
What about Bob?
The Inadequacy of CPA Security for

Proxy Reencryption

Aloni Cohen?

MIT
aloni@mit.edu

Abstract. In the simplest setting of proxy reencryption, there are three
parties: Alice, Bob, and Polly (the proxy). Alice keeps some encrypted
data that she can decrypt with a secret key known only to her. She wants
to communicate the data to Bob, but not to Polly (nor anybody else).
Using proxy reencryption, Alice can create a reencryption key that will
enable Polly to reencrypt the data for Bob’s use, but which will not help
Polly learn anything about the data.

There are two well-studied notions of security for proxy reencryption
schemes: security under chosen-plaintext attacks (CPA) and security un-
der chosen-ciphertext attacks (CCA). Both definitions aim to formalize
the security that Alice enjoys against both Polly and Bob.

In this work, we demonstrate that CPA security guarantees much less
security against Bob than was previously understood. In particular, CPA
security does not prevent Bob from learning Alice’s secret key after re-
ceiving a single honestly reencrypted ciphertext. As a result, CPA secu-
rity provides scant guarantees in common applications.

We propose security under honest-reencryption attacks (HRA), a strength-
ening of CPA security that better captures the goals of proxy reencryp-
tion. In applications, HRA security provides much more robust security.
We identify a property of proxy reencryption schemes that suffices to
amplify CPA security to HRA security and show that two existing proxy
reencryption schemes are in fact HRA secure.

Keywords: proxy reencryption · definitions · public-key cryptography

1 Introduction

Consider three parties: Alice, Bob, and Polly Proxy. Alice keeps encrypted data
that she can decrypt with a secret key known only to her. She wants to commu-

? Supported by NSF GRFP, NSF MACS CNS-1413920, DARPA IBM W911NF-15-
C-0236, and Simons Investigator Award Agreement Dated 6-5-12. We would like to
thank Rio LaVigne, Akshay Degwekar, Shafi Goldwasser, and anonymous reviewers
for their helpful feedback.



nicate some of the data to Bob, but not to Polly (nor anybody else). Assuming
Alice and Polly know Bob’s public key, how can she communicate the data to
him?

If she is willing to entrust Bob with all her secrets, past and future, Alice may
simply tell Bob her secret decryption key by encrypting it using Bob’s public
key. We call this the Trivial Scheme. If she does not have such trust in Bob,
Alice can instead decrypt the data, and reencrypt it using Bob’s public key. But
what if Alice does not want to do the work of decrypting and reencrypting large
amounts of data?

Proxy reencryption (PRE) provides an elegant solution: Alice creates and
gives to Polly a reencryption key that will enable Polly to reencrypt her data
under Bob’s public key for his use, but that will not reveal the data to Polly.
Proxy reencryption guarantees that Bob can recover the data uncorrupted (cor-
rectness) and that Polly cannot learn anything about Alice’s data (security). The
most widely-studied model of security for proxy reencryption is called CPA se-
curity, named after the corresponding notion from standard encryption on which
it is based.

But what about Bob? As already observed, if we do not require any secu-
rity against Bob, proxy reencryption is trivial: Alice uses the Trivial Scheme,
simply sending Bob her encrypted secret key. This is undesirable, unsatisfying,
and insufficient for a number of supposed applications of proxy reencryption
(Section 2).

Surprisingly, the Trivial Scheme is a CPA secure proxy reencryption scheme
when the public key encryption scheme used is circularly secure [BHHO08]! Bob
completely learns Alice’s secret key, and circular security is used only to prove
security against a malicious Polly.1 Relatedly, the CPA-security of any proxy
reencryption scheme remains uncompromised if Polly attaches the reencryption
key to every reencrypted ciphertext sent to Bob, even though this would enable
Bob to decrypt messages encrypted under Alice’s public key.

These “constructions” of CPA-secure proxy reencryption—original to this
work—demonstrate the inadequacy of CPA security for proxy reencryption. If
they had been observed previously, perhaps CPA security would not have gained
the traction that it has.

Throughout this work, we use CPA (respectively, CCA and HRA) to refer
to the security notion for proxy reencryption, and Enc-CPA (resp., Enc-CCA)
to refer to the security notion for standard encryption. We restrict our attention
to unidirectional proxy reencryption, where the reencryption key allows Alice’s
ciphertexts to be reencrypted to Bob’s key, but not the reverse. In a bidirectional
scheme, Bob—using his own secret key and Alice’s public key— is able compute
the Alice-to-Bob reencryption key himself; thus a lack of security against Bob is
inherent.

1 Because existing constructions of circularly secure encryption schemes based on stan-
dard assumptions (e.g., [BHHO08] from DDH hardness) require a bound on the to-
tal number of public keys n, the corresponding Trivial Scheme will only satisfy a
bounded-key variant of CPA security. See Appendix A for details.

2



CPA and CCA Security of Proxy Reencryption First considered by Blaze,
Bleumer, and Strauss [BBS98], proxy reencryption has received significant and
continuous attention in the last decade, including definitions [ID03, AFGH06,
CH07, NAL15], number-theoretical constructions [ABH09, LV08, CWYD10],
lattice-based constructions [Gen09, ABW+13, PWA+16, FL17], implementa-
tions [LPK10, HHY11, PRSV17, BPR+17], and early success in program ob-
fuscation [HRSV07, CCL+14].

Adapting notions from standard encryption, this literature considers two
main indistinguishability-based security notions for proxy reencryption: security
under chosen plaintext attacks (CPA) [ABH09] and chosen ciphertext attacks
(CCA) [CH07]. While CCA security is considered the gold-standard, CPA secu-
rity has received significant attention [AFGH06, ABH09, HRSV07], especially in
latticed-based constructions [Gen09, ABW+13, PWA+16, PRSV17]. CPA secu-
rity has been used as a testing ground for new techniques for proxy reencryption
and in settings where efficiency concerns make the added security of CCA un-
desirable.

We now briefly describe the definitions of CPA and CCA security for proxy
reencryption, with the goal of communicating the underlying intuition. For this
informal description, we restrict our attention to the limited three party setting
of Alice, Bob, and Polly and strip away many of the complexities of the full
definition. For a full definitions of CPA and CCA security, see Definitions 3 and
10 respectively.

Both notions are typically defined using a security game between an adver-
sary and a challenger in which the adversary’s task is to distinguish between
encryptions of two messages. Both notions allow the adversary to corrupt either
Bob (learning skbob) or Polly (learning the reencryption key rk). CCA and CPA
security differ in the additional power granted to the adversary.

CCA security grants the adversary access to two oracles:

– ODec: The decryption oracle takes as input a ciphertext along with the public
key of either Alice or Bob, and outputs the decryption of the ciphertext using
the corresponding secret key.

– OReEnc: The reencryption oracle takes as input a ciphertext ctalice and outputs
the reencrypted ciphertext ctbob.

These oracles come with restrictions to prevent the adversary from simply reen-
crypting or decrypting the challenge ciphertext, adapting replayable chosen-
ciphertext security of standard encryption (Enc-CCA) in the natural way.

CPA security of proxy reencryption, however, removes both oracles.2 Why?
First, to adapt chosen-plaintext security from standard encryption (Enc-CPA)
to proxy reencryption, we must of course do away with ODec. Secondly, it seems
we must also remove OReEnc: otherwise, by corrupting Bob it seems that the

2 This description is an oversimplification. In the many party setting, the adversary
has access to a reencryption oracle which will reencrypt ciphertexts between two
uncorrupted parties or between two corrupted parties, but not from an honest party
to a corrupted party.

3



adversary can use the combination of OReEnc and skbob to simulate ODec. Remov-
ing both decryption and reencryption oracles, according to [ABH09], naturally
extends the Enc-CPA security to proxy reencryption, yielding CPA security.

As we observe in this work, a natural definition is not always a good defini-
tion. Not only is the above intuition for removing OReEnc false (Theorem 5), but
CPA security as defined above guarantees little against a corrupted Bob. The
definition only requires that the adversary will not win the game as long as
it never sees any reencrypted ciphertexts. It guarantees nothing if Bob sees
even a single reencrypted ciphertext. This makes CPA security ill-suited for the
most commonly cited applications of proxy reencryption, including forwarding
of encrypted email and single-writer, many-reader encrypted storage (Section 2).
Based on these observations, we conclude that CPA security is inadequate for
proxy reencryption and must be replaced.

Security Against Honest-Reencryption Attacks What minimal guaran-
tees should proxy reencryption provide? First, it should offer security against a
dishonest proxy Polly when Alice and Bob are honest and using the proxy reen-
cryption as intended. Polly’s knowledge of a reencryption key from Alice to Bob
(or vice versa) should not help her learn anything about the messages underlying
ciphertexts encrypted under pkalice or pkbob. Such security against the corrupted
proxy is guaranteed by CPA.

Second, proxy reencryption should offer security against a dishonest receiver
Bob (respectively, Alice) when Alice and Polly (resp., Bob and Polly) are honest
and using the proxy reencryption as intended. Bob’s knowledge of honestly reen-
crypted ciphertexts (that were honestly generated to begin with) should not help
him learn anything about the messages underlying other ciphertexts encrypted
under pkalice that have not been reencrypted. As we show in this work, such
security against the corrupted receiver is not guaranteed by CPA.

Generalizing these dual guarantees to many possibly colluding parties, we
want security as long as the adversary only sees honestly reencrypted cipher-
texts. In Section 4, we formalize this notion as proxy reencryption security
against honest-reencryption attacks (HRA). Recall that CCA security provides
the adversary with both ODec and OReEnc while CPA provides neither oracle.
In contrast, HRA security provides the adversary with a restricted reencryption
oracle which will only reencrypt honestly generated ciphertexts.

By guaranteeing security of both the first and second types described above,
HRA is a strengthening of CPA security that better captures our intuitions for
security of proxy reencryption. Furthermore, HRA guarantees more meaningful
security in the most common applications of proxy reencryption (Section 4.1).
HRA security is an appropriate goal when developing new techniques for proxy
reencryption and in settings where full CCA security is undesirable or out of
reach.

Can we construct a proxy reencryption scheme that is HRA secure? HRA se-
curity is a strict strengthening of CPA security and appears to be incomparable
to CCA security (Appendix B), so it is not immediately clear than any existing

4



constructions without redoing the proofs from scratch. Instead, we identify a
property—reencryption simulatablity—which is sufficient to boost CPA security
to HRA security. Very roughly, reencryption simulatability means that reen-
crypted ciphertexts resulting from computing ReEnc(rkalice→bob, ctalice) can be
simulated without knowledge of the secret key skalice (but with knowledge of the
plaintext message m). Reencryption simulatability allows a reduction with ac-
cess to the CPA oracles to efficiently implement the honest reencryption oracle,
thereby reducing HRA security to CPA security.

In Section 5, we first examine the simple construction of proxy reencryption
from any fully-homomorphic encryption [Gen09], and second the pairing-based
construction of [AFGH06]. In the first case, if the fully-homomorphic encryption
secure is circuit private, then the resulting proxy reencryption scheme is reen-
cryption simulatable. In the second case, rerandomizing reencrypted ciphertexts
suffices for reencryption simulation.3

Additional Related Work Our dual-guarantee conception of proxy reencryp-
tion security mirrors the security requirements of what Ivan and Dodis call CPA
security [ID03]. Their notion differs substantially from what is now referred to
by that name. The [ID03] conception of CPA security is only defined in a proof
in the appendix of that work and seems to have been completely overlooked by
the later works proposing the modern notion of CPA security (beginning with
[AFGH06] and then in its present form in [ABH09]). If, however, Ivan and Dodis
had undertaken to revisit proxy reencryption after [ABH09], they might have
proposed a security definition similar to HRA.

In [NAL15], Nuñez, Agudo, and Lopez provide a parameterized family of
CCA-type attack models for proxy reencryption. Their weakest model corre-
sponds to CPA security and their strongest to full CCA security. That work
is partially a response to a claimed construction of CCA-1 secure proxy reen-
cryption in a security model that does not allow reencryption queries. [NAL15]
provide an attack on the construction in the presence of a reencryption oracle
consisting of carefully constructed, dishonestly generated queries which leak the
reencryption key. They do not consider restricting the reencryption oracle in the
security game to honestly generated ciphertexts. We discuss [NAL15] further in
Appendix B.3.

In a subsequent work defining and constructing forward-secure proxy reen-
cryption, Derler, Krenn, Lorünser, Ramacher, Slamanig, and Striecks identify
the same problem with CPA security as discussed in this work [DKL+18]. As
in our work, they address the problem with CPA security by defining a new
security notion—RIND-CPA security—which expands the power of the adver-
sary (Definition 14 of the full version). In Section 4.4, they additionally separate
RIND-CPA and CPA security with a construction that is essentially our Con-
catenation Scheme in disguise.

3 While we don’t examine every pairing-based construction of proxy reencryption, we
suspect that rerandomizing reencryption will suffice for reencryption simulation in
many, if not all.

5



However, this is where the resemblance between [DKL+18] and our work
ends. RIND-CPA and HRA security appear incomparable. In the RIND-CPA
game offered by [DKL+18], the adversary gets access to an reencryption oracle
that works on all inputs (not just honestly generated ones), but only in the period
before the challenge ciphertext is generated. This definition is much more CCA-
like than the HRA definition proposed in this work.4 RIND-IND is inadequate as
a replacement for CPA security in the research literature: it appears too strong
to provide a useful testing ground for the development of new techniques for
constructing proxy reencryption, but also too weak to provide the benefits of
full CCA security in applications.

Finally, a parallel line of work initiated by Hohenberger, Rothblum, she-
lat, Vaikuntanathan which studies proxy reencryption using an obfuscation-
based definition that is incomparable to CPA security [HRSV07]. Their defi-
nition requires that the functionality of the obfuscated reencryption circuit be
statistically close to that of the ideal reencryption functionality: namely, that
ReEnc(rki→j ,Enc(pki,m)) ≈s Enc(pkj ,m). Thus the definition of [HRSV07] (and
even the relaxed correctness found in [CCL+14]) imply reencryption simulata-
bility defined in Section 5.

The above mentioned works are just the most directly relevant. The extensive
research literature on proxy reencryption presents a zoo of security definitions.
Some of the animals in the zoo are impressive and powerful, some exploit a
specialized niche, and some are better left alone. But HRA security is not just
another creature for the collection—it is an attempt at reinforcing the unsound
foundation upon which the whole zoo sits.

Organization We begin by discussing applications of proxy reencryption and
identifying the weaknesses of CPA security in those applications (Section 2).
Then we present the existing security definition and further demonstrate its
weaknesses with two new CPA-secure schemes: the Trivial Scheme and Conca-
tentation Scheme (Section 3). We propose a new security notion to overcome
those weaknesses—security against honest reenecryption attacks (HRA)—and
discuss the suitability of HRA in applications of proxy reencryption (Sec 4). We
examine the the relationship between CPA and HRA security and the HRA secu-
rity of existing reencryption schemes (Section 5). Section 6 offers a final thought
on HRA.

2 Insufficiency of CPA Security for Applications

In Section 3, we recall the definition of CPA security of proxy reencryption from
[ABH09] and formalize the Trivial Scheme from the introduction satisfying the
notion. In the Trivial Scheme, Bob learns Alice’s secret key after receiving a
single reencrypted ciphertext.

4 Indeed, RIND-IND is a reformulation of the IND-CCA0,1 defined in [NAL15], dis-
cussed further in Appendix B.

6



We are faced with a choice: accept the existing definition of CPA security, or
reject it and seek a definition that better captures our intuitions. In support of
the latter, we describe a number of applications of proxy reencryption proposed
in the literature in which CPA security (as implemented by the Trivial Scheme)
is potentially unsatisfactory.5 We revisit these applications in Section 4.1 after
proposing a new security notion.

Encrypted Email Forwarding [BBS98, Jak99, AFGH06]. A common sug-
gestion, forwarding of encrypted email without requiring the sender’s partici-
pation might be desirable for temporary delegation during a vacation [Jak99]
or for spam filtering [AFGH06]. Does the Trivial Scheme suffice? The Triv-
ial Scheme enables Bob, the receiver of Alice’s forwarded (and reencrypted)
email, to recover Alice’s secret key. If Alice trusts Bob enough to use the
Trivial Scheme, she could instead reveal her secret key. The Trivial Scheme
might be preferable in very specific trust or interaction models, but is does
not offer meaningful security against Bob if Alice only wishes to forward a
subset of emails (for example, from particular senders or during a specific
time period).

Key Escrow [ID03]. Similar to email forwarding, Ivan and Dodis describe the
application of key escrow as follows: “The problem is to allow the law en-
forcement agency to read messages encrypted for a set of users, for a limited
period of time, without knowing the users’ secrets. The solution is to locate
a key escrow agent between the users and the law enforcement agency, such
that it controls which messages are read by the law enforcement agencies.”
As in email forwarding, the “for a limited period of time” requirement sug-
gests that Ivan and Dodis would not have been satisfied with the Trivial
Scheme.6

Single-Writer, Many-Reader Encrypted Storage [AFGH06, KHP06,
LPK10, PRSV17]. Under different monikers (including DRM and pub-
lish/subscribe systems), these works describe systems in which a single priv-

5 Alternatively, one might look to the originators of the proxy encryption notion:
“Clearly, A must (unconditionally) trust B, since the encryption proxy function by
definition allows B to decrypt on behalf of A” [BBS98]. While seeming to disagree
with us, to properly understand [BBS98], it is important to recognize that the au-
thors conceive of only two parties (A tells B the reencryption key). The shortcoming
we identify does not manifest in that setting and therefore [BBS98] provides little
guidance. We might also appeal to [ID03], the only paper in the proxy reencryption
literature of which we are aware adopting a security definition providing a reencryp-
tion oracle without a decryption oracle.

6 Note that Ivan and Dodis do not adopt the CPA definition used elsewhere, but a
definition much closer to our own. There is no gap between their security guarantees
and the requirements of their briefly-described application.

Though primarily focused on the setting where the key escrow agent enforces the
limited time requirement by eventually refusing to reencrypt, [ID03] considers the
possibility of dividing time into epochs and enforcing the time limitation technically.
Such a proxy reencryption is called temporary in [AFGH06]. We do not discuss
temporary proxy reencryption further.

7



ileged writer encrypts data and determines an access control policy for read-
ers. A semi-honest proxy server is entrusted with reencryption keys and is
tasked with enforcing the access control policy. Whether the Trivial Scheme
suffices for these applications depends on what sort of access control policies
are envisioned. If the access is all or nothing (i.e., all readers may access
all data), the Trivial Scheme suffices; if the access is fine grained (i.e., each
reader may access only a specific subset of the data), then it does not. Ex-
isting works are often unclear on which is envisioned.

For completeness, we mention two applications of proxy reencryption for which
CPA security does suffice.

Key Rotation for Encrypted Cloud Storage [BLMR13, EPRS17]. En-
cryption is a natural option when outsourcing storage to an untrusted cloud.
Periodically updating secret keys is recommended by NIST, the Payment
Card Industry Data Security Standard, and the OpenWeb Application Se-
curity Project [PWA+16]. Proxy reencryption naturally allows the storage
server to perform the key rotation without decrypting. In this application,
CPA security suffices as there are only two parties: the client (who is both
Alice and Bob) and the server (Polly).

Fully Homomorphic Encryption [Gen09]. Though not exactly an applica-
tion of proxy reencryption, fully homomorphic encryption and proxy reen-
cryption are closely connected. There is a trivial construction of proxy reen-
cryption (unidirectional, multi-hop) from any public key fully homomorphic
encryption scheme.7 Conversely, reencryption is used for FHE bootstrap-
ping, a critical component of FHE constructions including Gentry’s. For this
application, CPA security of proxy reencryption is sufficient.

3 Security Against Chosen Plaintext Attacks

In this section, we recall the definition of CPA security for proxy reencryption
and illustrate its shortcomings. We begin with the definitions of syntax, cor-
rectness, and CPA security from [ABH09, Definition 2.2] (with minor changes
in notation and presentation, and the change noted in Remark 1 at the end of
this subsection). The syntax and correctness requirements are common to CPA,
HRA, and CCA security.

For the sake of concreteness, simplicity, and brevity, we restrict the discussion
to unidirectional, single-hop schemes. In multi-hop schemes, reencryption keys
rkA→B and rkB→C can be used to reencrypt a ciphertext ctA from pkA to pkC .
In single-hop schemes, they cannot. Single-hop or multi-hop schemes each have

7 Though this fact was observed in [Gen09] and later in [Kir14, CCL+14], it goes
unmentioned in a number of works constructing proxy reencryption from lattice as-
sumptions [FL17, PRSV17, PWA+16]. The construction can also be instantiated
with depth-bounded FHE (if the depth-bound is greater than the depth of the de-
cryption circuit), removing the need for circularity assumptions.

8



their benefits and drawbacks, and works typically focus on one or the other
notion.8 To the best of our knowledge, our observations and results can all be
adapted to the multi-hop setting.

Definition 1 (Proxy Reencryption: Syntax [ABH09]). A proxy reencryp-
tion scheme for a message spaceM is a tuple of algorithms PRE = (Setup,KeyGen,ReKeyGen,
Enc,ReEnc,Dec):

Setup(1λ) → pp. On input security parameter 1λ, the setup algorithm outputs
the public parameters pp.

KeyGen(pp) → (pk, sk). On input public parameters, the key generation algo-
rithm outputs a public key pk and a secret key sk. For ease of notation, we
assume that both pk and sk include pp and refrain from including pp as input
to other algorithms.

ReKeyGen(ski, pkj) → rki→j. On input a secret key ski and a public key pkj,
where i 6= j, the reencryption key generation algorithm outputs a reencryp-
tion key rki→j.

Enc(pki,m) → cti. On input a public key pki and a message m ∈ M, the
encryption algorithm outputs a ciphertext cti.

ReEnc(rki→j , cti) → ctj. On input a reencryption key from i to j rki→j and
a ciphertext cti, the reencryption algorithm ouputs a ciphertext ctj or the
error symbol ⊥.

Dec(skj , ctj)→m. Given a secret key skj and a ciphertext ctj, the decryption
algorithm outputs a message m ∈M or the error symbol ⊥.

Definition 2 (Proxy Reencryption: Correctness [ABH09]). A proxy reen-
cryption scheme PRE is correct with respect to message spaceM if for all λ ∈ N,
pp← Setup(1λ), and m ∈M:

1. for all (pk, sk)← KeyGen(pp):

Dec(sk,Enc(pk,m)) = m.

2. for all (pki, ski), (pkj , skj)← KeyGen(pp), rki→j ← ReKeyGen(ski, pkj):

Dec(skj ,ReEnc(rki→j ,Enc(pki,m))) = m.
8 The literature is divided about whether “single-hop” is merely a correctness

property (i.e., able to reencrypt at least once, but agnostic about whether reen-
crypting more than once is possible) or if it is also a security property (i.e.,
a ciphertext can be reencrypted once, but never twice). This distinction mani-
fests in the security definition. In works that consider only single-hop correctness
[AFGH06, ABH09, HRSV07, NAL15], the oracle OReKeyGen in the security game will
not accept queries from honest users to corrupted users (i.e., (i, j) such that i ∈ Hon
and j ∈ Cor). We adopt this formalism in Definitions 3 and 5 for simplicity of
presentation only.

In works that consider single-hop security [LV08, CWYD10, FL17], the oracle will
answer such queries, but the challenge ciphertext must be encrypted under the key
of an honest user i∗ for which no such reencryption key was generated (which can
be formalized in a number of ways).

9



Security is modeled by a game played by an adversary A. A has the power
to corrupt a set of users Cor (learning their secret keys) while learning only
the public keys for a set of honest users Hon. Additionally, A may reencrypt
ciphertexts (either by getting a reencryption key or calling a reencryption oracle)
between pairs of users in Hon or in Cor, or from Cor to Hon, but not from Hon
to Cor. This is in contrast to the simplified three-party setting discussed in the
introduction, where the A could not reencrypt whatsoever.

Definition 3 (Proxy Reencryption: Security Game for Chosen Plain-
text Attacks (CPA) [ABH09]). Let λ be the security parameter and A be an
oracle Turing machine. The CPA game consists of an execution of A with the
following oracles. The game consists of three phases, which are executed in or-
der. Within each phase, each oracle can be executed in any order, poly(λ) times,
unless otherwise specified.

Phase 1:

Setup: The public parameters are generated and given to A. A counter numKeys
is initialized to 0, and the sets Hon (of honest, uncorrupted indices) and Cor
(of corrupted indices) are initialized to be empty. This oracle is executed first
and only once.

Uncorrupted Key Generation: Obtain a new key pair (pknumKeys, sknumKeys) ←
KeyGen(pp) and give pknumKeys to A. The current value of numKeys is added
to Hon and numKeys is incremented.

Corrupted Key Generation: Obtain a new key pair (pknumKeys, sknumKeys) ←
KeyGen(pp) and given to A. The current value of numKeys is added to Cor
and numKeys is incremented.

Phase 2: For each pair i, j ≤ numKeys, compute the reencryption key rki→j ←
ReKeyGen(ski, pkj).

Reencryption Key Generation OReKeyGen: On input (i, j) where i, j ≤ numKeys,
if i = j or if i ∈ Hon and j ∈ Cor, output ⊥. Otherwise return the reencryp-
tion key rki→j.

Reencryption OReEnc: On input (i, j, cti) where i, j ≤ numKeys, if i = j or if
i ∈ Hon and j ∈ Cor, output ⊥. Otherwise return the reencrypted ciphertext
ReEnc(rki→j , cti).

Challenge Oracle: On input (i,m0,m1) where i ∈ Hon and m0,m1 ∈M, sam-
ple a bit b← {0, 1} uniformly at random, and return the challenge ciphertext
ct∗ ← Enc(pki,mb). This oracle can only be queried once.

Phase 3:

Decision: On input a bit b′ ∈ {0, 1}, return win if b = b′.

The CPA advantage of A is defined as

AdvAcpa(λ) = Pr[win],

where the probability is over the randomness of A and the oracles in the CPA
game.

10



Definition 4 (Proxy Reencryption: CPA Security [ABH09]). Given a
security parameter 1λ, a proxy reencryption scheme is CPA secure if for all
probabilistic polynomial-time adversaries A, there exists a negligible function
negl such that

AdvAcpa(λ) <
1

2
+ negl(λ)

Remark 1. Another definitional subtlety of proxy reencryption worth discussing
affects not just CPA security, but HRA and CCA security as well. Consider the
specification of OReKeyGen and OReEnc in Definition 3. As defined, the reencryption
keys rki→j are persistent : the same key is used each time a pair (i, j) is queried.
This follows [ABH09, Definition 2.5] and [ABW+13, FL17], though we find our
formalization somewhat simpler.

Contrast this with [ABH09, Definition 2.2] in which reencryption keys are
ephemeral : they are generated afresh each time either oracle is invoked on the
same pair (i, j). [BLMR13, PWA+16, CH07] similarly use ephemeral keys in
their definitions. In the remaining papers we examined, it was less clear whether
reencryption keys were ephemeral or persistent.

Neither definition implies the other; any scheme secure with persistent keys
can be modified into one that is insecure with ephemeral keys, and vice-versa.
The definitions, however, are not in serious tension; any scheme secure with per-
sistent keys and having deterministic ReKeyGen is also secure with ephemeral
keys, and ReKeyGen can in general be derandomized using pseudorandom func-
tions. Of course, one can easily define a hybrid notion stronger than both by
allowing the adversary to specify for each query whether it wants to use reen-
cryption keys that are new or old.

We adopt the persistent formalization as it better captures ‘typical’ use.
To the best of our knowledge, all claims in this work can be adapted to the
ephemeral setting.

Remark 2. The power of the adversary above can be strengthened by allowing
key generation queries to be interleaved with calls to OReKeyGen, OReEnc and the
Challenge Oracle instead of dividing the game into phases (e.g., as in [NAL15]).
Our definitions of CPA and HRA security follow the convention of [ABH09]
primarily because it is the ancestral definition of CPA security from which other
definition descend. To the best of our knowledge, all results in this work hold in
against the more powerful adversary just described.

3.1 Concatenation Scheme and Trivial Scheme

The weakness of CPA security lies in the specification of OReEnc, which does
not reencrypt any ciphertexts from honest to corrupt users. Said another way,
OReEnc reencrypts between only those pairs keys for which OReKeyGen outputs a
reencryption key (rather than returning ⊥). We now describe two schemes that
are CPA secure, but are insecure against a dishonest receiver of reencrypted
ciphertexts. In both schemes, a single ciphertext reencrypted from an honest

11



index to a corrupted index enables the decryption of messages encrypted under
the honest index’s public key.

Concatenation Scheme Let PRE = (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc)
be a CPA-secure proxy reencryption scheme. Define a new scheme by mod-
ifying only reencryption and decryption:

ReEnc′(rk, ct) := ReEnc(rk, ct)‖rk

Dec′(sk, ct) :=

{
Dec(sk, ct1) if ct = ct1‖ct2
Dec(sk, ct) otherwise

Theorem 1. Let PRE = (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc) be a CPA-
secure proxy reencryption scheme. The corresponding Concatenation Scheme
PRE′ = (Setup,KeyGen,Enc,Dec′,ReKeyGen,ReEnc′) is a CPA-secure proxy reen-
cryption scheme.

Proof. For any probabilistic, polynomial-time algorithm A′ (the CPA adversary

against PRE′), we construct an efficient algorithm A such that AdvAcpa = AdvA
′

cpa.
By the CPA security of PRE, this advantage is negligible, completing the proof.
A runs A′ and simulates the CPA security game for PRE′ (if A′ does not

follow the specification of the game, A simply aborts). Except for calls to OReEnc,
all oracle calls by A′ are passed along unaltered by A, along with their responses.
A begins Phase 2 by requesting all admissible reencryption keys rki→j from

its own reencryption key generation oracle. To answer oracle calls from A′ to
OReEnc, A first queries its own reencryption oracle, which returns ct1. If ct1 = ⊥,
then A′ returns ⊥. Otherwise, A′ concatenates the appropriate reencryption key
rk to form the new ciphertext ct = ct1‖rk. This is possible because if ct1 6= ⊥,
then A is able to get the corresponding reencryption key at the beginning of
Phase 2.
A perfectly implements the CPA security game for PRE′, and A′ wins that

game if and only if A wins the corresponding game for PRE. Therefore, AdvAcpa =

AdvA
′

cpa. Finally, the running time of A is polynomially related to that of A′.

While the Concatenation Scheme builds upon any CPA-secure proxy reen-
cryption scheme, the Trivial Scheme presented next makes use of public-key en-
cryption enjoying circular security. Informally, circular security guarantees that
encryptions of messages that are a function of the secret key(s) are as secure
as encryptions of messages that are independent of the secret key(s), a security
property that does not follow from standard semantic security.

In the Trivial Scheme, the reencryption key from party i to j is simply rki→j =
Enc(pkj , ski). CPA security of the resulting proxy reencryption scheme requires
security against an adversary who has both rki→j and rkj→i. This requires that
the underlying encryption scheme is circular secure.

Because existing constructions of circular secure encryption schemes based
on standard assumptions (e.g., [BHHO08] from DDH) require a bound on the
total number of public keys n, the corresponding Trivial Scheme will only satisfy

12



a bounded-key variant of CPA security. Any circular secure encryption scheme
without this limitation would yield a Trivial Scheme secure according to Defini-
tion 4. We defer the definitions of circular security, bounded-key CPA security,
and the proof of Theorem 2 to Appendix A.

Trivial Scheme Let (KeyGencirc,Enccirc,Deccirc) be an n-way circular-secure en-
cryption scheme. Let Setup ≡ ⊥, KeyGen ≡ KeyGencirc; Enc ≡ Enccirc;

ReKeyGen(ski, pkj) := Enccirc(pkj , ski)

ReEnc(rki→j , cti) := cti‖rki→j

Dec(sk, ct) :=

{
Deccirc(Deccirc(sk, ct

2), ct1) if ct = ct1‖ct2
Deccirc(sk, ct) otherwise

.

Theorem 2. Let (KeyGencirc,Enccirc,Deccirc) be an n-way circular-secure encryp-
tion scheme. The corresponding Trivial Scheme PRE is an n-way CPA secure
proxy reencryption scheme.

4 Security Against Honest Reencryption Attacks

We seek a definition of security which holds as long as the adversary only sees
honestly reencrypted ciphertexts, unless the set of corrupt parties can trivially
violate security (by some chain of reencryption keys from an uncorrupted public
key to a corrupted public key).

We term this notion security against honest-reencryption attacks (HRA). To
formalize it, we model the ability of an adversary to see honest reencryptions by
granting it access to a modified reencryption oracle OReEnc. Instead of taking a
ciphertext as input, the modified OReEnc takes as input a reference to a previously
generated ciphertext (either as the output of OEnc or OReEnc itself).

To implement such an oracle, we introduce to the security game a key-value
store C as additional state: the values are ciphertexts ct which are keyed by a
pair of integers (i, k), where i denotes the index of the key pair (pki, ski) under
which ct was (re)encrypted, and k is a unique index assigned to ct.

As described, this new OReEnc admits a trivial attack: simply reencrypt the
challenge ciphertext to a corrupted key and decrypt. To address this issue, we
adapt an idea from [CH07]’s definition of CCA security: we rule out the triv-
ial attack by storing a set Deriv of ciphertexts derived from the challenge by
reencrypting, and rejecting queries to OReEnc for ciphertexts in Deriv and a cor-
rupted target key. We might have instead chosen to forbid any reencryptions
of the challenge ciphertext, even between uncorrupted keys. Though this would
have simplified the definition, it would have been unsatisfactory. For example,
in the single-writer, many-reader encrypted storage application the contents of
a message m that gets reencrypted from Alice to Charlie should be hidden from
Bob.

We now present the honest reencryption attacks security game. The game is
similar to the CPA security game with some modifications to Setup, Challenge,

13



and OReEnc, and the addition of an Enc oracle OEnc to Phase 2. OEnc may be
executed poly(λ) times and in any order relative to the other oracles in Phase 2.
For the sake of clarity we reproduce the full game below and mark the modified
oracles with a ?.

Definition 5 (Proxy Reencryption: Security Game for Honest Reen-
cryption Attacks (HRA)). Let λ be the security parameter and A be an oracle
Turing machine. The HRA game consists of an execution of A with the following
oracles.

Phase 1:

? Setup: The public parameters are generated and given to A. A counter
numKeys is initialized to 0, and the sets Hon (of honest, uncorrupted in-
dices) and Cor (of corrupted indices) are initialized to be empty.

Additionally the following are initialized: a counter numCt to 0, a key-value
store C to empty, and a set Deriv to be empty. This oracle is executed first
and only once.

Uncorrupted Key Generation: Obtain a new key pair (pknumKeys, sknumKeys) ←
KeyGen(pp) and give pknumKeys to A. The current value of numKeys is added
to Hon and numKeys is incremented.

Corrupted Key Generation: Obtain a new key pair (pknumKeys, sknumKeys) ←
KeyGen(pp) and given to A. The current value of numKeys is added to Cor
and numKeys is incremented.

Phase 2: For each pair i, j ≤ numKeys, compute the reencryption key rki→j ←
ReKeyGen(ski, pkj).

Reencryption Key Generation OReKeyGen: On input (i, j) where i, j ≤ numKeys,
if i = j or if i ∈ Hon and j ∈ Cor, output ⊥. Otherwise return the reencryp-
tion key rki→j.

? EncryptionOEnc: On input (i,m), where i ≤ numKeys, compute ct← Enc(pki,m)
and increment numCt. Store the value ct in C with key (i, numCt). Return
(numCt, ct).

? Challenge Oracle: On input (i,m0,m1) where i ∈ Hon and m0,m1 ∈ M,
sample a bit b← {0, 1} uniformly at random, compute the challenge cipher-
text ct∗ ← Enc(pki,mb), and increment numCt. Add numCt to the set Deriv.
Store the value ct∗ in C with key (i, numCt). Return (numCt, ct∗). This oracle
can only be queried once.

? Reencryption OReEnc: On input (i, j, k) where i, j ≤ numKeys and k ≤ numCt,
if j ∈ Cor and k ∈ Deriv return ⊥. If there is no value in C with key (i, k),
return ⊥.

Otherwise, let cti be that value in C, let ctj ← ReEnc(rki→j , cti), and incre-
ment numCt. Store the value ctj in C with key (j, numCt). If k ∈ Deriv, add
numCt to the set Deriv.
Return (numCt, ctj).

14



Phase 3:

Decision: On input a bit b′ ∈ {0, 1}, return win if b = b′.

The HRA advantage of A is defined as

AdvAhra(λ) = Pr[win],

where the probability is over the randomness of A and the oracles in HRA game.

Definition 6 (Proxy Reencryption: HRA Security ). Given a security
parameter 1λ, a proxy reencryption scheme is HRA secure if for all probabilistic
polynomial-time adversaries A, there exists a negligible function negl such that

AdvAhra(λ) <
1

2
+ negl(λ)

As already observed, CPA security for proxy reencryption is a natural gener-
alization of Enc-CPA security for (standard) encryption. Observe that Enc-CPA
security does not change when the adversary is given access to an encryption
oracle and an oracle that decrypts honest ciphertexts: those output by the en-
cryption oracle (excluding the challenge ciphertext). HRA can be viewed as an
adaptation of this equivalent view of Enc-CPA to proxy reencryption.

4.1 Sufficiency of HRA Security for Applications

Neither the Trivial Scheme nor the Concatenation Scheme satisfy HRA. Return-
ing to the applications of proxy reencryption described in Section 2, we observe
that HRA security provides substantially stronger security guarantees.

Encrypted email forwarding Using proxy reencryption with HRA security,
Alice can forward encrypted email to Bob for a short period of time (during a
vacation, say) and be sure that Bob cannot read her email after she returns.

Key escrow Similar to encrypted email forwarding, proxy reencryption with
HRA can be used to enable law enforcement to read certain encrypted mes-
sages without compromising the secrecy of documents outside the scope of
a search warrant or subpoena, for example.

Single-writer, many-reader encrypted storage Whereas proxy reencryp-
tion with CPA security can only support all or nothing access (i.e., all readers
may access all data), HRA security can support fine grained access control
(i.e., each reader may access only a specific subset of the data).

There is no question that HRA does not provide as much security as CCA, and
that CCA-secure proxy reencryption would yield more robust applications. HRA
security, however, can provide meaningful guarantees in the above applications.

15



Encrypted email forwarding If Alice is forwarding all emails to Bob, then
Bob could certainly mount an attack outside the honest-reencryption model.
On the other hand, if Alice is forwarding only those emails from a third-party
sender Charlie, then such an attack is impossible without the involvement
of Charlie (supposing of course that the sender of an email can be authenti-
cated).

Key escrow The hypothetical legal regime that establishes the government’s
power of exceptional access by way of key escrow could additionally pro-
hibit the government from mounting chosen-ciphertext attacks. In the United
States, a Constitutional argument could perhaps be made that law-enforcement
use of chosen-ciphertext attacks must be limited.

Single-writer, many-reader encrypted storage The only ciphertexts be-
ing reencrypted are those uploaded by the single-writer to the proxy server
(hence the name). It is by no means a stretch to require that the proxy server
does not allow writes by unauthorized parties (i.e., the readers). If the honest
writer only uploads honestly generated ciphertexts, HRA is appropriate.

5 Security of Existing Proxy Reencryption Schemes

Can we construct HRA-secure proxy reencryption? The most natural place to
begin is with existing schemes. In this section we examine the relationships
between CPA and HRA, showing that our notion is stronger. Although CPA
security is strictly weaker than HRA security, we might hope that the existing
CPA secure schemes already satisfy the more stringent definition. To this end,
we identify a natural property—reencryption simulatability—sufficient to boost
CPA security to HRA security.9

We examine the simple construction of CPA secure proxy reencryption from
any fully-homomorphic encryption (FHE) presented in [Gen09]. While the re-
sulting proxy reencryption may not be HRA secure in general, if the FHE is cir-
cuit private—a property Gentry imbues into his FHE by rerandomization—the
same construction will be HRA secure. We then examine pairing-based schemes,
finding there too that rerandomization provides a direct path to HRA security.10

Remark 3. It may seem that CCA security for proxy reencryption should im-
ply HRA security, but unfortunately the situation is not so simple. While the
relationship between CCA and HRA security is still open, CCA security does
imply CPA security. By Theorem 4, any CCA secure proxy reencryption scheme

9 Some existing notions in the proxy reencryption literature seem powerful enough
to elevate CPA security to HRA security, including proxy invisibility [AFGH06],
unlikability [FL17], and punctured security [ACJ17]. However, these notions are not
sufficiently well defined to draw any concrete conclusions. The notion of key-privacy
[ABH09] does not in general suffice for HRA security.

10 While we do not examine every pairing-based construction of proxy reencryption,
we suspect that rerandomizing reencryption will suffice for reencryption simulation
in many, if not all.

16



satisfying reencryption simulatability is also HRA secure. See Appendix B for
further discussion.

5.1 HRA and CPA Security

Theorem 3. Let PRE be an HRA secure proxy reencryption scheme. Then PRE
is CPA secure.

Proof (of Theorem 3). From any probabilistic, polynomial-time algorithm A
(the CPA adversary), we construct an efficient algorithm A′ such that AdvA

′

hra

= AdvACPA. By the HRA security of PRE this advantage is negligible, completing
the proof.
A′ runs A and simulates the CPA security game (if A does not follow the

specification of the CPA security game, A′ simply aborts). Except for calls to
OReEnc, all oracle calls byA′ are passed along unaltered byA to the corresponding
HRA oracles, along with their responses.
A′ begins Phase 2 by requesting all (admissible) reencryption keys rki→j

from OReKeyGen. racle calls from A to OReEnc are answered by A′ by computing
the reencryption using the appropriate reencryption key; this is possible because
OReEnc returns ⊥ if and only if A′ is unable to get the corresponding reencryption
key.
A′ prefectly implements the CPA security game, and A wins that game if and

only if A′ wins the HRA security game. Therefore AdvA
′

hra = AdvACPA. Finally,
the running time of A′ is polynomially related to the that of A.

Reencryption Simulatability. While HRA is a strictly stronger security no-
tion than CPA, we now show that if a CPA secure proxy reencryption scheme has
an additional property we call reencryption simulatability, then it must also be
HRA secure. Very roughly, reencryption simulatability means that ciphertexts
resulting from computing ReEnc(rki→j , cti) can be simulated without knowledge
of the secret key ski (but with knowledge of the plaintext message m). Note that
ReEnc uses rki→j which is a function of ski.

Reencryption simulatability allows an algorithm with access to the CPA or-
acles to efficiently implement the honest reencryption oracle. For intuition, con-
sider the following approach to reducing HRA security to CPA security. Suppose
there existed an adversary Ahra violating the HRA security of a scheme; the re-
duction plays the roles of both the CPA adversary and the challenger in the HRA
security game, and attempts to violate CPA security. To succeed, the reduction
must be able to answer honest reencryption queries from uncorrupted keys to
corrupted keys. Though the reduction knows the messages being reencrypted,
it does not know the appropriate reencryption key. However, if it could indis-
tinguishably simulate these reencryptions then it could indeed leverage Ahra to
violate CPA security.

Definition 7 (Reencryption Simulatability). A proxy reencryption scheme
PRE is reencryption simulatable if there exists a probabilistic, polynomial-time

17



algorithm ReEncSim such that for all m ∈M:

(ReEncSim(pki, pkj , cti,m), aux) ≈s (ReEnc(rki→j , cti), aux),

where ≈s denotes statistical indistinguishability and ctj, ct
′
j and aux are sampled

according to

pp← Setup(1λ),

(pki, ski)← KeyGen(pp),

(pkj , skj)← KeyGen(pp),

rki→j ← ReKeyGen(skj , pki),

cti ← Enc(pki,m),

aux = (pp, pki, ski, pkj , skj , cti, rki→j).

A special case of the above is when ReEncSim(pki, pkj , cti,m) = Enc(pkj ,m)
simply computes a fresh encryption of the message. That is, if reencrypted ci-
phertexts are distributed like fresh ciphertexts, then the proxy reencryption is
source-hiding.

Theorem 4. Let PRE be an CPA secure, reencryption simulatable, proxy reen-
cryption scheme. Then PRE is HRA secure.

Proof (Outline). The proof proceeds according to the intuition above. From any
probabilistic, polynomial-time algorithm A (the HRA adversary), we construct

an algorithm A′ such that AdvA
′

CPA(λ) ≥ AdvAhra(λ)−negl(λ); by the CPA security
of PRE this advantage is negligible, completing the proof.
A′ runs A and simulates the HRA security game (if A does not follow the

specification of the HRA security game, A′ simply aborts). To answer oracle calls
by A to any oracle other than OReEnc, A′ simply passes the calls and answers
unaltered to the corresponding CPA oracles.

To answer oracle calls to OReEnc between two uncorrupted keys or two cor-
rupted keys, A′ uses the corresponding reencryption key. On the other hand, for
calls to OReEnc from an uncorrupted key to a corrupted key, A′ simulates the
reencryption using ReEncSim. This is possible because A′ knows the underlying
m. Note that the challenge (for which A′ does not know the underlying plain-
text) cannot be reencrypted from uncorrupt to corrupt keys in the HRA security
game.

Reencryption simulatability implies that the views of A in the real security
game (using the real OReEnc) and the simulated security game (using ReEncSim)
are statistically close, and A′ wins the CPA security game if and only if A wins
in the simulated HRA game described above.

5.2 Fully Homomorphic Encryption and Proxy Reencryption

There is an intimate connection between FHE and proxy reencryption: a suffi-
ciently powerful somewhat homomorphic encryption scheme implies CPA secure

18



proxy reencryption, which can be used to “bootstrap” the scheme to achieve
fully homomorphic encryption [Gen09]. For the relevant FHE definitions, see
[Gen09, Section 2].

Let FHE = (SetupFHE,KeyGenFHE,EncFHE,DecFHE,EvalFHE) be an FHE scheme.
Proxy reencryption can be constructed as follows (compare to the Trivial Scheme):

KeyGenPRE, EncPRE and DecPRE are identical to their FHE counterparts.
ReKeyGenPRE(ski, pkj) = EncFHE(pkj , ski)‖pkj . The reencryption key rki→j is

an encryption under pkj of ski, along with the target public key pkj .
ReEncPRE(rki→j , cti): Let cti→j ← EncFHE(pkj , cti). Homomorphically compute

the FHE decryption function DecFHE(ski, cti) using the corresponding cipher-
texts rki→j and cti→j (under pkj). Namely, ctj = EvalFHE(pkj ,DecFHE, rki→j , cti→j).

The correctness of the FHE implies the correctness of the resulting proxy reen-
cryption:

DecPRE(skj , ctj) = DecFHE(skj , ctj) = DecFHE(ski, cti) = DecPRE(ski, cti).

Furthermore, the proxy reencryption scheme is CPA secure.
To demonstrate that the construction might not be HRA secure, consider

the following fully homomorphic encryption scheme FHE′ constructed from any
existing scheme FHE. The only modification made in FHE′ is to EvalFHE′ :

EvalFHE′(pkj , C, ct1, ct2) := EvalFHE(pkj , C, ct1, ct2)‖ct1.

Note that FHE′ does not violate FHE compactness if ct1 (in the proxy reencryp-
tion construction, rki→j) is always of some size bounded by a polynomial in the
security parameter of the FHE scheme; this suffices for our purpose. Instanti-
ating the proxy reencryption construction with FHE′ essentially results in the
Concatenation Scheme, which is not HRA secure.

Circuit Privacy. An FHE scheme is circuit private if ciphertexts resulting
from FHE evaluations are statistically indistinguishable from fresh ciphertexts
[Gen09]. Namely, if for any circuit C and any ciphertexts ct1,. . . ,ctt:

EncFHE(pk, C(ct1, . . . , ctt)) ≈s EvalFHE(pk, C, ct1, . . . , ctt).

In [Gen09], an FHE scheme without circuit privacy is modified to be circuit
private by rerandomizing the ciphertexts resulting from EvalFHE.

While our proxy reencryption construction above is not in general HRA se-
cure, it is easy to see that if the underlying FHE is circuit private, then the
proxy reencryption is reencryption simulatable (Definition 7). By Theorem 4,
the resulting scheme is therefore HRA secure.

5.3 Pairing-Based Proxy Reencryption

Many constructions of proxy reencryption are based on the hardness of Diffie-
Hellman-type problems over certain bilinear groups, including [AFGH06, CH07,
LV08, ABH09, HRSV07].

19



A prototypical construction is that of [AFGH06], which itself is based on the
original scheme of [BBS98]. For every λ, let G1 and G2 be groups of prime order
q = Θ(2λ), and let g be a generator of G1. Let e be a non-degenerate bilinear
map e : G1 ×G1 → G2 (i.e., for all h ∈ G1 and a, b ∈ Zq, e(ha, hb) = e(h, h)ab,
and for all generators g of G1, e(g, g) 6= 1). Let Z = e(g, g). The message-space
of the scheme is G2.

Setup(1λ): Output pp = (q, g,G1, G2, e).

KeyGen(pp): Sample a← Zq uniformly at random. Output sk = a and pk = ga.

Enc(pk,m): Sample k ← Zq uniformly at random. Output ct = (pkk,mZk) =
(gak,mZk).

ReKeyGen(skA = a, pkB = gb): Output rkA→B = gb/a.

ReEnc(rkA→B , ctA): Let ctA = (α1, α2). Output

ctB = (e(α1, rkA→B), α2) = (e(gak, gb/a),mZk) = (Zbk,mZk).

Dec(sk, ct): Let ct = (α1, α2). If α1 ∈ G2 (i.e., if it is the result of ReEnc),

then output α2/α
1/a
1 = mZk/Zk = m. Otherwise α1 ∈ G1 (i.e., it is a fresh

ciphertext); output α2/e(α1, g)1/a = mZk/e(gak, g)1/a = mZk/Zk = m.

Is this scheme HRA secure? It is tempting to say that the scheme is reen-
cryption simulatable; after all, given a message m it is indeed straightforward
to sample (Zbk,mZk) for random k ← Zq. However ctA = (gak,mZk) and
ctB = ReEnc(rkA→B , ctA) = (Zbk,mZk) share the randomness k. Given ctA =
(gak,mZk) and m, it is not clear how to output (gbk,mZk).

Rerandomization A minor modification to the scheme above guarantees reen-
cryption simulatability and therefore HRA security. Replace ReEnc above with
ReEnc′:

ReEnc′(rkA→B , ctA): Compute (Zbk,mZk) = ReEnc(rkA→B , ctA). Sample k′ ←
Z uniformly at random, and output (Zbk · e(gb, gk′), mZk · e(g, gk′)) =
(Zb(k+k

′),mZk+k
′
).

The resulting proxy reencryption scheme maintains the CPA security of the orig-
inal, as the only modification is the rerandomization of reencrypted ciphertexts
(which can be done by anyone with knowledge of the public parameters).

Furthermore, the scheme is now reencryption simulatable. To see why, ob-
serve that the resulting reencrypted ciphertexts are uniformly distributed in

{(ct1, ct2) ∈ G2×G2 : ct2/ct
1/b
1 = m}, independent of all other keys and cipher-

texts. Such ciphertexts are easily sampled with knowledge of pp, pkB = gb and
m as follows.

ReEncSim(pp, pkB ,m): Sample k′ ← Zq uniformly at random, and and output

(e(pkB , g
k′),m · e(g, gk′)) = (Zbk

′
,mZbk

′
).

20



Thus, by Theorem 4, the modified scheme is HRA secure. Observe that reran-
domization was the key to achieving circuit privacy (and thereby HRA security)
in the FHE-based proxy reencryption construction as well.

The pairing-based schemes of [ABH09] and [HRSV07] already incorporate
rerandomization during reencryption. In the former case, it is used to achieve
“key privacy;” in the latter, to achieve obfuscation of the reencryption function-
ality. In each, it is straightforward to show that the schemes are also reencryption
simulatable and therefore HRA secure.

6 A Final Thought

For classical encryption, Enc-CCA security is strictly stronger than Enc-CPA
security. In fact, there are many settings where Enc-CPA security is demonstra-
bly insufficient. Why then does the cryptography community continue to study
it? There are many answers to this question, but we mention only two. First,
although insufficient for some applications, Enc-CPA is useful in others. Second,
it is useful as an intermediate goal because it seems to capture a sort of hard
core of the general problem of encryption. Research into Enc-CPA encryption
spurs the development of new techniques that eventually permeate the field.

What about proxy reencryption? As for usefulness for applications, HRA is
meaningful in many of the envisioned applications of proxy reencryption, many
more than CPA security.

As for the usefulness of HRA as an intermediate goal towards CCA secu-
rity, the historical development of proxy reencryption is proof itself. This sounds
paradoxical: how can this be true if the notion has only just been introduced
in this work? Many of cryptographers that were targeting CPA security devel-
oped schemes that achieve HRA security with only minimal modification. The
techniques developed in these constructions were later adapted to achieve CCA
security. Additionally, the flaws of the CPA notion had not been previously ob-
served. These circumstances suggest that cryptographers’ intuitions for the hard
core of reencryption were not flawed, only the formalization of these intuitions
as CPA security. HRA security is a better formalization for these intuitions and
thus an appropriate intermediate goal for reencryption research.

References

ABH09. Giuseppe Ateniese, Karyn Benson, and Susan Hohenberger. Key-private
proxy re-encryption. In CT-RSA, volume 5473, pages 279–294. Springer,
2009.

ABW+13. Yoshinori Aono, Xavier Boyen, Lihua Wang, et al. Key-private proxy re-
encryption under lwe. In International Conference on Cryptology in India,
pages 1–18. Springer, 2013.

ACJ17. Prabhanjan Ananth, Aloni Cohen, and Abhishek Jain. Cryptography with
updates. In Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 445–472. Springer, 2017.

21



AFGH06. Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Im-
proved proxy re-encryption schemes with applications to secure distributed
storage. ACM Transactions on Information and System Security (TIS-
SEC), 9(1):1–30, 2006.

BBS98. Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and
atomic proxy cryptography. In Advances in Cryptology—EUROCRYPT’98,
pages 127–144. Springer, 1998.

BHHO08. Dan Boneh, Shai Halevi, Mike Hamburg, and Rafail Ostrovsky. Circular-
secure encryption from decision diffie-hellman. In Annual International
Cryptology Conference, pages 108–125. Springer, 2008.

BLMR13. Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth Raghunathan.
Key homomorphic prfs and their applications. In Advances in Cryptology–
CRYPTO 2013, pages 410–428. Springer, 2013.

BPR+17. Cristian Borcea, Yuriy Polyakov, Kurt Rohloff, Gerard Ryan, et al. Pi-
cador: End-to-end encrypted publish–subscribe information distribution
with proxy re-encryption. Future Generation Computer Systems, 71:177–
191, 2017.

CCL+14. Nishanth Chandran, Melissa Chase, Feng-Hao Liu, Ryo Nishimaki, and
Keita Xagawa. Re-encryption, functional re-encryption, and multi-hop re-
encryption: A framework for achieving obfuscation-based security and in-
stantiations from lattices. In PKC, pages 95–112. Springer, 2014.

CH07. Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-
encryption. In Proceedings of the 14th ACM conference on Computer and
communications security, pages 185–194. ACM, 2007.

CKN03. Ran Canetti, Hugo Krawczyk, and Jesper B Nielsen. Relaxing chosen-
ciphertext security. In Annual International Cryptology Conference, pages
565–582. Springer, 2003.

CWYD10. Sherman SM Chow, Jian Weng, Yanjiang Yang, and Robert H Deng. Ef-
ficient unidirectional proxy re-encryption. In International Conference on
Cryptology in Africa, pages 316–332. Springer, 2010.

DKL+18. David Derler, Stephan Krenn, Thomas Lorünser, Sebastian Ramacher,
Daniel Slamanig, and Christoph Striecks. Revisiting proxy re-encryption:
Forward secrecy, improved security, and applications. In IACR Interna-
tional Workshop on Public Key Cryptography, pages 219–250. Springer,
2018.

EPRS17. Adam Everspaugh, Kenneth Paterson, Thomas Ristenpart, and Sam Scott.
Key rotation for authenticated encryption. In Annual International Cryp-
tology Conference, pages 98–129. Springer, 2017.

FL17. Xiong Fan and Feng-Hao Liu. Proxy re-encryption and re-signatures from
lattices. 2017.

Gen09. Craig Gentry. A fully homomorphic encryption scheme. Stanford Univer-
sity, 2009.

HHY11. Yi-Jun He, Lucas CK Hui, and Siu Ming Yiu. Avoid illegal encrypted drm
content sharing with non-transferable re-encryption. In Communication
Technology (ICCT), 2011 IEEE 13th International Conference on, pages
703–708. IEEE, 2011.

HRSV07. Susan Hohenberger, Guy Rothblum, Abhi Shelat, and Vinod Vaikun-
tanathan. Securely obfuscating re-encryption. Theory of Cryptography,
pages 233–252, 2007.

ID03. Anca-Andreea Ivan and Yevgeniy Dodis. Proxy cryptography revisited. In
NDSS, 2003.

22



Jak99. Markus Jakobsson. On quorum controlled asymmetric proxy re-encryption.
In International Workshop on Public Key Cryptography, pages 112–121.
Springer, 1999.

KHP06. Himanshu Khurana, Jin Heo, and Meenal Pant. From proxy encryption
primitives to a deployable secure-mailing-list solution. In International
Conference on Information and Communications Security, pages 260–281.
Springer, 2006.

Kir14. Elena Kirshanova. Proxy re-encryption from lattices. In Public Key Cryp-
tography, pages 77–94, 2014.

LPK10. Sangho Lee, Heejin Park, and Jong Kim. A secure and mutual-profitable
drm interoperability scheme. In Computers and Communications (ISCC),
2010 IEEE Symposium on, pages 75–80. IEEE, 2010.

LV08. Benôıt Libert and Damien Vergnaud. Unidirectional chosen-ciphertext se-
cure proxy re-encryption. In International Workshop on Public Key Cryp-
tography, pages 360–379. Springer, 2008.

NAL15. David Nunez, Isaac Agudo, and Javier Lopez. A parametric family of
attack models for proxy re-encryption. In Computer Security Foundations
Symposium (CSF), 2015 IEEE 28th, pages 290–301. IEEE, 2015.

OMD91. Frank Oz, Bill Murray, and Richard Dreyfuss. What About Bob. Touchstone
Pictures, 1991.

PRSV17. Yuriy Polyakov, Kurt Rohloff, Gyana Sahu, and Vinod Vaikuntanathan.
Fast proxy re-encryption for publish/subscribe systems. ACM Transactions
on Privacy and Security (TOPS), 20(4):14, 2017.

PWA+16. L Phong, L Wang, Y Aono, M Nguyen, and X Boyen. Proxy re-encryption
schemes with key privacy from lwe. Technical report, Cryptology ePrint
Archive, Report 2016/327, 2016. http://eprint. iacr. org/2016/327, 2016.

A The Trivial Scheme

The following description and definition of circular security is adapted with slight
modification from [BHHO08].

Let (KeyGen,Enc,Dec) be a public-key encryption scheme with key space K
and message space M such that K ⊆ M. Let n > 0 be an integer and let C be
the set of functions C = {f : Kn →M} consisting of

– all |M| constant functions fm(z) = m for all z ∈ Kn, and

– all n selector functions fi(x1, . . . , xn) = xi for 1 ≤ i ≤ n.

We define circular security using the following game between a challenger
and an adversary A. For an integer n > 0 and a security parameter λ, the game
proceeds as follows:

Initialization: The challenger chooses a random bit b ← {0, 1}. It generates
(pk1, sk1), . . . , (pkn, skn) by running KeyGen(1λ) n times, and sends (pk1, . . . , pkn)
to A.

Queries: The adversary repeatedly issues queries where each query is of the
form (i, f) with 1 ≤ i ≤ n and f ∈ C. The challenger responds by setting

23



y = f(sk1, . . . , skn) and

ct←

{
Enc(pki, y) if b = 0

Enc(pki, 0
|y|) if b = 1

and sends ct to A.
Finish: Finally, the adversary outputs a bit b′ ∈ {0, 1}.

We say that A wins the game if b = b′. Let win be the event that A wins the
game and define A’s advantage as

AdvAcirc,n(λ) = Pr[win].

Definition 8 (n-Circular Security). We say that a public-key encryption
scheme (KeyGen,Enc,Dec) is n-way circular secure if for all probabilistic polynomial-
time adversaries A, there exists a negligible function negl such that

AdvAcirc,n(λ) <
1

2
+ negl(λ).

Because existing constructions of circularly secure encryption schemes based
on standard assumptions require a bound on the total number of public keys
n, the corresponding Trivial Scheme will only satisfy a bounded-key variant of
CPA security, defined next.

Definition 9 (Proxy Reencryption: n-CPA Security ). For n ∈ N, the n-
CPA security game is identical to the CPA security game in Definition 3 except
for the following underlined modifications. Recall that numKeys that is initialized
to 0 and is incremented after every key generation call in the security game.

Uncorrupted Key Generation: If numKeys = n, return ⊥. Otherwise, obtain a
new key pair (pki, ski) ← KeyGen(pp). A is given pki. The current value of
numKeys is added to Hon and numKeys is incremented.

Corrupted Key Generation: If numKeys = n, return ⊥. Otherwise, obtain a new
key pair (pki, ski)← KeyGen(pp). A is given (pki, ski). The current value of
numKeys is added to Cor and numKeys is incremented.

The corresponding n-CPA advantage of A is denoted AdvAcpa,n(λ). A proxy reen-
cryption scheme is n-CPA secure if for all probabilistic polynomial-time adver-
saries A, there exists a negligible function negl such that

AdvAcpa,n(λ) <
1

2
+ negl(λ)

Trivial Scheme Let (KeyGencirc,Enccirc,Deccirc) be an n-way circular secure en-
cryption scheme. Let Setup ≡ ⊥, KeyGen ≡ KeyGencirc; Enc ≡ Enccirc;

ReKeyGen(ski, pkj) := Enccirc(pkj , ski)

ReEnc(rki→j , cti) := cti‖rki→j

Dec(sk, ct) :=

{
Deccirc(Deccirc(sk, ct

2), ct1) if ct = ct1‖ct2
Deccirc(sk, ct) otherwise

.

24



Theorem 2 states that if (KeyGencirc,Enccirc,Deccirc) is an n-way circular se-
cure encryption scheme, then the corresponding Trivial Scheme PRE = (Setup,
KeyGen,Enc,Dec,ReKeyGen,ReEnc) is an n-CPA secure proxy reencryption scheme.
In fact, the proof below extends the case when there are n uncorrupted keys and
any number of corrupted keys.

Proof (of Theorem 2). For all n ∈ N and any probabilistic, polynomial-time
algorithm A (the adversary against the trivial scheme), we construct an effi-
cient algorithm Acirc such that AdvAcirc

circ,n = 1
2 · Adv

A
cpa,n. By the hypothesis, this

advantage is negligible, completing the proof.
At the beginning of the game, the circular security challenger picks a random

bit b. If b = 0, then the Queries oracle encrypts all messages correctly; if b = 1,
then the Queries oracle encrypts only the message 0. Acirc runs A and simulates
the CPA security game for PRE (if A does not follow the specification of the
game, Acirc simply aborts).

At the start of Phase 1, Acirc calls its Initialization oracle in the circular
security game. In return it receives the public keys (pkcirc1 , . . . , pkcircn ). To answer
an Uncorrupted Key Generation query, Acirc gives to A the first unused public
key pkcirci from this list. To answer a Corrupted Key Generation query, Acirc

generates a new key pair (pk, sk)← KeyGen and gives (pk, sk) to the adversary.
A begins Phase 2 by using its Queries oracle to learn the reencryption keys

for all pairs of uncorrupted keys generated. Using its knowledge of the corrupted
secret keys, it also computes reencryption keys for all the pairs of corrupted keys
generated. Oracle calls from A to OReKeyGen are answered with the corresponding
reencryption key (or with ⊥). To answer oracle calls from A to OReEnc, computes
the appropriate response; namely, it concatenates the reencryption key to the
ciphertext (or returns ⊥).

At some point, A queries the Challenge oracle with an honest key index i
and a pair of messages (m0,m1). Acirc chooses a random one of the messages m
and queries its own Queries oracle with the pair (i,m), returning the resulting
ciphertext to A.

Finally, A guesses whether m = m0 or m1. If A guesses correctly, Acirc

guesses the bit b′ = 0. Otherwise,Acirc guesses a random b′ ← {0, 1}. Conditioned
on b = 0, Acirc perfectly simulates the PRE security game, and guesses b′ = 0
with probability AdvAcpa,n. It follows that AdvAcirc

circ,n = 1
2 · Adv

A
cpa,n.

B CCA Security

It may seem that CCA security for proxy reencryption should imply HRA secu-
rity, but the situation is not so simple. In this section, we define CCA security
for proxy reencryption and describe the challenge in proving that CCA security
implies HRA security. Finally, we construct a proxy reencryption scheme that
illustrates the problem with the intuition which motivated the original CPA def-
inition which also separates the security models IND-CCA0,1 and IND-CCA2,0

defined in [NAL15], proving a converse to their Theorem 4.6.

25



B.1 Definition

The definition below is adapted from [CH07, Definition 2.4], but modified to
simplify comparison to the other definitions presented in this work. First, while
[CH07] focuses on bidirectional PRE, we consider unidirectional PRE. Secondly,
we modify the definition to use persistent, rather than ephemeral, reencryption
keys (see Remark 1). Finally, we add an intialization stage Setup and generally
adapt the syntax to coincide with the notation used throughout this work.11

The core concept in the definition is that of derivatives of the challenge. In-
formally, a pair (i, ct) is a derivative of the challenge if the decryption Dec(skj , ct)
or the reencryption ReEnc(rki→j , ct) to some corrupted key index j would give
the adversary “illegitimate information” about the challenge ciphertext. The
precise formalization (Definition 11) is reminiscent of replayable CCA security
for standard encryption [CKN03].

Definition 10 (Proxy Reencryption: Security Game for Chosen Ci-
phertext Attacks (CCA) [CH07]). Let λ be the security parameter and A
be an oracle Turing machine. The HRA game consists of an execution of A with
the following oracles, which can be invoked multiple times in any order, subject
to the constraints below:

Setup: The public parameters are generated and given to A. A counter numKeys
is initialized to 0, and the sets Hon (of honest / uncorrupted indices) and
Cor (of corrupted indices) are initialized to be empty. This oracle is executed
first and only once.

Challenge Oracle: On input (i∗,m0,m1) where i∗ ∈ Hon and m0,m1 ∈ M,
sample a bit b← {0, 1} uniformly at random, compute the challenge cipher-
text ct∗ ← Enc(pki∗ ,mb). Return ct∗. This oracle can only be queried once.

Uncorrupted Key Generation: Obtain a new key pair (pknumKeys, sknumKeys) ←
KeyGen(pp) and give pknumKeys to A. The current value of numKeys is added
to Hon and numKeys is incremented.

Corrupted Key Generation: Obtain a new key pair (pknumKeys, sknumKeys) ←
KeyGen(pp) and given to A. The current value of numKeys is added to Cor
and numKeys is incremented.

Reencryption Key Generation OReKeyGen: On input (i, j) where i, j ≤ numKeys,
if i = j or if i ∈ Hon and j ∈ Cor, output ⊥. If OReEnc has not been executed
on input (i, j), compute and store rki→j ← ReKeyGen(ski, pkj). Output the
reencryption key rki→j

Reencryption OReEnc: On input (i, j, cti) where i, j ≤ numKeys, if j ∈ Cor and
(i, cti) is a derivative of (i∗, ct∗), return ⊥. Otherwise, let ctj ← ReEnc(rki→j , cti),
and return ctj.

Decryption Oracle: On input (i, ct) where i ≤ numKeys, if the pair (i, ct) is a
derivative of (i∗, ct∗), then return ⊥. Otherwise, return Dec(ski, ct).

11 Unlike the CPA definition of [ABH09], the CCA definition in [CH07] does not divide
the security game into three distinct phases. Rather, it allows calls Corrupted /
Uncorrupted Key Generation calls to be made at any time.

26



Decision: On input a bit b′ ∈ {0, 1}, return win if b = b′.

The CCA advantage of A is defined as

AdvAcca(λ) = Pr[win],

where the probability is over the randomness of A and the oracles in CCA game.

Definition 11 (Derivative). Derivatives of (i∗, ct∗) are defined inductively as
follows.

1. (i∗, ct∗) is a derivative of itself.

2. If OReEnc has been queried on input (i, j, cti), returning output ctj, then
(j, ctj) is a derivative of (i, cti).

3. If (i, ct) is a derivative of (i∗, ct∗), and (i′, ct′) is a derivative of (i, ct), then
(i′, ct′) is also a derivative of (i∗, ct∗).

4. If OReKeyGen has been queried on (i, j) and Dec(j, ctj) ∈ {m0,m1}, then
(j, ctj) is a derivative of (i, cti) for all cti.

The first three conditions prevent an adversary from learning the bit b′ by a
chain of reencryption queries resulting ending to a corrupted key or ending with
a decryption query. The purpose of the fourth condition is the same: it applies
the same protections to ciphertexts that the adversary reencrypts locally.

Definition 12 (Proxy Reencryption: CCA Security [ABH09]). Given
a security parameter 1λ, a proxy reencryption scheme is CCA secure if for all
probabilistic polynomial-time adversaries A, there exists a negligible function negl
such that

AdvAcca(λ) <
1

2
+ negl(λ)

B.2 CCA and HRA Security

It may seem that CCA security should imply HRA security. Intuitively, CCA
security allows the adversary to make relatively unrestricted queries to both
OReEnc and ODec, whereas HRA restricts the adversary to making only honest
reencryption queries to OReEnc. However the fourth type of derivative restricts
the CCA adversary in a way that stymies a naive attempt at a reduction.

The CCA definition of derivative is over-inclusive: it includes all ciphertexts
that could in principle be derived from the challenge. On the other hand, the
HRA security game restricts reencryption queries only when the ciphertext is
actually a derivative of the challenge. The adversary may reencrypt other en-
cryptions of the challenge messages, so long as those encryptions were honestly
generated independently from the challenge ciphertext.

27



B.3 Separating IND-CCA0,1 and IND-CCA2,0

The definition of CCA security presented above grants the adversary access to
ODec and OReEnc both before and after receiving the challenge ciphertext. Just
as in the case of Enc-CCA-1 and Enc-CCA-2 security for standard encryption, it
is natural to consider how the definition is altered by restricting the adversary’s
access to one or both oracles to the period before the challenge.

The work of [NAL15] formalize this problem by considering a family of secu-
rity definitions IND-CCAd,r parameterized by a pair of numbers d, r ∈ {0, 1, 2}.
The parameter d = 2 means ODec is unrestricted, d = 1 means that ODec is
restricted to before the challenge, and d = 0 means that ODec is unavailable.
Similarly, the parameter r defines the availability of OReEnc. IND-CCA2,2 corre-
sponds to CCA security as defined above, whereas IND-CCA0,0 corresponds to
CPA security.

In Theorems 4.6, [NAL15] show that IND-CCA2,0 6=⇒ IND-CCA0,1. That
is, even if a PRE scheme is secure with unrestricted access to ODec, it may be
insecure with restricted access to OReEnc. We now prove a (stronger) converse.
Our construction also demonstrates the failure of the intuition—described in the
Introduction and motivating the original definition of CPA security—that access
to OReEnc is as powerful as ODec.

Theorem 5 (IND-CCA0,2 6=⇒ IND-CCA1,0). If there exists a PRE scheme that
is IND-CCA0,2 secure, then there exists a PRE scheme that is IND-CCA0,2 secure
but not IND-CCA1,0 secure.

Proof. Suppose PRE is IND-CCA0,2 secure, and let > be a special symbol that
is not a valid ciphertext. Define a new scheme PRE′ by modifying decryption as
follows:

Dec′(sk, ct) :=

{
Dec(sk, ct) if ct 6= >
sk if ct = > .

PRE′ is IND-CCA0,2 secure: without access to ODec, the view of the adversary is
independent of whether the challenger uses PRE or PRE′.

PRE′ is not IND-CCA1,0 secure: observe that a single call to ODec(i
∗,>) allows

the adversary to learn the challenge secret key ski∗ and thereby distinguish
encryptions of m0 and m1.

28


	What about Bob?  The Inadequacy of CPA Security for Proxy Reencryption

