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Abstract

One of the most impactful applications of �proofs of work� (POW) currently is in the design
of blockchain protocols such as Bitcoin. Yet, despite the wide recognition of POWs as the
fundamental cryptographic tool in this context, there is no known cryptographic formulation
that implies the security of the Bitcoin blockchain protocol. Indeed, all previous works formally
arguing the security of the Bitcoin protocol relied on direct proofs in the random oracle model,
thus circumventing the di�culty of isolating the required properties of the core POW primitive.

In this work we �ll this gap by providing a formulation of the POW primitive that implies
the security of the Bitcoin blockchain protocol in the standard model. Our primitive entails a
number of properties that parallel an e�cient non-interactive proof system: completeness and
fast veri�cation, security against malicious provers (termed �hardness against tampering and
chosen message attacks�) and e�ciency and security for honest provers (the latter captured as
almost k-wise independence of the proving algorithm running time). Interestingly, our formula-
tion is incomparable with previous formulations of POWs that applied the primitive to contexts
other than the blockchain and highlights the importance of run-time independence as a property
for POWs suitable for blockchain protocols.

Using our primitive and standard properties of the underlying hash function, we establish
the security of the Bitcoin backbone protocol [Eurocrypt 2015] without relying on random
oracles. We then tackle the question of constructing a consensus protocol based on POW. We
illustrate that previously known solutions essentially relied on the random oracle and propose a
new blockchain-based consensus protocol provably secure under the same assumptions as above.
This yields the �rst consensus protocol for honest majority reducible to a POW primitive without
random oracles.

*Research partly supported by Horizon 2020 project PANORAMIX, No. 653497.
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1 Introduction

For over 20 years the term �proof of work� (POW) has been used liberally in the cryptography and
security literature to describe a number of cryptographic primitives that were applied in a variety
of settings, including spam mitigation [19], sybil attacks [18], denial of service protection [27, 6],
and other applications. A POW scheme can be typi�ed as a primitive that entails two algorithms:
a proving algorithm and a veri�cation algorithm, an abstraction which, despite minor di�erences,
can be used to describe most schemes in the literature. The proving algorithm will receive as input
a parameter specifying the intended �di�culty� of the POW as well as additional information such
as a context or message with respect to which the POW is to be computed. (Intuitively, the higher
level of di�culty selected, the more e�ort [in terms of computational steps] would be required.)

The main properties that almost all previous works share are: (i) amortization resistance, which
guarantees that the adversary cannot compute POWs without doing work proportional to the com-
putational resources available to it; (ii) the existence of trapdoors, which when appropriately used,
bypasses the previous restriction, and may even allow producing a POW with e�ort independent
of the given di�culty level; (iii) POW sampling, which prescribes that one can randomly sample
POWs; and (iv) fast veri�cation, which requires that the time it takes to verify the correctness of
a POW is a lot less than the time it takes to compute it.

However, the most impactful application of POWs to date is in the design of �permissionless�
blockchain protocols [31], where the use of POWs enables the construction of distributed consensus
protocols that are not based on a pre-existing public-key infrastructure or authenticated channels.
At a high level, the way POWs help in this context is by slowing down message passing for all
parties indiscriminately, thus generating opportunities for honest parties to converge to a unique
view under the assumption that the aggregate computational power of honest parties su�ciently
exceeds that of the adversary. Now, while this intuition matches the more rigorous analyses of the
Bitcoin protocol that have been carried out so far [22, 32, 23, 7], these works have refrained from
actually formally de�ning the underlying POW algorithms as a stand-alone cryptographic primitive
and relied instead on the random oracle (RO) model [12] to prove directly the properties of the
blockchain protocol, as opposed to following a reduction approach to the underlying cryptographic
primitives. The same is true for other provably secure POW-based distributed protocols [4, 28, 24].
In fact, to our knowledge, no prior work has identi�ed the set of properties for the POW primitive
that are su�cient to imply the security of a blockchain protocol.

Our contributions. In this work we �ll the above gap by putting forth a formalization of a
notion of POW that we prove to be su�cient for reducing in a black-box manner the security of
the Bitcoin backbone protocol [22] to it. This paves the way for establishing the security of Bitcoin
in the standard model, as opposed to the random oracle model, assuming our POW primitive can
be realized under a simple computational assumption. Interestingly, the set of POW properties
we identify is novel and the properties not been considered in previous works that attempted to
formalise the POW primitive.

Formalization of the POW primitive. Our syntax of the POW primitive entails a proving and
veri�cation algorithm, Prove and Verify, respectively. Prove is invoked on an input (r,msg , h),
where r is a random key that guarantees freshness, msg is a message that will be associated with
the POW, and h is the hardness level. Expectedly, Verify is invoked on input (r,msg , h, w) where
w is (possibly) an output of Prove. There are �ve properties that we put forth:

Completeness: As in the case of an interactive proof, we require that proofs produced by
Prove should be acceptable by the Verify algorithm.
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t-Veri�ability: This property mandates that the POW can be veri�ed in t steps by the honest
veri�er.

α-E�ciency: This property bounds the computational e�ort of an honest prover to produce a
POW. Speci�cally, it requires the event that Prove terminates in a certain number of steps to
be lower bounded by α, a function of t.

Hardness against Tampering and Chosen-Message Attacks (H-TCMA): This prop-
erty deals with security against malicious provers, and is akin to the property of existential
unforgeability under chosen-message attacks of digital signatures. Speci�cally, it captures the
fact that producing a sequence of POWs, for chosen messages, does not provide an advantage to
an adversary in terms of running time. Furthermore, this should hold against an adversary able
to tamper with the keys (that's the `T' in the acronym), and even in the presence of a Prove
oracle (excluding of course any proofs produced by the oracle from the adversary's output).

Run-time m-wise independence: This �nal property deals with security for honest provers.
It captures the setting where honest provers are potentially invoked on adversarial inputs and
ensures that their running time enjoys some degree of independence. Speci�cally, we call a
POW run-time m-wise independent if in the course of an adversarial program execution that
makes function calls to Prove, the random variables de�ned as the running time of each Prove
invocation, is a set of almost m-wise independent random variables (cf. [2]).

Security of the Bitcoin backbone protocol assuming POW. We then turn to the analysis of the
Bitcoin backbone protocol [22] given our POW primitive. We consider a �xed number of parties
in the standard model assuming our POW, following the approach of [22]. We recall the three
basic properties of the blockchain data structure, (strong) common pre�x, chain quality and chain
growth, and show how the Bitcoin backbone protocol should be modi�ed in order to incorporate our
POW primitive. Besides the POW primitive, proving the security of the backbone protocol requires
standard properties of the underlying hash function that �glues� the blocks together, namely, collision
and preimage resistance.

We �rst prove that using the H-TCMA property and assuming the adversarial hashing power is
suitably bounded, it is unlikely in any su�ciently long time window for the adversary to exceed the
number of POWs of the honest parties. Then, using the α-E�ciency and (β, ε)-HTCMA properties
in conjunction with run-time m-wise independence, where m = Θ(n), the number of parties, we
establish that summations of running times of successive Prove invocations have the variance needed
to ensure that �uniquely successful rounds� (rounds where exactly one of the honest parties produces
a POW) happen with high density in any su�ciently long time window. (Recall that a high rate
of uniquely successful rounds was fundamental in the security proof of [22].) Using these last two
core results, and under suitable constraints for the basic POW parameters α, β, ε, h and number of
parties n, we prove the security of the Bitcoin backbone protocol in the standard model assuming
just our POW primitive and the security of the underlying hash function.

The above analysis also highlights the distinctive nature of our notion of POWs that is geared to
the setting of blockchain protocols. Importantly, using a POW that is merely e�ciently veri�able,
and even H-TCMA secure but without the run-time m-wise independence property, it is easy to
construct an attack against the blockchain protocol. Speci�cally, without m-wise independence, it
is conceivable to have a POW that always takes the same number of steps to be solved. Using
such a POW, the honest parties will �nd a solution in the same round and thus, an adversary,
exploiting the network scheduling, can maintain a inde�nite fork. On the other hand, using m-wise
independence this symmetry between honest parties can be broken for a suitable choice of m, and
honest parties are capable of converging to a single blockchain following the longest chain rule (note
that we assume a static number of parties). We note that run-time m-wise independence is trivial in
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the random oracle model and as such it was never highlighted in any previous work on POW-based
blockchain protocols.

Finally, and as a �sanity check,� we show that the Bitcoin POW scheme in the random oracle
model is secure according to our de�nitions, and that according to the security parameters we obtain
for the scheme, the security guarantees we get from our analysis of the Bitcoin backbone are similar
to those proved in [22, 32].

Consensus from POW. We next tackle the problem of designing a consensus protocol [33, 30] for
an honest majority of parties that can reduce to our POW primitive. The only known consensus
protocol in this setting (where no private setup assumption is provided) is given in [22] where
it is shown how using a technique called �2-for-1 POW� two POW-based protocols can be run
concurrently and create a blockchain where the number of honest party contributions is proportional
to their actual number; this property is then shown to imply consensus. We stress that this is not
the case for the Bitcoin blockchain protocol, where attacks such as block withholding (as used in
the �sel�sh mining� attack [21]) enable the adversary to create blockchains that misrepresent the
number of honest parties.

We observe that this protocol cannot work in our setting as it cannot be reduced to our POW
primitive in a black-box way. Indeed, 2-for-1 POW non-trivially relies on the random oracle model
and the fact that each witness for a POW in the RO setting can be rearranged in a certain way
so as to obtain a test for a witness for another POW in a way that is independent from the �rst
solution. Such property is achievable in the RO model but not black-box-reducible to our POW
primitive. We propose a new blockchain protocol that circumvents this problem and preserves the
required property, namely, that honest parties' contributions to the blockchain re�ect their actual
number. The core idea of our protocol is as follows: When mining a block the parties include their
input as well as the headers of �orphan� blocks that exist in forks stemming o� their main chain
and have not been included so far. The header of a block contains the hash of the previous block
in the chain, the witness to the POW, application speci�c data (such as the input to the consensus
protocol), and a hash that may contain headers of other blocks. Using this mechanism, we show
how it is possible to reconstruct the whole tree of block headers from the blockchain contents and
thus in this way preserve all block headers produced by the honest parties. This ensures that the
resulting ledger will re�ect the number of parties and hence a consensus protocol may now be easily
reduced to this blockchain protocol.

Prior and related work. Dwork and Naor [20] �rst considered POWs under the term �pricing
functions,� as a means of protection against spam e-mail. The main properties discussed in their
work are amortization resistance, �moderate hardness� and the existence of trapdoors (�shortcuts�
in their terms). Three di�erent constructions were presented there. The �rst one is based on the
di�culty of extracting square roots modulo a prime p and does not have a trapdoor; the second
construction has a trapdoor and is based on the hardness of forging signatures (i.e., hardness of
factoring in the speci�c instantiation), while the last construction is based on �broken� signature
schemes, where moderately hard algorithms that can forge signatures exist, but the signing key is
protected from these attacks.

In a di�erent direction, Juels and Jacobsson [26] and Back [5, 6] use POWs to construct electronic
payment systems. In [26] the authors consider the following properties: amortization resistance,
fast veri�cation, and some special composability property which states that generating a POW for
some scheme may help in generating a POW for another scheme. As acknowledged by the authors
themselves, the de�nitions they provide are only sketches. In [5, 6] another set of closely related
properties is considered, but again the approach is not rigorous. Notably, the author mentions the
concept of �trapdoor-freeness,� i.e., that the party which generates the initial parameters of the
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scheme should not be able to also generate a trapdoor regarding these parameters. This property
comes in sharp contrast with the POW sampling property, signifying a con�ict on what actually
are the essential properties of a POW.

More recently, Bitansky et al. [15] construct time-lock puzzles as well as POW schemes from
randomized encodings. Since the focus of their work is time-lock puzzles, the properties of POW
schemes�amortization resistance, fast veri�cation, and POW sampling�are only brie�y investi-
gated, although they do instantiate a POW scheme based on randomized encodings and the exis-
tence of non-amortizing languages in the worst case.

Another interesting approach is that of Ball et al. [9], who construct a POW scheme that can be
used to do �useful� work. That is, an instance of a problem is selected and a proof of work on this
instance along with a solution can be constructed, while at the same time preserving amortization
resistance. While the authors mention that their POW scheme can be used for Bitcoin, no formal
proof is provided that Bitcoin security reduces to the primitive they construct.

Taking a further step in this same direction, i.e., proving that Bitcoin's security can be reduced
to an assumption on the underlying POW scheme, Poelstra [34] proposes that one could base the
security of Bitcoin on so-called �dynamic membership multi-party signatures.� Unfortunately, this
work does not o�er a formal treatment of the primitive nor a reduction of the security of the Bitcoin
protocol to it.

Finally, in [3], Alwen and Tackmann study moderately hard functions (MoHF), providing sim-
ulation based de�nitions for what they call �non-interactive proofs of e�ort� (niPoE), which�as
explicitly acknowledged by the authors�cannot be used to analyze Bitcoin. The main impediment
is that the adversary can only invoke the same MoHF only once per protocol session, while for the
Bitcoin protocol multiple invocations of the same MoHF should be allowed.

We note that we perform our analysis in the static setting, i.e., where the POW di�culty
remains the same throughout the execution as in [22]. We refer to [23] for an analysis of Bitcoin in
the dynamic setting and leave as an open question the extension of our results to this setting.

Organization of the paper. The basic computational model, de�nitions and cryptographic build-
ing blocks are presented in Section 2. Formal de�nition of a POW and its security properties are
presented in Section 3. Section 4 is dedicated to Bitcoin: Showing how the Bitcoin backbone proto-
col should be modi�ed to incorporate our POW primitive and reducing its security to it (Sections 4.4
and 4.5, respectively), and analyzing Bitcoin's POW implementation according to our de�nition
(Section 4.6). The new consensus protocol for an honest majority based on POW is presented in
Section 5.

2 Preliminaries

We let λ denote the security parameter, and use x
$← X to denote choosing a value uniformly

at random from set X. In this paper we will follow the concrete approach [11, 13, 25, 14] to
security evaluation rather than the asymptotic one. We will use functions t, ε, whose range is
N,R respectively and have possibly many di�erent arguments, to denote concrete bounds on the
running time (number of steps) and probability of adversarial success of an algorithm in some
given computational model, respectively. When we speak about running time this will include the
execution time plus the length of the code (cf. [14]; note also that we will be considering uniform
machines). We will always assume that t is a polynomial on the security parameter λ, although we
will sometimes omit this dependency for brevity.

Instead of using interactive Turing machines (ITMs) as the underlying model of distributed
computation, we will use (interactive) RAMs. The reason is that we need a model where subroutine
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access and simulation do not incur a signi�cant overhead. ITMs are not suitable for this purpose,
since one needs to account for the additional steps to go back-and-forth all the way to the place
where the subroutine is stored. A similar choice was made by Garay et al. [25]; refer to [25] for
details on using interactive RAMs in a UC-like framework, as well as to Section 4.1. Given a RAM
M , we will denote by StepsM (x) the random variable that corresponds to the number of steps of M
given input x. We will say that M is t-bounded if it holds that Pr[StepsM (x) ≤ t(|x|)] = 1.

Finally, we remark that in our analyses there will be asymptotic terms of the form negl(λ)
and concrete terms; throughout the paper, we will assume that λ is large enough to render the
asymptotic terms insigni�cant compared to the concrete terms.

Cryptographic primitives and building blocks. We will make use of the following notions of
security for cryptographic hash functions (see, e.g., [35] for a thorough review):

De�nition 1. Let H = {Hλ : Kλ ×Mλ → Yλ}λ∈N be a hash-function family, and A be a PPT
adversary. Then H is

Collision resistant if and only if for any λ ∈ N and corresponding H : K ×M → Y in H

Pr[k
$← K; (m,m′)← A(1λ, k); (m 6= m′) ∧ (H(k,m) = H(k,m′))] ≤ negl(λ);

everywhere preimage resistant if and only if for any λ ∈ N and corresponding H : K ×M → Y
in H

Pr[(y, s)← A(1λ); k
$← K;m← A(1λ, k, s) : H(k,m) = y] ≤ negl(λ).

As we will see, POW schemes critically depend on a key that ensures the proof is �fresh�.
Nevertheless, in many settings it is useful to allow the adversary to tamper this key with a certain
function f . Given that arbitrary tampering may eliminate freshness, we have to suitably restrict
the tampering function class. The following class of functions will be useful in our security analysis.

De�nition 2. Let F = {fi,λ}i,λ∈N be a function family such that fi,λ : {0, 1}m(λ) → {0, 1}λ, for
some function p : N → N, for all i, λ ∈ N. We say that F is a unpredictability-preserving function
family if and only if for any uniform PPT RAM machine A it holds that:

Pr[(y, s)← A(1λ);x
$← Um(λ); f ← A(1λ, y, s, x) : f ∈ F ∧ f(x) = y] ≤ negl(λ).

Observation 3. The identity function {idλ(·)}λ∈N and an everywhere preimage resistant hash func-
tion family (De�nition 1; see also Appendix A) are unpredictability-preserving.

We will also need some classical notions related to random variables:

De�nition 4. The statistical distance of two random variablesX,Y with range U , denoted ∆(X,Y ),
is de�ned as

∆(X,Y ) =
1

2

∑
u∈U
|Pr[X = u]− Pr[Y = u]|.

For ε > 0, we say that X,Y are ε-close when ∆(X,Y ) ≤ ε.

De�nition 5. A set of random variables X1, . . . , Xn is k-wise independent if, for any subset I ⊆ [n],
where |I| ≤ k, and for any values xi, i ∈ I:

Pr[
∧
i∈I

Xi = xi] =
∏
i∈I

Pr[Xi = xi].
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3 Proofs of Work

At a high level, a proof-of-work (POW) scheme is a protocol that enables one party to convince
others that she has invested some computational power during some speci�c time interval and with
respect to a speci�c piece of information, which we will generically refer to as `message.' In this
section we formalize this notion and present its desired security properties.

POW syntax. We formalize the POW notion as follows. Given a speci�c security parameter λ,
let R be the key space, M the message space and W the witness (or POW) space. With foresight,
the role of the key is to provide freshness for the POW computation and the role of the message
is to allow information to be embedded into the POW; see Remark 1 regarding the signi�cance of
these input elements.

De�nition 6. A POW scheme consists of two algorithms POW = (Prove,Verify) where:

Prove(r,msg , h) is a randomized algorithm that takes as input a key r ∈ R, a message msg ∈M
and hardness parameter h ∈ N, and returns a witness w ∈ W . Sometimes informally we may
refer to w as the POW.

Verify(r,msg , h, w) is a deterministic algorithm that takes as input a key r ∈ R, message msg ∈
M , hardness parameter h ∈ N and a witness w ∈ W , and returns true or false to indicate the
validity of the proof.

Remark 1. In contrast with related literature on the subject [15, 8], we use in our syntax both a key
and a message argument. By explicitly separating the key from the message, we aim at decoupling
two requirements of any POW scheme: (i) the key is a way to guarantee that the computational
work is �fresh� i.e., executed during a speci�c time interval (say, from the time the key became
known to the prover), and (ii) the message is a way to allow arbitrary information to be encoded
in the computed POW. Regarding the relevance of these inputs parameters, observe the following.
If there is no way to tell when a POW was created (i.e., there is no way to guarantee freshness),
then the adversary may precompute an arbitrary number of POWs before the protocol starts and
try to trick other parties by pretending they all started at the same time. On the other hand, if
there is no way to encode information in the POW, the usefulness of the primitive would be rather
limited. Even though POW's may be guaranteed to be fresh, if there is no context related to their
computation, it will be easy for an adversary to copy POW's across sessions or to di�erent possibly
adversarial contexts and thus �steal� the computational e�ort of honest participants.

Security properties. Next, we present a number of security properties that we will require POW
schemes to satisfy. We start with the completeness property.

De�nition 7. We say that a POW scheme is complete if for every r ∈ R, h ∈ N, and msg ∈M :

Pr
[
w ← Prove(r,msg , h) : w 6= ⊥ ⇒ Verify(r,msg , h, w) = true

]
= 1.

Next we require that veri�cation time is bounded by a parameter t.

De�nition 8. We say that a POW scheme is t-veri�able, if the Verify algorithm takes time at most
t (on all inputs).

Next we need to capture how the adversary can subvert an honest veri�er and an honest prover
in the context of POWs. In the �rst case, the adversary's objective is to compute a number of POWs
a lot faster than an honest prover while in the second case, it is to make the honest prover take too
much time to generate a POW. It is useful to notice the parallel to the properties of soundness and
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zero-knowledge for interactive proofs, As in this case, the two properties we are after here will be
complementary.

We deal with malicious provers �rst. We put forth an attack that we will use to express a class of
adversaries that attempt create POW's faster than expected. Intuitively this constitutes an attack
against an honest veri�er that may be trying to gauge a certain measure using the number of POWs.
We call this hardness against tampering and chosen message attack (H-TCMA). The game de�ning
the attack is shown in Figure 1. In order to capture the interactions that the adversary may have
with di�erent parties, we allow the adversary to have access to a Prove oracle, essentially allowing
him to simulate any scenario where he interacts with other parties that use the same POW scheme.
Every time the oracle is queried, we assume that it runs the Prove procedure for some uniformly
sampled random tape. A subtle point in the modeling of security in the presence of such oracle is
that the Prove oracle should also �leak� the time it took for a query to be processed. In an actual
execution while interacting with honest parties that are producing POWs, time is a side-channel that
may in�uence the adversarial strategy; in order to preserve this dependency on this side-channel we
will require from the Prove oracle to leak this information. In addition, we require that the keys
used by the adversary to construct proofs should be fresh, i.e., we want to avoid situations where
the adversary outputs POWs that he has precomputed a long time ago. We model this by requiring
that the keys must be generated by some oracle R() that samples values from a uniformly random
distribution and is external to the adversary. Hence, the adversary will only know the value after
he has queried R(), thus providing us with a point of reference before which this value cannot be
predicted. Furthermore we allow the adversary to tamper the POW keys by manipulating them via
applying tampering functions that belong to a function family F .

More formally, the adversary will have oracle access to R, which is a sampling oracle of the
uniform distribution. We use AnsR to denote the set of responses of oracle R. The adversary
will also have access to P(·, ·, ·), a proof-of-work oracle that on input (f, r,msg), where f ∈ F ,
r belongs to AnsR, and msg is some message, returns the pair (w, t) where w is the output of
Prove(f(r),msg , h) and t is the number of steps taken by the Prove algorithm on these parameters.
Function Asked(r′,msg , w) is true if w was a response of P to some query (f, r,msg), where f(r) = r′.

ExpH-TCMAA,F (1λ, h, k)

1. {(r1, f1,msg1, w1), . . . , (rk, fk,msgk, wk)} ← AP(·,·,·),R()(1λ, h, k);

2. output
∧k
i=1(Verify(fi(ri),msg i, wi) ∧ ¬Asked(fi(ri),msg i, wi) ∧ ri ∈ AnsR ∧ fi ∈ F).

Figure 1: The Hardness against Tampering and Chosen-Message Attack experiment for a POW

scheme. R(·) is a sampling oracle of the uniform distribution. F is the class of tampering functions.

We are now ready to formulate the security property of Hardness against Tampering and Chosen
Message Attacks (H-TCMA). It is parameterized by two values β, ε, and informally, it states that
no adversary A exists that can participate in the experiment of Figure 1 so that A takes at most t
steps after querying R for the �rst time and it produces k ≥ β ·t POWs with probability better than
ε. Note that in total we allow any polynomial number of steps to A, i.e., the adversary is allowed
to execute a precomputation stage that permits it to obtain an arbitrary number of POWs. In the
de�nition below, we allow β to depend on the hardness level h, and ε on β, t and qP , the number of
queries the adversary makes to the proving oracle.

De�nition 9. We say that a POW scheme has (β, ε)-Hardness against Tampering and Chosen-

Message Attacks (H-TCMA), with tampering function class F , if for every polynomial tpre(·), t(·),
for any h ∈ N, and every adversary A, where A is tpre-bounded and starting from the query

9



on R takes t steps and makes at most qP queries to oracle P, the probability of A winning in
ExpH-TCMAA,F (1λ, h, dβ(h) · te) (Figure 1) is less than ε(β(h), t, qP).

Next, we consider the setting of subverting the honest prover. Given that our primitive is non-
interactive, subverting an honest prover, amounts to �nding a certain set of keys over which the
honest prover algorithm fails to produce proofs of work su�ciently fast and regularly. In more detail
a POW scheme is α-e�cient when the probability that the prover computes a POW in t steps is at
least α.

De�nition 10. We say that a POW scheme is α-e�cient if for any t ∈ N, r ∈ R,msg ∈ M and
h ∈ N it holds that:

Pr
[
StepsProve(r,msg , h) < t

]
≥ α(h, t)

In the same setting we require honest proving time to have at least some limited independence.
This property, in combination with the e�ciency and H-TCMA properties will prove crucial in
ensuring that when multiple provers work together the distribution of the number of them who
succeed in producing a POW has some �good� properties like variance and concentration.

De�nition 11. Let MProve be a polynomially bounded RAM machine, E denote the ensemble of
random variables corresponding to the executions of MProve and I be an ordered set of calls made
to the Prove function. We denote by the random variable Xi the number of steps taken by the i-th
function call in I, where Xi is de�ned only in the executions where |I| ≥ i. We say that a POW
scheme is run-time m-wise independent, if for any I ⊆ I, there exists some distribution (Yi)i∈I that
is (negl(λ))-close to (Xi)i∈I and

1 {Yi}i∈I is m-wise independent.

4 The Bitcoin Backbone from POW

As mentioned in Section 1, existing analyses of Bitcoin have relied on the random oracle model to
prove the properties of the blockchain protocol directly. In this section we take a reduction approach
to the underlying cryptographic primitive�POW, as de�ned in Section 3�to prove the security of
the Bitcoin backbone protocol [22] in the standard model. We start with some additional details
about the model and pertinent preliminary de�nitions. We then continue with the security proof
of the Bitcoin backbone protocol in the black-box POW setting. We conclude the section showing
how Bitcoin's POW scheme is secure in the random oracle model according to our de�nitions, and
that the security guarantees we get from our analysis are similar to those proved in [22, 32].

4.1 Bitcoin backbone model and de�nitions

In [22] a security model was proposed for the analysis of the Bitcoin backbone protocol. Here we
overview the basics, substituting IRAMs for ITMs for the reasons explained in Section 2. The
execution of a protocol Π is driven by an �environment� program Z that may spawn multiple
instances running the protocol Π . The programs in question can be thought of as �interactive RAMs�
communicating through registers in a well-de�ned manner, with instances and their spawning at
the discretion of a control program which is also an IRAM and is denoted by C. In particular,
the control program C forces the environment to perform a �round-robin� participant execution
sequence for a �xed set of parties.

1Depending on the subset I, we take in account only the executions where the random variable family {Xi}i∈I is
well de�ned.
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Speci�cally, the execution driven by Z is de�ned with respect to a protocol Π, an adversary A
(also an IRAM) and a set of parties P1, ..., Pn; these are hardcoded in the control program C. The
protocol Π is de�ned in a �hybrid� setting and has access to one �ideal functionality,� called the
di�usion channel (see below). It is used as subroutine by the programs involved in the execution
(the IRAMs of Π and A) and is accessible by all parties once they are spawned.

Initially, the environment Z is restricted by C to spawn the adversary A. Each time the
adversary is activated, it may communicate with C via messages of the form (Corrupt, Pi). The
control program C will register party Pi as corrupted, only provided that the environment has
previously given an input of the form (Corrupt, Pi) to A and that the number of corrupted parties
is less or equal t, a bound that is also hardcoded in C. The �rst party to be spawned running
protocol Π is restricted by C to be party P1. After a party Pi is activated, the environment is
restricted to activate party Pi+1 , except when Pn is activated in which case the next party to be
activated is always the adversary A. Note that when a corrupted party Pi is activated the adversary
A is activated instead.

Initially, the di�usion functionality sets a variable round to be 1. It also maintains a Receive()
string (register) de�ned for each party Pi. A party is allowed at any moment to fetch the contents
of its personal Receive() string. Moreover, when the functionality receives an instruction to di�use
a message m from party Pi it marks the party as complete for the current round; note that m is
allowed to be empty. At any moment, the adversary A is allowed to receive the contents of all
messages for the round and specify the contents of the Receive() string for each party Pi. The
adversary has to specify when it is complete for the current round. When all parties are complete
for the current round, the functionality inspects the contents of all Receive() strings and includes
any messages that were di�used by the parties in the current round but not contributed by the
adversary to the Receive() tapes. The variable round is then incremented.

Next, we consider the complications in the modeling due to the analysis of Bitcoin in the concrete
security setting. Both in [22] and [32] a modi�ed version of the standard simulation-based paradigm
of [16] is followed, where there exist both a malicious environment and a malicious adversary. In
addition, the POW scheme is modeled in a non black-box way using a random oracle (RO), and
the computational power of the adversary is then bounded by limiting the number of queries it can
make to the RO per round. Since in this work the POW scheme is modeled in a black-box way, an
alternative approach to bound the adversary's power is needed.

A naïve �rst approach is to only bound the computational power of A. Unfortunately this will
not work for several reasons. Firstly, nothing stops the environment from aiding the adversary, i.e.,
computing POWs, and then communicating with it through their communication channel or some
other subliminal channel; secondly, even if we bound the total number of steps of A, it is not clear
how to bound the steps it is taking per round in the model of [16], which we build on. Furthermore,
another issue arising is that if the adversary is able to send, say, θ messages in each round, it can
force each honest party to take θ · tver extra steps per round.

In order to capture these considerations we are going to de�ne a predicate on executions and
prove our properties in disjunction with this predicate.

De�nition 12. Let (tA, θ)-good be a predicate de�ned on executions in the hybrid setting described
above. Then E is (tA, θ)-good, where E is one such execution, if

the total number of steps taken by A and Z per round is no more than tA;
2

the adversary sends at most θ messages per round.

2The adversary cannot use the running time of honest parties that it has corrupted; it is activated instead of them

during their turn. Also, note that it is possible to compute this number by counting the number of con�gurations

that A or Z are activated per round.
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For the rest of the paper, we assume that the environment is restricted so that with overwhelm-
ing probability the execution is good for �xed parameters tA and θ, and that there exists some
polynomial p(·) such that the number of rounds of all executions is upper bounded by p(λ).

4.2 Security properties of the blockchain

A number of desired basic properties for the blockchain were introduced in [22, 29]. At a high
level, the �rst property, called common pre�x, has to do with the existence, as well as persistence
in time, of a common pre�x of blocks among the chains of honest players. Here we will consider
a stronger variant of the property, presented in [29, 32], which allows for the black-box proof of
application-level properties (such as the persistence of transactions entered in a public transaction
ledger built on top of the Bitcoin backbone�cf. Appendix 4.3). We will use C � C′ to denote that
some chain C is a pre�x of some other chain C′, and Cdk to denote the chain resulting from removing
the last k blocks of C.

De�nition 13 ((Strong) Common Pre�x). The strong common pre�x property Qcp with parameter
k ∈ N states that the chains C1, C2 reported by two, not necessarily distinct honest parties P1, P2,

at rounds r1, r2, with r1 ≤ r2, satisfy Cdk1 � C2.

The next property relates to the proportion of honest blocks in any portion of some honest
player's chain.

De�nition 14 (Chain Quality). The chain quality property Qcq with parameters µ ∈ R and k, k0 ∈
N states that for any honest party P with chain C in viewΠ,A,Z(κ, z), it holds that for any k
consecutive blocks of C, excluding the �rst k0 blocks, the ratio of adversarial blocks is at most µ.

Further, in the derivations in [22] an important lemma was established relating to the rate at
which the chains of honest players were increasing as the Bitcoin backbone protocol was run. This
was explicitly considered in [29] as a property under the name chain growth. Similarly to the variant
of the common pre�x property above, this property along with chain quality were shown su�cient
for the black-box proof of application-level properties (in this case, transaction ledger liveness; see
Appendix 4.3).

De�nition 15 (Chain Growth). The chain growth property Qcg with parameters τ ∈ R (the �chain
speed� coe�cient) and s, r0 ∈ N states that for any round r > r0, where honest party P has chain
C1 at round r and chain C2 at round r + s in viewΠ,A,Z(κ, z), it holds that |C2| − |C1| ≥ τ · s.

4.3 Robust public transaction ledgers

A public transaction ledger is de�ned with respect to a set of valid ledgers L and a set of valid
transactions T , each one possessing an e�cient membership test. A ledger x ∈ L is a vector of
sequences of transactions tx ∈ T . Each transaction tx may be associated with one or more accounts.
Ledgers correspond to chains in the backbone protocol. In the protocol execution there also exists
an oracle Txgen that generates valid transactions. Note, that it is possible for the adversary to
create two transactions that are con�icting; valid ledgers must not contain con�icting transaction.
We will assume that the oracle is unambiguous, i.e., that the adversary cannot create transactions
that come in `con�ict' with the transactions generated by the oracle. A transaction is called neutral

if there does not exist any transactions that comes in con�ict with it.
In order to turn the backbone protocol into a protocol realizing a public transaction ledger

suitable de�nitions were given for functions V (·), R(·), I(·) in [22]. Namely, V (〈x1, . . . , xm) is true
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if its input is a valid ledger. Function R(C) returns the contents of the chain if they constitute
a valid ledger, otherwise it is unde�ned. Finally, I(st, C, round, INPUT(), RECEIVE()) returns the
largest subsequence of transactions in the input and receive tapes that constitute a valid ledger,
with respect to the contents of the chain the party already has, together with a randomly generated
neutral transaction. We denote the instantiation of our protocol with these functions by ΠPL. For
more details we refer to [22].

De�nition 16. A protocol Π implements a robust public transaction ledger in the q-bounded syn-
chronous setting if it satis�es the following two properties:

Persistence: Parameterized by k ∈ N (the �depth� parameter), if in a certain round an honest
player reports a ledger that contains a transaction tx in a block more than k blocks away from
the end of the ledger, then tx will always be reported in the same position in the ledger by any
honest player from this round on.

Liveness: Parameterized by u, k ∈ N (the �wait time� and �depth� parameters, resp.), provided
that a transaction either (i) issued by Txgen, or (ii) is neutral, is given as input to all honest
players continuously for u consecutive rounds, then there exists an honest party who will report
this transaction at a block more than k blocks from the end of the ledger.

4.4 The modi�ed Bitcoin backbone protocol

In this section we describe the Bitcoin backbone protocol in the black-box POW setting. First,
we introduce some notation needed to understand the description of the algorithms. We will use
the terms block and chain to refer to tuples of the form 〈s, x, w〉 and sequences of such tuples,
respectively. Each block contains a seed, data, and a witness denoted by s, x, w, respectively. We
say that a chain is valid if and only if for any two consecutive blocks 〈si, xi, wi〉, 〈si+1, xi+1, wi+1〉 it
holds that H(si, G(xi), wi) = si+1. We call this value the hash of block Bi and extend the de�nition
of H to blocks so that it is equal to H(Bi).

Algorithm 1 The proof of work function, parameterized by q, D and hash functions H(·), G(·).
The input is (x, C).

1: function pow(x, C)
2: if C = ε then . Determine proof of work instance
3: s← 0
4: else

5: s← H(head(C))
6: end if

7: B ← ε
8: w ← Prove(s, x, h) . Run the prover of the POW scheme.
9: if w 6= ⊥ then

10: B ← 〈s, x, w〉
11: end if

12: C ← CB . Extend chain
13: return C
14: end function

The modi�cations with respect to the original protocol in [22] are as follows: In Algorithm 1
(proof of work function) the Prove function of the underlying POW scheme is invoked for a limited

13



Algorithm 2 The chain validation predicate, parameterized by q,D, the hash functions G(·), H(·),
and the input validation predicate V (·). The input is C.

1: function validate(C)
2: b← V (xC) ∧ (C 6= ε)
3: if b = True then . The chain is non-empty and meaningful w.r.t. V (·)
4: 〈s, x, w〉 ← head(C)
5: s′ ← H(head(C))
6: repeat

7: 〈s, x, w〉 ← head(C)
8: if Verify(s, x, h, w) ∧ (H(head(C)) = s′) then
9: s′ ← s . Retain hash value
10: C ← Cd1 . Remove the head from C
11: else

12: b← False
13: end if

14: until (C = ε) ∨ (b = False)
15: end if

16: return (b)
17: end function

number of steps so that the total number of steps of the invoking party does not exceed the tH
bound per round; in Algorithm 2 (chain validation predicate) the Verify predicate is replaced with
a call to the Verify algorithm of the POW scheme; and in Algorithm 3 we assume that the honest
parties start the execution with a �genesis� block. We require the message (content) of this block
to be su�ciently random, in order to ensure that the adversary cannot precompute blocks related
to it. Di�erently stated, we assume the existence of a common random string (CRS), that becomes
available to all parties at the start of the execution. We call the resulting protocol ΠPOW

PL (`PL' for
�public ledger�).

4.5 Security proof

Next, we prove that ΠPOW
PL implements a robust public transaction ledger (De�nition 16). First, we

introduce some additional notation.
For each round j, we de�ne the Boolean random variables Xj and Yj as follows. Let Xj = 1

if and only if j was a successful round, i.e., at least one honest party computed a POW at round
j, and let Yj = 1 if and only if j was a uniquely successful round, i.e., exactly one honest party
computed a POW at round j. With respect to a set of rounds S and some block B, let ZB(S)
denote the number of blocks broadcast by the adversary during S that have B as their ancestor.
Also, let X(S) =

∑
j∈S Xj and de�ne Y (S) similarly.

Let tbb (bb for backbone) be an upper bound on the number of steps needed to run the code
of an honest party in one round, besides the Prove and Verify calls. By carefully analyzing the
backbone protocol one can extract an upper bound on this value.3 To aid our presentation, we will
use t′A and t′H to denote the following quantities which roughly correspond to the time needed by a

3Note that tbb depends on the running time of three external functions: V (·), I(·) and R(·). For example, in Bitcoin

these functions include the veri�cation of digital signatures, which would require doing modular exponentiations. In

any case tbb is at least linear in λ.
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Algorithm 3 The Bitcoin backbone protocol, parameterized by the input contribution function

I(·) and the chain reading function R(·).

1: C ← Gen

2: st← ε
3: round← 0
4: while True do

5: C̃ ← maxvalid(C, any chain C′ found in Receive())
6: 〈st, x〉 ← I(st, C̃, round, Input(),Receive()) . Determine the x-value.
7: Cnew ← pow(x, C̃)
8: if C 6= Cnew then

9: C ← Cnew
10: Broadcast(C)
11: end if

12: round← round+ 1
13: if Input() contains Read then

14: write R(xC) to Output()
15: end if

16: end while

Algorithm 4 The function that �nds the �best� chain, parameterized by function max(·). The
input is {C1, . . . , Ck}.

1: function maxvalid(C1, . . . , Ck)
2: temp← ε
3: for i = 1 to k do
4: if validate(Ci) then
5: temp← max(C, temp)
6: end if

7: end for

8: return temp
9: end function

RAM machine to simulate one round in the execution of the Bitcoin protocol, without taking into
account calls made to the Prove routine by the honest parties, and to the minimum number of steps
spent by an honest party on running the Prove routine in a round, respectively:

t′A = tA + n · tbb + θtver and t′H = tH − tbb − θtver.

It holds that at least n− t parties will run the Prove routine for at least t′H steps at every round.
Next, we focus on the hash functions used by the Bitcoin protocol, and the necessary security

assumptions to avoid cycles in the blockchains or the possibility that the adversary will predict the
value of some �future� block. First, note that in the actual implementation of Bitcoin an unkeyed
hash function is used, namely, a double invocation of SHA-256. In previous analyses of the protocol
this was modeled by a random oracle. We choose to model it as a keyed hash function family

H = {HK(·) : {0, 1}dlog(|R|)e+dlog(|W |)e+λ → {0, 1}λ}K∈K
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that is collision and everywhere preimage resistant (De�nition 1); the CRS we have already assumed
can serve as the key of our hash function. In our analysis we will also need G to be collision resistant
and take inputs of variable length. It is well known (see, e.g., [17]) that given a �xed-length collision-
resistant hash function family, we can construct an arbitrary-length collision-resistant hash function
family. To aid readability, we will sometimes omit the key of both functions (as we already do in the
description of the protocol). Finally, we require the input contribution function I(·) of our protocol
to satisfy the input entropy assumption made in [22], which states that two independent invocations
of I(·) with arbitrary parameters output the same values only with negligible probability.

s1

x1 w1

G

H

s2

x2 w2

G

H

s3

x3 w3

G

H s4

Figure 2: The hash structure of the blocks in the Bitcoin protocol.

Figure 2 depicts a chain of blocks maintained by the Bitcoin protocol. Notice that the repeated hash
function application is similar to the basic cascade construction [10], denoted here by H∗(·, ·), when
the �xed-length hash function family used is H. In this construction, it holds that for any chain C
there always exists a message M such that the hash of the last block, i.e., H((tail(C)), is equal to
H∗(H(head(C)),M). In Appendix A, we prove that {H∗(K, ·) : {0, 1}∗ → {0, 1}λ}K∈K is collision
resistant, and {H∗(·, G(I(·;K))||·) : {0, 1}∗ → {0, 1}λ}K∈K is everywhere preimage resistant. These
two properties imply the next lemma, which has to do with the way the blocks are connected. (Proof
in Appendix ??.)

De�nition 17. An insertion occurs when, given a chain C with two consecutive blocks B and B0,
a block B∗ created after B0 is such that B,B∗, B0 form three consecutive blocks of a valid chain.
A copy occurs if the same block exists in two di�erent positions. A prediction occurs when a block
extends one honest block which was computed at a later round.

Lemma 18. Assuming that H is collision and everywhere preimage resistant, no insertions, no

copies and no predictions occur with probability 1− negl(λ).

Proof. Insertions and copies imply that one block extents two distinct blocks, i.e. there exist
blocks B1, B2, B3 such that s3 = H(B1) = H(B2). This in turn implies that there exist M1,M2

such that H∗(H(Gen),M1) = H∗(H(Gen),M2), where Gen is the genesis block and M1 6= M2.
This constitutes a break of the collision resistance property of H∗, and thus it only happens with
negligible probability on λ.

Next, for the sake of contradiction assume that prediction happens with non-negligible proba-
bility. We can use this adversary that breaks prediction to break the ePre property. The adversary
would just output at random the seed of one of the blocks he has mined (since they are polynomial
in number at most), say B2, as y in the ePre game. By our assumption with non negligible proba-
bility some honest block B1 will be mined afterwards such that y = H(B1), hence we can use the
parameters of this block to generate an output to win the ePre game.

As mentioned in Section 2 (and proved in Appenix A), the everywhere preimage resistance of
H∗ implies that the function family F = {H∗(·,M)}M∈M is unpredictability preserving. For the

16



λ : security parameter
n : number of parties
tH : number of steps per round per honest party
tA : total number of adversarial steps per round
θ : upper bound on the number of messages sent by the adversary per round
β : upper bound on POW computation rate per step
γ : lower bound on the rate of uniquely successful rounds
f : lower bound on the rate of successful rounds
δ : advantage from the honest majority assumption
σ : quality of concentration of random variables in typical executions
k : number of blocks for the common-pre�x property
` : number of blocks for the chain-quality property
η : parameter determining block to round translation
ε: probability that an execution is typical

Table 1: The parameters in our analysis.

rest of this section we will assume that the underlying POW scheme used in the Bitcoin backbone
protocol with respect to the unpredictability-preserving tampering function class F is:

Complete;

(β, ε)-H-TCMA secure;

α-e�cient;

run-time m-wise independent;

tver-veri�able,

where ε ∈ negl(t) and m ≥ n log λ.
Next, we prove that the adversary cannot mine blocks that extend an honest block created

recently at a very high rate with probability better than that of breaking the H-TCMA property.
For a summary of our notation we refer to Table 1.

Lemma 19. For any set of consecutive rounds S, it holds that the probability that there exists some

honest block B mined in S such that ZB(S) > βt′A|S|, is at most ε(β, t′A · |S|, n · |S|).

Proof. Let S = {r′|r ≤ r′ < r + s} and let E be the event where in view
t,n
Π,A,Z the adversary has

mined at least βt′As blocks that descend some honest block B until round r + s. For the sake of
contradiction, assume that the lemma does not hold, and thus the probability that the execution is
(tA, θ)-good and E holds is greater than ε(β, t′As, ns). Using A, we will construct an adversary A′
that wins the H-TCMA game with probability greater than that. A′ is going to run internally A and
Z, while at the same time perfectly simulating the view of honest parties using the two oracles that
he has in his disposal on the H-TCMA game. This way, the view of A,Z will be indistinguishable
both in the real and the simulated runs, and thus the probability that E happens will be the same
in both cases.

We are going to describe the two stages of A′ separately, i.e. before and after querying R for
the �rst time. First, A′ perfectly simulates honest parties up to round r − 1 and at the same time
runs A and Z in a black-box way. He can do this since he has polynomial time on λ on his disposal.
Note, that up until this point in the eyes of A and Z the simulated execution is indistinguishable
compared to the real one. If r is the �rst round, A′ will do nothing.

For the second stage, A′ is again going to simulate honest parties behavior, from round r until
round r + s, but in a di�erent way. Instead of running the Prove algorithm for each non-corrupted

17



honest party at every round, it makes a query to the P oracle with the respective parameters. Then,
it checks if the honest party succeeded in making a POW in this round by comparing the number
of steps needed to make this POW to the number of proving steps available to the party at this
round. Hence, honest parties have to do n queries to the proving oracle per round. The adversary
can also send up to θ messages per round to honest parties which they have to verify, thus inducing
an additional θ · tver overhead in the simulation. Note that A′ has to run the veri�cation procedure
only once per message.

Moreover, for the reduction to work we also want all honest blocks created after round r to be
related to the outputs of the randomness oracle R through some function in F . In our scenario,
R will generate uniformly random strings of the same length as the randomness needed by the
input contribution function I. At every round starting from r and for each honest party, A′ will
query R and use the response to run I. If an honest block is mined using this response, then
any block descending it will be related to the randomness used through some function in F . More
precisely, if 〈s, I(m; ri), w〉 is the honest block mined using the response ri of oracle R, then any
block descending it is of the form 〈H∗(H(〈s, I(m; ri), w〉),M), x′, w′〉 for some M,x′, w′. Hence, it
is related to ri through some function in F as required by the H-TCMA security de�nition.

Since A and Z cannot distinguish between the bitcoin execution and the one we described
above, E will occur with probability at least ε(β, t′As, ns), i.e. A will compute at least βt′As blocks
starting from round r and up to round r+ s that descend some honest block B mined during these
rounds. Note, that these blocks are also valid POWs, that are related through F to the responses of
R. Hence, A′ will win the H-TCMA game with probability greater than ε(β, t′As, ns), while being
s · (tA+ θ · tver + tbb ·n) = s · t′A-bounded and having made at most ns queries to the proving oracle,
which is a contradiction to our initial assumption. A sketch of the reduction is given at Figure 3.

Note that we can do exactly the same reduction without using the oracle to simulate the proving
procedure of the honest parties. The total running time of the second stage of A′ is at least
s · (t′A + nt′H)-bounded and hence the probability he can win is ε(β, s · (t′A + nt′H), 0)

Moreover, if in the previous proof instead of using the proving oracle provided in the H-TCMA
game to simulate honest parties' work, we run their code as it is, we can derive the following bound
on the total number of blocks produced by both honest and malicious parties during a certain
number of rounds.

Corollary 20. For any set of consecutive rounds S, the probability that there exists some honest

block B mined in S such that ZB(S) +X(S) > β(t′A +nt′H) · |S| is less than ε(β, |S| · (t′A +nt′H), 0).

Next, we prove lower bounds on the rate of successful and uniquely successful rounds. Our
proof crucially depends on the independence of the POW scheme. More speci�cally, the property
is needed to ensure that the sum of the Bernoulli random variables of the events that a round is
uniquely successful concentrate around the mean, with the implication that we can lower-bound
the rate of uniquely successful rounds with good probability. Note that the model we described at
the beginning of this section is captured by the class of models mentioned in the de�nition of the
independence property.

Lemma 21. For any set of consecutive rounds S and for any σ ∈ (0, 1) it holds that:

The probability that less than γ · |S| uniquely successful rounds occur in S is at most εs(γ, |S|);
the probability that less than f · |S| successful rounds occur in S is at most εs(f, |S|); and
γ ≤ f ,
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Figure 3: The reduction from the Bitcoin backbone to the H-TCMA game of Lemma 19.

for γ = (1 − σ)(n − t)α(h, t′H)(1 − ε(β, t′H, 0))n−t−1, f = (1 − σ)(1 − (1 − α(h, t′H))n−t), and

εs(x, |S|) =
(

(1−σ)2 log λ
4|S|σ2x2

)blog λ/2c
.

Proof. For some �xed execution we will denote by the array TS×n = (ti,j) ∈ N|S|×n the number of
steps each honest party takes running the Prove routine, for each round in the set S. It holds that
at most t elements of each column are zero, i.e. corrupted, and the rest are lower bounded by t′H
and upper bounded by tH. W.l.o.g let S = {1, . . . , s}.

Since this lemma talks about the steps taken by the Prove function, we are going to use the
almost m-wise independence property of the POW scheme, and do all the analysis on the m-
wise independent random variable de�ned by this property. For the rest of this proof, unless
explicitly stated, assume that the StepsProve(r,m, h) random variable refers to its idealized m-
wise independent version. We �rst buildup some notation to help in our analysis. For some array
(ri,j) ∈ Rs×n, (msg i,j) ∈M s×n and for h ∈ N let:

� random variable Pi,j = 1 if StepsProve(ri,j ,msgi,j , h) ≤ ti,j , and 0 otherwise;

� random variable Yi = 1 if
∑n

j=1 Pi,j = 1 and 0 otherwise.

� random variable Y =
∑

i∈[s] Yi.

It easily follows from the e�ciency property that Pr[Pi,j = 1] ≥ α(h, ti,j).

Claim 1. The random variable families (Pi,j)i∈[s],j∈[n] and (Yi)i∈[s] are m and bm/nc-wise indepen-
dent respectively.

Proof of Claim. First, notice that the m-wise independence of the scheme implies m-wise indepen-
dence of (Pi,j). We will show this for two random variables and the extension to m variables will
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be obvious. Let P1, P2 ∈ (Pi,j) and x1, x2 ∈ {0, 1}, then

Pr[P1 =x1 ∧ P2 = x2] = Pr[StepsProve(r1,m1, h) ∈ S1 ∧ StepsProve(r2,m2, h) ∈ S2]

=
∑

(s1,s2)∈S1×S2

Pr[StepsProve(r1,m1, h) = s1 ∧ StepsProve(r2,m2, h) = s2]

=
∑

(s1,s2)∈S1×S2

Pr[StepsProve(r1,m1, h) = s1] · Pr[StepsProve(r2,m2, h) = s2]

=
∑
s1∈S1

Pr[StepsProve(r1,m1, h) = s1] ·
∑
s2∈S2

Pr[StepsProve(r2,m2, h) = s2]

= Pr[StepsProve(r1,m1, h) ∈ S1] · Pr[StepsProve(r2,m2, h) ∈ S2]

= Pr[P1 = x1] · Pr[P2 = x2]

where S1, S2 are either [0, t] or (t,∞) depending on x1, x2, and r1,m1, r2,m2 are the parameters of
the random processes. We use the m-wise independence property on the third line, hence as long
as the number of processes is not bigger than m the claim will follow.

Next, we prove the second point of the claim. Again, w.l.o.g we only show it for 2 random
variables, Y1, Y2 and the extension to k/n is obvious. Let y1, y2 ∈ {0, 1}, then

Pr[Y1 = y1 ∧ Y2 = y2] = Pr[
∑
j∈[n]

P1,j ∈ S1 ∧
∑
j∈[n]

P2,j ∈ S2]

=
∑

(s1,s2)∈S1×S2

Pr[
∑
j∈[n]

P1,j = s1 ∧
∑
j∈[n]

P2,j = s2]

=
∑

(s1,s2)∈S1×S2

Pr[
∑
j∈[n]

P1,j = s1] · Pr[
∑
j∈[n]

P2,j = s2]

=
∑
s1∈S1

Pr[
∑
j∈[n]

P1,j = s1] ·
∑
s2∈S2

Pr[
∑
j∈[n]

P2,j = s2]

= Pr[Y1 = y1] · Pr[Y2 = y2]

where S1, S2 are {1} or {0, 2, 3, . . .} depending on y1, y2. Since each variable of the family (Yi) is
an n-term sum of variables from the family (Pi,j), independence drops by a factor of n for these
variables. a

Claim 2. It holds that for any i ∈ S : E[Yi] ≥ γ

Proof of Claim. Since m > n it follows that

E[Yi] = Pr[Yi = 1] = Pr[
∑
j∈[n]

Pi,j = 1]

=
∑
j∈[n]

Pr[Pi,j = 1] ·
∏

m∈[n]\{j}

Pr[Pi,m = 0]

≥
∑
j∈[n]

α(h, ti,j)
∏

m∈[n]\{j}

(1− ε(β, ti,m, 0))

≥(n− t)α(h, t′H)(1− ε(β, t′H, 0))n−t−1 = γ

The inequalities follow from the e�ciency and H-TCMA properties. Note that βti,j is greater than
0, hence the adversary has to compute at least one POW in the H-TCMA experiment. Also note,
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that in order for E[Yi] to be big, α must be as big as possible and ε must be as small as possible.
Hence, as we will see later, our goal would be to calibrate h so that it maximizes the ratio γ/β. a

The lemma follows from a direct application of the following claim about the concentration of
m-wise independent r.v.'s, found as a problem statement in [36], and improved here.

Claim 3. If Y is the sum of t k-wise independent r.v.'s each of which is con�ned to the interval

[0, 1] with µ = E[Y ] and ε > 0, then

Pr[|Y − µ| ≥ tε] ≤
(
k

tε2

)bk/2c
Proof of Claim. Assume k is even. First, by the linearity of expectation it holds that:

E[(Y − E[Y ])k] =
∑
S⊆[t]k

E[
∏
i∈S

(Yi − E[Yi])]

Due to the k-wise independence property, all terms in the sum where an index occurs only one
time are zero, since E[Yi − E[Yi]] = E[Yi] − E[Yi] = 0. Hence, each index should show up twice at
S. The number of possible pairs of indexes is upper bounded by kk/2 and the number of possible
assignments for a speci�c set of pairs is tk/2. Thus, there are at most (tk)k/2 non-zero terms in the
sum. Moreover, each term is less than 1. Therefore

E[(Y − E[Y ])k] ≤ (tk)k/2

By Markov's inequality we get the desired result:

Pr[Y − E[Y ] ≥ tε] ≤ E[(Y − E[Y ])k]

(tε)k
≤ (tk)k/2

(tε)k
≤
(
k

tε2

)k/2
a

By the linearity of expectation we have that (1 − δ)E[Y ] ≥ γ|S|. For ε = δγ/(1 − δ), t = |S|,
k = log λ we get that:

Pr[Y ≤ γ|S|] ≤ Pr[Y ≤ (1− δ)E[Y ]]

≤ Pr[|Y − E[Y ]| ≥ δE[Y ]]

≤ Pr[|Y − E[Y ]| ≥ δγ|S|/(1− δ)]

≤
(

(1− δ)2 log λ

4|S|δ2γ2

)blog λ/2c

The same fact follows with only negligible di�erence in probability for our scheme due to the
(negl(λ))-closeness property and since Y is a function of the distribution referred by the property.

Moreover, we can calculate in a similar way a bound for X(S). First, note that (1−δ)E[Xi] ≥ f .
By applying the concentration bound for ε = δf/(1− δ), t = |S| we get:

Pr[X ≤ f |S|] ≤ Pr[X ≤ (1− δ)E[X]]

≤ Pr[|X − E[X]| ≥ δE[X]]

≤ Pr[|X − E[X]| ≥ δ|S|f/(1− δ)]

≤
(

(1− δ)2 log λ

4|S|δ2f2

)blog λ/2c
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We note that our results also hold when some of the honest parties are corrupted, i.e. the
number of steps they execute is 0. Finally, it is easy to see that γ ≤ f since they correspond to the
probabilities of the following two events: throwing n − t coins that are (1 − α)-biased and having
exactly one come heads, and at least one come heads respectively. Obviously, the second event
includes the �rst one, and the result follows.

We are now ready to de�ne the set of typical executions for this setting. This strategy was also
followed in [22]. However, here we will need to adapt the de�nition due to the di�culties associated
with performing a black-box reduction to a POW scheme.

De�nition 22 (Typical execution). An execution is η-typical if and only if for any set S of consec-
utive rounds with |S| ≥ ηλ, the following hold:

1. Y (S) ≥ γ|S| and X(S) ≥ f |S|;
2. for any block B mined by an honest party during S, ZB(S) ≤ βt′A · |S| and ZB(S) +X(S) ≤

β(t′A + nt′H) · |S| ; and
3. no insertions, no copies and no predictions occurred.

Theorem 23. An execution is not typical with probability at most

ε =
∑
|S|≥ηλ

(ε(β, t′A|S|, n|S|) + εs(γ, |S|) + εs(f, |S|) + ε(β, |S| · (t′A + nt′H), 0)) ≤ negl(λ).

Proof. By applying the union bound on Lemmas 19 and 21 and Corollary 20 it holds that the
probability that there exists any set of consecutive rounds S, where |S| > ηλ, and either Y (S) < γ|S|
or X(S) < f |S| or for some honest block mined during S, ZB(S) > βt′A|S| or ZB(S) + X(S) >
β(t′A+nt′H) · |S|, is at most

∑
|S|≥ηλ(ε(β, t′A|S|, n|S|)+εs(γ, |S|)+εs(ζ, |S|)+ε(β, |S| ·(t′A+nt′H), 0)).

ε ≤
∑
|S|≥ηλ

(ε(β, t′A|S|, n|S|) + εs(γ, |S|) + εs(f, |S|) + ε(β, |S| · (t′A + nt′H), 0))

≤
∑
|S|≥ηλ

[negl(t′A|S|) + negl((t′A + nt′H)|S|)

+

(
(1− σ)2 log λ

4|S|σ2γ2

)blog λ/2c
+

(
(1− σ)2 log λ

4|S|σ2f2

)blog λ/2c
]

≤
∑
|S|≥ηλ

[negl(λ) + negl(λ) + negl(λ) + negl(λ)] ≤ negl(λ)

By taking the negation of this event, properties 1 and 2 of a typical execution follow with the
desired probability. Property 3 follows from Lemma 18.

Our proof strategy is going to be based on the fact that the rate of uniquely successful rounds
exceeds the rate at which the adversary produces blocks. In previous works the main security
assumption was that the total running time of honest parties per round exceeds that of the adversary.
Interestingly, in our approach the running time of the adversary and the running time of honest
parties do not have the same value, i.e., the adversary may use a superior proving algorithm. To
take this into account we introduce the following Honest Majority Assumption, which also depends
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on the security parameters of the POW scheme used. Note that γ, as de�ned in Lemma 21, depends
on the parameters of the e�ciency and H-TCMA properties.

Honest Majority Assumption. It holds that γ ≥ (1 + δ)β · t′A, for some δ ∈ (0, 1).

t′A is directly related to the computational power of the adversary. As protocol designers, our
goal is to be able to tolerate t′A's that are as big as possible. The Honest Majority Assumption
implies that to achieve that we need to maximize the ratio of γ over βt′A, i.e., the ratio of uniquely
successful rounds over the number of blocks the adversary mines. The next lemma exactly highlights
this implication.

Lemma 24. For any set S of at least ηλ rounds in a η-typical execution and for any block B mined

by an honest party during S, it holds that ZB(S) ≤ (1− δ
2)Y (S).

Proof.

ZB(S) ≤ βt′A · |S| ≤
1

1 + δ
γ|S| < (1− δ

2
)Y (S)

The �rst and the last inequality follow from a typical execution. The one in the middle from the
Honest Majority Assumption.

We can now use the machinery built in [22] to prove the common pre�x, chain quality and chain
growth properties, with only minor changes. Refer to Appendix B for the details. Using these
properties we prove that the modi�ed Bitcoin backbone protocol implements a robust transaction
ledger.

Theorem 25. Assuming the existence of a common random string, a hash function that is collision

and everywhere preimage resistant, a POW scheme that satis�es (n log λ)-wise independence and

(β, negl(λ))-H-TCMA, and model parameters {n, t, h, tH, tA, θ} that comply with the Honest Majority

Assumption, protocol ΠPOW
PL implements a robust public transaction ledger with parameters u = 4ηλ

and k = ηλ(γ + βnt′H) and with overwhelming probability in λ.

4.6 Comparison with the random-oracle analysis

In this subsection, and as a sanity check, we compare the results we got from our black-box analysis
to those from the random oracle analysis of [22]. To do this, we �rst we show that the POW scheme
used in the Bitcoin protocol (call it BPOW) is secure in the random oracle model according to our
de�nitions. Then, based on the security parameters we obtain for BPOW, we show that the security
guarantees we get from our analysis of the Bitcoin backbone protocol are similar to those proved
in [22, 32].

In a nutshell, Bitcoin's Prove algorithm tries to �nd a block header with a small hash. The main
components of the header are as follows: (i) the hash of the header of the previous block, (ii) the
hash of the root of the Merkle tree of the transactions that are going to be added to Bitcoin's ledger,
including the randomly created coinbase transaction, and (iii) a counter. The algorithm works by
�rst fetching available transactions from the network, then computing a random public key that will
be used for the coinbase transaction, and then iteratively incrementing the counter and calculating
the hash of the header of the block until a small value is found. Casting this in our terms, the
key is the hash of the previous block, which by itself depends on Bitcoin's genesis block, and the
transactions received by the network as well as the coinbase transaction constitute the message.
It is important to note that it is not possible to consider the key to be the coinbase transaction,
as there is no guarantee it has any entropy when produced by an adversarial prover. To abstract
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the randomization of the proving procedure, which in the actual implementation is captured by
the coinbase transaction, we hash msg together with a randomly generated string. This should be
part of the witness in our POW syntax since it is produced by the proving process and is necessary
for veri�cation. Similarly, the counter is also part of the witness produced by the proving process.
BPOW, a simpli�ed version of the scheme described above with the transaction semantics omitted for
simplicity, is presented in Figure 4.

Remark 2. In the Bitcoin implementation, the hash of the root of the Merkle tree of the transactions
is not �salted.� This means that if we consider the adversary to be non-uniform, she could get
collisions for free in her advice string and use them to compute two POWs at the cost of one. This
would be problematic for our H-TCMA security game. Thus, in order to strengthen the security of
the scheme, we choose to also include the key in the hash of the message.

BPOW: Bitcoin's POW implementation

Prove(r,msg , h) :

1. while(true) {

2. w1 ← Uλ;

3. dig ← G(r, w1,msg);

4. for w2 = 0λ|2 to 1λ|2 do {

5. if (H(r, dig, w2) < 2λ − h)

6. return w1||w2; } }

Verify(r,msg, h, w) :

1. return (H(r,G(r, w1,msg), w2)
?
< 2λ − h), where w = w1||w2.

Figure 4: Bitcoin's POW scheme. H and G are hash functions instantiated with SHA-256.

We will assume that both H and G are idealized hash functions, i.e., our analysis is in the
random oracle.

Theorem 26. For any σ ∈ (0, 1), and for any unpredictability-preserving tampering function class

F , BPOW is

complete,

O(λ)-veri�able,

((1 + σ)(1− h
2λ

), ε(β(h), t, qP))-H-TCMA secure;

1−
(
h
2λ

)t
-e�cient;

run-time m-wise independent, for any m > 0 and

ε(β(h), t, qP) =

{
1− ( h

2λ
)t , if (1 + σ)(1− h

2λ
)t ≤ 1

exp(−β(h, t)(1 + log(qP))σ2t/6) , otherwise.

Proof. Let ph = 1 − h
2λ

be the probability that a query to the random oracle returns a value less

than 2λ−h, and let qH be the number of queries the adversary makes to the RO. We consider each
property in turn.

Completeness. The completeness property is trivially satis�ed by the scheme.

H-TCMA security. Let k = dβ(h)te. First, we show that for any adversary A there exists an
adversary A′ that succeeds in winning ExpH-CMAA′,F (Figure 1) with almost the same time complexity
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and probability that A wins, without using the proving oracle P. Hence, we will not have to take P
into account in our analysis. A′ is going to run A internally, and all calls made by A to P the are
going to be simulated, i.e., assuming A queries P with values (f, r,m), A′ will respond with some
number t sampled from the time distribution of P (t can be e�ciently sampled from a geometric
distribution, since queries are i.i.d Bernoulli trials) and some random witness w = (w1, w2), where
t > w2. A′ is also going to store this query in some e�cient structure that allows for search in
logarithmic time. Any calls made by the adversary afterwards to the RO that are related to (f, r,m)
will be answered accordingly; if A2 queries the RO with some string H(f(r), G(f(r), w1,msg), w′2),
where w′ = w2, then A′ will respond with the same value he responded on the initial query to
P, otherwise if w′2 < w2, he responds by 2λ − h + (y mod h), where y is the output of the real
RO in this query. Hence, the view of A will be the same in both executions and he will output
k valid POWs with respect to the simulated view with the same probability that he wins in the
real experiment. It could be the case that the output of A contains a POW related to the queries
asked to (the simulated) oracle P, and thus it does not correspond to a winning output for A′;
i.e., there exists a query 〈f, r,m, (w1, w2)〉 and a POW on the output 〈f ′, r′,m′, (w′1, w′2)〉 such that
G(f(r), w1,m1) = G(f ′(r′), w′1,m

′
1) and m 6= m′ or w1 6= w′1. This implies that the adversary has

found a collision in G, which only happens with negligible probability in λ. Hence, A′ will provide
the same output as A and with the same probability (minus some negligible term in λ) it will win
the experiment. Moreover, the overhead incurred to A′ running time will be only logarithmic on qP
i.e. A′ can simulate the t steps taken by A after his �rst call to R in time t · (1 + log(qP)); he has
to maintain a heap of the queries made to P and search it each time the RO is queried.

Let A be the event where A asks t queries the RO after querying R, and receives more than
dke responses that have value less than 2λ − h. Let random variable X be equal to the number of
these responses that are less than 2λ − h. Since the queries are i.i.d. Bernoulli random variables
with probability of success ph, we can use the Cherno� bound to bound the probability of A. By
setting k equal to (1 + δ)pht it follows that, for any δ ∈ (0, 1):

Pr[A] = Pr[X > k] = Pr[X > (1 + δ)pht] = Pr[X > (1 + δ)E[X]] ≤ e−
E[X]δ2

3 ≤ e− kδ
2

6 .

For the special case where k ≤ 1 we can derive a stricter bound for the probability of A as follows:

Pr[A] = Pr[X ≥ 1] = 1− (1− ph)t

Let B be the event where A can �nd an f ∈ F where for some query H(y, x, w) he made to
the random oracle before querying R for the �rst time and some r ∈ AnsR, it holds that f(r) = y.
Notice that he does not know the responses of R when he picks y. Assume that B happens with
non-negligible probability. Then we can use A to break the unpredictability-preserving property of
F . A will randomly output the y part of one of the queries he has made before querying R, and then
he will try to �nd a function f matching this query. The probability of this event is non-negligible
which is a contradiction. Thus, Pr[B] must be negligible in λ.

Let C be the event where the adversary outputs two POWs that correspond to the same query
in RO. This implies that the adversary can �nd a collision on G. In time L = t + tpre polynomial
in λ, the probability that A �nds a collision is

(
L
2

)
2−λ+1 = e−Ω(λ) = negl(λ). Finally, let D be the

event where the adversary outputs a valid POW that he has not asked the RO. This event occurs
with probability ph which is negl(λ).

If A,B,C,D do not occur, it is implied that A′ will lose in the experiment. Thus, by an
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application of the union bound we get:

Pr[ExpH-TCMAA,F (1λ, h, k) = 1] ≤ 1− Pr[ExpH-TCMAA′,F (1λ, h, k) = 0]

≤ 1− Pr[¬(A ∨B ∨ C ∨D)]

≤ 1− (1− Pr[A ∨B ∨ C ∨D])

≤ Pr[A ∨B ∨ C ∨D]

≤

1− (1− ph)t + negl(λ), when (1− h
2λ

)t ≤ 1

e−
k(1+log(qP ))δ2

6 + negl(λ), otherwise

Veri�ability. Assuming H and G take constant time, veri�cation takes time cverλ, for some small
constant cver which can be easily computed by careful inspection of the veri�cation protocol.

E�ciency. For any t ∈ N, r ∈ R,msg ∈M and h ∈ N it holds that:

Pr
[
StepsProve(r,msg , h) < t

]
= 1− (1− ph)t

Independence. Let {Yi}i∈I be the same as {Xi}i∈I with the only di�erence that the random oracle
is replaced with a random function, i.e., every time Prove is called and the oracle is queried it
generates a random output. Obviously the random variables in {Yi}i∈I are mutually independent,
since their output only depends on their own local coins.

Regarding the second property, let E be the event that all w1 sampled are di�erent among all
the invocations of Prove, and that no collisions occurs in G. Note, that in any polynomially bounded
execution this event happens with overwhelming probability in λ. Moreover, in any execution that
E occurs, {Xi}i∈I and {Yi}i∈I are equal. Therefore, if p(·) is a polynomial that upper bounds the
duration of the execution, it holds that for any z ∈ [p(λ)]|I|

Pr[{Xi}i∈I = z]−Pr[{Yi}i∈I = z] =

= Pr[{Xi}i∈I = z|E] Pr[E] + Pr[{Xi}i∈I = z|¬E] Pr[¬E]

−Pr[{Yi}i∈I = z|E] Pr[E]− Pr[{Yi}i∈I = z|¬E] Pr[¬E]

≤ (Pr[{Xi}i∈I = z|¬E]− Pr[{Yi}i∈I = z|¬E]) Pr[¬E]

Hence, it follows that the two distributions are negl(λ)-close:

2∆[{Xi}i∈I ,{Yi}i∈I ] =
∑
z

|Pr[{Xi}i∈I = z]− Pr[{Yi}i∈I = z]|

≤
∑
z

|(Pr[{Xi}i∈I = z|¬E]− Pr[{Yi}i∈I = z|¬E]) Pr[¬E]|

≤Pr[¬E]
∑
z

|(Pr[{Xi}i∈I = z|¬E]− Pr[{Yi}i∈I = z|¬E])|

≤negl(λ)(
∑
z

Pr[{Xi}i∈I = z|¬E] +
∑
z

Pr[{Yi}i∈I = z|¬E]) ≤ negl(λ)

The last inequality follows from the fact that each of the sums should be less or equal to 1, as the
events described are disjoint and their union covers the entire sample space.

Since parameter ε of the H-TCMA property of BPOW is negligible in t and the scheme is m-
wise independent for any m > 0, we can use Theorem 26 and obtain meaningful bounds for the γ, f
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quantities introduced in the previous subsection.4 These quantities are important since γ determines
how powerful the adversary our system can handle can be, and f is related to how fast blocks are
produced. Both of them also appear in [22] and are (expressed in the language of our model) equal
to

γRO = (1− σ)(n− t)
(

1− h

2λ

)
t′H

(
h

2λ

)((n−t)−1)t′H
, fRO = (1− σ)(1−

(
h

2λ

)(n−t)t′H
)

respectively. The next lemma shows that our bounds are greater or equal to the ones calculated
there. Moreover, our analysis also reveals other factors that a�ect security such as the veri�cation
time, the number of messages the adversary sends to the honest parties, as well as the cost of
reducing the security to that of the POW primitive. The proof appears in Appendix ??. Let ΠBPOW

PL

denote the Bitcoin protocol using BPOW. Then:

Lemma 27. For ΠBPOW
PL , it holds that γ ≥ γRO and f ≥ fRO.

Proof. For γ we have:

γ ≥(1− δ′)(n− t)(1−
(
h

2λ

)t′H
)(1− (1−

(
h

2λ

)t′H
))n−t−1

=(1− δ′) · (n− t)(1−
(
h

2λ

)t′H
)

(
h

2λ

)(n−t−1)t′H

≥(1− δ′)(n− t)
(

1− h

2λ

)
t′H

(
h

2λ

)((n−t)−1)t′H

The �rst inequality follows from the honest majority assumption. Also, w.l.o.g assume that t′A ≥ t′H,
i.e. the adversary has at least the computational power of one honest party. Then:

(1 + δ′)(1− h

2λ
)t′H = βt′H ≤ βt′A < γ ≤ 1

On the other hand, for f we have that:

f =(1− δ)(1− (1− (1−
(
h

2λ

)t′H
))n−t) = (1− δ)(1−

(
h

2λ

)(n−t)t′H
)

Hence, ΠBPOW
PL implements a robust transaction ledger with overwhelming probability in λ and with

bounds comparable to those in [22].

5 Consensus from Proofs of Work without Random Oracles

In this section we show how to achieve consensus (a.k.a. Byzantine agreement [33, 30]) under
exactly the same assumptions used for proving the security of the Bitcoin backbone protocol in
Section 4. In [22], consensus is achieved under the Honest Majority Assumption by using the POW
construction in a non-black-box way, through a mining technique called �2-for-1 POWs.� In more

4Earlier, in order to make our presentation easier to follow, we chose to allow the BPOW Prove routine to run until

it �nds a solution. However, in the Bitcoin backbone protocol it should be stopped after running a speci�c number

of steps. We can implement this modi�cation using a step counter, without a�ecting any of the security properties

of the scheme.
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detail, the technique shows how miners can compute POWs for two di�erent POW schemes at the
cost of one, while at the same time ensuring that their resources cannot be used in favor of one of the
two schemes. This cannot be directly translated to the POW security properties we have de�ned,
as they all apply to the execution of a single Prove subroutine. Hence, we would have to introduce
�2-for-1 POWs� as an extra property. In this section we show how blockchain-based consensus can
be achieved by only using the security properties we have so far, directly, and without the extra
non-black-box machinery used in [22]. The protocol is based on the Bitcoin backbone protocol, and
formally speci�ed by providing adequate de�nitions for the I,R, V functions.

We �rst give a de�nition of the consensus problem. There are n parties, t < n of which might
be corrupted, taking an initial input x ∈ V (without loss of generality, we can assume V = {0, 1}).
De�nition 28. A protocol Π solves the consensus problem provided it satis�es the following two
properties:

Agreement. There is a round after which all honest parties output the same value.

Validity. If all the honest parties have the same input, then they all output this value.

Next, we de�ne some notation and terminology that will be used in the remainder of the section.
We will use the terms �input� and �vote� interchangeably, referring to the parties' input in the
consensus problem. We will use header(〈s, x, w〉) to denote the �compressed� version of block
〈s, x, w〉, equal to 〈s,G(x)||vote, w〉. Note that, as de�ned, the header of any block is of a �xed size.
We also extend the de�nition of our hash function H on headers of blocks. The hash of the header
of some block B will be equal to the hash of B, i.e., H((header(B)) = H(B) (note that the header
of B provides all the information need to calculate the hash of B).

We now present a high-level description of the protocol. The basic idea is that during block
mining, parties are going to include in their blocks not only their own votes, but also headers of
other blocks that they have seen and that are not part of their chain. Then, after a predetermined
number of rounds, the parties will count the votes �referenced� in a pre�x of their chain, including
the votes found in the headers of the blocks referenced. In this way, they can take advantage of the
robust transaction ledger built in Section 4. The common pre�x property implies that the honest
parties will all agree on which votes should be counted, while the chain quality and chain growth
properties guarantee that the majority of the counted votes come from honest parties. A main
technical challenge is to be able to add the block references without making the honest parties'
chains grow too big, and at the same time to ensure that the number of honest votes exceeds the
adversarial ones.

To overcome this challenge, we are going to change POW generation (Algorithm 1, line 8)
and POW veri�cation (Algorithm 2, line 8) so that they are run on the header of the block, i.e.,
Prove(s,G(x)||vote, h) and Verify(s,G(x)||vote, h, w), respectively. This way we are able to verify
the validity of a block as a POW and determine the block's vote by only knowing its header. This
is exactly the properties we need for the consensus application.

Moreover, we should be able to tell whether the referenced blocks are �fresh�; that is, the
adversary should not be able to reference blocks that it has precomputed and are not related to the
genesis block. We achieve this by requiring blockchains to have a special structure in order to be
considered valid by the content validation predicate V (·). A chain will be valid when the referenced
blocks on every pre�x of the chain form a tree that has the genesis block at its root. In order to
check this e�ciently, we require that the reference list of each block is ordered, so that each entry
extends some block header found in previous entries of the same or parent blocks. The detailed
description of the content validation predicate is given in Algorithm 5.
In line 2 we use an AVL tree [1] to e�ciently check for membership in the hash tree. (Any other
data structure supporting e�cient updates and search would also work.) In line 5 the referenced

28



Algorithm 5 The content validation predicate. The input is the contents of the blocks of some
chain.

1: function V (〈x1, . . . , xm〉)
2: D ← new AVL() . Create a new (empty) AVL tree.
3: D.add(H(Gen)) . Add the hash of the genesis block on the tree.
4: for i = 1, ...,m do

5: queue← references(xi) . Add all block references in a queue.
6: while queue 6= ∅ do
7: 〈s,G(x)||vote, w〉 ← queue.top()
8: if ((D.exists(s)) ∧ Verify(s,G(x)||vote, h, w)) then
9: D.add(H(〈s,G(x)||vote, w〉)) . Add new entry on the tree.
10: queue.pop()
11: else

12: return False . If not, the chain is invalid.
13: end if

14: end while

15: end for

16: return True
17: end function

Content validation predicate
V (·)

The validation function V (·) checks that the block headers included
in the chain create a a block tree of valid POW's that starts from the
genesis block.

Chain reading function R(·)
(parametrized by M)

R(·) outputs the majority of the votes found in the block headers of
the �rst M blocks of the selected chain.

Input contribution function
I(·)

The input function I(·) maintains state of which blocks have been
received and outputs the input value x that contains (i) the headers
of all valid blocks that extend the genesis block and and are not men-
tioned in the chain that the party is currently extending, and (ii) the
party's input (i.e., 0 or 1).

Figure 5: Consensus from POWs: The ΠPOW
BA protocol.

blocks are extracted and pushed into a queue. We note that during this process it is also checked
that the contents of the block have a correct format, i.e., a vote �eld and list of block headers, and
that the order in which the headers are organized in the block is the same as the order in which
they are popped from the queue.

Finally, after L rounds (to be determined), the algorithm is going to output the majority of the
votes found in a pre�x of the selected chain, of a predetermined length M . We call the resulting
protocol ΠPOW

BA (�BA� for Byzantine agreement, to be consistent with [22].). A description of the
consensus protocol (speci�cally, the V,R, I functions) is presented in Figure 5, and an example in
Figure 6.

Next, we formally prove that our protocol achieves consensus. Note also that all parties will
terminate the protocol simultaneously.

Theorem 29. Assuming the existence of a common random string, a collision- and everywhere-

preimage-resistant hash function, a POW scheme satisfying run-time (n log λ)-wise independence
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A(0) B(1)

C(1) D(1)

? ?

E(0)

G(0)

F(1)

Figure 6: The data structure maintained by ΠPOW
BA . Block B references block C, block F references

blocks D and G, and block D references some invalid blocks. This is not a problem, since (i) any

chain that contains D will not be selected by any party, and (ii) D's vote is correctly counted since

D is a descendant of Gen.

and (β, negl(λ))-H-TCMA, and model parameters {n, t, h, tH, tA, θ} that comply with the Honest

Majority Assumption, protocol ΠPOW
BA solves consensus in O(λ) rounds with overwhelming probability.

Proof. We are going to show that protocol ΠPOW
BA , parameterized with k ≥ ηλ(γ + βnt′H), L ≥

2k 1

1−(1− δ
2

) γ
2

f

and M = (γ · L− k) solves consensus with overwhelming probability in λ.

First, note that for any chain C where the head of the chain is mined by an honest party it holds
that V (C) is equal to True. This follows from the modi�cations we did on the protocol and the fact
that the adversary will only include headers on his list of references that satisfy the requirements of
predicate V (·). Moreover, since the output of the predicate only depends on the chain that is being
validated, if one honest party accepts a chain as valid, all honest parties accept.

Next, we prove Agreement. Assume that an execution is typical. Due to the chain growth
property, after L rounds the chain of honest parties will have length at least γ · L blocks, and due
to the common pre�x property they will all agree on the �rst γ · L − k blocks. Hence, all honest
parties will decide on their output value based on the �votes� mentioned in each block header that
is referenced in these blocks, and they will all agree on the same value.

Regarding Validity, we are going to show that the majority of the counted �votes,� i.e., from
blocks and block headers found in blocks B1, . . . , Bγ·L−k of the selected chain, have been mined by
honest parties. By the chain quality property, at least one block from Bγ·L−2k, . . . , Bγ·L−k is honest.
Moreover, by chain growth the blocks preceding this honest block must have been computed up to
round L−2k

γ . Hence, all honest blocks mined up to this round will contribute votes to the agreement
process. On the other hand, the last block in the sequence of γ · L − k blocks was computed at
most at round L, due to chain growth and common pre�x. Hence, it remains to show that for
S1 = {1, . . . , L−2k

γ } and S2 = {1, . . . , L} it holds that Z(S2) < X(S1):

Z(S2) ≤ βt′AL <
1

1 + δ
γL ≤ (1− δ

2
)γL ≤ f L− 2k

γ
≤ X(S1).

The �rst and the last inequalities hold due to the fact that the execution is typical. The fourth
inequality follows from our assumption about L. The theorem follows since the majority of the
referenced blocks in the chain agreed upon, have been mined by honest parties.

Concluding, notice that the total size of any chain is bounded by the total number of blocks
mined, since each block's header is mentioned at most once in a single chain. Hence, in r rounds of
a typical execution a chain has size at most O(r · β(t′A + nt′H) · λ) bits.
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A Hash Functions and Unpredictability Preservation
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Figure 7: Bitcoin's block hash structure.

In [10], Bellare et al. describe the notion of the basic cascade as follows:

H∗(K,X) : Y ← K; for i = 1 to n do Y ← H(Y,X[i]); return Y

where in practical applications H is an unkeyed compression function. For bitcoin in particular
H would be a double invocation of SHA-256. We choose to analyze H,G as keyed hash function
families that are collision and preimage resistant, from now on {H(K, ·)}K∈K, {G(K, ·)}K∈K. We
can think that the key of these two functions is part of the CRS. Furthermore, we assume that I
has some entropy (similar to the input entropy assumption in [22]).

Lemma 30. Assuming that {H(K, ·)}K∈K is collision and everywhere preimage resistant, {H∗(K, ·)}K∈K
is collision resistant and {H∗(·, G(I(·;K))||·)}K∈K is every-where preimage resistant.

Proof. If the adversary is able to �nd a collision in H∗, if follows that he can �nd a collision in H,
which happens with negligible probability in λ. Regarding the ePre property, note that the input
entropy assumption states that the probability that two invocations of I return the same value for
arbitrary inputs and honestly generated randomness, i.e. K, is negligible. Hence, an adversary
that can break the ePre property for H∗, also breaks the same property for H by outputting the
parameters of the last block in the chain.

Having a function family that is ePre resistant implies that we can construct a function family
that is unpredictability preserving, since the two notions are closely related.

Lemma 31. If an arbitrary function family {H(K, ·)}K∈K is an ePre resistant hash function family,

then F = {H(·,M)}M∈M is an unpredictability preserving function family.

Proof. Assume F was not unpredictability preserving. Then there exists some adversary A that
breaks the property with non-negligible probability. We can use him exactly as he is to break the
ePre property with non-negligible probability. The function that A outputs in the second stage of
the game corresponds to a message that breaks the ePre property. Hence, the lemma follows.

B Proof of the modi�ed bitcoin backbone protocol

The notion of a typical execution is at the core of the proof of security of Bitcoin in [22]. Here, we
describe the minor changes one has to do after proving the typical execution theorem with respect
to the analysis of [22], in order to prove the security of the protocol in our model. We only give
brief proof sketches of lemmas or theorems from [22] that are exactly the same for our own setting.
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λ : security parameter
n : number of parties
tH : number of steps per round per honest party
tA : total number of adversarial steps per round
θ : upper bound on the number of messages sent by the adversary per round
β : upper bound on POW computation rate per step
γ : lower bound on the rate of uniquely successful rounds
f : lower bound on the rate of successful rounds
δ : advantage from the honest majority assumption
σ : quality of concentration of random variables in typical executions
k : number of blocks for the common-pre�x property
` : number of blocks for the chain-quality property
η : parameter determining block to round translation
ε: probability that an execution is typical

Table 2: The parameters in our analysis.

Lemma 32. (Chain-Growth Lemma). Suppose that at round r an honest party has a chain of length

`. Then, by round s ≥ r, every honest party has adopted a chain of length at least `+
∑s−1

i=r Xi.

Proof. The main idea of the proof of this lemma is that, after each successful round at least one
honest party will have received a chain that is at least one block longer than the chain it had, and
all parties pick only chains that are longer than the ones they had.

Theorem 33. (Chain-Growth). In a typical execution the chain-growth property holds with param-

eters τ = γ and s ≥ ηλ.

Proof. Let S be any set of at least s consecutive rounds. Then, since the execution is η typical:
X(S) ≥ γ · |S| ≥ τ · |S|. By Lemma 32, each honest player's chain will have grown by that amount
of blocks at the end of this round interval. Hence, the chain growth property follows.

Lemma 34. In a typical execution let B be some honest block. Any k ≥ ηλ(γ + βnt′H) consecutive
blocks descending B in a chain in this execution have been computed in at least ηλ rounds, starting

from the round that B was computed.

Proof. Assume there is a set of rounds S′ , such that |S′| < ηλ and more than ηλ(γ+ βnt′H) blocks
that descend block B have been computed. Then, there is a set of rounds S, where |S| ≥ ηλ such
that X(S) + ZB(S) ≥ |S|(γ + βnt′H) ≥ |S|β(t′A + nt′H). This contradicts the typicality of the
execution, hence the lemma follows.

Lemma 35. (Common-pre�x Lemma). Assume a typical execution and consider two chains C1 and

C2 such that len(C2) ≥ len(C1). If C1 is adopted by an honest party at round r, and C2 is either

adopted by an honest party or di�used at round r, then Cdk1 ≤ C2 and Cdk2 ≤ C1, for k ≥ ηλ(γ+βnt′H).

Proof. In Lemma 19, instead of bounding the number of blocks mined by the adversary in a set
of rounds, we bound the number of blocks mined by the adversary with the additional condition
that these blocks extend some speci�c honest block. If we also use the previous lemma, the proof
is exactly the same as in [22]. Note, that all adversarial blocks in the matching between uniquely
successful rounds and adversarial blocks are descendants of the last honest block in the common
pre�x of C1 and C2.
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Theorem 36. (Common-pre�x). In a typical execution the common-pre�x property holds with

parameter k ≥ ηλ · (γ + βnt′H).

Proof. The main idea of the proof is that if there exists a deep enough fork between two chains,
then the previously proved lemma cannot hold. Hence, the theorem follows.

Theorem 37. (Chain-Quality). In a typical execution the chain-quality property holds with param-

eter µ < 1− δ/2 and ` ≥ ηλ(γ + βnt′H).

Proof. The main idea of the proof is the following: a large enough number of consecutive blocks will
have been mined in a set rounds that satis�es the properties of De�nition 22. Hence, the number
of blocks that belong to the adversary will be upper bounded, and all other blocks will have been
mined by honest parties.

Finally, the Persistence and Liveness properties follow from the three basic properties, albeit
with di�erent parameters than in [22].

Lemma 38. (Persistence). It holds that ΠPL with k = ηλ(γ + βnt′H) satis�es Persistence with

probability at least 1− ε.

Proof. The main idea is that if persistence is violated, then the common-pre�x property will also
be violated. Hence, if the execution is typical the lemma follows.

Lemma 39. (Liveness). It holds that ΠPL with u = 4ηλ rounds and k = ηλ(γ + βnt′H) satis�es

Liveness with probability at least 1− ε.

Proof. The main idea here is that after u rounds at least 2k successful rounds will have occurred.
Thus, by the chain growth lemma the chain of each honest party will have grown by 2k blocks,
and by the chain quality property at least one of these blocks that is deep enough in the chain is
honest.
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