this question in
the affirmative for that relaxation.

Specifically, as opposed to Range ORAM that supports any arbitrary range-accesses to the
memory, in the relaxed primitive the set of allowed ranges is fixed in advance, and the ranges do
not overlap. This setting naturally fits the application where a client stores several files of various
sizes on the cloud and wants to access these files obliviously, while leaking only the sizes of the files
it accesses but nothing else. We call such an ORAM scheme “File ORAM”. This primitive has a
direct application in the context of searchable symmetric encryption schemes, as we elaborate in
the related work (Section 1.2). We prove the following theorem.

Theorem 1.4. Assuming the existence of one-way functions, there exists a computationally-secure
File ORAM consuming O(N) space, and with len·Õ(log2N) (amortized) bandwidth and (3, Õ(logN))-
locality for accessing a file of size len.

File ORAM achieves comparable efficiency to the best known ORAM candidates (barring
poly log log terms), while achieving sub-exponential gains in terms of locality in comparison with
best known ORAM schemes (see Table 1). Thus, essentially, we get locality for free!

Oblivious sorting. In designing locality-friendly Oblivious RAM, we created a new locality-
friendly oblivious sorting algorithm that is optimal in runtime (up to poly log log factors) that
may be of independent interest. Previously, although asymptotically optimal oblivious sorting
algorithms exist (e.g., AKS [2,3], Zigzag [29], and Randomized Shell Sort [28]), these algorithms do
not achieve locality, and moreover several of them [2, 3, 29] suffer from large constants in practice.
Thus the non-optimal sorting algorithm Bitonic sort [7] with O(n log2 n) runtime is often the scheme
of choice in practical implementations. Our new oblivious sorting algorithm is conceptually simple:
even disregarding locality, it could serve as a possible practical alternative to Bitonic sort especially
for large data sizes.

1Throughout the paper, we let Õ(f(n)) to denote O(f(n) · (log f(n))c) for some constant c (might be negative).
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Theorem 1.5 (Locality-friendly oblivious sort). There exists a statistically secure oblivious sort
algorithm which, except with negl(λ) probability, completes in O(n log n log log2 λ) work and with
(3, O(log n log log2 λ)) locality.

We conclude with summarizing our results in Table 1.

Security Space Bandwidth Locality Leakage

This work I: Range ORAM Stat. O(N logN) len · Õ(log3N) Õ(log3N) len

This work II: File ORAM Comp. O(N) len · Õ(log2N) Õ(logN) len

Ordinary ORAM [37,52] Comp./Stat. O(N) len · Õ(log2N) len ·O(log2N) None

This work III: Lower bound Stat. O(N2) len · Ω(N1−ε) O(poly logN) None

This work IV: Oblivious sort Stat. Õ(n log n) Õ(log n) n

Table 1: Summarization of our results an comparison with conventional ORAM when accessing a contiguous range
of length len. The lower bound holds for any ε > 0.

On leaking the lengths of accessed regions. Our schemes leak the lengths of the accesses re-
gions to achieve locality. Here, we mention several points regarding that leakage: (1) As mentioned,
our lower bound implies that this leakage is inherent, as any ORAM scheme accessing sequential
region with good locality without this leakage must incur unreasonable bandwidth blowup. (2) Our
schemes can be viewed as a strict generalization of ordinary ORAM schemes, and we do not leak
more than ordinary ORAM when the locality feature of the scheme is not invoked (i.e., when used
without the additional supported functionality); (3) Even when the locality feature is invoked and
the lengths of the regions accessed are leaked, in numerous applications we nonetheless offer security
just as strong as ordinary ORAM: e.g., consider a range query application [34] where entries that
fall within a queried range are returned. In this case, even ordinary ORAM would leak indirectly
the number of matching entries (i.e., lengths) via the communication volume — and thus in such
applications our Range ORAM provides just as strong security as ordinary ORAM. Similarly, in an
outsourced file server setting, where the client stores and retrieves files from a server, absent further
privacy mechanisms the length of a retrieved file is leaked even with an ordinary ORAM — and thus
again, in such applications our File ORAM provides just as strong security as an ordinary ORAM.
(4) Finally, we stress that just like the case of ordinary ORAM, our locality-friendly ORAM can be
combined with differential privacy techniques as Kellaris et al. [35] suggested to offer strengthened
privacy guarantees.

1.2 Related Work

Related work on locality. Algorithmic performance with data stored on the disk has been
studied in the external memory models (e.g., [5, 44, 50, 51] and references within). Fundamental
problems in this area include scanning, permuting, sorting, range searching, where there are known
lower bounds and matching upper bounds. To the best of our knowledge, the only works that
involve both locality and obliviousness are those in the area of searchable symmetric encryption.

Locality in searchable symmetric encryption. Searchable symmetric encryption (SSE) en-
ables a client to encrypt an index of record/keyword pairs and later issue tokens allowing an un-
trusted server to retrieve the (identifiers of) all records matching a keyword. The typical approach
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(e.g., [14, 17, 33, 36, 49], and references within) is to store an inverted index. As aiming to provide
truly practical solutions, SSE schemes offer much weaker security guarantees than ORAMs. The
security requirement is that the server does not learn any information about keywords for which the
client did not issue any queries. Nevertheless, the access patterns of searched keywords are revealed,
and the server can deduce whether two different keywords appear in the same document, whether
the same keyword is queried twice, or to identify a popular document. Recent works [10, 32, 59]
show that this may lead to statistical inference attacks based on side information on data. Hiding
the access pattern (while still leaking the lengths of the accessed lists) would significantly increase
the security of SSE schemes.

The issue of locality in SSE surfaced in recent works [11, 17] where implementations of SSE
schemes imply that locality is a crucial efficiency measure for scaling the schemes to large databases.
Locality in SSE was first studied (in the theoretical perspective) in the work of Cash and Tes-
saro [12], showing that any searchable symmetric encryption scheme must be sub-optimal in either
its space consumption, locality, or bandwidth. Intuitively, if a scheme is very local and efficient in
terms of bandwidth, then after several queries the server can look at memory locations accessed
and infer statistics about what has not been opened. In particular, if one of the keywords appears
in many documents, its list of identifiers is very long. A scheme with good locality and bandwidth
means there is a very large region of the encrypted index that will not be touched by other searches,
and the server will notice that this happens after several searches with small number of results. The
way to overcome this attack is by padding the lists (leading to non-optimal space consumption),
by accessing more addresses with each query (non-optimal locality), or by retrieving more elements
than needed (non-optimal bandwidth).

Asharov et al. [6] presented schemes with optimal locality, space and almost optimal bandwidth,
using subtle balanced allocation techniques. Specifically, one scheme offers Õ(log logN) bandwidth,
under the assumption that no keyword appears in more than N1−1/ log logN documents. Another
scheme does not require such an assumption, and offers Õ(logN) bandwidth. On an intuitive level,
these constructions achieve an obliviousness notion somewhat similar to “one-time ORAM”: the
access pattern remains hidden as long as each keyword is read only once and a document does not
contain two previously queried keywords.

We remark that our File ORAM primitive fits the application of searchable encryption, while
guaranteeing much stronger security while simultaneously offering data locality and optimal storage.
One can store each list of identifiers corresponding to some keyword in a separate file, and then
store all files in a File ORAM. With each query, the client first fetches the file containing the list
of identifiers corresponding to its keyword, decrypts this list of identifiers, and then retrieve each
one of the documents. The security guarantee here is significantly stronger than ordinary SSE;
however, this of course comes with a price in efficiency. We compare File ORAM and current SSE
schemes in Table 2.

ORAM Scheme Space Bandwidth Locality Leakage

SSE [14,17,33,36,49] O(N) len ·O(1) O(len) Access Pattern, Sizes

SSE I [6] O(N) len · Õ(logN) O(1) Access Pattern, Sizes

SSE II [6] (*) O(N) len · Õ(log logN) O(1) Access Pattern, Sizes

This work: File ORAM O(N) len · Õ(log2N) Õ(logN) Sizes

Table 2: Comparison between efficiency of searchable symmetric encryption schemes in linear space and our File
ORAM upon accessing a keyword of size len. (*) The second scheme of [6] assumes that no keyword appears in more
than O(N1−1/ log logN ) documents.

5



The notion of locality introduced by [12] is more restricted than our locality model. It essentially
corresponds to storage devices with a single read/write head, i.e., matches our notion of locality
(1, l). Although their model captures a wide range of practical storage devices, it fails to separate,
say, two algorithms — one that accesses memory at random (e.g., quicksort), and the other scans
through 3 arrays concurrently (e.g., merging two sorted arrays into one), where our locality model
successfully captures such algorithms.

Oblivious RAM (ORAM). Numerous works [30,37,42,45,48,52,53,55–57] construct ORAMs
in different settings. Most of ORAM constructions follow one of two frameworks: the hierarchical
framework, originally proposed by Goldreich and Ostrovsky [25, 27], or the tree-based framework
proposed by Shi et al. [45]. To date, some of the (asymptotically) best schemes include the following:
1) Kushilevitz et al. [37] showed a computationally secure ORAM scheme with O(log2N/ log logN)
runtime blowup for general block sizes; and 2) Wang et al. construct Circuit ORAM [52], a statisti-
cally secure ORAM that achieves O(α log2N) runtime blowup for general block sizes and O(α logN)
runtime blowup for large enough blocks, for any super-constant function α.

On the lower bound side, Goldreich and Ostrovsky [25, 27] demonstrated that any ORAM
scheme (with constant CPU cache) must incur at least Ω(logN) runtime blowup. Boyle and
Naor [8] discussed some limitations of the model this lower bound captures, but showed that it is
hard to remove these limitations. Further, the Goldreich-Ostrovsky lower bound is also known not
to hold when the memory (i.e., ORAM server) is capable of performing computation [4,19], which
is beyond the scope of this paper.

To the best of our knowledge, all previous works in ORAM ignore the issue of locality.

2 Technical Roadmap

In this section we provide a high-level overview of our results. As it turns out, obtaining the afore-
mentioned results, i.e., Õ(log3N) Range ORAM and Õ(log2N) File ORAM requires the combina-
tion of numerous building blocks. To aid understanding, first, in Sections 2.1 and 2.2, we describe
a high-level blueprint that will allow us to construct Range ORAM and File ORAM achieving
polylogarithmic bandwidth blowup and locality blowup. Then, in Section 2.3, we describe how to
improve the efficiency of important building blocks to further save up to polylogarithmic factors
— these building blocks, such as locality-friendly oblivious sorting and locality-friendly oblivious
data structures, are also important in their own right due to the usefulness of sorting and data
structures in many applications.

2.1 Range ORAM

Intuitively speaking, a Range ORAM is a machine that interacts with the memory and receives
instructions from the CPU. It supports read/write instructions of arbitrary ranges to the memory,
rather than just single blocks as in ordinary ORAM. As for obliviousness, we require that the
distribution of memory addresses accessed by the Range ORAM can be simulated from the lengths
of the accessed ranges only, which implies that there is no other leakage rather than these lengths.

Basic scheme: read-only Range ORAM. Assuming that the CPU sends only read instruc-
tions, we can achieve data locality and obliviousness in the following way. The basic idea is to
make replications of a set of super-blocks that form contiguous memory regions. Specifically, let N
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bound the size of the logical memory (and assume without loss of generality that N is a power of
2). A size-2i super-block consists of 2i consecutive blocks with the starting address being a multiple
of 2i. We call size-1 blocks as “primitive blocks”. We store logN ORAMs, where the i-th ORAM
(for i = 0, . . . , logN−1) stores all size-2i (super-)blocks (exactly N/2i blocks of size 2i each). Since
any contiguous memory region of length 2i is “covered” by two super-blocks of that length, reading
any contiguous memory of length 2i region would boil down to making two accesses to the i-th
ORAM.

Indeed this approach would work if the ORAM scheme is read-only. However, it would break
down if we also need to support writes. Since there are multiple replicas of each data block,
either a write must update all replicas, or a read must fetch all replicas to retrieve the latest copy.
Both strategies break data locality. Interestingly, the way we solve this issue is not by avoiding
replicating data, but rather by introducing more replication.

Range trees. While read-only range ORAM does not suffice for our goal, its structure still plays
an essential role in our final construction, as it provides freedom to access the same data using
different block sizes obliviously. We define an intermediate logical data structure which we call
“Range tree”. Range trees are essentially read-only range ORAM with the following extended
functionality: While we defined read-only Range ORAM on the whole memory, we allow range tree
to be defined on partial (not necessarily contiguous) part of the memory, and contain only 2i total
primitive blocks, for some i ∈ {1, . . . , logN}. Besides primitive blocks, range tree also contains
replication of the data with different block sizes. In more details, a range tree of size 2i is the
following (logical) data-structure: the leaves store 2i primitive blocks sorted by their addresses,
whereas each internal node replicates and stores all blocks contained in the leaves of its subtree.
Namely, each node at height j stores a super-block of size 2j (leaves have height 0 and store
primitive blocks). A Range tree supports range queries in for the form [s, t], and returns all blocks
in the tree with addresses within [s, t]. A requested range might not exist in the tree. Lookups for
a range should guarantee obliviousness, and should not reveal whether or not the range was present
in the tree. Range trees do not support writes, and all replicas of the same primitive block within
a Range tree are identical.

We construct Range tree of size 2i by storing i different ORAMs, one ORAM for each height
of the tree. Each ORAM operates on a different block size, corresponding to the block-size of the
height it stores. As we will mention soon, this ORAM must also have a locality-friendly initialization
procedure. In order to allow lookup, we build a metadata ORAM that stores a binary search tree,
such that given a desired memory range [s, t] of length 2i we may find out which height-i super
blocks we would like to request within this range tree. Note that the previous solution of read-only
Range ORAM is in fact 2log2N -range tree storing the entire memory, and since all ranges appear
in the tree, the additional metadata is redundant. In order to lookup for an arbitrary range [s, t]
of size 2j in a 2i-range tree, one has to perform at most two lookups for 2j-blocks when j < i, and
read only the root (for receiving partial data) when j > i.

A hierarchy of range trees. In order to support writes in Range ORAM, we construct a
hierarchy of range trees. This idea is inspired by the hierarchical ORAMs [25,27] which employ an
exponentially growing hierarchy of oblivious hash tables. Here, instead of using a hash table for
each level of the hierarchy as in ordinary ORAM, we adopt a range tree instead.

We construct a hierarchy of range trees henceforth denoted T0,T1, . . . ,TL where L := log2N .
Ti contains 2i primitive blocks. Observe that the last tree TL contains all data, and replications in
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Figure 1: Hierarchy of range trees. Logically, data is divided into trees of exponentially
increasing sizes. In each tree block, a parent super-block stores the contents of both its children.
If a block appears in more than one tree, the smallest tree contains the freshest copy. The above
figure shows the state of the data structure after two accesses (read, 5, 2,⊥) and (read, 1, 2,⊥).

all possible block-sizes, and therefore contains the same data as the aforementioned read-only Range
ORAM solution. The extra levels T0, . . . ,TL−1 are additional replications that give us some more
freedom in accessing data and maintaining data coherence. We maintain the following important
invariant:

• If blocks for the same address appear in multiple range trees, the block in a smaller tree of
the hierarchy is always fresher than the one in a larger tree.

Given the hierarchy of logN range trees and the aforementioned invariant, we can perform the
following to read or write requests for any contiguous memory region [s, t] of length t− s+ 1 = 2i.
Assuming a power of 2 is without loss of generality, since if not, we can pad it to the nearest power
of 2. Suppose that each level has a bit whose value is either empty or ready. Each access of a
range [s, t] first collects all copies of the data from all trees, merges all trees T0, . . . ,T`−1 to the
first empty tree T` with ` > i, and then writes the fetched data back to the tree Ti (instead of T0

as in ordinary ORAM). In a more detail:

Read Phase: Read and collect the range [s, t]. For each range tree Ti, . . . ,TL, fetch
all size-2i super-blocks that intersect the range requested. For each range tree T0, . . . , Ti−1,
fetch the super-block contained in its root (whose size is < 2i). Reconstruct the freshest state
of all blocks requested. That is, if the same address appear in multiple trees, take the one
from the smallest tree. Let D denote the collected elements.

Write Phase: Write D back to the tree Ti. Find the first empty level ` > i. If no such
level exists, let ` := L. Now, merge all Tj where j < ` into T`, keeping only the freshest copy
for each block. If ` = L, then merge all levels into T`. Mark all levels T1, . . . ,T`−1 as empty,
and T` as ready. Construct the logical range tree Ti to contain D, and mark it as ready.

As for obliviousness, the Read Phase is oblivious due the obliviousness of the range trees. As for the
Write Phase, which level is being accessed and rebuilt is determined by the length of the accessed
ranges (and is independent of which ranges are being accessed). We will show how to implement the
eviction procedure, and the rebuilding of the trees with locality-friendly and oblivious algorithms.

How data locality is preserved. We highlight why this solution preserves data locality.

• Read phase locality. In order to access a possibly large memory range of length 2i, we need to i)
access at most polylogarithmically many metadata blocks; and ii) for each of the logarithmically
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many range trees, fetch O(1) size-2i super-blocks from each range tree. It is not hard to see
these amount to reading polylogarithmically many contiguous memory ranges.

• Write phase locality. Write-phase locality can be guaranteed, as long as the underlying ORAMs
we employ (to store the metadata as well as super-blocks in each height of each range tree) sup-
ports locality-friendly initialization (i.e., batched rebuilding). We show that such initialization
can be achieved with locality-friendly oblivious sorting.

2.2 File ORAM

Compared to a range ORAM which supports accesses to any contiguous memory region, a File
ORAM provides a more constrained functionality that supports accesses to a set of files of predefined
ranges. More specifically, while in Range ORAM every pair of [s, t] is a valid request (as long as
t > s), in File ORAM, a client requests files whose boundaries are known a-priori; and further,
distinct files do not overlap in memory.

Obviously, we can use Range ORAM to realize File ORAM — but since File ORAM is can be
very useful abstraction in practice, we ask the question: can we construct a File ORAM that is
asymptotically more efficient, and potentially matching the bandwidth blowup of the best known,
non-local ORAM scheme? Can we construction a File ORAM that matches the space overhead of
known ORAM schemes (i.e., linear overhead)? This latter question is also interesting as there is an
evidence for the tradeoff between space overhead and locality, as the lower bound of [12] implies.
We answer the above question in the affirmative: we show that File ORAM can be realized in linear
space and Õ(log2N) work (ignoring poly log log factors) while achieving polylogarithmic locality.
In this section, we will first give a blueprint that does not care about optimizing poly log factors —
to obtain the final Õ(log2N) result would require additional techniques described in Section 2.3.

Näıve construction. A näıve construction for File ORAM is the following. Given a file structure
F = (Ffid1 , . . . , Ffidk) of a total size N , we build logN different ORAMs where the i-th ORAM holds
up to N/2i files of size 2i. If we use Circuit ORAM [52] with a merged stash across all recursion
levels [13], accessing each file of 2i boils down to accessing O(log2N) super-blocks of length 2i. It
is not hard to see that this näıve scheme achieves a O(log2N) work and (3, O(log2N log log2N))-
locality. However, the scheme requires O(N logN) space, which brings us back to our starting
point.

Non-recurrent file hashing scheme. We start with constructing File ORAM for non-recurrent
accesses, namely, when the same file is accessed at most once. At a high level, to achieve this,
we define a new primitive, which we call “Non-recurrent File Hashing scheme”, build upon the
two-dimensional balanced allocation scheme [6]. However, we show how to perform this balanced
allocation, obliviously.

Given a sequence of files F = (Ffid1 , . . . , Ffidk) of various sizes and with total size N , we allocate
an array of “bins” and place (or, “hash”) the files in the memory as follows: For each file Ffid, we
evaluate a pseudo random function on the files identifier fid to receive a (pseudo-)random starting
bin g, and place the i-th block of the file in the bin g+ i. That is, the first block of the file is placed
in the bin g, the second block is placed in g + 1, and so on. Once this process is completed for
all files, each bin contains blocks from different files. We will show that if we allocate N/Õ(logN)
bins of size Õ(logN) (we make sure that the overall space is O(N)), then with all but a negligible
probability no bin overflows. We pad each bin to contain exactly Õ(logN) blocks by adding dummy
blocks when needed.

9



When the user accesses file fid, we compute the starting bin g by applying the pseudorandom
function on fid, and then read the len(fid) consecutive bins g, . . . , g + len(fid)− 1 to retrieve all the
blocks that correspond to the file fid. This guarantees good locality, as all the data that is associated
with the file fid is stored in len consecutive bins, i.e., a contiguous region of length len · Õ(logN).
As no file is accessed more than once, this range of memory locations is pseudorandom. As such,
we can also support accesses of fictitious files in a non-recurrent hashing scheme: when accessing a
file with fid = ⊥ and some len, we choose a random bin g uniformly at random, and read the bins
g, . . . , g + len− 1.

As for the initialization, we store next to each block some metadata that includes its file identifier
and its offset within the file, the destination bin of the block can be computed directly. We then
show how to implement the allocation procedure using locality-friendly oblivious sort, from an
input array containing the data of the files in arbitrary locations.

Achieving obliviousness for recurrent memory requests. To make recurrent requests, we
make the following observation: the hierarchical ORAM framework originally proposed by Goldreich
and Ostrovsky [25,27], is in fact, a method for constructing a recurrent ORAM from a non-recurrent
ORAM. Thus, we will apply the hierarchical ORAM framework atop our oblivious non-recurrent
File Hashing scheme, somewhat similarly to the way we converted Range trees to Range ORAM.
Here, however, the ith table Ti is a non-recurrent file hashing of size 2i which consumes space O(2i),
whereas range tree of size 2i consumes space O(i · 2i). As a result, the total space consumption of
our file ORAM is O(N) and not O(N logN) as in our Range ORAM.

2.3 Locality-Friendly Oblivious Sort

The aforementioned blueprint would suffice for us to obtain both Range ORAM and File ORAM
with polylogarithmic bandwidth and locality blowup. To obtain asymptotically tighter parameters,
i.e., the aforementioned Õ(log3N) bandwidth blowup for Range ORAM and Õ(log2N) for File
ORAM, we need various additional techniques.

In particular, as mentioned earlier, both the Range ORAM and the File ORAM relies on a
locality-friendly oblivious sorting algorithm to allow locality-friendly initialization, and thus the
efficiency of our final algorithm will depend on the efficiency of oblivious sorting.

Among known oblivious sorting algorithms, we observe that there is a way to implement bitonic
sort such that it preserves data locality — unfortunately, bitonic sort incurs an additional logarith-
mic factor in cost in comparison with the best known oblivious sorting algorithm (without locality).
We thus ask the question, can we realize an oblivious sorting algorithm with locality whose band-
width overhead matches that of the best known oblivious sorting algorithm (barring poly log log
factors), i.e., can the locality come (almost) for free in oblivious sorting?

Indeed, we show how to achieve this by demonstrating a new, statistically secure oblivious
sorting algorithm with Õ(n log n) overhead for sorting n elements, and polylogarithmic locality.

Intuitively speaking, we observe that the composition of the following two algorithms yields an
oblivious sorting algorithm:

• First, we obliviously permute the input array at random;

• Second, we apply a non-oblivious, comparison-based sorting algorithm on the permuted array
(e.g., merge-sort).

It is not hard to see that combining these two steps yield in an oblivious sort even though the
second step is non-oblivious. We show how to implement the first step efficiently and obliviously.
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In fact, we do not fully implement an oblivious permutation. Instead, we implement a weaker
primitive such that the composition still works and results in an oblivious algorithm.

In particular, we implement an “oblivious random bin assignment” algorithm whose core idea
is a butterfly-like shuffle. This random bin assignment algorithm places blocks into random bins
of relatively small size, and pads each bin with dummy elements. We later remove these dummy
elements using the non-oblivious sort.

Our new locality-friendly oblivious sorting algorithm immediately improves the performance
of both Range ORAM and File ORAM by a logarithmic factori. As oblivious sorting is a pow-
erful building block in the design of a wide class of oblivious algorithms, we believe that our
locality-friendly oblivious sorting algorithm is of independent interest. For example, several ear-
lier works [30, 38, 41] have shown that oblivious sorting is sufficient for making any MapReduce
or GraphLab algorithms oblivious while incurring asymptotically smaller overhead than generic
ORAM.

Finally, we mention that besides a more efficient oblivious sorting algorithm, to obtain the
aforementioned Õ(log3N) Range ORAM result also requires leveraging additional tools such as
locality-friendly oblivious data structures and position-based ORAMs — clearly, these building
blocks themselves can be of independent interest.

2.4 Organization

The rest of the paper is organized as follows. In Section 3 we define the notion of locality and
oblivious simulations. In Section 4 we present several building blocks that are necessary for our
construction, such as oblivious sort, oblivious deduplication and locally initializable ORAM, and
state that all of them can be constructed with good locality. We delay the construction of our
optimized oblivious sort to Section 7. Our main constructions of Range ORAM and File ORAM are
given in Section 5 and 6, respectively. Finally, in Section 8 we show our lower bound, formalizing
that efficient locality-friendly ORAM must leak the size of the lengths of the memory regions
accessed.

3 Definitions

Notations and conventions. We let [n] denote the set {1, . . . , n}. We denote by p.p.t. proba-
bilistic polynomial time Turing machines. A function negl(·) is called negligible if for any constant
c > 0 and all sufficiently large n’s, it holds that negl(n) < n−c. We let λ denote the security
parameter. For an ensemble of distributions {Dλ} (parametrized with λ), we denote by x ← Dλ

a sampling of an instance according to the distribution Dλ. Given two ensembles of distributions

{Xλ} and {Yλ}, we use the notation {Xλ}
ε(N)≡ {Yλ} to say that the two ensembles are statistically

(resp. computationally) indistinguishable if for any unbounded (resp. p.p.t.) adversary A,∣∣∣∣ Pr
x←Xλ

[
A(1λ, x) = 1

]
− Pr
y←Yλ

[
A(1λ, y) = 1

]∣∣∣∣ ≤ ε(λ)

Throughout this paper, for underlying building blocks, we will use n to denote the size of the
instance and use λ to denote the security parameter. For our final ORAM constructions, we use N
to denote the size of the total logical memory size as well as the security parameter — note that
this follows the convention of most existing works on ORAMs [25,27,30,37,45,48,52].
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3.1 Memory with Multiple Read/Write Heads and Data Locality

To understand the notion of data locality, it may be convenient to view the memory as a rotational
hard drive or other possible storage medium where sequential accesses are faster than random
accesses. Assume that the memory has H read/write heads, and in order to serve a read or
write request with address addr, the memory has to move one of its read/write heads to the
physical location addr to perform the operation. Any such movement of the heads introduces cost
and delays, and the machine that interacts with the memory would like to minimize the move
heads operations. Traditionally, the latter can be improved by storing related items to physically
proximate areas on the memory. However, this poses a great challenge for oblivious computation
in which data is often continuously shuffled across memory.

More formally, a memory is denoted as mem[N, b,H], and is indexed by the address space
[N ] = {1, 2, . . . , N}, where N is the size of the logical memory. We refer to each memory word also
as a block and we use b to denote the bit-length of each block. The memory mem is equipped with
H read/write heads and supports the following two types of instructions.

• Move head operation (move, h, addr) moves the h-th read/write head (h ∈ [H]) to point to
address addr.

• A read/write operation (op, h, data), where op ∈ {read, write}, h ∈ [H] and data ∈
{0, 1}b ∪ {⊥}. If op = read, then data = ⊥ and mem should return the content of the block
pointed to by the h-th head; If op = write, the block pointed to by the h-th head is updated
to data. The h-th head is then incremented to point to the next consecutive address.

Locality. The number of move operations defines locality. A sequence of memory operations has
(H, l)-locality if it contains l move operations to a memory that is equipped with H heads.

3.2 Oblivious Machines

In this section, we define oblivious simulation of possibly randomized functionalities, either stateless
(non-reactive) or stateful (reactive). Most prior works considered oblivious simulation of determin-
istic functionalities; however, in our paper, we will need oblivious simulation of randomized func-
tionalities as well. Thus we generalize the definitions to allow oblivious simulation of randomized
functionalities as well. Moreover, we capture a stronger notion than what is usually considered, in
which the adversary is adaptive and can issue request as a function of previous access pattern.

Oblivious simulation of a stateless functionality. We consider machines that interact with
the memory via move and read/write operations (throughout the paper it is often clear from
context how M should move the memory heads, in which case we omit explicitly writing move op-
erations). In case of a stateless (non-reactive) functionality, the machine M receives one instruction
I as input, interacts with the memory, compute the output and halts.

Given a stateless, possibly randomized functionality f , and a leakage function leakage, we say
that M obliviously simulates f if M correctly computes the same (possibly randomized) function
as f except with negligible probability for all inputs, and moreover, the access pattern of the
instructions M sends to the memory do not leak anything beyond the allowed leakage. The formal
definition follows.

Let RealM (1λ, I) := (y, addresses) be a pair of random variables where y denotes of the outcome
of executing M(1λ, I) on input I, and and addresses represents the addresses incurred during the
execution. Let Ff,leakage be a wrapper functionality that outputs a pair f(I; ρ), leakage(I; ρ) where
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the same randomness ρ is given to the leakage function and to f (we note that leakage might
consume some additional random coins; nevertheless, it receives the randomness f used to compute
the function). The simulator receives this leakage, and has to simulate the access pattern as in the
real, without receiving the output of the function. Formally:

Definition 3.1 (Oblivious simulation of a stateless (non-reactive) functionality). We say that the
stateless algorithm M obliviously simulates a stateless, possibly randomized functionality f w.r.t.
to the leakage function leakage : {0, 1}∗ → {0, 1}∗, iff there exists a p.p.t. simulator Sim and a
negligible function ε(·), such that for any λ and I,

RealM (1λ, I)
ε(λ)≡ {y,Sim(1λ, L) | (y, L)

$←Ff,leakage(I)}

Depending on whether
ε(λ)≡ refers to computational or statistical indistinguishability, we say M

is computationally or statistically oblivious. If ε(·) = 0, we say M is perfectly oblivious.

Intuitively, the above definition requires indistinguishability of the joint distribution of the
output of the computation and the access pattern, somewhat similar to the standard definition
of secure computation in which the joint distribution of the output of the function and the view
of the adversary is considered (see the relevant discussions in [9, 26]). Note that here we handle
correctness and obliviousness in a single definition.

As an example, consider an algorithm that receives an instruction to randomly permute some
array in the memory, while leaking only the size of the array. Ignoring hiding the input for now,
such a task should also hide the chosen permutation. As such, our definition requires that the
simulation would output an access pattern that matches a permutation that the ideal functionality
chose, without seeing that chosen permutation. This guarantees that the access pattern does not
reveal which permutation was chosen. On the other hand, if we do not consider the joint distribution
of the output and the access pattern, then we allow algorithms in which there is some mapping
between the access pattern and the chosen permutation, which are not oblivious.

Special case for deterministic f . As a special case, if the functionality f is deterministic,
then the above definition equates to the classical notion of oblivious simulation of a deterministic
functionality, requiring:

• Correctness: there exists a negligible function ε(·) such that for every λ and I, M(1λ, I) =
f(I) except with ε(λ) probability.

• Obliviousness: there exists a stateful p.p.t. simulator Sim, such that for any λ and I,

Addresses(M(1λ, I))
ε(λ)≡ Sim(1λ, leakage(I))

where Addresses(M(1λ, I)) is a random variable denoting the addresses incurred by an execu-
tion of M over the input I. Note that in this case, the leakage function takes only I as input,
but not the randomness of the functionality f .

For example, an oblivious sorting algorithm is an oblivious simulation of the functionality that
receives an array and sorts it, where the leakage function contains only the length of the array
being sorted.
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Oblivious simulation of a stateful functionality. We often care about oblivious simulation
of stateful functionalities. For example, the ordinary ORAM is an oblivious simulation of a logical
memory abstraction. We define a composable notion of security for oblivious simulation of a stateful
functionality below. This time, the machine M and the simulator Sim are interactive machines that
might receive instructions (or leakage) as long as they are activated.

Intuitively, the machine M receives instructions from the CPU and interacts with the memory in
order to answer them. In the experiment, we let the adversary A issue the instructions, and choose
the next instruction adaptively. In the real execution, the machine M receives the instruction I,
interacts with the memory and answers the instruction. The adversary receives both the answer and
also sees the memory addresses M accessed. In the ideal execution, when A outputs an instruction,
the functionality computes the answer, and the memory addresses are simulated by the simulator
upon receiving some leakage. Formally,

Definition 3.2 (Adaptively secure oblivious simulation of stateful functionalities). Let M be an
interactive machine, and let leakage : {0, 1}∗ → {0, 1}∗ be a stateful leakage function. We say
that M obliviously simulates a possibly randomized, stateful functionality f w.r.t. to the leakage
function leakage iff there exists a p.p.t. simulator Sim, such that for any non-uniform p.p.t. adver-
sary A, A’s view in the following two experiments, Exptreal,MA and Exptideal,fA,Sim are computationally

indistinguishable — below we use the notation Ff,leakage to denote a stateful wrapper functionality
that upon receiving every new input Ii, outputs a pair f(state, Ii; ρ) and leakage(state, Ii, ρ) where
ρ is the randomness consumed by f in the execution, and updates the internal state.

Exptreal,MA (1λ):

out0 = addresses0 = ⊥
For i = 1, 2, . . . poly(λ):
Ii ← A(1λ, outi−1, addressesi−1)

outi, addressesi ←M(Ii)

Exptideal,fA,Sim (1λ):

out0 = addresses0 = ⊥
For i = 1, 2, . . . poly(λ):
Ii ← A(1λ, outi−1, addressesi−1)

(outi, L)← Ff,leakage(Ii), addressesi ← Sim(L)

In the above definition, if we replace computational indistinguishability with statistical indistin-
guishability (or identically distributed resp.) and remove the requirement for the adversary to be
polynomially bounded, then we say that the stateful machine M obliviously simulates the stateful
functionality f with statistical (or perfect resp.) security.

Our definition of oblivious simulation is in the form of a general wrapper for any stateless or
stateful functionality, and thus later in the paper, whenever we define any oblivious algorithm, it
suffices to state 1) what functionality it computes; 2) what is the leakage; and 3) what security
(i.e., computational, statistical, or perfect) we achieve. We use ordinary ORAM as an example to
show how to use our definitions.

Ordinary ORAM. As an example, a conventional ORAM, first proposed by Goldreich and
Ostrovsky [25], is an oblivious simulation of a “logical memory functionality”,

• Functionality: Upon each instruction of the form (op, addr, data), with op ∈ {read, write},
addr ∈ [N ], and data ∈ {0, 1}b ∪{⊥} perform reads and writes to a logical memory, such that
the block fetched is always the last value written. In particular, if op = read, the block at
the logical address addr is fetched; and if op = write, the content of the block with address
addr is updated to data.

14



• Leakage: The leakage of an ORAM is only the total number of blocks, and the total number
of accesses, i.e., leakage(I) := (N,m).

We remark that previous constructions of ORAM [37,48,52] in fact satisfy Definition 3.2.

Locality, work, and private storage of oblivious machines. A machine M has locality
(H, `) if for every sequence of instructions I of length n, the machine M sends at most `(n) move
operations to a memory that is equipped with H read/write heads. Throughout the paper, we
use the terminology work (or interchangably, bandwidth) to denote the total number of memory
read/write operations of size Ω(logN) a machine needs to use; we use the terminology oblivious
simulation overhead or overhead for short, to denote the work consumed by an oblivious machine
divided by the work consumed by (the optimal) non-oblivious machine for the same task. The
entire paper assumes the machine/algorithm has only O(1) blocks of private storage.

Remark. In this paper, we focus on hiding the access patterns to the memory, but not the data
contents. Therefore, we do not explicitly mention that data is (re-)encrypted when it is accessed,
but encryption should be added if the adversary can observe memory contents.

4 Locality-Friendly Building Blocks

In this section we describe several locality-friendly building blocks that are necessary for our con-
structions. In Section 4.1 we overview sorting algorithms that are locality-friendly. In Section 4.2
we describe the oblivious deduplication functionality, which can be implemented directly from
oblivious sort. In Section 4.3 we describe oblivious RAM with locality-friendly initialization.

4.1 Oblivious Sorting Algorithms with Locality

An important building block for our constructions is an oblivious sorting algorithm that is locality-
friendly. In this section, we show how to construct such an algorithm. We first discuss Merge-sort as
an example of a local algorithm, but not asymptotically optimal. We proceed to Bitonic-Sort, which
is a perfectly secure oblivious sorting algorithm with locality but runs in time O(n log2 n) for sorting
an array of size n. While it suffices for our purposes, it introduces an extra overhead. We then
proceed to construct a novel sorting algorithm that has optimal overhead (up to log log λ-factors),
and is statistically-oblivious.

Merge sort. As a warmup, we note that merge sort is a non-oblivious sort algorithm that is
locality-friendly. It is easy to see that the basic operation that merges two sorted lists of size
n/2 into a sorted list of size n can be implemented by a single scan with three heads, one head
for each of the input arrays and one head for the destination array. In addition, each iteration
i = 0, . . . , log n − 1 that merges n/2i pairs of subarrays of size 2i−1 into n/2i sorted arrays of size
2i can be implemented using one linear scan, and without introducing additional move operations.
Specifically, after merging two subarrays, the heads are incremented to the consecutive subarrays
using vacuous reads, and move operations are required only in the beginning of each iteration.

As a result, the merge sort algorithm can be implemented by scanning the array log2 n times
with three heads, resulting in (3, log2 n) locality and O(n · log2 n) work for an input array of size n.
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Bitonic sort. An oblivious sorting algorithm that enjoys good locality is Bitonic sort, introduced
by Batcher [7]. In Appendix A, we describe a particular method to implement Bitonic sort to achieve
locality, and provide a detailed analysis.

Theorem 4.1 (Perfectly secure oblivious sort with locality). Bitonic sort (when implemented as
in Appendix A) is a perfectly oblivious sorting algorithm that sorts n elements using O(n log2 n)
work and (2, O(log2 n)) locality.

A new oblivious sorting algorithm with locality. While Bitonic sort suffices for our purposes
for constructing ORAMs with locality, it is not asymptotically optimal and introduces an additional
log n factor. In Section 7 we construct a novel sorting algorithm that is locality-friendly and
asymptotically faster. We show:

Theorem 4.2 (Statistically secure, efficient oblivious sort). There exists a locality-friendly oblivious
sort algorithm with statistical security, with O(n log n log log2 λ) work and (3, O(log n log log2 λ)
locality, where λ is the security parameter.

4.2 Oblivious Deduplication with Locality

We define a handy subroutine that removes duplicates obliviously. Y ← Dedup(X,nY ), where
X contains some real elements and dummy elements, and nY is some target output length. It
is assumed that each real element is of the form ((k, k′), v) where k is a primary key and k′ is a
secondary key. The subroutine outputs an array Y of length nY in which for each primary key k
in X, only the element with the smallest secondary key k′ remains (possibly with some dummies
at the end). It is assumed that the number of primary keys k is bounded by nY .

Given oblivious sort with locality, we can easily realize oblivious Dedup with locality. We
obliviously sort X by the (k, k′) tuple, scan X to replace duplicates with dummies, and sort X
again to move dummies towards the end. Finally, pad or truncate X to have length nY and output.

4.3 Locally Initializable ORAM

In this section, we show that the oblivious sort can be utilized to define an (ordinary) ORAM
scheme that is also locally initializable.

A locally initializable ORAM is an ORAM with the additional property that it can be initial-
ized efficiently and in a locality-friendly manner given a batch of initial blocks. The syntax and
definitions of a locally initializable ORAM is the same as a normal ORAM, except that the first
operation in the sequence is a locality-friendly initialization procedure. More formally, a locally
initializable ORAM is an oblivious implementation of the following functionality.

• T.Build(X) takes an input array X of blocks of the form (addr, data). Blocks in X have
distinct integer addresses that are not necessarily contiguous. It creates the data-structure in
the memory and outputs some secret state to the CPU.

• B ← T.Access(op, addr, data) with op ∈ {read, write}, addr ∈ [N ], and data ∈ {0, 1}B. If
op = read, then the ORAM returns the block with address addr, which should match the
content lastly written to that block. If op = write, the content of the block with address
addr is updated to data.

The leakage function of locally initializable ORAM reveals |X| and the number of Request opera-
tions. Obliviousness is defined as in Definition 3.2 with the above leakage and functionality.
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Locality-friendly initialization. We now show that the hierarchical ORAM by Goldreich and
Ostrovsky [25] can be initialized in a locality-friendly manner. To initialize a hierarchical ORAM,
it suffices to place all the n blocks in the largest level of capacity n. In the Goldreich and Os-
trovsky ORAM, each block is placed into one of the n bins by applying a pseudorandom function
PRFK(addr) where K is a secret key known only to the CPU and addr is the block’s address. By
a simple application of the Chernoff bound, except with negl(λ) probability, each bin’s utilization
is upper bounded by α log λ for any super-constant function α. Goldreich and Ostrovsky [25] show
how to leverage oblivious sorting to obliviously initialize such a hash table. For us to achieve local-
ity, it suffices to use a locality-friendly oblivious sort algorithm — specifically, Bitonic sort or our
new sorting algorithm (Section 7). This gives rise to the following theorem:

Theorem 4.3 (Computationally secure, locally initializable ORAM). Assuming one-way function
exists, there exists a computationally secure locally-initializable ORAM scheme that has negl(λ)
failure probability, and can be initialized with n blocks using (n + λ) · poly log(n + λ) work and
(2, poly log(n+λ)) locality, and can serve an access using poly log(n+λ) work and (2, poly log(n+λ))
locality.

Notice that for ordinary ORAMs, since the total work for accessing a singe block is only poly-
logarithmic, obtaining polylogarithmic locality per access is trivial. Our goal later is to achieve
ORAMs where even if you access a large file or large region, the locality is still polylogarithmic,
i.e., one does not need to split up the file into little blocks and access them one by one. Our
constructions later will leverage a locally initializable, ordinary ORAM as a building block.

5 Range ORAM

In this section, we define range ORAM and first present a construction with poly-logarithmic work
and poly-logarithmic locality to show feasibility. The construction uses a building block which we
call an oblivious range tree (Section 5.2). It supports range lookup queries with low overhead and
good locality, but it does not support updates. Next, we show how to construct a range ORAM,
which supports reads and updates, from oblivious range trees (Section 5.3). Finally, we introduce
techniques to improve the efficiency of range ORAM (Section 5.4).

5.1 Range ORAM Definition

A Range ORAM is an oblivious machine that receives read/write range instructions, and interacts
with the memory while leaking only the size of the range. Formally, Range ORAM is defined using
Definition 3.2 using the following functionality and leakage:

Functionality: Range ORAM takes as input range requests in the form Access(op, [s, t], data),

where op ∈ {read, write}, s, t ∈ [N ], s < t, and data ∈ ({0, 1}b)(t−s+1). If op = read, then all
blocks with addresses in the range [s, t] are returned. If op = write, data denotes the updated
value of blocks in the range [s, t].

Leakage: A Range ORAM reveals to the adversary only its capacity and the length t− s+ 1 of
every request and the total number of requests. Formally, given a sequence of instructions

I = ((op1, [s1, t1], data1), . . . , (opm, [sm, tm], datam)) , we define

leakage(I) := (N, t1 − s1 + 1, . . . , tm − sm + 1)
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In Section 8, we show a lower bound stating that if we restrict the leakage and do not allow the
adversary to learn the length of each operation, then simultaneously achieving a poly-logarithmic
bandwidth and poly-logarithmic locality is not possible.

5.2 Oblivious Range Tree

A necessary building block for construction Range ORAM is a Range Tree. An oblivious Range Tree
is a read-only Range ORAM with an initialization procedure from a list of blocks with possibly non-
contiguous addresses. Formally, it is an oblivious simulation of the following reactive functionality
with the following leakage (where obliviousness is defined using Definition 3.2):

Functionality: Formally, an oblivious Range Tree T supports the following operations:

• T.Build(X) takes in a list X of blocks of the form (addr, data). Blocks in X have distinct
integer addresses that are not necessarily contiguous.

• B← T.Access(read, [s, t],⊥) takes in a range [s, t] and returns all (and only) blocks in X that
has addr in the range [s, t]. We assume len = t− s+ 1 = 2i is a power of 2 for simplicity.

Leakage: The leakage is as follows:

I = (Build(X),Access(read, [s1, t1],⊥), . . . ,Access(read, [sm, tm],⊥)) , we define

leakage(I) := (|X|, t1 − s1 + 1, . . . , tm − sm + 1)

A logical Range Tree. For simplicity, assume n := |X| is a power of 2; if it is not, we simply
pad with dummy blocks that have addr = ∞. A logical Range Tree is a full binary tree with n
leaves. Each leaf contains a block in X, sorted by addr from left to right. Each internal node is
a super-block, i.e., blocks from all leaves in its subtree concatenated and ordered by addresses. A
height-i super-block thus has size 2i. The leaves are at height 0, and the root is at height log2 n.

Metadata tree. Each super-block in the logical Range Tree defines a range: [as, am, at] where
as is the lowest address, at is the highest address, and am is the middle address (the address of
the 2i−1-th block for a height-i super-block). We use another full binary tree to store the range
metadata of each super-block, henceforth referred to as the metadata tree. The metadata tree is a
natural binary search tree that supports the following search operations:

• Given a request range [s, t] with len := t− s+ 1 = 2i, find the leftmost and rightmost height-i
(super)-blocks whose ranges intersect [s, t], or return ⊥ if none is found.

Since t− s+ 1 = 2i, the leftmost and rightmost height-i (super-)blocks that intersect [s, t] (if they
exist) are either contiguous or the same node.

Next, to achieve obliviousness, we will put the metadata tree and each height of the logical
range tree into a separate ORAM, as shown in Figure 2.

Algorithm 5.1: T.Build(X). The Build algorithm takes a list of blocks X, constructs the logi-
cal Range Tree and metadata tree, and then puts them into ORAMs through local initialization
(Section 4.3).
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Figure 2: An oblivious Range Tree with Locality.

1. Create leaves. Obliviously sort X by the addresses. Pad |X| to the nearest power of 2 with
dummy blocks that have addr = ∞. Let height[0] denote the sorted X, which will be the
leaves of the logical Range Tree.

2. Create super-blocks. For each height i = 1, 2, . . . , L := log2 n, create height-i super-blocks
by concatenating their two child nodes. Let height[i] denote the set of height-i super-blocks.
Tag each super-block with its offset in the height.

3. Create metadata tree. Let metadata be the resulting metadata tree represented as an
array, i.e., metadata[i] is the parent of metadata[2i+ 1] and metadata[2i+ 2]. Tag each node
in the metadata tree with its offset in metadata.

4. Put each height and metadata tree in ORAMs. For each height i = 0, 1, . . . , L, let Hi

be a locally initializable ORAM from Section 4.3, and call Hi.Build(height[i]) in which each
height-i super-block behaves as an atomic block. Let Hmeta be a locally initializable ORAM,
and call Hmeta.Build(metadata).

Algorithm 5.2: T.Access(read, [s, t],⊥) (with len = t− s+ 1 = 2i)

1. Look up address. Call Hmeta.Access(·) L times to obliviously search for the leftmost and
rightmost height-i (super-)blocks in the logical Range Tree that intersects [s, t]. Suppose they
have addresses addr1 and addr2 (which may be the same and may both be ⊥).

2. Retrieve super-blocks. Call B1 ← Hi.Access(read, addr1,⊥) and B2 ← Hi.Access(read, addr2,⊥)
to retrieve the two (super-)blocks.

3. Output. Remove blocks from B1 and B2 that are not in [s, t]. Output B = Dedup(B1 || B2, len).

Theorem 5.3 (Oblivious Range Tree). Assuming one-way functions exist, there exists a compu-
tationally secure oblivious Range Tree scheme that has correctness except with negl(λ) probability,
and
• Build requires n · poly log(n+ λ) work and (2, poly log(n+ λ)) locality,
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• Access requires poly log(n+ λ) work and (2, poly log(n+ λ)) locality.

Proof. Correctness is clear. Efficiency-wise, the T.Build algorithm invokes the initialization pro-
cedure of O(log n) locally-initializable ORAMs (Section 4.3); the T.Access algorithm invokes a
poly-logarithmic number of ORAM accesses, each having poly-logarithmic work and (2, poly log n)
locality. It is also not hard to see that the other steps in the above algorithms have O(n) work and
(2, O(1))-locality.

Obliviousness. We first claim the existence of adaptive simulators Sim0, . . . ,SimL, where Simj

corresponds to ORAM Hj . In addition, there exists a simulator Simmeta, corresponding to Hmeta,
SimDedup for the algorithm Dedup, and Simsort for the oblivious sorting algorithm. We construct a
simulator for satisfying Definition 3.2 where the function f, leakage are as defined above.

The simulator Sim. The simulator is online, receiving leakage of instructions from the adversary
and outputs memory distribution. With each instruction I:

• Build: Upon receiving leakage |X|, invoke Simsort and output its output. Then, restart all
simulators Sim0, . . . ,SimL where Sim` is parameterized with block size 2` · b and leakage
|X|/2`, and output their output. Activate the additional simulator Simmeta with the input
|X|. Output the outputs of all these simulators.

• Access: Upon receiving leakage corresponding to (t − s + 1) = 2i, simulate an access to a
range [s, t]:

1. Invoke Simmeta for L accesses, simulating the accesses to the metadata ORAM, and
output them.

2. Since (t − s + 1) = 2i, we access the i-th level only. Invoke the simulator Simi twice,
simulating two accesses to it, and appending the simulated instructions to the output.

3. Invoke SimDedup on size 2i.

The updated state of the simulator is simply the states of all activated simulators.

We show that Exptreal,M (1λ) is indistinguishable from Exptideal,f (1λ) through a sequence of
hybrid experiments:

• Hyb0(λ): This is exactly the real execution. With each instruction I received from the
adversary, we hand it to the real construction to receive the memory addresses. In addition,
the construction interacts with the real memory and generates the output outi in each stage,
which is also given to the adversary.

• Hyb1(λ): Same as Hyb1(λ), where now the we use the Range Tree functionality in order to
produce the output outi in each step.

• Hyb2,k(λ) with k ∈ [L]: In this execution, upon receiving some instruction I from the
adversary, we proceed as follows:

1. Build(X): Perform Steps 1–3 in Algorithm 5.1. Then,
– For all i ≤ k, call to Simi(|X|/2i) as in the simulation.

– For all i > k, perform Hi.Build(height[i]).

2. Access(read, [s, t],⊥): (with t− s = 2i), perform the following steps:
(a) Call Hmeta to obliviously search for the metadata addr1, addr2 as in the real execution.

(b) If i ≤ k, call to the simulator Simi for simulating two accesses.

(c) If i > k, then call to the real oblivious RAM Hi to access both addr1 and addr2.
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In each step, output the concatenation of all memory address defined as above and proceed
to the next instruction.

• Hyb3(λ): Same as Hyb2,L(λ), except that the metadata ORAM is replaced with Simmeta.

• Hyb4(λ): Same as Hyb3(λ) except that we replace Dedup with SimDedup.

• Hyb5(λ): Same as Hyb4(λ) except that we replace the oblivious sort with Simsort.
As a result, the experiment uses only the leakage of the instruction, and this is exactly the
simulator Sim.

We show that for every adversary A, its view in each one of the hybrid experiment is indis-
tinguishable. Specifically, Hyb5(λ) is indistinguishable from Hyb4(λ) due to the security of the
oblivious sorting algorithm. The view of the adversary in Hyb4(λ) is indistinguishable from its
view in Hyb3(λ), due to the security of the Dedup function.

The view of the adversary Hyb3(λ) is indistinguishable from Hyb2,L(λ) due to the security of the
metadata ORAM. In a more detail, assume by contradiction that there exists an adversary A that
succeeds to distinguish between Hyb3(λ) and Hyb2,L(λ). We show the existence of an adversary A′
that succeeds to distinguish between Exptreal,MORAM

A′ (1λ) and Exptideal,fORAM
A′,Simmeta

(1λ) as follows:

1. A′ is activated with input (1λ,⊥,⊥) and activates A on the same input.

2. Upon receiving an instruction I = Build(X) or I = Access(read, [s, t],⊥) from A, the adver-
sary A′ simulates the hybrid experiment, in which all levels T0, . . . ,TL are simulated using
Sim0, . . . ,SimL, and invocations of Dedup and sort are the real constructions. In order to
simulate instructions to Hmeta, A′ outputs that instruction to its own challenger, receives the
output and the memory addresses and uses them to answer A instruction I.

3. When A outputs a bit b distinguishing between Hyb3(λ) and Hyb2,L(λ), the adversary A′ uses
this bit to distinguish between interacting with Simmeta and the corresponding real ORAM
construction.

Likewise, for every k ∈ {0, . . . , L − 1} it holds that the view of the adversary in Hyb2,k(λ) is
indistinguishable from Hyb2,k+1(λ) due to the security of the k + 1th ORAM. Finally, Hyb2,0(λ, I)
and Hyb1(λ) are indistinguishable due to the security of the ORAM T0. Finally, Hyb1(λ) and
Hyb0(λ) are indistinguishable due to the correctness of the Range Trees.

5.3 Range ORAM from Oblivious Range Tree

In this section, we show how to construct a Range ORAM from an oblivious Range Tree scheme.
Since the underlying oblivious Range Tree has good efficiency/locality, so will the resulting Range
ORAM. The idea behind our construction is similar to that of the standard hierarchical ORAM [25,
27]. Intuitively, where a standard hierarchical ORAM employs an oblivious hash table, we instead
employ an oblivious Range Tree.

Data structure. We use N to denote both the total size of logical data blocks as well as the
security parameter. There are logN + 1 levels numbered 0, 1, . . . , L respectively, where L :=
dlog2Ne is the maximum level. Each level is an oblivious Range Tree denoted T0,T1, . . . ,TL where
Ti has capacity 2i. Data will be replicated across these levels. We maintain the invariant that data
in lower levels are fresher. At any time, each Ti can be in two possible states, non-empty or empty.
Initially, the largest level is marked non-empty, whereas all other levels are marked empty.

Algorithm 5.4: Range ORAM Access(op, [s, t], data) (with t− s+ 1 = 2i for some i).
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1. Retrieve all blocks in range trees of capacity no more than 2i, i.e., all := ∪i−1j=0Tj . This can
be easily done by fetching its root. Each block in all is tagged with its level number j as
a secondary key so that later after calling Dedup, only the most fresh version of each block
remains. We assume each block also carries a copy of its address.

2. For each j = i, i+ 1, . . . , L , if Tj is non-empty, let all = all ∪ Tj .Access(read, [s, t],⊥).

3. Let data∗ := Dedup(all, 2i). If op = read , return data∗ to client, Else, data∗ := data.

4. If level i is marked empty, perform Ti.Build(data∗) and mark it as ready. Otherwise:

(a) Let ` denote the smallest level greater than i that is empty. If no such level exists, let
` := L.

(b) Let S := ∪`−1j=0Tj . If ` = L, additionally include S := S∪TL. Call T`.Build(Dedup(S, 2`))
and Ti.Build(data∗). Mark levels ` and i as non-empty, and all other levels below ` as
empty.

We prove the following Theorem:

Theorem 5.5 (Range ORAM with locality). Assuming one-way functions exist, there exists a
computationally secure oblivious Range ORAM consuming O(N logN) space with negl(N) failure
probability, and len · poly logN work and (2, poly logN) locality for accessing a range of size len.

Proof. We start with efficiency analysis and proceed to obliviousness.

Efficiency. We now analyze the efficiency and locality of our Range ORAM.

• Read phase. The read phase (Step 1 to 3) invokes one access to each of the O(log n) oblivious
Range Trees, and hence has len · poly logN work and (2, poly logN) locality.

• Rebuild phase. An alternative way to view our algorithm is to think all each levels’ empty
bit (where empty denotes 0 and non-empty denotes 1), when concatenated, form a binary
counter. Level i is rebuilt every 2i counter increments. Rebuilding a level i involves initializing
(building) the underlying oblivious Range Tree, which costs n · poly log n work and locality
where n = 2i. Thus, the per-increment work for rebuilding is poly logN — recall that N is
both the total logical memory size and the security parameter. It is not hard to see that every
time a memory range of size 2i is requested, the counter’s value increases by at most 3 · 2i.
So the amortized work for rebuilding is O(len · poly logN) for an access requesting len blocks.
The locality of the rebuild phase is straightforward: every access request involves rebuilding
at most 2 levels.

Obliviousness. Let Sim0, . . . ,SimL denote the simulators of the Range Trees. Let SimDedup

denote the simulator for the Dedup algorithm. Consider the functionality of Range ORAM as
defined in Section 5.1. We show the existence of an online simulator Sim for Range ORAM,

participating in the experiment Expt
ideal,fRangeORAM

A,Sim (1λ), defined as follows:

The simulator Sim. Upon initialization, initialize L+ 1 bits corresponding to whether a level is
ready or empty. Mark all levels as empty, except for the last level. Invoke SimL with leakage 2L.
Access: Upon receiving leakage(I) with leakage(I) = 2i for some integer i

1. For j = 0, . . . , i− 1, access the memory locations devoted to Simj .

2. For j = i, . . . , L, if the level j is marked ready, invoke the simulator Simj on simulating an
access with leakage 2i.
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3. Invoke the simulator SimDedup(2i).

4. If level i is marked empty, then invoke Simi with Build and leakage 2i. Otherwise,

(a) Let ` denote the smallest level greater than i that is empty. If no such level exists, let
` = L.

(b) Call SimDedup(2`). Terminate all running simulators Sim0, . . . ,Sim` and mark all corre-
sponding bits as empty. Restart Sim` with Build on leakage 2`, and Simi with leakage
2i, and mark corresponding bits as ready.

The internal state of the simulator is the bits indicating whether a level is ready/empty, and the
internal states of the underlying simulators.

We show that the adversary cannot distinguish between a real execution and the ideal one. We
show that through a sequence of hybrids:

• Hyb0(λ): This is exactly the real execution. Upon receiving instruction I = (op, [s, t], data)
from the adversary, we invoke Algorithm 5.4 and output the memory addresses it produces,
and outi.

• Hyb1(λ): Same as Hyb0(λ) but the adversary receives in each step the output of the Range
ORAM functionality and not the output of the construction. The memory addresses are still
according to the construction.

• Hyb2,k(λ) with k ∈ {0, . . . , L}: In this hybrid, we replace all range trees 0, . . . , k − 1 with
simulators Sim0, . . . ,Simk−1.
Upon receiving some instruction I = (op, [s, t], data) with t − s + 1 = 2i for some integer
i, we follow Algorithm 5.4. Whenever the algorithm performs Tj .Build(X) for some j < k
and some X, we replace it with an invocation of Simj for Build instruction with leakage |X|.
Whenever the Algorithm performs Tj .Access, we invoke Simj for Access with leakage 2i.

• Hyb3(λ): Same as Hyb2,L(λ), where here also the Dedup algorithm is replaced with SimDedup.
As a result, we do not use any information in the instruction I beyond leakage(I), and this is
exactly the simulator Sim.

We now claim that the view of the adversary in the experiment Hyb3(λ) is indistinguishable
from its view in Hyb2,L(λ) due to the security of the Dedup Algorithm. Likewise, for every k ∈
{0, . . . , L−1} it holds that the view of the adversary in Hyb2,k(λ) is indistinguishable from its view
in Hyb2,k+1(λ) due to the security of the k+ 1th Tree ORAM. The views in Hyb2,0(λ) and Hyb1(λ)
are identical. Finally, the views in Hyb1(λ) and Hyb0(λ) are indistinguishable from the correctness
of the Range ORAM construction.

5.4 Asymptotical Improvements and Stronger Security

Statistically secure, asymptotically faster Range ORAM. So far, we have showed the
theoretic feasibility of constructing a Range ORAM with poly-logarithmic work and locality. In
this feasibility result, we favored conceptual simplicity over optimizing poly-logarithmic factors.
We will next present non-trivial techniques that asymptotically improve the range ORAM’s work
and locality by poly-logarithmic factors and moreover, achieve statistical security. In the interest
of space, below we outline the core ideas and present the results as theorems while deferring the
technical details to the appendices.

• Locally initializable oblivious binary search trees. Our first observation is that each oblivious
range tree needs an oblivious binary search tree for metadata. Instead of using a generic
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ORAM, we can employ a more efficient oblivious binary search tree (OBST) using oblivious
data structure techniques described in earlier works [23, 38, 54]. For the same reason why
we needed ORAMs to support locality-friendly initialization, our OBST must also be locally
initializable. In Appendix B.1, we will describe how to extend an OBST to support locality-
friendly initialization.

• Tree-based ORAMs. Tree-based ORAMs [45, 48, 52] provide an O(logN) factor work and
locality improvement over best known hierarchical ORAMs. Meanwhile, they are also statis-
tically secure. Similarly, we need to make tree-based ORAMs locally initializable, which we
describe in Appendix B.1.
Now that we have to perform an OBST search, we can insert another optimization for free.
We additionally store in the OBST each (super-)block’s position label in addition to its
address in the corresponding height ORAM. A couple of earlier works have observed that in
tree-based ORAMs, if correct position labels can be provided for free upon each query, we
can asymptotically reduce the ORAM’s bandwidth overhead by avoiding the need of ORAM
recursion [23, 38, 54]. To capture this intuition, these works have coined the term “position-
based ORAMs”.

Putting it all together, we obtain asymptotically faster Range ORAM constructions with sta-
tistical security.

Corollary 5.6 (Statistically secure Range ORAM with locality). There exists a statistically secure
Range ORAM such that except with negl(N) probability, accessing any contiguous memory range
of size len requires O(αlen · log3N log log2N) work and (3, O(log3N log log2N)) locality, where N
denotes both the total memory size as well as the security parameter.

Perfectly secure Range ORAM. Similarly, if we replace our building blocks with a perfectly
secure, locally initializable ORAM and use the locality-friendly implementation of bitonic sort
as our oblivious sorting candidate, we can obtain a perfectly secure Range ORAM scheme with
polylogarithmic runtime blowup and polylogarithmic locality blowup. We describe how to obtain
a perfectly secure, locally initializable ORAM in Appendix C by modifying the perfectly secure
ORAM scheme by Damg̊ard et al. [18].

This immediately gives rise to the following corollary:

Corollary 5.7 (Perfectly secure Range ORAM with locality). There exists a perfectly secure
Range ORAM scheme such that accessing any contiguous memory range of size len requires O(len ·
poly logN) work and (O(1), O(poly logN)) locality, where N denotes both the total memory size.

5.5 Online Range ORAM

So far, our range ORAM assumes an abstraction where we have foresight on how many contiguous
locations of logical memory we wish to access.

Online Range ORAM: problem definition. We now consider an online variant, where the
memory requests arrive one by one just as in normal ORAM, and we wish to have an ORAM
scheme that preserves locality, i.e., if the logical request sequence consists of l contiguous memory
regions, then the ORAM’s physical access sequence visits only l·poly logN contiguous regions. More
specifically, suppose that the original program’s logical request sequence satisfies (1, l)-locality, we
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want that the ORAM’s physical access sequence satisfies (O(1), l · poly logN)-locality. Similar as
before, we want that an online Range ORAM to have only polylogarithmic work.

The security of online range ORAM can be defined in the same manner as range ORAM, where
the adaptive leakage function leakage(I) outputs a bit, indicating whether the last request in I is
contiguous w.r.t. to the last but second.

Blackbox construction of online range ORAM from range ORAM. Given a range ORAM
construction, we can convert it to an online Range ORAM scheme as follows, incurring only loga-
rithmic further blowup. Intuitively, the idea is to prefetch a contiguous region of size 2k every time
a 2k contiguous region has been accessed. The detailed construction is given below:

Let prefetch be a dedicated location in memory storing prefetched contiguous memory regions.
Initially, let rsize := 1, p = 1, and let prefetch := ⊥. Upon receiving a memory request:

• If prefetch[p] does not match the logical address requested, then do the following.

1. First, write back the entire prefetch back into the range ORAM.

2. Next, request a region of length 1 consisting of only the requested logical address, store
the result in prefetch;

3. Reset p := 1 and rsize := 1;

• Read and write prefetch[p], and let p := p+ 1.

• If p > rsize, then do the following.

1. First, let rsize := 2 · rsize.

2. Next, write prefetch back into the range ORAM.

3. Now, prefetch the next contiguous region containing rsize logical addresses, and store
them in prefetch, and let p := 1.

It is not hard to see that given the above algorithm, accessing each range of size R will be
broken up into at most O(logR) accesses, to regions of sizes 1, 2, 4, . . . , R respectively, and each
size has one read request and one write request. Thus we have the following theorem.

Theorem 5.8 (Online Range ORAM). Assuming one-way functions exist, there exists a com-
putationally secure online Range ORAM with negl(N) failure probability, which on receiving len
consecutive memory locations online performs len · poly logN work and achieves (O(1), poly logN)
locality.

6 File ORAM

In this section, we show how to construct a File ORAM scheme. We first define it in Section 6.1. In
Section 6.2, we construct a non-recurrent read-only File hashing primitive, which is a File ORAM
that supports only read accesses and achieves obliviousness if no file is accessed more than once.
Finally, we show how to rely on core ideas behind the hierarchical ORAM framework to obtain a
full-fledged File ORAM from non-recurrent read-only File Hashing schemes (see Section 6.3).

6.1 Definition

Compared to a Range ORAM which supports accesses to any contiguous memory region, a File
ORAM provides a more constrained functionality that supports accesses to a set of files of predefined
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ranges. More specifically, in Range ORAM every memory range [s, t] (t > s) can be accessed, while
in File ORAM, each file is the atomic unit of access. A File ORAM should leak only the length
of the file requested, but should hide any additional information, such as the number of files of
each size, and whether the same file is requested twice or two files of the same size are requested.
The File ORAM functionality is defined as follows, and its oblivious simulation is defined using
Definition 3.2 where the allowed leakage is as follows:

Functionality: The requests are in the form Access(op, fid, data) where op ∈ {read, write},
fid ∈ [k] and data ∈ ({0, 1}b)len(fid). If op = read, then the content of file fid is returned. If file fid
does not exist (has not been written before), ⊥ is returned. If op = write, then data denotes the
updated value of file fid.

Leakage: Let len(fid) be the size of file fid. For simplicity, we assume the size of each file len(fid)
is a power of 2 (otherwise, simply pad each file to the next power of 2). Let N be the sum of sizes
of all k files. The leakage is simply the length of each accessed file. Formally, given a sequence of
instructions

I = ((op1, fid1, data1), . . . , (opm, fidm, datam)) , we define

leakage(I) := (N, len(fid1), . . . , len(fidm)) .

In particular, File ORAM does not reveal how many files there are of each size, and does not reveal
whether we access the same file twice or two different files of the same size.

6.2 Non-Recurrent File Hashing Scheme with Locality

A File Hashing scheme T builds a hash table when given a set of files, such that later, file read
request can be served quickly. We consider a relaxed notion of obliviousness, where obliviousness
is only guaranteed when the adversary is constrained to access requests where each (non-dummy)
file can be requested only once.

Functionality: The functionality supports the following instructions:

• T.Build(X) takes an input array X, where each element is of the form (fidi, j, dataj). fidi is a

file identifier, and dataj ∈ {0, 1}b is the j-th block of the file fidi. The length of a file fidi is
the maximal j for which (fidi, j, dataj) ∈ X. It is assumed that for each given file fidi with
length len, exactly one block of the form (fidi, j, dataj) for each j < len exists in X.

• F ← T.Access(read, fid,⊥, len) takes in a possibly dummy file identifier fid to be fetched, the
purported length of the file len, and returns the file F . If the file fid does not exist in T, or if
fid = ⊥, then F = ⊥.

Leakage. The allowed leakage is as follows. For a sequence

I = (Build(X),Access(read, fid1,⊥, len1), . . . ,Access(read, fidm,⊥, lenm)) , we define

leakage(I) := (|X|, len1, . . . , lenm) .

Obliviousness under non-recurrent requests. We say that a non-recurrent File Hashing
scheme satisfies obliviousness, iff Definition 3.2 is respected when the adversary A is constrained
to submit request sequences where the same file identifier fid 6= ⊥ is never requested twice.
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Construction. Below, we present our non-recurrent File hashing scheme construction by extend-
ing the standard balls-and-bins hashing [6]. The output of Build(X) is a PRF key k and an array
of size 2|X|.

Algorithm 6.1: T.Build(X)

1. Let n := |X|. Let Z := α log λ where α ∈ ω(1), and let B = 2n/Z.

2. Generate a random key k. In a single linear scan of X, mark every non-dummy element
(fid, j, dataj) with a targeted bin number (PRFk(fid) + j) mod B.

3. Copy X to an array Y of size n, and append ZB = 2n dummy elements to Y such that
exactly Z dummy elements to each of the B bins.

4. Oblivious sort Y according to their bin assignment. Upon ties, prefer real elements over
dummy elements, and break all other ties arbitrarily. At the end of this step, real elements
that are assigned to the i-th bin appear before real elements that are assigned to the (i+1)-th
bin. Between these real elements, there are exactly Z dummy elements.

5. Scan the array Y . For every bin i ∈ [B], let li denote the number of real elements in that bin.
If li > Z, then output overflow and abort. Otherwise, mark the next Z − li dummy elements
with bin i, and the remaining li dummy elements with exceed.

6. Oblivious sort the array Y again, where all the exceeded elements are moved to the very end.

Algorithm 6.2: T.Access(read, fid,⊥, len)

1. If fid 6= ⊥, compute the starting bin number g := PRFk(fid). Else, choose g uniformly at
random from [0, . . . , B − 1].

2. Retrieve all blocks from bins g, g + 1, . . . , g + len − 1 (each modB). Let all denote the con-
catenated blocks.

3. In a single linear scan, mark all blocks whose file identifiers are not fid with ⊥. Use an
oblivious sort to remove these blocks and truncate the array length to len.

We then obtain the following theorem:

Theorem 6.3 (Oblivious non-recurrent File hashing scheme). Let n be an upper bound on the
number of blocks of all files combined. Assuming one-way functions exist, for any super constant
function α := ω(1), there exists a computationally secure non-recurrent File hashing scheme that
requires O(n) space, and except with negl(λ) probability

• is initialized in O(n log n log log2 λ) work and (3, O(log log2 λ)) locality, and

• each access of a file with length len costs O(len · α log λ) work and (1, O(1)) locality.

Proof. Correctness is clear. We first show obliviousness, then proceed to efficiency and locality and
end up with a claim regarding overflow analysis.

Obliviousness. We show that the memory addresses accessed can be simulated by a simulator
Sim receiving only leakage.

• Upon receiving a leakage |X| for Build(X), the simulator performs few linear scans of the
memory and invoke the simulator of the underlying oblivious sort whenever necessary.

• Upon receiving a leakage len for simulating some T.Access(read, fid,⊥, len) instruction, the
simulator chooses a random bin g ∈ [B], and accesses g, g + 1, . . . , g + len− 1 (modulo B).
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We claim that the memory locations produced by the simulator are indistinguishable from the
memory locations in the real execution:

• Instruction T.Build(X) is clearly the same in both executions.

• Upon instruction T.Access(read, fid,⊥, len) with fidi = ⊥, then Algorithm 6.2 chooses a ran-
dom bin g ∈ [B] and access the bins g, . . . , glen−1 (modulo B). This is exactly as the simula-
tion.

• Upon instruction T.Access(read, fid,⊥, len) with fidi 6= ⊥, the non-recurrence property guar-
antees that there was no previous access to this fid. Algorithm 6.2 computes g = PRFk(fid)
and accesses bins g, . . . , glen−1 (module B), whereas the simulator chooses g at random. As-
suming the pseudorandom property of the PRF, and relying on the fact that fid was not
queried before, these two distributions are the same.

Efficiency and locality. The algorithm Build is just few invocations of oblivious sorts and
few linear scans. Therefore, it can be implemented in time O(n log n log log2 λ) and locality
(3, O(log log2 λ)). As for Access, each invocation of the algorithm accesses a single region in the
memory (maybe with some wraparound). Therefore, it can be implemented using a single head
and O(1) move operations.

Claim 6.4 (Overflow analysis). According to the assignment used in Build, the probability of over-
flow within each bin is negligible in λ.

Proof. Let F1, . . . , Fk be the files that exist in the input array X, and let ni denote the size of the
file Fi. It holds that

∑k
i=1 ni ≤ |X| ≤ n = BZ/2. For simplicity, assume that there is no file with

size greater than B. For β ∈ {0, . . . , B − 1} let Xβ be a random variable denotes the load of the
bin Bβ, and for every i = 1, . . . , k let Yβ[i] be an indicator that gets 1 if and only if some element of

the file Fi fells into bin Kβ. Note that Xβ =
∑k

i=1 Yβ[i]. Moreover, for a fixed β ∈ {0, . . . , B − 1},
i ∈ {1, . . . , k} we have that E[Yβ[i]] = ni/B. This holds since there is no file with size greater than
B, and therefore an element of some file is in the bin Bβ if and only if its head was chosen to be in
one of the previously ni consecutive bins. This implies that

E[Xβ] = E

[
k∑
i=1

Yβ[i]

]
=

k∑
i=1

E [Yβ[i]] =

∑k
i=1 ni
B

≤ Z/2 .

Moreover, the random variables Yβ[1], . . . , Yβ[k] are independent and are taking values in {0, 1}. By
Chernoff’s bound we have that the probability to exceed Z (and output overflow) is negligible in λ,
and the claim is obtained by a simple union bound on the number of bins B. The analysis can also
be adapted for the case where we have a file with size ni > B. In that case, each bin receives at
least bni/Bc real elements of that file, and random [ni mod B] consecutive bins receive one more
element in addition, and therefore this case is reduced to the case where all files are of size < B
(see also [6]).

This complete the proof of Theorem 6.3.

6.3 Constructing File ORAM from Non-Recurrent File Hashing Scheme

In this section, we show how to construct a File ORAM with locality in linear space, in a blackbox
manner from non-recurrent file hashing scheme. Below we use N to denote both the total size of
logical memory as well as the security parameter.
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Data structure. There are logN + 1 levels numbered 0, 1, . . . , L where L := dlog2Ne is the
largest level. Each level is a non-recurrent file hashing scheme and its data structure is denoted
H := (H0,H1, . . . ,HL) where Hi has capacity 2i. At any time, each table Hi can be in two possible
states, ready or empty.

File ORAM access Access(op, fid, data). We first present the access algorithm assuming we
know the length len of the requested file. We again assume len = 2i for some non-negative integer
i. After that we describe how to retrieve the length of the requested file using a metadata ORAM.

Algorithm 6.5: H.Access(op, fid, data, len), where len = 2i for some non-negative integer i:

1. found := false.

2. For each ` = i, . . . L in increasing order, if T` is marked ready:

(a) If not found, then perform fetched := T`.Access(read, fid,⊥, len). If fetched 6= ⊥, let
found := true, data∗ := fetched.

(b) Else T`.Access(read,⊥,⊥, len).

3. Let D := {(fid, data∗)} if this is a read operation; else let D := {(fid, data)}.
4. If Ti is marked empty, let Ti := Build(D) and mark it as ready. Else, perform the following

rebuilding:

(a) Let ` > i be the smallest level index greater than i such that T` is marked empty. If all
levels ` > i are marked ready, then let ` := L. In other words, ` is the target level to be
rebuilt.

(b) Let S := T0 ∪ . . . ∪ T`−1 (if ` = L, then additionally let S := S ∪ TL). Further, tag
each non-dummy element in S with its level number, i.e., if a non-dummy element in S
comes from Tj , tag it with the level number j. Thus, each element j in S is of the form
((fidj , lj), dataj).

(c) T` := Build(Dedup(S, 2`)), and mark T` as ready. Further, set T0 = . . . = T`−1 := ∅ and
their status bits to empty.

(d) Write back Ti ← Build(D), and mark it as ready.

5. Return data∗.

To retrieve the length, we introduce metadata structure Hmeta that stores the length of each
block. It is similar to H except that it always takes in len = 1. Now each File ORAM access first
retrieves the length of the requested file from Hmeta, and then calls H.Access(·).

Theorem 6.6 (File ORAM in linear space with locality). Assume that one-way functions exist.
There exists a computationally secure File ORAM scheme that achieves O(len · log2N log log2N)
work and (3, O(logN log log2N)) locality for accessing a file of len.

Proof. we start with efficiency analysis, and proceed to locality, space and obliviousness.

Amortized work for access. Each access of a file of size len involves looking up in all levels
log len, . . . , logN , each costing O(α · len · logN). Thus, the cost to retrieve a file of size len is
O(α · len · log2N).

For rebuild, we can view the concatenations of bits indicating whether a level is empty or ready
as binary counter. When accessing a file with size len = 2i, we perform the following rebuild:
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• If level i is empty (i.e., the i-th position in the counter is 0), we just rebuild level i (and the
i-th position in the counter is switched to 1, equivalent to incrementing it by 2i).

• Otherwise, we build some level ` > i from the context of the levels 0, . . . , ` − 1 and the
returned file, and these levels are full. Specifically, the counter is 1 in positions i, . . . , ` − 1,
and 0 in position `. By incrementing the counter by 2i, all positions i, . . . , ` − 1 becomes 0,
and position ` becomes 1. Thus, this is equivalent to increment the counter by 2i.
At this point, level i is empty, and we rebuild it with the data D. This is equivalent to
incrementing the counter by another 2i.

With each access of file of size len = 2i, the counter value counter is increased by at most 2 · 2i.
Rebuilding a level of size 2j costs O(2j log 2j(log logN2)) total work. As a result, we can bound the
amortized cost for rebuild when accessing a file of size len = 2i with O(len logN(log log2N)). Hence,
the total amortized work for accessing a file of size len is O(len · logN · log(N/len) · (log log2N)).

Locality. For both, the metadata and the main data, each access requires rebuild with a lo-
cality of (3, O(logN log log2N)). Each access requires looking up log(N/len) levels, each with
a locality of (1, O(1)) resulting in a locality of O(1, O(logN)). Thus, we achieve a locality of
(3, O(logN log log2N)) for our File ORAM construction.

Server storage. The non-recurrent file hashing scheme construction uses a space of 4n for obliv-
iously hashing a total of n blocks. We use logN instances of that construction, of exponentially
increasing sizes in our File ORAM construction, requiring

∑logN
i=0 (4 · 2i) < 8 ·N = O(N) space.

Obliviousness. We show the existence of an online simulator Sim that in each step receives some
leakage leakage(I) for some instruction I and produces the memory address for that instruction.

Let Sim0, . . . ,SimL be the simulators for the non-recurrent file hashing schemes, T0, . . . ,TL,
respectively, let SimDedup be the simulator for the deduplication algorithm, and let Simmeta be the
simulator for the metadata ORAM.

The simulator Sim. The simulator for the File ORAM initializes L+1 bits representing whether
the levels are ready or empty. Upon initialization, all the bits are empty, except for the level L
which is marked as ready, and it also invokes the simulator SimL on Build instruction with input
2L.

Simulating Access(op, fid, data, len), using only leakage len = 2i where len = len(fid):

1. Invoke the simulator Simmeta to simulate access to the metadata ORAM.

2. For ` = i, . . . , L, if T` is marked ready, invoke the simulator Sim` on leakage len.

3. If Ti is marked empty, then invoke Simi for simulating Build operation with input leakage 2i.

4. If Ti is marked ready, then let ` > i be the smallest level index greater than i such that T`
is marked empty. If all levels are full, set ` := L. Then, invoke SimDedup(2`) and append
the simulated instructions it produces to the output. Halt the simulators Simi, . . . ,Sim` and
mark the bits corresponding to these levels as empty. Initialize Sim` on Build with leakage 2`

and initialize Simi on Build with leakage 2i. Mark these two levels as ready.

The internal state of the simulator is all its internal bits, and the internal states of the underlying
simulators
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We now show that the view of the adversary, upon interactive with the simulator Sim and
receiving outputs from the File ORAM functionality, is indistinguishable from the real construction
(that interacts with the memory). We show that through a sequence of hybrid experiments, defined
as follows:

• Hyb0(λ): This is exactly the real execution. That is, upon receiving instruction Ii =
Access(op, fid, data, len) from the adversary, we invoke Algorithm 6.5 and output the memory
addresses it produces, and the outputs outi in each step.

• Hyb1(λ): This is as before where the outi is now being computed by the File ORAM func-
tionality.

• Hyb2,k(λ) with k ∈ [L]: Same as Hyb1(λ), where we replace all non-recurrent file hashing
scheme, T0, . . . ,Tk−1 with simulators Sim0, . . . ,Simk−1.
Upon receiving some instruction I = Access(op, fid, data, len), we follow Algorithm 6.5. When-
ever the Algorithm performs Tj .Build(X) for some j < k and some X, we replace it with an
invocation of Simj for Build instruction with leakage |X|. Whenever the Algorithm performs
Tj .Access for j < k, we invoke Simj for Access with leakage len.

• Hyb3(λ): Same as Hyb2,L(λ) where the only difference is as follows: whenever calling to
Dedup(S, 2t) for some integer t and set S, we replace it with the SimDedup(2t).

• Hyb4(λ): Same as Hyb3(λ) where every invocation of Hmeta is replaced with an access to
Simmeta. As such, the only information that we use in the I = Access(op, fid, data, len) is the
value len. This is exactly the simulation execution.

The view of the adversary in Hyb4(λ) is indistinguishable from its view in Hyb3(λ) due to the security
of the metadata ORAM. Likewise, the view of the adversary in Hyb3(λ) is indistinguishable from
its view in Hyb2,L(λ) due to the security of the Dedup Algorithm.

For every k ∈ {0, . . . , L − 1} it holds that Hyb2,k+1(λ) is indistinguishable from Hyb2,k(λ) due
to the security of the k+ 1th non-recurrent file hashing scheme. For that, we have to show that all
accesses to Tk+1 in Hyb2,k(λ) are non-recurrent, since this is a necessary condition to replace the
construction with the simulator. When a file fid is first found in some level Tk+1, the corresponding
file is entered into D. According to the definition of the ORAM algorithm, it is not hard to see
until the next time Tk is rebuilt, fid exists in some T` where ` < k+ 1. As a result, any instruction
for looking for fid in level k + 1, the bit found is guaranteed to be true, and in level Tk+1 we will
look for for the file id ⊥. We conclude that until Tk+1 is rebuilt, no lookup query will ever be
issued again for fid to Tk. This holds for every file, and therefore the instructions the accesses to
Tk+1 are non-recurrent, and can be replaced by the simulator.

It is easy to see that Hyb2,0(λ) is identical to Hyb1(λ), which is the real execution. Finally,
Hyb1(λ) and Hyb0(λ) are indistinguishable due to the correctness of the construction.

7 A New Oblivious Sorting Algorithm with Locality

In this section, we will show how to perform locality-friendly oblivious sorting withO(n log n log log2 λ)
work and (3, O(log n log log2 λ) locality, where λ is the security parameter.

Intuitively speaking, we observe that the composition of the following two algorithms yields an
oblivious sorting algorithm:

• First, we obliviously permute the input array at random;

• Second, we apply a non-oblivious, comparison-based sorting algorithm on the permuted array.
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We show how to implement each one of the steps efficiently and with good data locality. In fact,
we do not fully implement an oblivious permutation with good locality, and instead we implement
a weaker primitive such that the composition still works and results in an oblivious algorithm. In
particular, we implement an “oblivious random bin assignment” algorithm defined in Section 7.1.
Then, in Section 7.2 we prove the composition the theorem, and conclude our locality-friendly
oblivious sorting algorithm.

7.1 Oblivious Random Bin Assignment

7.1.1 The Functionality

We start with defining the oblivious random bin assignment functionality, which we denote by
frandbin. In a nutshell, given some input array A we consider an output array which as twice the
size of the input array, and we consider the output array as B consecutive bins. We assign each
“real” element of the input array into a random bin in the output array, and pad each bin with
dummy elements. We then show how to implement this functionality obliviously.

Random bin assignment.

• Functionality: Consider random bin assignment functionality frandbin(X,Z):

– Upon receiving an array X of length n, and a bin size Z, choose a random bin for each
element of X among a total of B := 2n/Z bins. If some bin receives more than Z
elements, abort.

– Output an array Y of size B ·Z representing the B output bins, where each bin contains
its assigned elements padded with dummy elements such that 1) all real elements appear
before dummies; and 2) real elements are ordered in each bin.

• Leakage: |X|, Z.

Henceforth, we say that an algorithm M is an oblivious random bin assignment algorithm, if
it obliviously simulates frandbin with negl(λ) statistical failure. As the functionality is randomized,
we use Definition 3.1.

7.1.2 A Locality-Friendly Random Bin Assignment Algorithm

We now describe a locality-friendly oblivious RandomBinAssignment procedure, inspired by the
Bucket ORAM algorithm [20]. The algorithm combines ideas from Bucket sort and Radix sort [16].

The algorithm first chooses a bucket size Z, and constructs B = d2|X|/Ze buckets each of
size Z. Each element in X is then assigned a random key key′ ∈ [0, B − 1] which represents a
destination bucket. Next, the algorithm exchanges elements between bucket pairs in logB steps to
distribute elements into their destination buckets, using the MergeSplit operation. In a more detail,
the operation (C0, C1)← MergeSplit(A0, A1, i) works on four buckets at the time, distributing the
keys of the two input buckets A0, A1 into two output buckets C0, C1 according to the i+ 1th most
significant bit (MSB) of the keys (where C0 receives all the keys with i + 1th MSB as 0, and C1

receives all the keys with i + 1th MSB as 1). Each bucket in each step contains some dummy
elements that serve as a form of “slack” which will be important later for our stochastic analysis
to work.

We now describe our algorithm. Without loss of generality, assume that B is a power of 2. We
also assume that elements in the input array X are all distinct — if not, we can use the indices of
the elements within X to break ties.
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Figure 3: Radix-Bucket Shuffle for 8 input buckets. The MergeSplit procedure works on four buckets at
a time, merging two buckets from level i and splitting them into two buckets of level i + 1 according to i-th most
significant bit of the keys, while preserving the order otherwise. At the end of each level i, each subarray (2i+1

consecutive buckets) are semi-sorted according to the i most significant bits of the keys, where the jth bucket of the
subarray (for j = 0, . . . , 2i+1 − 1), contains all keys with binary prefix 〈j〉.

Algorithm 7.1: RandomBinAssignment(X)

• Let X be an input array of size n, consisting real elements. For each element X[i] in the
array, assign a uniformly random key key′ ∈ [0, B − 1].

• Choose a bucket size Z := α log λ with α ∈ ω(1). Define an array A of size 2n, consisting of
B = 2n/Z buckets each of size Z, denoted as A0, A1, . . . , AB−1.

• Initialize Ai to contain the i-th consecutive Z/2 elements of X and Z/2 dummy elements.

• For step i = 0, . . . , logB − 1:

For j = 0, . . . , B/2i+1 − 1:

For k = 0, . . . , 2i − 1:

(Aj·2i+1+k, Aj·2i+1+k+2i)← MergeSplit(Aj·2i+1+k, Aj·2i+1+k+2i , i)

Figure 3 demonstrates the structure of the algorithm for 8 input buckets.

The MergeSplit subroutine. The algorithm repeatedly calls the basic operation MergeSplit, which
exchanges real elements between two buckets. It additionally takes in the step number i.

Procedure 7.2: (A′0, A
′
1)← MergeSplit(A0, A1, i)

1. A′0 receives all real elements in A0 ∪A1 where the (i+ 1)-st MSB of the key is 0.

2. A′1 receives all real elements in A0 ∪A1 where the (i+ 1)-st MSB of the key is 1.

3. If either output bucket receives more than Z real elements, then the procedure aborts with
overflow.

4. Otherwise, pad output buckets A′0, A
′
1 to size Z with dummy elements, and sort each output

bucket such that 1) real elements appear before dummies, and 2) real elements are ordered
in each bucket.

It is not hard to see that MergeSplit can be realized with a single invocation of bitonic sort,
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which has O(Z log2 Z) work and (2, log2 Z) locality. More concretely, we first scan the two buckets
to count how many elements are supposed to go to A′0 and A′1, respectively, then tag the right
number of dummy elements to go to either direction, and finally perform the bitonic sort. Using
the concurrent bitonic sort procedure in Appendix A, we can realize all B/2 concurrent instances
of MergeSplit in O(BZ log2 Z) work and with locality (2, O(log2 Z)). Note that the MergeSplit
operation may be implemented in place.

We now analyze the overflow probability, and show that the probability of overflow is negligible
in λ. Formally, in we prove the following claim:

Claim 7.3 (Overflow probability). There is no overflow during the execution of the algorithm,
except with probability at most B · logB · negl(λ),

Proof. Let T be the set of real elements. For t ∈ T , i ∈ {1, . . . , logB} and b ∈ [B], let Xt
i,b be

an indicator that receives 1 if the real element t is assigned to the bth bucket at the end of the
(i− 1)-st iteration. Let Yi,b denote the load of the bucket (b, i). It holds that Yi,b =

∑
t∈T X

t
i,b, and

we bound the probability that a bucket exceeds its limit.
The algorithm ensures that each bucket contains at most Z/2 real elements. Fix i and a bucket

b as above. Observe that this bucket can receive real elements potentially from 2i initial buckets,
each of which contains at most Z/2 real elements initially. Hence, potentially at most 2i · Z/2 real
elements can be assigned to that bucket.

For each such element, we choose a new key uniformly at random. The probability that the
chosen key corresponds to the bucket b is exactly 2−i. As a result, for at most 2i · Z/2 of the
random indicators {Xt

i,b}t, the probability to be 1 is 2−i, whereas all the rest of the indicators we
have probability 0 to receive 1, and the probabilities are independent since the keys are independent.
This implies that the expected load of each bucket is Z/2 and this load corresponds to

∑
t∈T X

t
i,b.

Chernoff’s bound implies that the probability that after some fixed iteration, a particular fixed
bucket overflows with probability at most e−Z/4 = negl(λ). Hence, a union bound over all iterations
and all buckets implies that except with B logB ·negl(λ) probability, no bucket overflows throughout
the algorithm.

Lemma 7.4. Let Z = α log λ for any super-constant function α(λ). Algorithm 7.1 obliviously
simulates frandbin with negl(λ) statistical failure.

Proof. The random string consumed by the real-world algorithm RandomBinAssignment includes
a random bin number assigned to each element. There are negl(λ) fraction of them that cause
RandomBinAssignment to overflow by Claim 7.3. Similarly, except with negl(λ) probability, the
random assignment sampled by the ideal frandbin will not lead to overflow.

Consider all random strings that do not lead to overflow in the real world or in the ideal world.
Then it is obvious that the real-world algorithm correctly places each element into the targeted bin
just like what frandbin does. Further, the access patterns of the real-world algorithm is deterministic
and independent of the input and the random choices of the algorithm. Thus the lemma follows in
a straightforward manner from here.

We can now analyze the efficiency and locality of the construction assuming no overflow.
There are logB iterations, and in each iteration, we have B/2 executions of MergeSplit proce-
dure. This results in a total of O(B logB) executions of the MergeSplit procedure, which translates
to O(B logB ·Z log2 Z) work and locality (3, O(logB · log2 Z)). Putting B = 2n/Z and Z = α log λ
with α ∈ ω(1), this results in O(n(α log λ+ log n) log log2 λ) work with (3, O(log n log log2 λ)) local-
ity.
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With this, we can conclude with the following theorem.

Theorem 7.5 (Oblivious random bin assignment). There exists an oblivious random bin assign-
ment algorithm which, except with negl(λ) probability, completes in O(n log n log log2 λ) work and
with (3, O(log n log log2 λ)) locality, as long as n = ω(log λ).

7.2 The Oblivious Sort

Oblivious sort from random bin assignment algorithm and non-oblivious sort. Given
a random bin assignment algorithm ObliviousRandomBin and a non-oblivious comparison-based
sorting algorithm NonObliviousSort (e.g., Merge-Sort), one can easily construct an oblivious sorting
algorithm as follows.

1. Given an input array X, invoke the random bin assignment algorithm to receive Y :=
ObliviousRandomBin(X). Note that in each “bin” of Y , the real elements appear before
the dummy elements, and are sorted.

2. Now, sort Y using a (non-oblivious) comparison-based sorting algorithm. That is, invoke
W := NonObliviousSort(Y ), while preferring real elements over dummy elements. Formally
speaking, a sorting algorithm is comparison-based if the physical access pattern depends only
on the relative ranking of elements in the input. A technical condition we need is that no two
elements have the same rank. This can be ensured by resolving any tie consistently by the
initial location of the elements in the array Y .

3. All dummy elements appear at the n last locations of W . Truncate the last n elements of W .

If both the random bin assignment RandomBin and the non-oblivious sorting algorithm has
good data locality, then so will the resulting oblivious sorting algorithm. We use Merge-Sort as the
non-oblivious sorting candidate. Let Truncate denote the last step of the above algorithm. Then,
our sorting algorithm can be described as the following simple composition

Truncate(NonObliviousSort(ObliviousRandomBin(X)))

Why is it oblivious? A natural question is why these composition is still oblivious, as we do
not fully permute the input array. Essentially, the compositions still holds since there is a 1-to-1
mapping between any input of the array and every possible output of the frandbin functionality, i.e.,
every possible input of the non-oblivious sorting algorithm. This mapping is exactly the random
assignment of the destination bins. Therefore, every access pattern in the non-oblivious sorting
part of the algorithm, can be justified with some specific random assignment on the input array,
for every possible ordering of the input array. However, some of the assignments are “invalid” due
to overflows; however, overflows occurs with negligible probability, and therefore we get statistical
security. We proceed to the formal proof of the security, which is even simpler than the above
argument.

Lemma 7.6 (From oblivious random bin to oblivious sort). Suppose that ObliviousRandomBin is
a statistically (or perfectly resp.) oblivious random bin assignment algorithm. Then, the above
algorithm is a statistically (or perfectly resp.) secure oblivious sorting algorithm.

Proof. Correctness of the algorithm is trivial. We next prove the obliviousness of the algorithm.
We prove for the case of perfect security, since statistical security is similar, except that we replace
“identically distributed” with “statistically close”.
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Let SimRandBin be the simulator algorithm for the underlying oblivious random bin assignment.
Consider any given input X of length n, and let (Y, addressesRandBin) denote the joint distribution
of the outcome array Y and the addresses accessed during an execution of the oblivious random
bin assignment. We have that

(Y, addressesRandBin) ≡ (frandbin(X), SimRandBin(1n, |X|)) .

Let SortAddresses(Y ) denote the addresses observed during an execution of the truncation algorithm
and the non-oblivious, comparison-based sorting algorithm upon receiving input array Y . We thus
have that

(SortAddresses(Y ), addressesRandBin) ≡ (SortAddresses(frandbin(X)), SimRandBin(1n, |X|)) .

For any comparison-based sort, its access patterns depend only on the relative ranking of the input
elements. Since without loss of generality, we assumed that the input array X always has distinct
values, and we carefully defined how to avoid any ties, we have that

SortAddresses(frandbin(X)) ≡ SortAddresses(frandbin([|X|])) ,
where [|X|] = {1, . . . , |X|}. Now, observe that we can construct a simulator SimObliviousSort that
simply outputs

SortAddresses(frandbin([|X|])), SimRandBin(1n, |X|)
This simulator’s output is identically distributed as the real-world access patterns of executing the
aforementioned sorting algorithm.

The above performance and security analysis gives rise to the following theorem and corollary
which are the main results of this section.

Corollary 7.7 (Locality-friendly oblivious sort). There exists a statistically secure oblivious sort
algorithm which, except with negl(λ) probability, completes in O(n log n log log2 λ) work and with
(3, O(log n log log2 λ)) locality, as long as n = log3 λ.

8 Lower Bound for More Restricted Leakage

In the introduction, we mentioned that an ORAM scheme cannot preserve locality without leaking
the sizes of the accessed ranges. In this section, we formalize this claim.

Recall that in Section 5, we define the leakage of a sequence of instructions I = ((op1, [s1, t1], data1),
. . . , (opT , [sT , tT ], dataT )) to include the number N of logical blocks being considered, as well as the
length ti−si+1 associated with each operation (which means the number T of operations is leaked
too). In this section, we show that if we restrict the leakage and do not allow the adversary to
learn the length of each operation or even the number of operations, the lower bound for bandwidth
overhead to achieve locality will be significantly worse.

Model assumptions. We first clarify the model in which we prove the lower bound.

1. We restrict the leakage such that the adversary knows only the number N of logical blocks
stored in memory, and the sum of the lengths of the operations, i.e, S =

∑T
i=1(ti − si + 1).

Formally, the distribution of physical accesses observed by the adversary is the same as long
as N and S are fixed.
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2. Just like earlier ORAM lower bounds [8,25,27]), we assume the so-called balls-and-bins model,
i.e., the blocks are opaque objects and the algorithm, for instance, cannot use encoding
techniques to combine blocks in the storage. Note that all known ORAM algorithms indeed
fall within this model.

3. For simplicity, we shall first assume that the CPU has only 1 block of local cache — however,
later in Section 8.3, we show how to remove this assumption in our lower bound proof.

4. We assume that the algorithm is partially online, i.e., there is a phase where one is allowed
to preprocess memory without seeing future requests; however, after the preprocessing, all
request come in all at once, and the ORAM algorithm is allowed to see all request upfront
before serving them.

Notation. Recall that we use h to denote the number of concurrent heads, l to denote the locality
blowup, m to denote the memory size blowup (i.e., the ORAM consumes mN memory for N logical
memory), and β to denote the bandwidth blowup. We shall show statements of the following form
for different choices of the parameters:

Any Range ORAM satisfying the restricted leakage that has (h, l)-locality and m memory blowup
will incur β bandwidth blowup.

8.1 Warmup: Special Case of h = l = 1

We first prove this special case where h = l are exactly 1 (and not even O(1)).

Lemma 8.1. For any ε > 0, for sufficiently large N , any ORAM satisfying the restricted leakage
that has (1, 1)-locality, a single block of CPU cache, and memory blowup of m = poly logN will
incur bandwidth blowup of Ω(N1−ε).

Proof. We assume that before seeing the requests, the algorithm can arrange the N blocks in the
memory in any order. Suppose we fix some T (say T = logN is enough). We consider the following
two request scenarios.

1. A single request operation consisting of T contiguous blocks.

2. T request operations, each of which consists of a single block, where the T blocks are distinct.

Because of (1, 1)-locality, under the first scenario, the physical access pattern must be a linear
scan of one contiguous region, which has length at most βT , because the bandwidth blowup is at
most β . Moreover, because of restricted leakage, the same access pattern must also be observed
under the second scenario.

We first count that given a particular access pattern of βT contiguous blocks, how many scenar-
ios of the second type it can support. Since the CPU has memory 1, a sequential scan of βT blocks
can support at most

(
βT
T

)
scenarios of the second type. Since the memory blowup is m = poly logN ,

there are at most mN starting positions for the sequential scan. Hence, a very loose upper bound
on the number of scenarios of the second type that can be supported is mN ·

(
βT
T

)
≤ mN · (βe)T ,

where e is the natural number.
On the other hand, the number of scenarios of type 2 is at least

(
N
T

)
≥ (NT )T .

Hence, relating the two bounds, we must have mN · (βe)T ≥ (NT )T , which implies that β ≥
Ω(N1−ε), for sufficiently large N .
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8.2 General h = l

We next consider general choices of h = l and m ≤ N . Specifically, we prove the following.

Lemma 8.2. For any ε > 0, for sufficiently large N , any ORAM satisfying the restricted leakage
that has (h, l)-locality with h = l, a single block of CPU cache, and memory blowup of m ≤ N will
incur bandwidth blowup of β such that βl ≥ Ω(N1−ε).

Proof. We follow the same proof strategy as in Lemma 8.1. We choose T = l logN , and consider
the scenarios of the following types.

1. A single request operation consisting of T contiguous blocks.

2. T request operations, each of which consists of a single block, where the T blocks are not
necessarily distinct.

Consider the first scenario. Because of (h, l)-locality and β bandwidth, the physical access pattern
must satisfy the following: (i) linear scans of at most l (not necessarily disjoint) contiguous blocks,
and (ii) the sum of the lengths of the contiguous blocks is at most βT .

Upper bound on the number of type 2 scenarios supported. We next give an upper bound
on the number of type 2 scenarios that can be supported by a physical access pattern that can be
produced by a type 1 scenario. Since the memory blow up is m = poly logN , there are at most
(mN)2l ways to specify l contiguous regions (S1, S2, . . . , Sl).

For each fixed choice of (S1, S2, . . . , Sl), we know that the sum of their lengths is at most βT .

Hence, there are at most
∑T

i=1

(
βT
i

)
≤ (βe)T ways to specify at most T blocks from the l contiguous

regions.
Finally, since there are h = l heads, the T blocks chosen from the l contiguous regions can

be interleaved to satisfy different request scenarios. Observe that since each contiguous block is
scanned linearly and the CPU has storage of size 1, this means the order of blocks from the same
contiguous region must be preserved in the request sequence. Note that there are l contiguous
regions, and the number of request operations is T . Hence, for each of the T operations, we can
choose from which of the l regions to read the next block, and there is a choice of whether the same
block will be requested in future operations. Therefore, there are at most (2l)T ways to interleave
at most T chosen blocks from the l regions.

Hence, a loose upper bound on the number of type 2 scenarios that can be supported is:
(mN)2l · (βe)T · (2l)T .

Observe that the T blocks in type 2 scenarios need not be distinct. Hence, the number of type
2 scenarios is at least NT . Hence, combining the two bounds and observing that m ≤ N , we have
(mN)2l · (βe)T · (2l)T ≥ NT , which implies that βl ≥ Ω(N1−ε), for sufficiently large N .

8.3 More General CPU Cache Size

So far, we have focused on the scenario where the CPU can store only a single block. We now
explain how to generalize our lower bound for more general CPU cache size. Henceforth, let r
denote the number of blocks the CPU can store.

A relaxed model. Henceforth, we make the following assumption: the memory contains a special
array of arbitrary length, such that upon a read or write operation, the read head moves forward,
and when the read head moves across the end of the array, it wraps around to the beginning of the
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array — this wrapping around does not get charged to the cost of locality. It is not hard to observe
that Lemma 8.2 holds even under this relaxed memory model. Note that for a lower bound to hold
under this relaxed memory model makes it a stronger (i.e., better) lower bound.

Fact 8.3. A machine M [r] with r blocks of CPU cache can be simulated by a machine M [1] with
a single block of CPU cache with the following simulation overheads: suppose that M [r] accesses
B blocks and L contiguous regions, then M [1] accesses rB blocks and L + r contiguous regions of
memory.

Further, if M [r] oblivious simulates a functionality f with perfect/statistical/computational se-
curity respectively, then M [1] oblivious simulates f with perfect/statistical/computational security
respectively.

Proof. The simulation works as follows: M [1] creates a special array (henceforth denoted cache in
memory (supporting free wrap-around) of r blocks to simulate M [r]’s CPU cache. Further, M [1]

introduces r additional read/write heads, each pointing to a distinct location in this special array
cache.

Upon every memory access of M [r], all r additional heads of M [1], will read and/or write one
block.

• If M [r] wants to write a block to the i-th location in cache, the head pointing to cache[i] will
write the block there, and all other heads will read and write the same block back.

• If M [r] does not want to write any block to cache, then all of the r additional read heads will
read and write the same block back.

Clearly, if M [r] accesses B blocks and L contiguous regions, then M [1] accesses rB blocks and
L + r contiguous regions of memory. Further, it is not hard to see that the above simulation of
M [r] with M [1] is obliviousness preserving.

Theorem 8.4 (Any efficient ORAM scheme with restricted leakage must necessarily suffer from
poor locality). For any ε > 0, for sufficiently large N , any ORAM scheme satisfying the restricted
leakage that has (h, l)-locality with h = l and memory blowup of m ≤ N , and consuming r CPU
cache will incur bandwidth blowup of β such that rβ(l + r) ≥ Ω(N1−ε).

In particular, when both r and l are poly logN , for any ε > 0, for large enough N , the bandwidth
blowup β ≥ Ω(N1−ε).

Proof. Suppose that there is an ORAM scheme with the aforementioned restricted leakage where
the CPU has r blocks of cache, satisfying β bandwidth (i.e., work) blowup and l locality blowup.
Then, by Fact 8.3, there must exist an ORAM scheme with a single block of CPU cache, satisfying
β′ := rβ bandwidth (i.e., work) blowup and at most l′ := l+ r locality blowup. By Lemma 8.2, for
any constant ε > 0, for large enough N , β′l′ ≥ Ω(N1−ε). Thus, we conclude that it must be the
case that rβ(l + r) ≥ Ω(N1−ε).
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[2] M. Ajtai, J. Komlós, and E. Szemerédi. An O(N logN) sorting network. In ACM Symposium
on Theory of Computing (STOC ’83), pages 1–9, 1983.

[3] Miklós Ajtai, János Komlós, and Endre Szemerédi. Sorting in c log n parallel sets. Combina-
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A Locality of Bitonic sort

In this section, we first analyze the locality of Bitonic sort, which runs in O(n log2 n) time.
We call an array of numbers bitonic if it consists of two monotonic sequences, the first one

ascending and the other descending, or vice versa. For an array S, we write it as Ŝ if it is bitonic,

as
−→
S (resp.

←−
S ) if it is sorted in an ascending (resp. descending) order.

The algorithm is based on a “bitonic split” procedure
−−→
Split, which receives as input a bitonic

sequence Ŝ of length n and outputs a sorted sequence
−→
S .
−−→
Split first separates Ŝ into two bitonic

sequences Ŝ1, Ŝ2, such that all the elements in S1 are smaller than all the elements in S2. It then

calls
−−→
Split recursively on each sequence to get a sorted sequence.

Procedure A.1:
−→
S =

−−→
Split(Ŝ)

– Let Ŝ1 =
〈
min(a0, an/2),min(a1, an/2+1), . . . ,min(an/2−1, an−1)

〉
.

– Let Ŝ2 =
〈
max(a0, an/2),max(a1, an/2+1), . . . ,max(an/2−1, an−1)

〉
.
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Figure 4: Bitonic sorting network for 8 inputs. Input come in from the left end, and outputs are on
the right end. When two numbers are joined by an arrow, they are compared, and if necessary are swapped
such that the arrow points from the smaller number toward the larger number. This figure is modified
from [1].
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Figure 5: Locality of Bitonic Sort for 8 elements. The figure shows the movement of heads and the operation
performed for an 8 element array. For each input, either a compare-and-swap operation is performed in the specified
direction or the input is ignored as denoted by ⊥. For each pass, each head scans through the data blocks once.
Bitonic Sort performs O(log2N) passes and hence, has locality (2, O(log2N)). The figure shows the first 3 passes
out of the required 6 passes for 8 elements (see Figure 4).

–
−→
S 1 =

−−→
Split(Ŝ1),

−→
S 2 =

−−→
Split(Ŝ2) and

−→
S = (

−→
S 1,
−→
S 2).

Similarly,
←−
S =

←−−
Split(Ŝ) sorts the array in a descending order. We refer to [7] for details.

To sort an array of S of n elements, the algorithm first converts S into a bitonic sequence using
the Split procedures in a bottom up fashion, similar to the structure of merge-sort. Specifically, any
size-2 sequence is a bitonic sequence. In each iteration i = 1, . . . , log n − 1, the algorithm merges
each pair of size-2i bitonic sequences into a size-2i+1 bitonic sequence. Towards this end, it uses

the
−−→
Split and

←−−
Split alternately, as two sorted sequences (

−→
S 1,
←−
S 2) form a bitonic sequence. The full

bitonic sort algorithm is presented below:

Algorithm A.2: BitonicSort(S)

1. Convert S to a bitonic sequence: For i = 1, . . . , log n− 1:

(a) Let S = (Ŝ0, . . . , Ŝn/2i−1) be the size-2i bitonic sequences from the previous iteration.

(b) For j = 0, . . . , n/2i+1 − 1, B̂j = (
−−→
Split(Ŝ2j),

←−−
Split(Ŝ2j+1)).

(c) Set S = (B̂0, . . . , B̂n/2i+1−1).

2. The array Ŝ is now a bitonic sequence. Apply
−→
S =

−−→
Split(Ŝ) to obtain a sorted sequence.

Locality and obliviousness. It is easy to see that the sorting algorithm is oblivious, as all
accesses to the memory are independent to the actual data. As of locality, first note that pro-

cedure
−−→
Split and

←−−
Split are (2, O(log n))-local. No move operations are needed between instances

of recursions, as these can be executed one after another as iterations (and using some vacuous

reads). Thus, Algorithm A.2 is (2, O(log2 n))-local as it runs in log n iterations, each invoking
−−→
Split
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and
←−−
Split. Figure 4 gives a graphic representation of the algorithm for input size 8 and Figure 5

illustrates its locality. The (2, O(log2 n)) locality of Bitonic sort is also obvious from the figure.

A.1 Concurrent Executions of Bitonic Sorts

Later in our constructions, we will need to invoke bitonic sorts on disjoint segments of equal size
in an array. Let n be the array size and k be the segment size. If we naively sort each segment
sequential, we would incur (2, O((n/k) · log2 k)) locality. We can save the factor n/k by running
each step of the bitonic sort over all instances before starting the next step. Each step requires a
scan on the segments, so after finishing one segment, the memory heads are right at the start of the
next segment. It is not hard to see that this approach of “striped concurrent execution” achieves
(2, O(log2 k)) locality.

Theorem A.3 (Perfectly secure concurrent oblivious sorts with locality). Concurrent Bitonic
sort can obliviously sort all disjoint size-k segments of a length-n array in O(n · log2 k) work and
(2, O(log2 k)) locality.

Specifically, the k = n case is Theorem 4.1.

B Locally Initializable, Statistically Secure Oblivious Memory and
Data Structures

In this section, we formally define two building blocks, a locally initializable position-based ORAM
and an locally initializable oblivious binary search tree. Both building blocks adopt the core
technique of manipulating of position labels in ORAM constructions. Both abstractions have been
described in earlier works [23, 38, 54] — however, locality-friendly initialization was not of concern
in those works.

B.1 Locally Initializable Position-Based ORAM

Roughly speaking, a position-based ORAM is an ORAM where one can store and access a position
map for free — specifically, a position map is a data structure that stores the position label of
each block in the ORAM, which indicates the block’s physical location in memory. In our formal
abstraction below, each data access request will supply a correct position label as input, and
besides the requested block, the access algorithm will additionally output the requested block’s
new position label, which is used to update the physical location of the block after the access.
Similar to Section 4.3, we need a position-based ORAM that has a Initialize algorithm that has
good locality.

Functionality: A position-based ORAM scheme T (for non-contiguous memory addresses) is the
following functionality:

• posmap← T.Build(X): takes an input array X of blocks of the form (addr, data), and outputs
a position map posmap that contains a position label for every block in X.

• (pos′, data) ← T.Access(op, addr, data, pos): takes in a possibly dummy request addr with its
position label pos, outputs the requested block if op = read or update the block if op = write.
It also outputs the updated position map pos′ for addr.
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T reveals the number of elements in X and the total number of Access operations in the sequence,
i.e., leakage(I) := (|X|,m). Obliviousness is then defined as in Definition 3.2.

Construction. Let α denote any super-constant function. The idea is to have a Circuit ORAM
tree, but truncate the tree at a height with n

α log λ nodes — in this way, the Circuit ORAM tree has
n

α log λ leaves. We make the capacity of all non-leaf nodes a suitably large constant (e.g., 4), and
the capacity of all leaf nodes 4 · α log λ. Just like in Circuit ORAM, we have a stash of α log λ in
size. For accesses, we adopt exactly the same algorithm as Circuit ORAM.

The Build algorithm proceeds in the most obvious manner. We assign each non-dummy block
in the input array X to a random leaf node. By a simple application of the Chernoff bound, it is
not hard to see that each leaf node is at most half full except with negl(λ) probability. The set
of all label assignments will eventually be output by the algorithm as posmap. We now invoke an
instance of our oblivious sorting algorithm in Section 7) to place the blocks into the leaf nodes.
This immediately gives rise to the following theorem.

Theorem B.1 (Locally initializable, statistically secure position-based ORAM). For any super-
constant function α = ω(1), there exists a statistically secure, position-based ORAM scheme that
except with negl(λ) probability, costs O(n log n log log2 λ) work and (3, O(log n log log2 λ)) locality
for initialization with n elements, and O(log n log log2 λ) work and (2, O(log n log log2 λ) locality for
each access.

B.2 Locally Initializable Oblivious Binary Search Tree

We now define a useful building block called an oblivious binary search tree (OBST). It is initialized
from an input key-value pairs, and then supports binary search operations on the array. We would
like initialization and binary search operations to be efficient and have good locality.

Functionality: An oblivious binary search tree scheme T has the following functionality:

• T.Build(X): takes an input array X of key-value pairs in the form (k, v), and initializes its
internal structure that will later facilitate requests.

• v ← T.Access(op, k, v′): takes in an operation, a key k to search for, and possibly an updated
value v′. If op = read, T returns the value v of the node with key k (if it exists and returns
⊥ otherwise). If op = write, the node’s value is updated to v′.

An OBST reveals the number of elements in X and the total number of accesses operations in the
sequence, i.e., leakage(I) := (|X|,m). Obliviousness is then defined as in Definition 3.2.

Construction. Wang et al. [54] show how to construct an OBST from any position-based ORAM
in a blackbox manner. At a high level, the idea is to have a sequence of index ORAMs where a node
in each index ORAM stores the position labels of two children nodes in the next ORAM. In this
way, each binary-tree search operation can be performed through log n position-ORAM accesses.
It is not hard to see that if the underlying position-based ORAM can be initialized with locality,
so can the resulting OBST. Therefore, we immediately obtain the following theorems.

Theorem B.2 (Statistically secure oblivious binary search tree). For any super constant func-
tion α = ω(1), there exists an oblivious binary search tree scheme that has O(n log n log log2 λ)
work and (3, O(log n log log2 λ)) to initialize with n elements, and O(log2 n log log2 λ) work and
(2, O(log2 n log log2 λ) locality for each request to achieve negl(N) statistical failure probability.
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Figure 6: Oblivious range tree with locality.

Proof. Due to Theorem B.1 and due to the blackbox construction of an oblivious binary-tree
from a position-based ORAM [54]. Note that the construction preserves initialization locality of
the underlying position-based ORAM. We propose a further improvement to Wang et al. [54]’s
algorithm. As observed by Chan et al. [13], we may merge the stashes of all index and data
ORAMs, and the combined stash has at most α log λ utilization except with negl(λ) probability.
With the merged stash, each binary-tree search operation perform a single lookup of the combined
stash upfront, rather than having to look up the stashes of all index and data ORAMs.

B.3 Better Oblivious Range Trees and Range ORAMs

Using the primitives in previous sections, we can construct more efficient oblivious Range Trees and
Range ORAMs. We simply replace each initializable hierarchical ORAM with an locally initializable
position-based ORAM, and replace the metadata ORAM with an OBST, as shown in Figure 6.

Due to our modular approach of presentation, the more efficient oblivious range tree construc-
tions can be naturally adapted from Section 5.2 with minimum changes. The only change is that
we need to manipulate position labels. Specifically, the OBST stores the positional labels for all
(super-)blocks in all heights, and queries to OBST returns not only the two (super-)blocks that
intersect [s, t], but also their position labels, which will be fed into each position-based ORAM to
retrieve the (super-)blocks. This immediately gives rise to the following results.

Theorem B.3 (Statistically secure oblivious Range Tree). There exists a statistically secure
oblivious Range Tree that except with negl(λ) probability, achieves O(n log2 n log log2 λ) work and
(3, O(log2 n log log2 λ)) locality for preprocessing n primitives blocks during the build phase, and
O((len + log n) · log n log log2 λ) work and (2, O(log2 n log log2 λ) locality for fetching a range of
length len.

Theorem B.4 (Statistically secure Range ORAM with locality). There exists a statistically secure
Range ORAM such that except with negl(N) probability, accessing any contiguous memory range
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of size len requires O(αlen · log3N log log2N) work and (3, O(log3N log log2N)) locality, where N
denotes both the total memory size as well as the security parameter.

C Locally Initializable, Perfectly Secure ORAM

We observe that the perfectly secure ORAM scheme by Damg̊ard et al. [18] can be modified into
a perfectly secure, locally initializable ORAM. Since Damg̊ard et al. [18]’s perfectly secure ORAM
also follows the hierarchical ORAM paradigm, we can make it locally initializable in a similar
manner as how we made Goldreich and Ostrovsky’s ORAM [25] locally initializable.

Background on perfectly secure ORAM. Damg̊ard et al. [18]’s perfectly secure ORAM
basically follows the hierarchical ORAM framework originally proposed by Goldreich and Ostro-
vsky [25]. The main difference is the following: in Goldreich and Ostrovsky’s orginal hierarchical
ORAM, each level of the hierarchy is an oblivious hash table (i.e., a hash table with an oblivious
rebuilding procedure), where each element is mapped to a bin in the hash table using a pseudoran-
dom function (PRF) whose key is kept private by the client. Now, in order to make the ORAM
perfectly secure, we can no long rely on a PRF. Thus, Damg̊ard et al. [18]’s idea is to obliviously
and randomly permute each level of the hierarchy when it is rebuilt — such oblivious random
permutation can be realized through the help of oblivious sorting as Damg̊ard et al. [18] showed.
This, however, gives rise to a new problem. When a block is being requested from the level, the
client must know where to look in this permuted level. The most obvious way to do this is for the
client to store a large position map that remembers where each block is — however, this would
incur a linear amount of client storage.

Thus, Damg̊ard et al. [18]’s idea is to introduce a special (recursive) position map for hierarchical
ORAM — effectively, instead of storing this position map locally, the client recurses and stores it
in an ORAM on the server. In every position map ORAM, each block stores the positions of at
least 2 adjacent addresses in the next recursion depth — this guarantees that the number of blocks
will reduce by at least a half every time we recurse; and thus after logarithmically many recursion
depths, the amount of metadata will be O(1) blocks. This recursive position map is described as a
rather involved binary tree structure in Damg̊ard et al. [18]’s paper, but here we illustrate it in a
simpler but equivalent manner to aid understanding. The idea of adopting a recursive position map
was commonly used in tree-based ORAM constructions [45]. In fact the idea is similar here although
some special treatments are necessary for position maps for hierarchical ORAMs. Specifically, each
recursive ORAM that stores the position map is also a perfectly secure hierarchical ORAM. Over
all recursion levels, the following invariant must be satisfied:

(Invariant for a hierarchical ORAM’s position map.) If in the final data ORAM, a block at
logical address is stored in level ` of the hierarchical ORAM, then the position map for the block
must be stored in its position map ORAM at level ` or smaller, and the position map for the
position map for this block must also be stored at level ` or smaller, and so on.

If this invariant is satisfied, the benefit is the following: when levels 1, 2, . . . , ` are being rebuilt
for the data ORAM, then all position ORAMs will rebuild in sync for the same levels 1, 2, . . . , `,
such that the position map (and the position map of the position map, etc) for the updated blocks
are updated in sync.
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Locality-friendly initialization. It is not difficult to see that given a list of data blocks, we
can initiailize Damg̊ard et al. [18]’s perfectly secure ORAM using poly-logarithmically many obliv-
ious sorting operations. Basically, we first rebuild the data ORAM level just like how we rebuild
Goldreich and Ostrovsky’s ORAM but now assigning each block to a random location in a level
rather than pseudorandom. Once the data ORAM has been rebuilt, we can rebuild its position
map level correspondingly through at most logarithmically many oblivious sorts as well; and then
we can rebuild the position map of the position map, etc.

Thus we immediately obtain the following theorem where oblivious sort is realized using our
locality-friendly implementation of bitonic sort.

Theorem C.1 (Perfectly secure, locally initializable ORAM). There exists a perfectly secure
ORAM scheme that can be initialized with n blocks using n · poly log n work and (2, poly log n)
locality, and can serve an access using poly log n work and (2, poly log n) locality.

In our main body of the paper, we can leverage such a perfectly secure, locally initializable
ORAM to obtain a perfectly secure Range ORAM (using bitonic sort as the locality-friendly sorting
algorithm).
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