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Abstract. We give a brief survey of elliptic curve isogenies and the computational problems relevant for

supersingular isogeny crypto. Supersingular isogeny cryptography is attracting attention due to the fact
that there are no quantum attacks known against it that are significantly faster than classical attacks.

However, the underlying computational problems have not been sufficiently studied by quantum algorithms

researchers, especially since there are significant mathematical preliminaries needed to fully understand
isogeny crypto. The main goal of the paper is to advertise various related computational problems, and to

explain the relationships between them, in a way that is accessible to experts in quantum algorithms.

1. Introduction

An isogeny is a map φ : E1 → E2 where E1 and E2 are elliptic curves. Isogenies are maps both in the
sense of geometry (mapping points from one curve to another) and algebra (they are group homomorphisms).
One special case of an isogeny is the multiplication by n map [n] : E → E that is the central object of study
in traditional elliptic curve cryptography. The elliptic curve discrete logarithm problem is to compute n
when given two points P,Q = [n]P on an elliptic curve E. One can view this problem as “determining”
the isogeny φ : E → E when given two points P and Q = φ(P ). As is well known, Shor’s algorithm is a
polynomial-time algorithm to solve this problem on a quantum computer.

Isogeny cryptosystems were first proposed by Couveignes [10] and further developed in [32, 36] (these ones
were based on “ordinary curves”, for some details see later sections). The “supersingular curve” case was first
developed in a hash function construction by Charles, Lauter and Goren [8]. Further cryptosystems in the
supersingular case were proposed by Jao and de Feo [22] and developed in subsequent research [12, 23, 9, 20].

A subexponential-time quantum algorithm for the “ordinary curve” case was discovered by Childs, Jao
and Soukharev [7]. As a result, the research focus has moved entirely to the supersingular case, where only
exponential-time algorithms are known. The only quantum algorithm known for the supersingular case is
due to Biasse, Jao and Sankar [3], and it requires exponential time and subexponential space.

More study of supersingular isogeny crypto by experts in quantum algorithms is essential. The first aim
of the paper is to give a very gentle introduction to the main mathematical ideas behind isogeny crypto
(see Sections 2 to 5). The main purpose of the paper is to explain a number of inter-related computational
problems, and this is done in Section 6. Progress on quantum algorithms for any of these problems would
be of major significance. Finally, Section 7 surveys the current state-of-the-art for classical and quantum
algorithms for these problems.

2. Elliptic curves over finite fields

General references for this section are Washington [42], Silverman-Tate [34], Silverman [33], and Suther-
land [37].

Let Fq be a finite field. In this paper q = pa will always be a power of a large prime p, so definitely p > 3.
An elliptic curve E over Fq (in short Weierstrass form) is determined by two coefficients A,B ∈ Fq and is
the set of points

E(Fq) = {(x, y) ∈ F2
q : y2 = x3 +Ax+B} ∪ {0E}

where 0E is the point (x : y : z) = (0 : 1 : 0) on the projective curve y2z = x3 + Axz2 + Bz3. We will just
write 0 when the curve E is clear. Sometimes we also consider all the points over the algebraic closure of
the field E(Fq).
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The set of points on an elliptic curve is an abelian group under the “chord and tangent rule”. The point
0 is the identity element of the group. For any point P = (xP , yP ) ∈ E(Fq) we have (xP ,−yP ) ∈ E(Fq)
and P + (xP ,−yP ) = 0, so this is the inverse of the point. For n ∈ N and P ∈ E(Fq) we define [n]P to be
P + P + · · ·+ P (n times). For example, [2]P = P + P .

There are “close to q” points on an elliptic curve over Fq. Precisely, if we write #E(Fq) for the number
of points and set t = q + 1 − #E(Fq) then |t| ≤ 2

√
q. An elliptic curve over Fq where q = pa is called

supersingular if p | t and is called ordinary otherwise. It follows that E is supersingular if #E(Fq) ≡ 1
(mod p), and in fact for supersingular curves one has #E(Fqn) ≡ 1 (mod p) for all n ∈ N. This separation
of elliptic curves into supersingular and ordinary may look arbitrary and unmotivated, but we will later see
how different these two classes of curves are.

For n ∈ N define E[n] = {P ∈ E(Fq) : [n]P = 0}. If p - n then #E[n] = n2 and, group theoretically,
E[n] is a direct product of two cyclic groups of order n. If E is supersingular then E[p] = {0} while if E is
ordinary then #E[p] = p.

An isomorphism of elliptic curves f : E → E′ over a field Fq is, informally, a function described by
ratios of polynomials that maps points on E to points on E′, satisfies f(0E) = 0E′ , and has an inverse that
is also described by ratios of polynomials. It follows that an isomorphism is a bijection E(Fq)→ E′(Fq). It
can be shown that every isomorphism is of the form

f(x, y) = (u2x+ r, u3y + su2x+ t)

where u, r, s, t ∈ Fq. Since isomorphisms are over Fq they are not necessarily maps from E(Fq) to E′(Fq).
If E is an elliptic curve over Fq with #E(Fq) = q + 1 − t then there is an elliptic curve E′ over Fq, called
the quadratic twist of E, such that #E′(Fq) = q + 1 + t and E′ is isomorphic to E (the isomorphism is
however not defined over Fq).

The j-invariant of an elliptic curve E : y2 = x3 +Ax+B is

j(E) = 1728
4A3

4A3 + 27B2
.

There is an isomorphism f : E → E′ if and only if j(E) = j(E′).
Given j ∈ Fq with j 6= 0, 1728, the elliptic curve

E : y2 = x3 +
3j

1728− j
x+

2j

1728− j
has j(E) = j.

We end with some final remarks about supersingular elliptic curves. First, any supersingular elliptic curve
E over Fp is actually defined over Fp2 (meaning, it has j-invariant in Fp2). There are about p/12 isomorphism
classes (j-invariants) of supersingular elliptic curves in total, and O(

√
p log(p)) of them have j-invariants in

Fp. When p > 3 then all supersingular curves E over Fp2 have #E(Fp2) = (p + 1)2 or (p − 1)2, and their
group structure is C2

(p+1) (respectively, C2
(p−1)) where Cn denotes a cyclic group of order n.

3. Isogenies

General references for this section are Chapter 12 of Washington [42], Chapters 9 and 25 of Galbraith [17]
and De Feo [13].

Let E1, E2 be two elliptic curves over Fq. An isogeny1 is a morphism φ : E1 → E2 such that φ(0E1
) = 0E2

.
One can show that isogenies are group homomorphisms, so they are “morphisms” both in the sense of
algebraic geometry and group theory. Two elliptic curves are called isogenous if there is an isogeny between
them.

The degree of an isogeny is essentially the degree of polynomials describing it (see Section 12.2 of
Washington [42]). The degree of an isogeny is also, in general, the number of points in the kernel (an
exception is inseparable isogenies such as the Frobenius map φ(x, y) = (xp, yp) on elliptic curves over Fp).

A basic example of an isogeny is the multiplication by n map [n] on an elliptic curve E for n ∈ N, which
we already defined by [n]P = P + P + · · ·+ P (n times). This maps 0 to itself, is a group homomorphism,

1The word “isogeny” means “same kind” and is also used in biology and medicine.
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and is described by rational functions coming from the group law. The kernel is the set of points {P ∈
E(Fq) : [n]P = 0} which has size n2 in general.

Example 1. Let E : y2 = x3 + x. Then the map [2] : E → E is given by the rational function

[2](x, y) =

(
(x2 − 1)2

4(x3 + x)
,
y(x6 + 5x4 − 5x2 − 1)

8(x3 + x)2

)
.

The kernel of [2] is 0 together with the three points (xP , 0) such that x3P +xP = 0. In other words, the kernel
is the set of four points of order dividing 2.

Example 2. Let A,B ∈ Fq be such that B 6= 0 and D = A2 − 4B 6= 0. Consider the elliptic curve
E : y2 = x(x2 +Ax+B) over Fq. The point (0, 0) has order 2. There is an elliptic curve E′ and an isogeny
φ : E → E′ such that ker(φ) = {0E , (0, 0)}. One can verify that

φ(x, y) =

(
y2

x2
,
y(B − x2)

x2

)
=

(
x2 +Ax+B

x
, y
B − x2

x2

)
has the desired kernel, and the image curve is E′ : Y 2 = X(X2 − 2AX +D).

The dual isogeny to φ : E → E′ is an isogeny φ̂ : E′ → E such that the composition φ̂ ◦ φ : E → E is
simply [deg(φ)]. The dual isogeny exists for every isogeny φ.

A major result (often called Tate’s isogeny theorem since he generalised it to Abelian varieties) is that
any two elliptic curves E1 and E2 over Fq are isogenous over Fq (the “over Fq” means that the isogeny is
given by rational functions of polynomials in Fq[x, y]) if and only if #E1(Fq) = #E2(Fq). One issue that
frequently causes confusion to beginners is the fact that an isogeny has a kernel and yet the two curves have
the same number of points. The following example will make this clear.

Example 3. We consider the curve E : y2 = x(x2 + x + 1) over F7, which is a special case of Example 2.
One can check that #E(F7) = 8. Indeed E(F7) = {0, (0, 0), (2, 0), (3, 2), (3, 5), (4, 0), (5, 1), (5, 6)} and the
points (0, 0), (2, 0), (4, 0) all have order 2 while the points (3,±2), (5,±1) have order 4. The isogeny φ given
in Example 2 maps to E′ : y2 = x(x2 − 2x− 3).

One can check that φ(2, 0) = φ(4, 0) = (0, 0). This gives the convenient fact that if one repeats the
construction of Example 2 starting from E′ then one computes an isogeny to the curve E′′ : y2 = x(x2 +
4Ax+16B) which is isomorphic to E. The composition E → E′ → E′′ has kernel generated by {(0, 0), (2, 0)}
and so is E[2], the group of points of order 2 on E. Hence this composition is just the multiplication by 2
map. This decomposition of the multiplication by 2 map into two isogenies of degree 2 is a tool used in the
proof of the Mordell-Weil theorem (see Silverman-Tate [34] for details, or any other book on elliptic curves).

One can also check that φ(5, 1) = φ(3, 5) = (2, 1) and φ(5, 6) = φ(3, 2) = (2, 6). Hence φ(E(F7)) is a
cyclic group of order 4 inside the group E′(F7) of order 8. This makes sense, since we have quotiented a
group of order 8 by a subgroup of order 2.

What about the other 4 points in E′(F7), such as (3, 0)? These are the image of points on E over an
extension of F7. Consider the point Q = (1, α) ∈ E(F72) where α ∈ F72 satisfies α2 = 3. One can check
that Q has order 4, [2]Q = (0, 0), and φ(Q) = (3, 0). The other “missing points” in E′(F7) are similarly the
image of points on E over the extension field F72 .

The next Theorem is extremely important and useful in the subject. Every isogeny φ : E → E′ has a
kernel G = ker(φ) that is a finite subgroup of E(Fq). A natural question is to what extent φ is uniquely

defined by its kernel and which finite subgroups of E(Fq) arise as a kernel of an isogeny. The answer (ignoring
inseparable isogenies) is that φ is uniquely defined up to composition with an isomorphism by its kernel, and
that every finite subgroup G of E(Fq) can be the kernel of an isogeny, but the isogeny is defined over Fq if

and only if G is defined over Fq. The definition of “G defined over Fq” is: If P ∈ G and σ ∈ Gal(Fq/Fq)
then σ(P ) ∈ G. Note that this does not imply that G ⊆ E(Fq).

Theorem 1. Let E be an elliptic curve defined over Fq and G a finite subgroup of E(Fq) that is defined
over Fq. Then there is an elliptic curve E′ defined over Fq and a separable isogeny φ : E → E′ defined over
Fq of degree #G with ker(φ) = G. Furthermore, if ψ : E → E′′ is any other separable isogeny of degree #G
with ker(ψ) = G then j(E′′) = j(E′). Hence, the image curve E′ is well-defined up to isomorphism and we
sometimes denote it by E/G.
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There is an explicit algorithmic proof of Theorem 1 due to Vélu [40] (for details see Silverman [33]
Proposition III.4.12, Galbraith [17] Section 25.1). The algorithmic proof of this Theorem gives an explicit
formula for the equation of E′ and for the isogeny φ (as rational functions). However, the complexity of
the Vélu formulae is O(n) field operations to compute an isogeny of degree n, which in certain applications
would be considered as exponential complexity.

A key concept that makes isogeny crypto feasible is that isogenies factor into chains. Let E and E′

be elliptic curves over Fq and let φ : E → E′ be a separable isogeny that is defined over Fq. Then
φ = φ1 ◦ · · · ◦ φk ◦ [n] where φ1, . . . , φk are isogenies of prime degree that are defined over Fq and deg(φ) =

n2
∏k
i=1 deg(φi). What this means in practice is that an isogeny of large degree can be constructed as a

composition of isogenies of small prime degree. For example, one can form a sequence of t isogenies of degree
2, and the cost to compute the composition is proportional to t, rather than the cost O(2t) of computing
the composition in a single step using the Vélu formulae.

For specific crypto applications there has been a lot of nice research to speed up the computation of chains
of isogenies, but we do not discuss this in this paper. See for example De Feo, Jao and Plût [12] for a taste
of this.

There is one further subtlety: The Vélu algorithm outputs a particular elliptic curve in the isomorphism
class, and sometimes one needs to apply a suitable isomorphism to get to the desired curve. In the key
exchange protocol (see Section 6), Alice and Bob use the Vélu algorithm and they are not expected to both
generate exactly the same curve; that’s why the protocol works with j-invariants.

4. Endomorphisms

The general reference for this section is Section III.9 of Silverman [33] and Sutherland [37].
The endomorphism ring of E is the set of isogenies from E to itself, together with the zero map 0 : E → E

given by 0(P ) = 0. In other words

End(E) = {φ : E → E} ∪ {0}.

This is a ring where addition of isogenies is defined using elliptic curve addition as (φ1 + φ2)(P ) = φ1(P ) +
φ2(P ) and multiplication is composition. Note that Z ⊂ End(E) from the map n 7→ [n]. Also note that this
map is injective: if n 6= m then we never have [n] = [m], because there is always some P ∈ E(Fq) such that
[n]P 6= [m]P , even if [n]P = [m]P for all P ∈ E(Fq).

Hence, the ring End(E) is a Z-module. A non-trivial theorem (related to the fact that #E[n] = n2) is
that there are only three types of ring for End(E): namely Z, an order in an imaginary quadratic field, a
maximal order in a quaternion algebra. Further, the case End(E) = Z does not occur for elliptic curves over
finite fields. We give examples that illustrate what is going on.

Example 4. Let E1, E2 over F13 be given by E1 : y2 = x3 + x and E2 : y2 = x3 + 7x+ 5 Then #E1(F13) =
#E2(F13) = 20. This is the case of ordinary curves, since 20 6≡ 1 (mod 13). The Frobenius map π(x, y) =
(x13, y13) is an endomorphism on E and is known to satisfy the polynomial T 2 + 6T + 13, meaning that

π(π(P )) + [6]π(P ) + [13]P = 0

for all points P ∈ E1(F13) (and same for E2(F13)). It follows that End(E1) and End(E2) contain Z[π]. Since
π behaves like the complex number −3 + 2i it follows that the ring Z[π] is isomorphic to Z[2i] where i2 = −1
is the usual complex number. Hence Z[π] is a subring of Q(i) that contains 1. In other words, it is an order.

It can be shown that End(E2) ∼= Z[2i]. However, End(E1) is larger. The endomorphism ψ(x, y) = (−x, iy)
satisfies ψ2(x, y) = (x,−y) = [−1](x, y) and so we write ψ2 = −1 and identify ψ with the complex number
i. It follows that π = −3 + 2ψ (assuming an appropriate choice of sign is taken when i is defined) and so
End(E1) ∼= Z[i].

The two rings Z[i] and Z[2i] are orders in the imaginary quadratic field Q(i).

The general result is that an ordinary elliptic curve over Fq with q + 1 − t points has Frobenius
endomorphism π that satisfies π(π(P ))− [t]π(P ) + [q]P = 0 and has an endomorphism ring that is an order

in K = Q(
√
d) with d = t2− 4q < 0 and Z[π] ⊆ End(E) ⊆ OK . The conductor c = [OK : Z[π]] is the largest

integer such that d/c2 ≡ 0, 1 mod 4, so there is only a finite number of possibilities for End(E), namely, all
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the rings O = Z + c′OK with c′ a divisor of c. In the above example, d = 62 − 4 · 13 = −16, K = Q(i),
OK = Z[i], the conductor c = 2 and the order Z[i] = Z +OK , and the order Z[2i] = Z + 2OK .

Example 5. Let p = 11 and consider the curve y2 = x3 + x over Fp. We have #E(F11) = 12 and so E is
supersingular. As in the previous example, there are endomorphisms ψ(x, y) = (−x, iy) such that ψ2 = [−1]
and ψ(x, y) = (xp, yp) such that π2 = [−p] (this latter statement is not obvious). However a difference this
time is that p ≡ 3 (mod 4) and so the field element i such that i2 = −1 does not lie in Fp but in Fp2 . Hence
we have π ◦ψ(x, y) = π(−x, iy) = (−xp, ipyp) = (−xp,−iyp) whereas ψ ◦π(x, y) = (−xp, iyp). It follows that
πψ = −ψπ and so End(E) is a non-commutative ring. In fact End(E) is now an order in the quaternion
algebra Q〈i, j〉 where i2 = −1 and j2 = −p.

Indeed, when E is a supersingular curve then a theorem of Deuring is that End(E) is a maximal order in
the quaternion algebra ramified at p and infinity. It is this difference in the endomorphism rings that makes
supersingular curves so different from ordinary curves.

We do not have space to give all the details of orders in imaginary quadratic fields and quaternion
algebras. But suffice to say that the ordinary case has strong connections with algebraic number theory
via the theory of complex multiplication (see Cox [11] and Sutherland [35]). In particular, given an elliptic
curve E over Fq with End(E) = OK (the maximal order) and a an OK-ideal, we can define the a-torsion
subgroup as the intersection of the kernels of all elements in a, i.e. E[a] = ∩α∈a ker(α) and construct an
isogeny φa : E → Ea ' E/E[a] with kernel E[a]. The curve Ea will have the same endomorphism ring OK
and when a is principal, Ea will be isomorphic to E. For a and b two OK ideals, we have φab = φa ◦ φb.
We thus obtain an induced action of the class group cl(OK) on the set of j-invariants of elliptic curves with
endomorphism ring OK given by

[a] ? j(E) = j(Ea) .

This construction immediately generalizes to the case where End(E) = O is not the maximal order.

5. Modular Polynomials and Isogeny Graphs

General references for this section are Section 11 of Cox [11], Chapter 25 of Galbraith [17], Sutherland [35],
Sutherland [37], and De Feo [13].

We have seen that if G ⊆ E(Fq) is a group defined over Fq then there is an isogeny φ : E → E′ = E/G
and that this isogeny can be computed using an algorithm due to Vélu. Hence the reader might assume that
in order to compute isogenies it is necessary to compute kernel points. Surprisingly there is another tool for
computing isogenies that does not explicitly deal with kernel subgroups or even points on elliptic curves at
all.

Let ` be an integer with ` ≥ 2. The modular polynomial Φ`(x, y) ∈ Z[x, y] has the following remarkable
property: A pair j, j′ ∈ Fq satisfies Φ`(j, j

′) = 0 if and only if there are elliptic curves E,E′ over Fq with
j(E) = j and j(E′) = j′ and an isogeny φ : E → E′ of degree `. It follows from the dual isogeny that
Φ`(y, x) = Φ`(x, y).

Note that modular polynomials have high degree and very large coefficients. When ` is prime then
degx(Φ`(x, y)) = `+ 1 and indeed Φ`(x, y) = x`+1 + y`+1 + x`y`+ lower terms. It requires O(`3 log(`)) bits
to represent Φ`.

Hence, given an elliptic curve E over Fq, to find the j-invariants of the `-isogenous curves one simply

computes the univariate polynomial Φ`(j(E), y) ∈ Fq[y] and then computes its roots in Fq. An algorithm
due to Elkies allows to compute the kernel of the corresponding isogeny (in exponential time in `) when
given E and the j-invariant j′ of the isogenous curve E′.

For elliptic curves over Fq and ` a prime, the `-isogeny graph (over Fq) is a graph (V,G) (in the sense
of graph theory) whose vertices V is the set of j-invariants of elliptic curves over Fq, i.e. is simply given by
Fq, and whose edges G are the pairs (j(E1), j(E2)) of j-invariants of `-isogeneous curves.2 At first sight the
graph appears to be a directed graph, but due to the dual isogeny one can essentially think of the graph as
undirected (there are two special cases involving curves with j-invariants 0 and 1728 that we don’t want to
discuss). Note also that the graph can be a multi-graph (two distinct edges between the same two vertices).

2This is the entire isogeny graph of elliptic curves. Some references only define the isogeny graph of a curve E, which is the

connected component of the entire graph containing j(E).
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For a set S = {`1, . . . , `k} of primes `i ≥ 2, the S-isogeny graph has edge set that is the union of the edge
sets of all `i-isogeny graphs for `i ∈ S, and the isogeny graph is the union of all `-isogeny graphs for all
primes `.

The definition of supersingularity implies that an elliptic curve isogeneous to a supersingular curve is
itself supersingular, so connected components in the isogeny graph are either ordinary or supersingular. The
structure of both components is well known: an ordinary component in the `-isogeny graph is a so-called
`-volcano which is a connected undirected graph whose vertices can be partitioned in levels V0, . . . , Vd. V0
is called the surface and is typically a cycle (in general a regular graph of degree ≤ 2), each vertex in Vi for
i > 0 has exactly one neighbour in level Vi−1 (and all edges not on the surface arise in this manner), and
all vertices have degree `+ 1, except for the vertices in Vd that have degree 1. All vertices in the same level
Vi correspond to elliptic curves with the same endomorphism ring Oi, and the endomorphism ring on level
i has index ` in the endomorphism ring on level i − 1, i.e. [Oi−1 : Oi] = `. Therefore, for the `-volcano to
have more than one level, it is required that ` | c with c the conductor. In all other cases, the `-volcano only
consists of its surface. If we restrict the isogeny graph to the elliptic curves with maximal endomorphism ring
End(E) = OK , then the isogeny graph is a Cayley graph for the ideal class group. Since Cayley graphs of
Abelian groups (with bounded vertex degree) are not families of expander graphs, it means that the shortest
path between any two vertices might be quite long.

A supersingular component has a totally different structure: since every j-invariant of a supersingular
curve lies in Fp2 , it follows that Φ`(j(E), Y ) for E supersingular will have l + 1 roots in Fp2 . If we consider
the `-isogeny graph over Fp2 , the supersingular components will all be regular graphs of degree ` + 1. In
fact, one can show there is only one supersingular component and this component is an expander graph.
This means it has “good mixing properties” and there is a “short” path between any two vertices in the
graph. Indeed it is a Ramanujan graph, which means it has essentially optimal expansion properties. We
refer to Chapter 41 of Voight [41] or Pizer [28, 29] for more details (though be warned that Pizer expresses
his results without mentioning elliptic curves).

Example 6. We have

Φ2(x, y) = x3+y3−x2y2+1488(x2y+xy2)−162000(x2+y2)+40773375xy+8748000000(x+y)−157464000000000.

Let E be the elliptic curve y2 = x3 + x + 5 over F37 with #E(F37) = 38 and j(E) = 8. We now construct
the 2-isogeny graph of E over F372 . First Φ2(j(E), y) = (y− 8)(y− α)(y− β) where α, β ∈ F372 are roots of
y2 + 31y + 31 = 0. Now we can consider Φ2(α, y) = (y − 8)(y − β)2 and Φ2(β, y) = (y − 8)(y − α)2.

Hence the isogeny graph of E is the multi-graph with three vertices {8, α, β} and three undirected edges.

6. Computational problems and relationships

This is now the main part of the paper. We want to mention some computational problems that are
relevant to isogeny crypto. A quantum algorithm for any one of these problems would have major impact
on the attractiveness of supersingular isogenies

The first problem is the template for the whole subject.

Definition 1. The general isogeny problem: Given j, j′ ∈ Fq to find an isogeny φ : E → E′, if it exists,
where j(E) = j and j(E′) = j′.

A difficulty with this problem is that a solution φ may require significant space to describe (in general it
would be exponential in the input size). Certain special cases that arise in applications include finding a path
in an isogeny graph between two elliptic curves, and in certain contexts there is a compact (polynomial-sized)
description of the path. We refer to Section 6.1 for some examples of such problems.

Note that the decisional question of whether an isogeny exists or not is solvable in polynomial time:
an isogeny exists if and only if #E(Fq) = #E′(Fq), and computing the number of points can be done in
polynomial time. If one isogeny exists then there are an infinite number of isogenies φ : E → E′. So it does
not make sense to ask for a specific isogeny, unless one asks for an isogeny of minimal degree (in which case
the correctness of the solution is harder to verify since there is usually no efficient way to determine whether
or not there is an isogeny of smaller degree between two curves).

A variant of this problem is when one is also told the degree of φ. This reduces the problem space from
an infinite number of isogenies to a finite number (typically one, or zero if no such isogeny exists). In some
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sense, this could make the problem harder. On the other hand, knowing the degree of the isogeny could
potentially make the problem easier as it could reduce the search space. An example of this problem arises
from the hash function of Charles, Lauter and Goren [8].

6.1. Supersingular Isogeny Diffie-Hellman (SIDH). For the Jao and De Feo system [22] (also see De
Feo, Jao and Plût [12]) there is a very special set-up. First choose distinct small primes `1, `2 (typically
`1 = 2 and `2 = 3) and choose e1, e2 ∈ N such that `e11 ≈ `e22 ≈ 2λ where λ is some security parameter
(typically, λ = 256). Next choose a random small integer f ∈ N until p = `e11 `

e2
2 f ± 1 is prime. Choose E to

be a supersingular elliptic curve over Fp2 (there is an efficient algorithm to do this due to Broker [6]) such
that E(Fp2) has group structure a product of two cyclic groups of order `e11 `

e2
2 f . Fix points R1, S1 ∈ E[`e11 ]

such that the group generated by R1 and S1 is the whole group E[`e11 ]. Similarly, choose R2, S2 such that
〈R2, S2〉 = E[`e22 ]. The SIDH public key is (E,R1, S1, R2, S2).

The SIDH key exchange protocol (an analogue of Diffie-Hellman) works as follows: Alice chooses a secret
subgroup of E[`e11 ] by choosing an integer 0 ≤ a < `e11 and setting T1 = R1 + [a]S1. Alice computes an
isogeny φA : E → EA with kernel generated by T1 and publishes (EA, φA(R2), φA(S2)). Similarly, Bob
chooses 0 ≤ b < `e22 , computes φB : E → EB with kernel generated by T2 = R2 + [b]S2 and publishes
(EB , φB(R1), φB(S1)). To compute the shared key, Alice computes

T ′1 = φB(R1) + [a]φB(S1) = φB(R1 + [a]S1) = φB(T1)

and then computes an isogeny φ′A : EB → EAB with kernel generated by T ′1. The composition φ′A ◦
φB : E → EAB has kernel 〈T1, T2〉. Similarly, Bob computes an isogeny φ′B : EA → E′AB with kernel
〈φA(R2) + [b]φA(S2)〉. The actual elliptic curve equations EAB and E′AB computed by Alice and Bob are
not likely to be the same, but the curves are isomorphic and so j(EAB) = j(E′AB). Hence, the shared key
for Alice and Bob is j(EAB).

The protocol can be nicely expressed in terms of quotients. We can think of EA as E/GA for some
subgroup GA = 〈T1〉 of E[`e11 ], and of EB as E/GB . Then EAB = E/〈GA, GB〉, which explains why the two
parties compute the same key. Note that the protocol cannot be described purely in terms of j-invariants:
One can have situations where E/GA ∼= E/G′A and E/GB ∼= E/G′B but E/〈GA, GB〉 6∼= E/〈G′A, G′B〉.

For more discussion of the protocol and its security we refer to [22, 12, 9].
To break this key exchange protocol is to solve a more special problem than the general isogeny problem.

In particular, there is a lot of auxiliary information.

Definition 2. SIDH isogeny problem: Let (E,R1, S1, R2, S2) be a SIDH public key. Let EA be such that
there is an isogeny φA : E → EA of degree `e11 . Let R′2 = φA(R2), S′2 = φA(S2). The problem is: Given
(E,R1, S1, R2, S2, EA, R

′
2, S
′
2) to determine an isogeny φA : E → EA of degree `e11 such that R′2 = φA(R2)

and S′2 = φA(S2).

Notes:

(1) This problem contains exponentially much auxiliary information: Let 0 ≤ x, y < `e22 and set T =
[x]R2 + [y]S2. Then φA(T ) = [x]R′2 + [y]S′2 can be computed. Hence an attacker can compute as
many pairs (T, φA(T )) on the graph of φA as they like. A natural approach is to compute φA by
solving an interpolation problem. However the difficulty is that φA has degree `e11 and so is described
by rational functions of exponential degree. The challenge is to solve this interpolation problem using
the decomposed form of φA as a sequence of e1 isogenies of degree `1.

(2) The scheme would be totally insecure if Alice also published R′1 = φA(R1), S′1 = φA(S1). An attacker
would simply compute x, y ∈ Z such that (x, y) 6∈ (`1Z)2 but [x]R′1 + [y]S′1 = 0 (identity element
on elliptic curve). This is an easy discrete log problem to solve, since the point has smooth order
`e11 . Then [x]R1 + [y]S1 is in the kernel of φA and we have likely determined the kernel exactly and
hence know φA. A framework for an attack based on this idea is developed in a very recent preprint
of Petit [27].

6.2. Decisional variants. We now describe some interesting variants of these problems.

Definition 3. Decisional SIDH isogeny problem: Let (E,R1, S1, R2, S2) be a SIDH public key. Let EA
be an elliptic curve and let R′2, S

′
2 ∈ EA[`e22 ]. Let 0 < n ≤ e1 The problem is: Given (E,R1, S1, R2, S2, EA, R

′
2, S
′
2, n)
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to determine whether or not there exists an isogeny φ : E → EA of degree `n1 such that R′2 = φ(R2) and
S′2 = φ(S2).

If this problem can be solved then there is an easy way to solve the SIDH isogeny problem:3 Let u ∈ Z
be such that u`1 ≡ 1 (mod `2). Given the instance (E,R1, S1, R2, S2, EA, R

′
2, S
′
2) one chooses an `1-isogeny

ψ : EA → E′ and calls the decisional algorithm on (E,R1, S1, R2, S2, E
′, [u]ψ(R′2), [u]ψ(S′2), e1 − 1). If the

decisional oracle says “yes”, then we have correctly determined the result of the first e1− 1 steps in the path
from E to EA. Iterating this process polynomially many times solves the isogeny problem.

A strategy that does not seem to work to solve this decisional problem is to use elliptic curve pairings.
The Weil pairing satisfies the compatibility condition that if φ : E → E′ and P,Q ∈ E[N ] then

eN (φ(P ), φ(Q)) = eN (P,Q)deg(φ)

where the first pairing is computed on E′ and the second on E (Proposition 8.2 of Silverman). However,

taking N = `e22 , it will always be the case that eN ([u]ψ(R′2), [u]ψ(S′2)) = eN (R2, S2)`
e1
1 even when the curve

E′ does not correspond to an intermediate curve along the path of the isogeny ψ.

6.3. Computing the endomorphism ring. Let E be a supersingular curve such that End(E) is known
and let E′ be an arbitrary isogenous curve. In general it is believed that the problem of computing End(E′)
and the problem of computing an isogeny φ : E → E′ are broadly equivalent (see Kohel [24], Kohel, Lauter,
Petit and Tignol [25]). Note that this is not true in the ordinary case; one can usually determine End(E)
much more easily than computing isogenties (see Kohel [24], Bisson-Sutherland [4]).

In the specific SIDH cryptosystem, the base curve E is often chosen to have a special form, in which
case End(E) is usually known. To break the cryptosystem it suffices to compute End(EA). Hence another
problem worthy of consideration is to compute End(E′) for an arbitrary elliptic curve E′.

There are several possible ways one might represent End(E′). One method is by giving explicit isogenies
φ : E′ → E′ as rational functions. Since the degree is usually exponential, this is typically not a useful
representation. Another way is as an abstract representation as a Z-module in a quaternion algebra. In this
setting, the representation as an explicit Z-basis with respect to the basis {1, i, j,k} of the quaternion algebra
can have polynomial size, so this is usually what we have in mind. A thorough discussion of these issues
and proofs that the endomorphism ring has a polynomial-sized representation are given by Eisentraeger,
Hallgren and Morrison [15].

Definition 4. Given a supersingular elliptic curve E/Fp2 , determine an abstract representation of the max-
imal order End(E) in the quaternion algebra ramified at p and ∞.

If one has an abstract representation of End(E) and End(E′) then one has a practical description of the
entire infinite set of isogenies from E to E′. In this setting, it is shown in Section 4 of [19] that one can
easily find the specific isogeny required for Definition 2 using lattice reduction; because that isogeny is of
particularly small degree and so corresponds to a short vector in the lattice of all isogenies.

Kohel’s algorithm to compute End(E) works by computing paths in the isogeny graph to find several
distinct isogenies φ : E′ → E′. Hence the basic sub-task in this area is to compute an “arbitrary” isogeny of
a curve to itself. So we single-out this problem as being worthy of research.

Definition 5. Given a supersingular elliptic curve E/Fp2 , find an isogeny φ : E → E that is not in Z[π].

7. What is known about algorithms

In this section we use the asymptotic notation Õ(f(n)) which denotes O(f(n) log(f(n))k) for some in-
teger k ≥ 0. We also use the subexponential function LN (a, c) = exp(c log(N)a log(log(N))1−a) such that
LN (0, c) = log(N)c is a polynomial function while LN (1, c) = N c is an exponential function. The cases
0 < a < 1 are super-polynomial but also sub-exponential.

3This approach has been independently discovered by Thormarker [39].
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Ordinary curves. The first algorithm to solve the general isogeny problem for ordinary curves is due to
Galbraith [16] and proceeds in two steps:

(1) Reduce the problem to the case of elliptic curves whose endomorphism ring is maximal. Given two
ordinary curves E1 and E2 with #E1(Fq) = #E2(Fq) = q+1−t, an algorithm due to Kohel constructs

a chain of isogenies from Ei to E′i where End(E′i) = OK is the maximal order of K = Q(
√
t2 − 4q).

The time and space complexity of this step are Õ(c3) and Õ(c2) with c the maximum conductor
of End(Ei), i.e. maxi[OK : End(Ei)]. Since c can be as large as q1/2 in the worst case, step 1 has

expected running time Õ(q3/2) and space Õ(q).
(2) Construct an isogeny between E′1 and E′2.

Galbraith solves step (2) by constructing isogeny trees using the following procedure: pick a random prime
` from a well-chosen set of primes and for each vertex j in the trees, construct all `-isogeneous curves by
computing the roots of Φ`(j, Y ) in Fq. For each root r, add it to the tree (if not yet present), and add an edge
between r and j labelled with `. Repeat this procedure until an edge connects both trees, at which point one
has found a path of isogenies connecting E′1 and E′2. Each `-isogeny in the path can be constructed using
the methods of Elkies and Vélu. This is a time-memory tradeoff algorithm based on the bi-directional search
algorithm of Pohl [30]. The time and space complexity of step 2 both are Õ(q1/4). The algorithm cannot
be easily distributed or parallelised. For smooth conductor or when the Ei have maximal endomorphism
rings, step 1 becomes negligible and the overall running time and storage are Õ(q1/4). The algorithm runs
in polynomial time when the class number of the endomorphism ring is small. Note that (at least, when the
conductor c is small) this algorithm outputs isogeny paths of minimal length (and so has polynomial-sized
output).

An improvement to step 2 is given by Galbraith, Hess and Smart [18] where instead of isogeny trees,
the authors use a random walk on the isogeny graph restricted to curves whose endomorphism ring is the
maximal order OK . This allows the algorithm to be distributed and reduces the storage costs during the
first stage of the algorithm. Recall that in this case we have an action of the class group cl(OK) on the set
of j-invariants given by [a] ? j(E) = j(Ea). Here [a] denotes an ideal class. Each step of the random walk
will update a pair (j, [a]) where j is a j-invariant and [a] an element of cl(OK). The core of the random walk
consists of a deterministic (but random looking) function f : Fq → cl(OK) that maps a j-invariant to an
element [a] ∈ cl(OK). The function f is used to update the pair (ji, [ai]) by defining ji+1 = [f(ji)] ? ji and
[ai+1] = [ai] · [f(ji)]. The overall algorithm then proceeds in the following way: start a first random walk

with initial value (j
(1)
0 , [a

(1)
0 ]) = (j(E′1), [1]) and execute T = O(

√
hK) steps with hK = |cl(OK)| resulting

in the pair (j
(1)
T , [a

(1)
T ]). Then start a second random walk at (j

(2)
0 , [a

(2)
0 ]) = (j(E′2), [1]) and walk until a

collision occurs, i.e. until j
(1)
T = j

(2)
S for some S. The expected number of steps S is also O(

√
hK) and the

space requirement is clearly polynomial. The isogeny connecting E′1 and E′2 can then be represented as the

class group element [a] = [a
(1)
T ]/[a

(2)
S ]. To construct the actual isogeny, the authors use an index calculus

type of algorithm to find a smooth representation of [a], i.e. to express [a] = [
∏
i l
bi ] for small prime ideals

li. The time complexity of step 2 remains Õ(q1/4) but for suitable parameters the space complexity can
be subexponential or even polynomial in log(q). Work of Bisson and Sutherland [5] reduces the storage

requirements to find a smooth representation of an ideal within time Õ(q1/4). The isogenies output by the
algorithm are no longer necessarily of minimal length.

Galbraith and Stolbunov [21] improved the complexity of the GHS algorithm by a constant factor by
modifying the random walk function so that lower-degree isogenies are used more frequently.

7.0.1. Subexponential-time methods. Childs, Jao and Soukharev [7] describe an improved index calculus
algorithm to find a relatively compact and smooth representation of an element [a] ∈ cl(OK) that runs in

sub-exponential time Lq(1/2,
√

3/2) (assuming the generalised Riemann hypothesis). This algorithm can be
used to speed-up the last step of the GHS algorithm above, but it also allows to evaluate the class group
action [a] ? j(E) for any [a] ∈ cl(OK) in sub-exponential time. Childs, Jao and Soukharev [7] also describe
a quantum algorithm for step 2 above by reducing it to the abelian hidden shift problem. This problem is
defined as follows: let A be a finite abelian group, T a finite set and let f1, f2 : A→ T be black-box functions.
The functions f1, f2 are said to hide a shift s ∈ A if f1 is injective and f2(x) = f1(xs) for all x ∈ A. The
goal is then to recover s by evaluating the functions f1 and f2. Step 2 can be easily formulated as an abelian
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hidden shift problem by defining the two functions fb([a]) = [a] ? j(E′b) for b = 1, 2. Indeed, let [s] be the
ideal class such that [s]? j(E′1) = j(E′2), then clearly f2(x) = f1(x[s]) for all x ∈ cl(OK). The abelian hidden
shift problem can be solved using Kuperberg’s algorithm [26] in L|A|(1/2) time, space and number of queries
to fi. Since each query takes sub-exponential time itself, the overall time and space complexity to solve step
2 on a quantum computer is Lq(1/2). Remark 4.7 of [7] emphasises that there are two reasons why the time
complexity is subexponential: both Kuperberg’s algorithm itself, and also the classical smoothness results
for computing in class groups. The output is a path in the isogeny graph of subexponential length.

Childs et al. also state that a modified algorithm due to Regev [31] allows the space complexity to be
made polynomial. But this claim is incorrect in the setting of the isogeny problem, as the computation of
isogenies themselves is still subexponential.

Supersingular curves. Since the `-isogeny graph for supersingular curves is connected for each `, it suffices
to consider one ` only, e.g. ` = 2. The meet-in-the-middle approach by Galbraith [16] can also be applied to
the supersingular graph over Fp2 by building isogeny trees from E1 and E2 (note that step 1 can be skipped).

This method will find the shortest path from E1 to E2, but both the time and space complexity are Õ(p1/2)
since the size of the graph is ∼ p/12. A random walk approach as in GHS [18] would result in the same
time complexity, but also the same space complexity since there is no compact representation for the path
traversed from the Ei.

Delfs and Galbraith [14] study the isogeny graph restricted to supersingular curves over Fp, which has

Õ(p1/2) nodes. The endormorphism ring of such a curve over Fp is, just like the ordinary case, an order
in the imaginary quadratic field K = Q(

√
−p). The Fp-isogeny graph consists of volcanoes with depth

maximum 2, hence to construct an isogeny between two supersingular curves over Fp, one can apply the

same algorithms as in the ordinary case. The resulting algorithm runs in time Õ(p1/4) and Õ(1) space
when using the low memory version. The general supersingular isogeny problem can then be solved by first
constructing an isogeny from E1, E2 to curves E′1, E

′
2 over Fp using self-avoiding random walks (or a depth

first search through all short paths) and then running the Fp-algorithm. Since there are O(p) isomorphism

classes of supersingular elliptic curves over Fp2 of which only Õ(p1/2) are defined over Fp, and since the

isogeny graph is an expander, the expected running time of this phase will be Õ(p1/2). So unless the curves

were already defined over Fp, the time complexity remains Õ(p1/2), but the space complexity is Õ(1). Note
that the resulting isogeny does not consist of a sequence of 2-isogenies, since more primes are needed for the
Fp-isogeny graph to be connected. (If End(E1) is known and simple enough then one can transform this to
an isogeny of order a power of two using the ideas in [25]).

Biasse, Jao and Sankar [3] adapt both stages of the Delfs-Galbraith algorithm to the quantum setting.
Firstly, the algorithm of Childs, Jao and Soukharev [7] is used to construct an isogeny between two super-
singular curves over Fp, since this case is very similar to the ordinary case. The quantum complexity of
this step is sub-exponential Lp(1/2). Secondly, constructing an isogeny to a curve defined over Fp can be

done in quantum complexity Õ(p1/4) using Grover’s algorithm: since the supersingular `-isogeny graph is a

Ramanujan graph, it suffices to search Õ(p1/2) paths of length O(log(p)) to find a path that passes through

Fp. The overall quantum complexity of this algorithm therefore is Õ(p1/4).
The SIDH problem given in Definition 2 is more specific than computing an isogeny between two super-

singular elliptic curves in that it specifies the exact degree `e11 of the isogeny and also the action on the
`2-torsion. This results in a faster quantum algorithm. The isogeny is composed of e1 degree `1 isogenies
and given that `e1 ∼ p1/2 is much smaller than the size of the isogeny graph, we expect to find precisely
one isogeny path from E to EA. This path can be found by constructing two isogeny trees, starting at E
and EA, consisting of all paths of length e1/2. A curve that occurs as a leaf in both trees then immediately
leads to the sought isogeny. Finding a common leaf of two trees can be viewed as an instance of the claw
problem: given two functions f : A → C and g : B → C, find a pair (a, b) such that f(a) = g(a). On a
classical computer this problem can be solved in time (|A|+ |B|) and O(|A|) space by building a hash table
for f(a) for a ∈ A and comparing with g(b) for all b ∈ B. Tani [38] showed that on a quantum computer
this problem can be solved in quantum complexity O((|A| · |B|)1/3), resulting in a O(p1/6) attack (since
|A| = |B| = O(p1/4)). We refer to Section 5.1 of [12] for details.

A natural question is why there is a subexponential quantum algorithm for the ordinary case, but only
an exponential quantum algorithm for the supersingular case. The key difference seems to be the following:
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In the ordinary case, the ideal class group acts on the isogeny graph (indeed, the isogeny graph is essentially
a Cayley graph). However, in the supersingular case there is no “global” algebraic object that acts on the
graph. Instead, if E is an elliptic curve then every isogeny φ : E → E′ corresponds to an ideal in the maximal
order End(E) in the quaternion algebra, but isogenies from different elliptic curves correspond to “unrelated”
isogenies in an “unrelated” maximal order (in the same quaternion algebra). We refer to [24, 25, 41] for
more details of the ideal-theoretic interpretation.
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