
With one it is easy, with many it gets complicated:
Understanding Channel Security for Groups

Giorgia Azzurra Marson and Bertram Poettering

Ruhr University Bochum, Germany
{giorgia.marson,bertram.poettering}@rub.de

Abstract. Secure messaging systems such as TextSecure and Signal aim, among others, at pro-
viding authenticated and confidential channels between two or more communicating users. The
general understanding seems to be that providing security in the sense of authenticated encryption
(AE) for every point-to-point link suffices to make the constructed messaging systems secure, i.e.,
authentic and confidential. However, as recently shown (in FSE17/ToSC17), in the bidirectional
(two-party) case, just requiring the two unidirectional links to provide security independently of
each other does not lead to a secure communication channel in general. Briefly, the reason for this
is that security notions need to take into account the increased level of interaction between users.
This also applies, a fortiori, in a multi-user setting where many parties communicate concurrently
and in multiple directions. We observe that in the current academic literature there is no rigor-
ous definition of security for (broadcast) group communication. Applying the method of provable
security, we fill this gap by defining security goals and showing how to provably achieve them.
Concretely, the contributions of this paper are as follows: We develop a set of formal definitions of
security goals for broadcast communication, capturing targets like confidentiality and authenticity.
Our notions in particular take into account the causal dependencies that exchanged messages might
have. (Note that these have no counterpart in the much simpler unidirectional case.) We then switch
to the constructive side, designing an efficient protocol that requires only reliable point-to-point
links between users and a standard cryptographic building block (AEAD), achieving all security
goals defined in this paper. Our work thus paves the ground towards understanding the exact level
of security that current secure messaging systems achieve.

Keywords: secure messaging, group communication, confidentiality, integrity, causality preservation

1 Introduction

Secure channels One of the fundamental applications of cryptography is secure point-to-point commu-
nication, more precisely establishing a secure channel to transport messages over an untrusted medium.
Prominent examples of secure channels (a.k.a. cryptographic channels) that protect a reliable connection
over TCP/IP are the SSL/TLS protocol suite [7] and the SSH remote shell protocol [27]. Due to their
widespread deployment, both TLS and SSH have been extensively studied in the cryptographic literature
(for instance, in [3,18,10,11,1]). The resulting analyses identify confidentiality, integrity, and protection
against reordering and replay attacks as the main security goals of these types of channel. While the
above goals are suitable for channel types allowing to reliably transmit a sequence of messages from a
sender to a receiver in one direction, they do not fit the more realistic scenario in which two parties
communicate simultaneously in both directions. This mismatch between how TLS and SSH are modeled
in theory and how they are used in practice was recently pointed out in [15]. Beyond pinpointing sur-
prising results concerning the bidirectional security of channels, [15] extends confidentiality and integrity
notions from the unidirectional setting to the bidirectional case. As it turns out, explicitly including the
bidirectional flavor of interactiveness in the model is crucial for understanding and reaching security.

Motivated by the above observations, in this work we make a further step towards understanding
channel security in the context of interactive communication: we consider a broadcast setting in which
two or more parties interact (by exchanging messages) with all other parties.

Group conversations A broadcast channel allows a group of participants to exchange messages in a
broadcast fashion: All participants may transmit, and all transmissions target and reach the whole group

(i.e., all individuals). Such a setting is typical, e.g., in group messaging systems, but also automated
communication systems like interconnected bank computers rely on such infrastructure. Ideally, we would
like to lift the security notions of security for bidirectional channels to the broadcast setting. What we
immediately notice is that, if more than two users participate in a conversation, the usual requirement
of sequential delivery (i.e., that messages originating from each given user are received in the same order
they were sent) may not be sufficient to guarantee that users have a faithful view on the conversation.
We discuss below, and illustrate in Figure 1, some problematic situations that may occur in a three-party
conversation, even though messages are transmitted reliably according to the sending order.

A B C
never do?

withdraw

(a) Scenario #1

A B C
Thu party?

cancelled . . . lled

Fri
ex

am?

(b) Scenario #2

A B C
party?

cancelled . . . edexam?

fridayfriday

(c) Scenario #3

Fig. 1. Misunderstandings caused by causality violations. Vertical dashed lines symbolize per-party timelines
(time progresses top-down), bullets represent broadcast and receiving actions.

Consider a chatroom situation like the one illustrated in Figure 1a. Alice starts a conversation by
asking around what the other participants would never do in their life; Bob, being proud of his current
submission to his favorite conference, would never withdraw his paper and answers with “withdraw the
submission!”; Charlie, a co-author of Bob, misses Alice’s initial question, by consequence misunderstands
Bob, and ultimately withdraws their joint paper against Bob’s will. A slightly different issue is illustrated
in Figure 1b. This time Alice asks Bob for the exact time of a party planned at his place that is losely
scheduled for Thursday night. Due to an exam on Friday, Bob decides to cancel the party and notifies his
friends. Meanwhile, Charlie asks when the exam on Friday will be, and understands from Bob’s answer
that the exam (and not the party) has been canceled. In the same context, the situation illustrated
in Figure 1c is even more severe. Alice asks for the day of the party and learns from Bob that it
has been canceled. Charlie instead makes an inquiry about the exam, which will be on Friday as Bob
announces. However, Charlie first receives Bob’s first message, then Alice’s question, and finally Bob’s
second message. In the end, not only Charlie misses a chance to take the exam, he even shows up on Friday
night at Bob’s place expecting a party. Note that although these situations may look artificial, they are
perfectly in line with the delivery guarantees offered by point-to-point TCP connections. In particular,
network adversaries have full control over message delivery and can easily arrange the corresponding
delays.

Consistency through causality preservation Situations like the ones described in Figure 1 are
ordinary in the context of group communication. The technical solution to misunderstandings of this
type, classic in the domain of distributed systems, is to enforce deliveries that preserve the causality
relation among messages. With other words, no participant shall receive a message if they have not
yet received all messages sent before (here, ‘before’ is understood in a global sense).1 Concretely, in
all situations depicted in Figure 1, if causality was preserved, Charlie would receive Alice’s message
before receiving anything from Bob, and no misunderstanding would occur. Protocols that efficiently
realize a causal broadcast infrastructure are well-known in the literature (we reproduce a standard
construction in Figure 4). However, such protocols typically do not give guarantees on the causal delivery
of messages in the face of adversaries that control the network. (Also, they do not provide confidentiality
and authenticity against such adversaries.)
1 The notion of time considered in causality is abstract and defined independently of physical time.

2

We are not the first to identify aspects of causality preservation as relevant security properties for
group messaging protocols. For instance, security issues related to participants having inconsistent views
about the ongoing conversation were recognized in [8]. (While their work does not explicitly mention
causality, the informal description of a ‘consistent view’ suggests that causality preservation may be an
implicit goal.) A protocol for secure group communication that explicitly targets a kind of causal delivery2

appears in [20]. More recently, [16] refers to ‘transcript consistency’ as one of the ideal properties that
the TextSecure v2 messaging protocol should fulfill. Causality preservation is also listed as one of the
relevant ‘conversation security’ properties in [26]. More precisely, [26] proposes a taxonomy of desirable
properties for two-party and group conversations, and indicates which ones among well-known protocols
for secure messaging (claim to) achieve these properties. According to [26], specific configurations of
OTR [17], GOTR [13], OldBlue [9], KleeQ [20], Axolotl [19], and TextSecure [14] offer some form of
causality preservation (however, not on formal grounds).

Despite the increasing interest in preserving causality in secure messaging, there is yet no formal
treatment of this notion as a security property.3 Moreover, we note that all above-mentioned works
consider causality aspects in secure messaging as independent of the other security requirements such
as confidentiality and integrity. We argue instead that ‘standard’ security notions shall be adapted to
incorporate the concept of causality within.

1.1 Contribution and organization

In the face of the wide-spread use of group chat apps, we feel that the security of causal broadcast
channels in general, and of causality-preserving secure messaging in particular, deserves a closer look.
Understanding causality from the perspective of cryptography as well as constructing corresponding
secure schemes is the main goal of the present work. We treat secure broadcast channels as a generalization
of bidirectional channels to the multi-user setting and, following the tradition of provable security, give
rigorous formalizations of the novel functionality requirements (causality preservation) and of appropriate
security notions. Notably, our extended notions of confidentiality and integrity incorporate aspects related
to causality that have no counterpart in the simpler, bidirectional case.

The paper is organized as follows. After introducing some notation in Section 2, in Section 3 we specify
a generalized syntax for (not necessarily cryptographic) broadcast channels. We further give a formal
functionality definition and show how causal broadcast can be achieved from simpler network primitives.
We proceed with defining integrity and confidentiality notions for broadcast channels in Section 4, where
we also investigate how our confidentiality and integrity notions are related to each other. Finally, in
Section 5 we propose a cryptographic protocol that provably meets the strongest confidentiality and
integrity properties proposed in this paper.

1.2 Related work

Causality. Starting with Lamport’s groundbreaking work on (distributed) logical clocks [12], the role
of causality in communication systems has been extensively investigated in the distributed systems
community. For a survey on logical time, its connections to causality, and related notions we suggest
the work by Schwarz and Mattern [25]. Also cryptographic challenges related to causality have been
recognized and studied extensively. Although targeting more general problems arising in the context
of secure replication of services, Reiter and Birman [21] consider attacks on causality that specifically
exploit causality violations among service requests, and propose countermeasures. In the same vein,
Reiter and Gong [22] highlight the importance of detecting causal relations between messages exchanged
by distributed processes; they introduce the notions of causality denial (making a server believe that a
pair of causally related messages is not in such a relation) and causality forgery (convincing a server of
a causality relation which does not exist). More recently, Cachin et al. [6] combined different techniques
from modern cryptography and distributed computing to improve secure solutions of service replication.
Among several variants of reliable broadcast primitives they propose a causal broadcast protocol which
2 In fact, it targets a stronger property that implies causality.
3 The concept of causality is well-understood in distributed systems. Indeed, broadcast protocols that enforce
causality have existed for decades. However, we stress that these protocols do not, and in fact are not meant
to, also enforce causality in the presence of active adversaries that control the network.

3

tolerates a Byzantine adversary and offers input causality—a property introduced in [21] ensuring that
honest servers deliver client requests in the right order and that exchanged messages remain secret until
delivery.

We observe that while many of the works discussed above employ cryptographic techniques for solving
problems from distributed computing, none of them addresses what we are interested in: the confidential
and authentic exchange of messages in multi-directional channels.

Secure messaging (for groups). In their systematization of knowledge (SoK) paper, Unger et al. [26]
list security properties that are targeted (or claimed) by several protocols for secure messaging. Among
these, the properties that are closest to ours are causality preservation, meaning that ‘implementations
can avoid displaying a message before messages that causally precede it,’ and global transcript, requiring
that ‘all participants see all messages in the same order.’ As [26] only provide informal descriptions of
these properties and seem to address functionality rather than security, a close comparison with our
notions is out of reach.

In the context of improving the off-the-record protocol to support group communication, Goldberg et
al. [8] introduce a property that resembles the global transcript requirement of Unger et al. This property,
refered to as consensus, is concerned with the participants’ view of the ongoing conversation (where
the view contains, among others, also the exchanged messages in the ‘right order’). The corresponding
definition given in [8] is rather informal, and it is unclear to us whether the message ordering is meant
to also respect causality, or only weaker delivery guarantees.

Another work that targets a global transcript property is by Reardon et al. [20]. These authors propose
a protocol, called KleeQ, that is meant to provide secure group communication in ad-hoc networks with
limited connectivity. As for the above-mentioned papers, the lack of formal (functionality and) security
notions makes this work incomparable to ours.

2 Notation

To initialize an empty array X we write X[] ← ∅. For N ∈ N we denote by 0N the all-zero vector of
length N . If v is a vector of length N and if i ∈ [1 .. N], then v[i] denotes the component of v at position i.
If also w is a vector of length N , we write v ≤ w if ∀i : v[i] ≤ w[i], and we write v 6≤ w if ∃i : v[i] > w[i].
We denote boolean values by T (true) and F (false). Given a condition C we may use the shortcuts C
and ¬C for the expressions C = T and C = F, respectively. If A is a deterministic algorithm, y ← A(x)
indicates that A is run on input x and its output is assigned to variable y. If A is randomized and its
coins are uniformly picked, we write y ←$ A(x).

Our security definitions are in the game-based tradition. A game G is a randomized procedure that
runs internally an adversary A and eventually outputs a bit. Within an algorithmic specification of a
game G we write ‘Stop with b’, for b ∈ {0, 1}, to indicate that G halts and outputs b, and we denote
by G(A) ⇒ b the corresponding event. The adversary may also call subroutines that are provided as
oracles. Within a subroutine we write ‘Give x to A’ to indicate that the adversary obtains value x when
the subroutine terminates. We write ‘Return’ to terminate the execution of an algorithm/subroutine that
does not produce any output visible to the adversary.

3 Causal Broadcast Channels

3.1 Broadcast Channels

We consider multiple parties4 that exchange messages in a broadcast fashion using two dedicated algo-
rithms: bc (broadcast) and rcv (receive). Conceptually, these algorithms connect the application and the
network layers in the top-down and bottom-up directions, respectively: When a sender wishes to broad-
cast a message to the other users they invoke the bc algorithm with that message, and when a participant
receives a datagram5 from the network they invoke the rcv algorithm with the datagram and an identifier
4 We use the words party, participant, and user synonymously.
5 Datagrams should be understood as encapsulations of messages or, more pragmatically, as the data that
is actually transmitted over the network. In the cryptographic literature, these objects are referred to as
‘ciphertexts’ (as they coincide, most often, with the output of an encryption primitive).

4

of the alleged sender. Internally, the two algorithms may invoke the abstract subroutines snd (send) and
dlv (deliver), where snd initiates the transport of a given datagram to an indicated other user, and dlv
delivers a given message to the local user, indicating also the (alleged) sender of that message. Both the
bc and rcv algorithms may be randomized and keep state between invocations.

We formalize the above ideas as follows. Let N denote the total number of participants, and letM
be a message space and D be a datagram space. Let i, j ∈ [1 .. N] indicate two users. Subroutine snd
is invoked as per snd(i, j, D) if datagram D ∈ D shall be sent by user i to user j. Similarly, subroutine
dlv is invoked as per dlv(i, j, m) if message m ∈ M shall be delivered at user i, and the message was
broadcast (allegedly) by user j. Both subroutines, snd and dlv, require i 6= j and have no output. A
helpful shorthand form for expressing the two syntactical conventions is

[1 .. N]× [1 .. N]×D → snd and [1 .. N]× [1 .. N]×M→ dlv .

To broadcast messages m ∈ M, users invoke the bc algorithm as per st′ ← bcsnd,dlv(st; m), where st, st′

are the original and the updated state, respectively. Similarly, users can receive datagrams D ∈ D
by invoking st′ ← rcvsnd,dlv(st; j, D), where j ∈ [1 .. N] indicates from which other user the datagram
originates. If S is the state space, the shorthand forms for algorithms bc, rcv are thus

S ×M→ bcsnd,dlv → S and S × [1 .. N]×D → rcvsnd,dlv → S .

The interplay of the bc, rcv, snd, dlv algorithms is also illustrated in Figure 2.

application

protocol

network

bc

rcv

dlv(i, ·, ·) dlv(i, ·, ·)

snd(i, ·, ·) snd(i, ·, ·)

Fig. 2. Overview of the broadcast and receiving algorithms.

Before starting with the communication, the state of users has to be initialized. The corresponding
procedure may choose identifiers for the users, initialize buffers, establish cryptographic keys, etc. For-
mally, we require that there be a randomized algorithm init that, on input a number of users N , outputs
for each user i ∈ [1 .. N] an individual initial state sti. For expressing that N users shall be initialized we
correspondingly write (st1, . . . , stN)←$ init(N).

Definition 1. A broadcast channel Ch for a message space M consists of a datagram space D, a state
space S, and algorithms init, bc, and rcv, that follow the syntax specified above. Note that bc and rcv are
defined in respect to abstract subroutines snd and dlv.

3.2 Vector clocks and causality

We aim at designing secure broadcast channels that preserve causal relations between broadcast and
delivered messages. Informally, causal delivery means that no party can deliver a given message if they
have not yet delivered all messages that were broadcast before (where ‘before’ is meant globally, i.e.,
according to Lamport’s happened before relation [12]). For instance, in a situation like the one of Figure 1a,
causal delivery would guarantee that Charlie does not deliver Bob’s message until he has delivered Alice’s
message.

A standard technique, developed in the domain of distributed systems, for checking whether causal de-
livery is maintained is through vector clocks (or vector timestamps). The idea is that each user i ∈ [1 .. N]
maintains a vector vci of counters that is initialized to 0N and updated upon bc and dlv invocations. Con-
cretely, element vci[i] is incremented whenever user i performs a broadcast operation, and element vci[j]

5

is incremented whenever i delivers a message with alleged originator j. Whether a delivery occurs in the
right causal order is then verified as follows: Let vci be the vector clock of user i immediately before deliv-
ering message m from user j, and let vcj be the vector clock of user j right before broadcasting m. Then
the delivery is according to causal order if and only if vcj ≤ vci, i.e., if party i has already delivered all
messages broadcast before. Explained in more detail, the condition means that user i, when delivering m,
(i) did not deliver from j more often than j broadcast until m (this is expressed by vcj [j] ≤ vci[j]),
(ii) did not deliver from any other user k /∈ {i, j} more often than j did at the moment of broadcasting m
(formally, vcj [k] ≤ vci[k]), and, in addition, (iii) that user j did not deliver from i more often than i
had broadcast (formally, vcj [i] ≤ vci[i]). Note that if the underlying network offers reliability and FIFO
delivery, (i) and (iii) are always fulfilled. The vector clock formalism provides us with a handy tool to
verify that specific causality relations are met. In the rest of this section we will make use of this tool to
define the functionality (a.k.a. correctness) requirement of a causal broadcast protocol.

3.3 Causal broadcast from reliable point-to-point connections

In this section we specify the functionality goal of causal broadcast channel protocols built on top of a
FIFO network, i.e., reliable point-to-point links with first-in-first-out delivery. Intuitively, the requirement
is that if the conditions assumed of the network are met then the constructed channel provides causal
delivery. That is, if datagrams are received (via rcv) in the same order they were sent (via snd) then all
delivered (via dlv) messages have been previously broadcast (via bc) by the alleged senders; moreover,
deliveries happen according to the causal order among messages.

To formalize the above intuition we follow the game-based approach. We describe a functionality
game FUNC, specified in Figure 3, in which an adversary A is given access to the broadcast algorithms bc
and rcv through oracles bc and rcv. The goal of the adversary in this game is to violate correctness, i.e.,
to deliver messages with wrong content or in wrong order. One can view A as a scheduler that triggers
the communication between users by requesting the execution of bc and rcv for users on input of messages
and datagrams of A’s choosing.

When oracle bc is queried on input (i, m), it invokes the broadcast algorithm on input message m and
the current state sti (i.e., of user i). Similarly, if A queries rcv on input (i, j, D) the oracle invokes the
receiving algorithm on input datagram D, alleged originator j, and the current state sti. These oracles,
beyond executing the channel algorithms on adversarial request, also informA of any sending and delivery
operation that occurs within the execution of bc and rcv. To this end, for every call snd(i, j, D) the oracle
gives a tuple (s, i, j, D) to the adversary as an indication that datagram D has been sent by user i to
user j. This reflects that the adversary controls the network and in particular knows which datagram
is transmitted by whom and to whom. Similarly, whenever dlv(i, j, m) is invoked, the oracle gives to A
a tuple (d, i, j, m) to report that message m has been delivered to user i with alleged originator user j.
This captures the adversary’s ability to observe the reaction of applications upon delivery of specific
messages.6

During the execution of the game, two specific events have to be considered: whether the adversary
remains passive, meaning that it only schedules rcv operations that are consistent with the guarantees
provided by the underlying network; and whether the adversary violates correctness.

Passiveness requires A to schedule rcv operations in a way that datagrams are transmitted faithfully
and sequentially, according to the sending order. This property is tested within every call to oracle rcv
(in line 16). For this, the experiment keeps boolean variables psvi, one for each user i ∈ [1 .. N], indicating
whether an active measure of the adversary against user i took place. Initially all flags are set to psv1 =
· · · = psvN = T. The flag of user i is set to psvi ← F when the adversary causes user i to receive from
some user j a datagram D that either does not originate from that user, or is not received according to
the sequential order (in contrast to the guarantees offered by the point-to-point reliable connection), or,
transitively, was sent by j after the latter itself was exposed to an active measure of the adversary. To
detect if any of the above conditions is satisfied, the game records for each pair of users (i, j) (equivalently,
for each point-to-point connection) the number sij of send operations performed by i to j as well as the
corresponding sequence Dij of sent datagrams, and the number rij of receive operations by i with alleged
6 In the functionality game, in contrast to the security games defined below, this ability actually does not give any
advantage to the adversary (by functionality, datagrams received faithfully will cause the delivery of previously
sent messages, which the adversary already knows).

6

originator j. Using these variables, the game sets psvi ← F in line 17 (meaning that user i is actively
attacked) when i receives from j more often than j sent (sji ≤ rij) or if they receive a datagram that
deviates from the genuine sequence (Dji[rij] 6= D). (See lines 21–23 for how the transitivity of setting
psvi ← F is implemented.)

Likewise, the game checks (in line 27) if there was a correctness violation in any invocation of dlv and,
if so, it declares the adversary successful and terminates the game with output 1. For the correctness test,
the game records the number bi of broadcast operations performed by i, the corresponding sequence Mi

of broadcast messages, as well as the number dij of delivery operations performed by i with alleged
originator j (note that vci[i] = bi and vci[j] = dij for all j ∈ [1 .. N] throughout the game), the current
vector clock vci of user i, and the sequence VCi of all vector clocks registered for user i immediately
before each of their broadcast operations (i.e., ∀n : 0 ≤ n < bi vector VCi[n] is the vector clock associated
to i before the n-th invocation of bc). Then, whenever an operation of type dlv(i, j, m) is performed, the
game flags a correctness violation in case the adversary is still passive and message m does not match
the genuine sequence of messages broadcast by j (bj ≤ dij or Mj [dij] 6= m), or its delivery does not
preserve causality (VCj [dij] 6≤ vci).

For a broadcast channel Ch, we define the advantage of an adversary A in the FUNC game as
Advfunc

Ch (A) = Pr[FUNC(A) ⇒ 1], where the probability is taken over the randomnesses of init, bc,
and rcv, and over A’s randomness. In this paper we demand perfect correctness, i.e., Advfunc

Ch (A) = 0 for
every (even unbounded) adversary A.

Game FUNCCh,N (A)
00 For i← 1 to N :
01 psvi ← T
02 bi ← 0; vci ← 0N

03 Mi[]← ∅; VCi[]← ∅
04 For j ← 1 to N , j 6= i:
05 sij , rij , dij ← 0
06 Dij []← ∅
07 (st1, . . . , stN)←$ init(N)
08 Abc,rcv

09 Stop with 0

Oracle bc(i, m)
10 Mi[bi]← m
11 VCi[bi]← vci

12 sti ←$ bcsnd,dlv(sti; m)
13 bi ← bi + 1
14 vci[i]← bi

15 Return

Oracle rcv(i, j, D)
16 If sji ≤ rij or Dji[rij] 6= D:
17 psvi ← F
18 sti ←$ rcvsnd,dlv(sti; j, D)
19 rij ← rij + 1
20 Return

Proc snd(i, j, D)
21 If psvi:
22 Dij [sij]← D
23 sij ← sij + 1
24 Give (s, i, j, D) to A
25 Return

Proc dlv(i, j, m)
26 If psvi:
27 If bj ≤ dij or Mj [dij] 6= m or VCj [dij] 6≤ vci:
28 Stop with 1
29 dij ← dij + 1
30 vci[j]← dij

31 Give (d, i, j, m) to A
32 Return

Fig. 3. Game for correctness of (cryptographic) causal broadcast channels. Note that vci always reflects the
current contents of bi and dij : vci[i] = bi and j 6= i⇒ vci[j] = dij .

We point out that the network guarantees—here FIFO ordering—are reflected by the operations snd
and rcv (these are the interfaces between protocol and network layers), while the delivery properties that
applications expect—causal ordering—concern operations bc and dlv (which provide interfaces between
application and protocol layers).

3.4 Construction of causal broadcast channels

We reproduce a standard construction of a causal broadcast protocol, known in the distributed systems
literature as waiting causal broadcast [5], built on top of reliable point-to-point connections like TCP/IP.
As we assume reliability and FIFO delivery from the underlying network, the goal is to leverage these
properties to causal delivery guarantees at the application layer. The core idea is to let each user store
incoming messages in N − 1 queues, one for each possible sender, and to wait until the time to deliver
these messages has come. The ‘right’ delivery time is determined by counting how many messages have
been broadcast and delivered so far (concretely, this is done using vector clocks). Intuitively, the FIFO
property is reflected in the use of queues to store incoming messages, while causal delivery is achieved
by keeping and comparing vector clocks. The details of the construction are given in Figure 4. We give
a proof of correctness (as per game FUNC) in Appendix A.

7

Algo init(N)
00 For i← 1 to N :
01 reji ← F
02 bi ← 0; vci ← 0N

03 For j ← 1 to N , j 6= i:
04 rij , dij ← 0
05 Qij []← ∅
06 Encode into state sti:

reji, bi, vci, rij , dij , Qij

07 Return (st1, . . . , stN)

Algo bcsnd,dlv(sti; m)
08 If reji: Goto line 14
09 D ← (vci, m)
10 For all j ∈ [1 .. N], j 6= i:
11 snd(i, j, D)
12 bi ← bi + 1
13 vci[i]← bi

14 Return sti

Algo rcvsnd,dlv(sti; j, D)
15 If reji: Goto line 25
16 Parse D as (vc, m)
17 If parsing fails:
18 reji ← T; Goto line 25
19 Qij [rij]← (vc, m)
20 rij ← rij + 1
21 While exist vc′, m′, j′ 6= i s.t.

(vc′, m′) = Qij′ [dij′] and vc′ ≤ vci:
22 dlv(i, j′, m′)
23 dij′ ← dij′ + 1
24 vci[j′]← dij′

25 Return sti

Fig. 4. Waiting causal broadcast. State variables bi, rij , dij are broadcast, receive, and delivery counters, respec-
tively. Data structure Qij [] implements a queue in which incoming datagrams are stored, in the order of their
arrival, until they are eventually delivered (and implicitly removed).

4 Cryptographic Broadcast Channels

After defining broadcast channels and their functionality, we have seen how they can be constructed.
However, quite obviously, the protocol in Figure 4 does not provide any resilience against active net-
work adversaries that are interested in learning exchanged message contents or in altering them. In this
section we study cryptographic broadcast channels. Syntactically and functionally such channels are like
regular broadcast channels, but they also give security guarantees. Concretely, we formalize four security
properties: integrity of plaintexts and integrity of ciphertexts as authentication notions, and indistin-
guishability against chosen-plaintext attacks and indistinguishability against chosen-ciphertext attacks
as confidentiality notions. We then study how these notions relate to each other. Our notions are in the
style of [2], [4], and [3] for symmetric (authenticated) encryption.

4.1 Notions of Integrity

We define two notions of authenticity: integrity of plaintexts (INT-PTXT) and integrity of ciphertexts
(INT-CTXT). Intuitively, the former guarantees that all messages delivered to users are authentic in the
sense that they were broadcast by some other user before (in the causal sense), while the latter ensures
that once a user’s rcv algorithm is exposed to a manipulated datagram the algorithm is isolated from user
and network so that it cannot do harm to anybody. The two notions are different in spirit in that while
INT-PTXT is formulated from the point of view of the application, which cares about the integrity of
what it sees (messages) and not of what is transferred on the wire (datagrams), INT-CTXT cares about
what happens on the wire and not what is delivered to the application. Importantly, only INT-PTXT
explicitly requires that deliveries happen in causal order. (However, as we shall prove, causal delivery is
implicitly also ensured by INT-CTXT.)

We start with the formalization of plaintext integrity. The corresponding experiment is in Figure 5. It
is best explained by comparing it with the broadcast functionality game from Figure 3: Recall that in the
FUNC game the adversary wins by making the dlv algorithm deliver a message that was either never sent
by the alleged sender or is delivered out of order (in the causal sense), and all this preconditioned on the
adversary remaining passive. For defining the INT-PTXT notion we drop the latter requirement and allow
the adversary to be active. To a channel Ch and a number of users N we assign the INT-PTXT advantage
of an adversary A as Advint-ptxt

Ch,N (A) = Pr[INTptxt
Ch,N (A) ⇒ 1], where the probability is over the game’s

randomness including over A’s coins. Intuitively, channel Ch offers plaintext integrity if Advint-ptxt
Ch,N (A) is

small for all realistic N and A.
We next formalize ciphertext integrity, based on the experiment in Figure 6. Here the rcv oracle

is as in the FUNC game, watching out for the adversary performing an active attack by injecting an
out-of-order datagram (in the FIFO sense). The INT-CTXT notion demands that actively attacked users
refuse such manipulated datagrams and become inoperative. The latter is formalized by requiring the
channel not to invoke that party’s snd and dlv procedures any further. We define the advantage of an

8

Game INTptxt
Ch,N (A)

00 For i← 1 to N :
01 bi ← 0; vci ← 0N

02 Mi[]← ∅; VCi[]← ∅
03 For j ← 1 to N , j 6= i:
04 dij ← 0
05 (st1, . . . , stN)←$ init(N)
06 Abc,rcv

07 Stop with 0

Oracle bc(i, m)
08 Mi[bi]← m
09 VCi[bi]← vci

10 sti ←$ bcsnd,dlv(sti; m)
11 bi ← bi + 1
12 vci[i]← bi

13 Return

Oracle rcv(i, j, D)
14 sti ←$ rcvsnd,dlv(sti; j, D)
15 Return

Proc snd(i, j, D)
16 Give (s, i, j, D) to A
17 Return

Proc dlv(i, j, m)
18 If bj ≤ dij or Mj [dij] 6= m or VCj [dij] 6≤ vci:
19 Stop with 1
20 dij ← dij + 1
21 vci[j]← dij

22 Give (d, i, j, m) to A
23 Return

Fig. 5. Game for INT-PTXT security of cryptographic causal broadcast channels.

adversary A as Advint-ctxt
Ch,N (A) = Pr[INTctxt

Ch,N (A)⇒ 1]. Intuitively, channel Ch offers ciphertext integrity
if Advint-ctxt

Ch,N (A) is small for all realistic N and A.

Game INTctxt
Ch,N (A)

00 For i← 1 to N :
01 psvi ← T
02 For j ← 1 to N , j 6= i:
03 sij , rij ← 0
04 Dij []← ∅
05 (st1, . . . , stN)←$ init(N)
06 Abc,rcv

07 Stop with 0

Oracle bc(i, m)
08 sti ←$ bcsnd,dlv(sti; m)
09 Return

Oracle rcv(i, j, D)
10 If sji ≤ rij or Dji[rij] 6= D:
11 psvi ← F
12 sti ←$ rcvsnd,dlv(sti; j, D)
13 rij ← rij + 1
14 Return

Proc snd(i, j, D)
15 If ¬psvi: Stop with 1
16 Dij [sij]← D
17 sij ← sij + 1
18 Give (s, i, j, D) to A
19 Return

Proc dlv(i, j, m)
20 If ¬psvi: Stop with 1
21 Give (d, i, j, m) to A
22 Return

Fig. 6. Game for INT-CTXT security of cryptographic causal broadcast channels.

4.2 Notions of Confidentiality

We define the confidentiality notions IND-CPA and IND-CCA that consider passive and active adver-
saries, respectively. Our games, in Figures 7 and 8, use the left-or-right indistinguishability approach:
If the adversary queries the bc oracle on messages m0 and m1, then message mb is picked and broad-
cast, and the resulting datagrams are made available to the adversary, where b is a secret challenge bit.
Intuitively, the scheme is confidential if no adversary can distinguish the b = 0 from the b = 1 world.
The adversary further has access to a rcv oracle to advance the state of the corresponding participant.
The difference between the notions IND-CPA and IND-CCA is about the kind of datagrams that can be
submitted to rcv: The former notion considers passive adversaries, i.e., those that provide the rcv oracle
with exclusively those datagrams that were output by the snd procedure before (see lines 09 and 10
of Figure 7 on how this type of passive behavior is enforced), while the latter notion considers active
adversaries and has no such restriction.

Formally, for any causal broadcast channel Ch and any number N we define the IND-CPA advantage of
an adversary A as Advind-cpa

Ch,N (A) = |Pr[INDcpa,1
Ch,N (A)⇒ 1]−Pr[INDcpa,0

Ch,N (A)⇒ 1]|. Intuitively, channel Ch
offers indistinguishability under chosen-plaintext attacks if the advantage Advind-cpa

Ch,N (A) is small for all
realistic N and A. The IND-CCA advantage Advind-cca

Ch,N (A) for the security notion of indistinguishability
under chosen-ciphertext attacks is defined analogously.

4.3 Relations Among Security Notions

We gave four security definitions for causal broadcast channels: two formalizing confidentiality notions
and two formalizing authenticity notions. We next prove three implications between these notions, show-
ing that they are not independent of each other: (1) IND-CCA security implies IND-CPA security,

9

Game INDcpa,b
Ch,N (A)

00 For i← 1 to N :
01 For j ← 1 to N , j 6= i:
02 sij , rij ← 0
03 Dij []← ∅
04 (st1, . . . , stN)←$ init(N)
05 b′ ←$ Abc,rcv

06 Stop with b′

Oracle bc(i, m0, m1)
07 sti ←$ bcsnd,dlv(sti; mb)
08 Return

Oracle rcv(i, j, D)
09 If sji ≤ rij or Dji[rij] 6= D:
10 Stop with 0
11 sti ←$ rcvsnd,dlv(sti; j, D)
12 rij ← rij + 1
13 Return

Proc snd(i, j, D)
14 Dij [sij]← D
15 sij ← sij + 1
16 Give (s, i, j, D) to A
17 Return

Proc dlv(i, j, m)
18 Give (d, i, j, �) to A
19 Return

Fig. 7. Game for IND-CPA security of cryptographic causal broadcast channels.

Game INDcca,b
Ch,N (A)

00 For i← 1 to N :
01 psvi ← T
02 For j ← 1 to N , j 6= i:
03 sij , rij ← 0
04 Dij []← ∅
05 (st1, . . . , stN)←$ init(N)
06 b′ ←$ Abc,rcv

07 Stop with b′

Oracle bc(i, m0, m1)
08 sti ←$ bcsnd,dlv(sti; mb)
09 Return

Oracle rcv(i, j, D)
10 If sji ≤ rij or Dji[rij] 6= D:
11 psvi ← F
12 sti ←$ rcvsnd,dlv(sti; j, D)
13 rij ← rij + 1
14 Return

Proc snd(i, j, D)
15 If psvi:
16 Dij [sij]← D
17 sij ← sij + 1
18 Give (s, i, j, D) to A
19 Return

Proc dlv(i, j, m)
20 If psvi:
21 Give (d, i, j, �) to A
22 Else:
23 Give (d, i, j, m) to A
24 Return

Fig. 8. Game for IND-CCA security of cryptographic causal broadcast channels.

(2) INT-CTXT security implies INT-PTXT security, (3) IND-CPA and INT-CTXT together imply
IND-CCA security. Note that while the first implication might be very expected (the adversary in
IND-CPA is more restricted than in IND-CCA), proving the second is more involved and leverages
on the perfect correctness of the channel protocol. Also proving the third implication is involved; its
result will be key in the analysis of our construction presented in Section 5.

Lemma 1 (IND-CCA =⇒ IND-CPA). Let Ch be a broadcast channel that offers indistinguishabil-
ity under chosen-ciphertext attacks (IND-CCA). Then Ch also offers indistinguishability under chosen-
plaintext attacks (IND-CPA). More precisely, for every adversary A there exists an adversary B such
that

Advind-cpa
Ch,N (A) ≤ Advind-cca

Ch,N (B) .

The running time of B is about that of A. Further, the number of bc and rcv queries it poses is the same
as that of A.

Proof. The proof is based on the observation that the IND-CPA game is a specifically restricted variant
of the IND-CCA game, and that thus any adversary that breaks the former security notion also breaks
the latter security notion. The formal argument builds on the fact that for any adversary A it is straight-
forward to construct an adversary B such that Pr[INDcpa,b

Ch,N (A)⇒ 1] = Pr[INDcca,b
Ch,N (B)⇒ 1], for b ∈ {0, 1}.

(This is possible because public information is sufficient to check in oracle rcv of Figure 8 whether A is
passive or not.) Ultimately this shows |Pr[INDcpa,1

Ch,N (A)⇒ 1]−Pr[INDcpa,0
Ch,N (A)⇒ 1]| = |Pr[INDcca,1

Ch,N (B)⇒
1]− Pr[INDcca,0

Ch,N (B)⇒ 1]|, and thus the claim. ut

Lemma 2 (INT-CTXT =⇒ INT-PTXT). Let Ch be a broadcast channel that offers integrity of
ciphertexts (INT-CTXT). Then Ch also offers integrity of plaintexts (INT-PTXT). More precisely, for
every adversary A there exists an adversary B such that

Advint-ptxt
Ch,N (A) ≤ Advint-ctxt

Ch,N (B) .

The running time of B is about that of A. Further, the number of bc and rcv queries it poses is the same
as that of A.

10

Proof. Fix any N . Consider the game G0 := INTptxt
Ch,N from Figure 5. Derive from G0 the game G1 by

replacing the main game body, the rcv oracle, and the snd procedure by the corresponding versions of
game FUNCCh,N from Figure 3, leaving unmodified the bc oracle and the dlv procedure. Note that these
are pure rewriting steps that do nothing more than introducing variables for tracking the internals of
the game, in particular the psvi flags. That is, the changes do not affect the winning probability of the
adversary. Thus, Pr[G1(A)⇒ 1] = Pr[G0(A)⇒ 1].

Derive now game G2 from G1 by adding as first lines of the snd and dlv procedures the conditional
abort instruction ‘If ¬psvi: Stop with 0’. Compare G2 with the game INTctxt

Ch,N from Figure 6 and observe
that the newly added instructions make a difference only for those adversaries A that are successful with
(implicitly) breaking the INT-CTXT property. Formally, for any A there exists a reduction B such that
|Pr[G2(A)⇒ 1]− Pr[G1(A)⇒ 1]| = Advint-ctxt

Ch,N (B).
Observe finally that every adversary that wins in game G2 also wins in game FUNCCh,N . (This is be-

cause winning in G2 is possible only by having dlv be invoked in a ‘psvi = T’ state, and in this case the win-
ning conditions of G2 and game FUNCCh,N are the same.) Thus Pr[G2(A)⇒ 1] ≤ Pr[FUNCCh,N (A)⇒
1]. As we assume perfect correctness, all in all we have Pr[G0(A) ⇒ 1] = Advint-ctxt

Ch,N (B), and thus the
claim. ut

Theorem 1 (IND-CPA + INT-CTXT =⇒ IND-CCA). Let Ch be a broadcast channel that offers
indistinguishability under chosen-plaintext attacks (IND-CPA) and integrity of ciphertexts (INT-CTXT).
Then Ch also offers indistinguishability under chosen-ciphertext attacks (IND-CCA). More precisely, for
every adversary A there exist adversaries B0,B1, C such that

Advind-cca
Ch,N (A) ≤ Advint-ctxt

Ch,N (B0) + Advint-ctxt
Ch,N (B1) + Advind-cpa

Ch,N (C) .

The running times of B0,B1, C are about that of A. Further, the number of bc and rcv queries they pose
is the same as that of A.

Proof. Fix any N . For b ∈ {0, 1} consider the games Gb
0 := INDcca,b

Ch,N from Figure 8. Derive from Gb
0

the games Gb
1 by inserting in the snd and dlv procedures, right before lines 15 and 20, the conditional

abort instruction ‘If ¬psvi: Stop with 0’. Compare Gb
1 with the game INTctxt

Ch,N from Figure 6 and observe
that the newly added instructions make a difference only for those adversaries A that are successful with
(implicitly) breaking the INT-CTXT property. Formally, for anyA there exist (the obvious) reductions Bb

such that |Pr[Gb
1(A)⇒ 1]−Pr[Gb

0(A)⇒ 1]| = Advint-ctxt
Ch,N (Bb). Further, a comparison with Figure 7 shows

that for any A there exists a reduction C such that Pr[Gb
1(A) ⇒ 1] = Pr[INDcpa,b

Ch,N (C) ⇒ 1]. (This holds
because public information is sufficient to check in oracle rcv whether A is passive or not.) Using the
triangle inequality (and using a shortcut notation that neither annotates A nor the probabilities) we
have |G1

0−G0
0| ≤ |G1

0−G1
1|+ |G1

1−G0
1|+ |G0

1−G0
0|. Together with the above this implies the claim. ut

5 Construction of Cryptographic Causal Broadcast

After defining the security goals of cryptographic causal broadcast in the previous section, we now
present a particular way to jointly achieve them. Our construction combines two ingredients: the (non-
cryptographic) protocol from Figure 4 that achieves causal broadcast from point-to-point links, and,
as a cryptographic primitive, an authenticated encryption with associated data (AEAD) scheme. For
reference, we recall syntax, functionality, and security definitions of AEAD in Appendix B.

The algorithms of our construction are in Figure 9. As they need to achieve the functionality re-
quirements of causal broadcast, not surprisingly their structure is similar to that of the algorithms from
Figure 4. The design challenge was to augment the routines by AEAD invocations at the right spots and
in the right dosage, so that we could reach two overall goals simultaneously: security (our construction
provably meets all security notions defined in this paper), and efficiency (we aimed at minimizing the
number of AEAD invocations per execution of bc/rcv.)

Let us compare the algorithms of our construction with the ones from Figure 4. The init algorithms are
almost the same, the only difference being the fresh AEAD key K that is shared among all participants
of a broadcast channel instance. In the bc algorithm we see a slightly different structure: While in
Figure 4 one datagram D is computed and sent to all N − 1 other users, in our design each user gets its
individual datagram Dj . When creating it we include the identities of the sending and receiving users in

11

the associated data, as well as a transmission number, so that the adversary cannot replay datagrams or
issue them in the wrong order. Our rcv algorithm reverses the encryption step and recovers the messages.
Note that some of these might never be delivered to the corresponding user, as they might not have
appeared in the correct causal order. We caution that leaking information on waiting messages to the
user would likely harm the confidentiality of the scheme.

That our construction is correct (i.e., achieves the causal broadcast functionality) follows from the
fact that the protocol from Figure 4 is correct, plus the correctness of the AEAD. For the security
analysis, see below.

Algo init(N)
00 K ←$ Gen
01 For i← 1 to N :
02 reji ← F
03 bi ← 0; vci ← 0N

04 For j ← 1 to N , j 6= i:
05 sij , rij , dij ← 0
06 Qij []← ∅
07 Encode into state sti:

K, reji, bi, vci, sij , rij , dij , Qij

08 Return (st1, . . . , stN)

Algo bcsnd,dlv(sti; m)
09 If reji: Goto line 18
10 For all j ∈ [1 .. N], j 6= i:
11 adj ← i‖j ‖sij ‖vci

12 cj ← Enc(K; adj , m)
13 Dj ← (vci, cj)
14 snd(i, j, Dj)
15 sij ← sij + 1
16 bi ← bi + 1
17 vci[i]← bi

18 Return sti

Algo rcvsnd,dlv(sti; j, D)
19 If reji: Goto line 33
20 Parse D as (vc, c)
21 If parsing fails:
22 reji ← T; Goto line 33
23 ad ← j ‖ i‖rij ‖vc
24 m← Dec(K; ad, c)
25 If decryption fails:
26 reji ← T; Goto line 33
27 Qij [rij]← (vc, m)
28 rij ← rij + 1
29 While exist vc′, m′, j′ 6= i s.t.

(vc′, m′) = Qij′ [dij′] and vc′ ≤ vci:
30 dlv(i, j′, m′)
31 dij′ ← dij′ + 1
32 vci[j′]← dij′

33 Return sti

Fig. 9. Construction of cryptographic causal broadcast from reliable point-to-point connections.

5.1 Security analysis

We analyze the security of our broadcast channel constructed from reliable point-to-point connections
and an AEAD scheme, as specified in Figure 9. Our argument consists of three steps: first we show
that the IND-CPA security of the AEAD implies the IND-CPA security of the broadcast channel; we
then show that the INT-CTXT security of the AEAD implies the INT-CTXT security of the broadcast
channel; finally, as a corollary of the two results, we apply Theorem 1 to establish the IND-CCA security
of the broadcast channel.

Theorem 2 (IND-CPA security). Let Ch be the broadcast channel constructed in Figure 9 from
reliable point-to-point connections and an AEAD scheme AEAD. If the AEAD scheme offers (one-time)
indistinguishability under chosen-plaintext attacks (IND-CPA), also Ch offers indistinguishability under
chosen-plaintext attacks (IND-CPA). More precisely, for every adversary A against Ch there exists an
adversary B against AEAD such that

Advind-cpa
Ch,N (A) ≤ Advind-cpa

AEAD (B) .

The running time of B is about that of A, and B poses as many Enc queries as A poses bc queries.

Proof. For b ∈ {0, 1}, consider games Gb
0 from Figure 10. They are identical to games INDcpa,b

Ch,N from
Figure 7, but with the following rewriting steps applied: (a) the abstract bc and rcv algorithms are
instantiated with the ones from Ch, (b) as variables sij appear in both INDcpa,b and the specification
of Ch, but during game execution they would always carry the same values, they were unified, (c) the
variables rij from the Ch specification were renamed to r′

ij (the game variables rij were not renamed).
Further, in line 13 we added an instruction that populates associative array L with entries that map
associated-data–ciphertext pairs established by the AEAD algorithm Enc to the messages they decrypt

12

to. As none of the steps changes the output of the game we have Pr[INDcpa,b
Ch,N (A)⇒ 1] = Pr[Gb

0(A)⇒ 1]
for any A and b ∈ {0, 1}.

Consider next the games Gb
1 in Figure 10. The difference to Gb

0 is that they replace the invocation of
the AEAD algorithm Dec by a table look-up using associative array L. The key argument of why this is
possible is that in the IND-CPA setting the adversary remains passive, i.e., it only queries the rcv oracle
on ciphertexts that were output by the bc oracle before. Inspection shows that the mechanics enforced
by lines 21–22 indeed ensure that the vectors (j, i, r′

ij , vc, c) appearing in line 31 were first added to
array L in line 13. Thus, by the perfect correctness of AEAD, we have Pr[Gb

0(A)⇒ 1] = Pr[Gb
1(A)⇒ 1]

for any A and b ∈ {0, 1}.
Observe now that in the rcv oracle of games Gb

1 the messages m recovered in line 31 are never used.
(That is, they are stored in Qij and then removed again, but not ever any game action depends on their
value.) We thus define games Gb

2 that are like Gb
1 except that in line 13 the value � is stored in L instead

of message mb. We obtain Pr[Gb
1(A)⇒ 1] = Pr[Gb

2(A)⇒ 1].
In games Gb

2 the Enc invocation of line 12 can be simulated using the Enc oracle provided by an
IND-CPA challenger of the AEAD scheme. More precisely, there exists a straight-forward reduction B
such that Pr[Gb

2(A)⇒ 1] = Pr[INDcpa,b
AEAD(B)⇒ 1], for any A and b ∈ {0, 1}.

All in all we obtain |Pr[INDcpa,1
Ch,N (A) ⇒ 1] − Pr[INDcpa,0

Ch,N (A) ⇒ 1]| = |Pr[INDcpa,1
AEAD(B) ⇒ 1] −

Pr[INDcpa,0
AEAD(B)⇒ 1]|, and thus the claim. ut

Games Gb
0(A), Gb

1(A)
00 L[]← ∅; K ←$ Gen
01 For i← 1 to N :
02 reji ← F
03 bi ← 0; vci ← 0N

04 For j ← 1 to N , j 6= i:
05 sij , rij , r′

ij , dij ← 0
06 Dij []← ∅; Qij []← ∅
07 b′ ←$ Abc,rcv

08 Stop with b′

Oracle bc(i, m0, m1)
09 If reji: Goto line 20
10 For all j ∈ [1 .. N], j 6= i:
11 adj ← i‖j ‖sij ‖vci

12 cj ← Enc(K; adj , mb)
13 L[i, j, sij , vci, cj]← mb

14 Dj ← (vci, cj)
15 Dij [sij]← Dj

16 sij ← sij + 1
17 Give (s, i, j, Dj) to A
18 bi ← bi + 1
19 vci[i]← bi

20 Return

Oracle rcv(i, j, D)
21 If sji ≤ rij or Dji[rij] 6= D:
22 Stop with 0
23 If reji: Goto line 38
24 Parse D as (vc, c)
25 If parsing fails:
26 reji ← T; Goto line 38
27 ad ← j ‖ i‖r′

ij ‖vc
28 Only G0: m← Dec(K; ad, c)
29 Only G0: If decryption fails:
30 Only G0: reji ← T; Goto line 38
31 Only G1: m← L[j, i, r′

ij , vc, c]
32 Qij [r′

ij]← (vc, m)
33 r′

ij ← r′
ij + 1

34 While exist vc′, m′, j′ 6= i s.t.
(vc′, m′) = Qij′ [dij′] and vc′ ≤ vci:

35 Give (d, i, j′, �) to A
36 dij′ ← dij′ + 1
37 vci[j′]← dij′

38 rij ← rij + 1
39 Return

Fig. 10. Games Gb
0, Gb

1, b ∈ {0, 1}, used in the IND-CPA proof of Theorem 2. Games Gb
0 include all lines with

exception of line 31, and games Gb
1 include all lines with exception of lines 28–30.

Theorem 3 (INT-CTXT security). Let Ch be the broadcast channel constructed in Figure 9 from
reliable point-to-point connections and an AEAD scheme AEAD. If the AEAD scheme offers (one-time)
integrity of ciphertexts (INT-CTXT), also Ch offers integrity of ciphertexts (INT-CTXT). More precisely,
for every adversary A against Ch there exists an adversary B against AEAD such that

Advint-ctxt
Ch,N (A) ≤ Advint-ctxt

AEAD (B) .

The running time of B is about that of A. Further, B poses at most as many Enc and Dec queries as A
poses bc and rcv queries, respectively.

13

Proof. Consider game G0 from Figure 11. It is identical to game INTctxt
Ch,N from Figure 6, but with

the following rewriting steps applied: (a) the abstract bc and rcv algorithms are instantiated with
the ones from Ch, (b) as variables sij appear in both INTctxt and the specification of Ch, but dur-
ing game execution they would always carry the same values, they were unified, (c) the variables rij

from the Ch specification were renamed to r′
ij (the game variables rij were not renamed). Further, in

line 13 we added an instruction that populates a set L with the associated-data–ciphertext pairs that
emerge in the processing of the bc oracle. As none of the steps changes the output of the game we have
Pr[INTctxt

Ch,N (A)⇒ 1] = Pr[G0(A)⇒ 1] for any A.
Consider next the game G1 in Figure 11. The difference to G0 is that in lines 32–33 it has an added

abort instruction that is executed if the Dec invocation in line 29 fails to reject a ciphertext that was
not created by Enc before (in line 12). The probability that this condition is ever fulfilled is bounded
by the INT-CTXT advantage of an AEAD adversary: There exists an obvious reduction B such that
|Pr[G0(A)⇒ 1]− Pr[G1(A)⇒ 1]| ≤ Pr[INTctxt

AEAD(B)⇒ 1].
Let us finally assess the probability Pr[G1(A)⇒ 1]. To stop with 1, game G1 needs to run into either

line 15 or line 37 with psvi = F for some party i ∈ [1 .. N]. Note that the flags psvi are initially set to T
for all parties, and that they are cleared in exclusively line 23, namely when a datagram is provided to
the rcv oracle that is not in synchrony with what the bc oracle output before. Consider thus a query
(i, j, D) to rcv where D is not authentic such that the psvi flag of user i is cleared. If the query is posed
and condition reji = T is fulfilled, or if reji = T is set by lines 27 or 31 during the processing of the
query, then by lines 09, 24, 27, and 31 the instructions in lines 15 and 37 become unreachable (within
all further queries involving participant i). The one remaining possibility for stopping with 1 is that
line 32 is reached during the query in which flag psvi is cleared. But recall that the flag was cleared
due to an unauthentic ciphertext. This means that line 33 will abort the game with outcome 0. The
conclusion is that for no participant i the game will run into a ‘Stop with 1’ instruction. This means
Pr[G1(A)⇒ 1] = 0. The claim follows. ut

Games G0(A), G1(A)
00 L← ∅; K ←$ Gen
01 For i← 1 to N :
02 psvi ← T; reji ← F
03 bi ← 0; vci ← 0N

04 For j ← 1 to N , j 6= i:
05 sij , rij , r′

ij , dij ← 0
06 Dij []← ∅; Qij []← ∅
07 Abc,rcv

08 Stop with 0

Oracle bc(i, m)
09 If reji: Goto line 21
10 For all j ∈ [1 .. N], j 6= i:
11 adj ← i‖j ‖sij ‖vci

12 cj ← Enc(K; adj , m)
13 L← L ∪ {(i, j, sij , vci, cj)}
14 Dj ← (vci, cj)
15 If ¬psvi: Stop with 1
16 Dij [sij]← Dj

17 sij ← sij + 1
18 Give (s, i, j, Dj) to A
19 bi ← bi + 1
20 vci[i]← bi

21 Return

Oracle rcv(i, j, D)
22 If sji ≤ rij or Dji[rij] 6= D:
23 psvi ← F
24 If reji: Goto line 41
25 Parse D as (vc, c)
26 If parsing fails:
27 reji ← T; Goto line 41
28 ad ← j ‖ i‖r′

ij ‖vc
29 m← Dec(K; ad, c)
30 If decryption fails:
31 reji ← T; Goto line 41
32 Only G1: If (j, i, r′

ij , vc, c) /∈ L:
33 Only G1: Stop with 0
34 Qij [r′

ij]← (vc, m)
35 r′

ij ← r′
ij + 1

36 While exist vc′, m′, j′ 6= i s.t.
(vc′, m′) = Qij′ [dij′] and vc′ ≤ vci:

37 If ¬psvi: Stop with 1
38 Give (d, i, j′, m′) to A
39 dij′ ← dij′ + 1
40 vci[j′]← dij′

41 rij ← rij + 1
42 Return

Fig. 11. Games G0, G1 used in the INT-CTXT proof of Theorem 3. Game G0 includes all lines with exception
of lines 32–33, and game G1 includes all lines.

Corollary 1 (IND-CCA security). Let Ch be the broadcast channel constructed in Figure 9 from reli-
able point-to-point connections and an AEAD scheme AEAD. If the AEAD scheme offers both (one-time)

14

indistinguishability under chosen-plaintext attacks (IND-CPA) and (one-time) integrity of ciphertexts
(INT-CTXT), then Ch offers indistinguishability under chosen-ciphertext attacks (IND-CCA).

Proof. Combine the results of Theorems 1, 2 and 3. ut

References

1. Badertscher, C., Matt, C., Maurer, U., Rogaway, P., Tackmann, B.: Augmented secure channels and the goal
of the TLS 1.3 record layer. In: Au, M.H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 85–104.
Springer, Heidelberg, Germany, Kanazawa, Japan (Nov 24–26, 2015)

2. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In:
38th FOCS. pp. 394–403. IEEE Computer Society Press, Miami Beach, Florida (Oct 19–22, 1997)

3. Bellare, M., Kohno, T., Namprempre, C.: Authenticated encryption in SSH: Provably fixing the SSH binary
packet protocol. In: Atluri, V. (ed.) ACM CCS 02. pp. 1–11. ACM Press, Washington D.C., USA (Nov 18–22,
2002)

4. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions and analysis of the generic
composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer,
Heidelberg, Germany, Kyoto, Japan (Dec 3–7, 2000)

5. Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to Reliable and Secure Distributed Programming (2.
ed.). Springer (2011)

6. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous broadcast protocols. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–541. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 19–23, 2001)

7. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246 (Proposed
Standard) (Aug 2008), http://www.ietf.org/rfc/rfc5246.txt, updated by RFCs 5746, 5878, 6176

8. Goldberg, I., Ustaoglu, B., Van Gundy, M., Chen, H.: Multi-party off-the-record messaging. In: Al-Shaer, E.,
Jha, S., Keromytis, A.D. (eds.) ACM CCS 09. pp. 358–368. ACM Press, Chicago, Illinois, USA (Nov 9–13,
2009)

9. Gundy, M.D.V., Chen, H.: OldBlue: Causal Broadcast In A Mutually Suspicious Environment. Tech. rep.
(November 2012), http://matt.singlethink.net/projects/mpotr/oldblue-draft.pdf

10. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the standard model. In: Safavi-
Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 273–293. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 19–23, 2012)

11. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: A systematic analysis. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 18–22, 2013)

12. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565
(1978)

13. Liu, H., Vasserman, E.Y., Hopper, N.: Improved group off-the-record messaging. In: Sadeghi, A., Foresti, S.
(eds.) Proceedings of the 12th annual ACM Workshop on Privacy in the Electronic Society, WPES 2013,
Berlin, Germany, November 4, 2013. pp. 249–254. ACM (2013)

14. Marlinspike, M.: Advanced cryptographic Ratcheting. Blog (2013), https://whispersystems.org/blog/
advanced-ratcheting

15. Marson, G., Poettering, B.: Security Notions for Bidirectional Channels. IACR Transactions on Symmetric
Cryptology 2017(1), 405–426 (2017), http://tosc.iacr.org/index.php/ToSC/article/view/602

16. Private group messaging (2014), https://whispersystems.org/blog/private-groups
17. Off-the-Record Messaging. http://otr.cypherpunks.ca (2016)
18. Paterson, K.G., Ristenpart, T., Shrimpton, T.: Tag size does matter: Attacks and proofs for the TLS record

protocol. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 372–389. Springer, Heidel-
berg, Germany, Seoul, South Korea (Dec 4–8, 2011)

19. Perrin, T.: Double Ratchet Algorithm. GitHub wiki (2016), https://github.com/trevp/double_ratchet/
wiki

20. Reardon, J., Kligman, A., Agala, B., Goldberg, I.: KleeQ: Asynchronous key management for dynamic ad-
hoc networks. Tech. Rep. CACR 2007-03 (January 2007), http://cacr.uwaterloo.ca/techreports/2007/
cacr2007-03.pdf

21. Reiter, M.K., Birman, K.P.: How to securely replicate services. ACM TOPLAS 16(3), 986–1009 (1994)
22. Reiter, M.K., Gong, L.: Securing causal relationships in distributed systems. Comput. J. 38(8), 633–642

(1995), http://dx.doi.org/10.1093/comjnl/38.8.633
23. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.) ACM CCS 02. pp. 98–107.

ACM Press, Washington D.C., USA (Nov 18–22, 2002)

15

http://www.ietf.org/rfc/rfc5246.txt
http://matt.singlethink.net/projects/mpotr/oldblue-draft.pdf
https://whispersystems.org/blog/advanced-ratcheting
https://whispersystems.org/blog/advanced-ratcheting
http://tosc.iacr.org/index.php/ToSC/article/view/602
https://whispersystems.org/blog/private-groups
http://otr.cypherpunks.ca
https://github.com/trevp/double_ratchet/wiki
https://github.com/trevp/double_ratchet/wiki
http://cacr.uwaterloo.ca/techreports/2007/cacr2007-03.pdf
http://cacr.uwaterloo.ca/techreports/2007/cacr2007-03.pdf
http://dx.doi.org/10.1093/comjnl/38.8.633

24. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg, Germany, St. Petersburg, Russia
(May 28 – Jun 1, 2006)

25. Schwarz, R., Mattern, F.: Detecting causal relationships in distributed computations: In search of the holy
grail. Distributed Computing 7(3), 149–174 (1994), http://dx.doi.org/10.1007/BF02277859

26. Unger, N., Dechand, S., Bonneau, J., Fahl, S., Perl, H., Goldberg, I., Smith, M.: SoK: Secure messaging. In:
2015 IEEE Symposium on Security and Privacy. pp. 232–249. IEEE Computer Society Press, San Jose, CA,
USA (May 17–21, 2015)

27. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Protocol Architecture. RFC 4251 (Proposed Standard) (Jan
2006), http://www.ietf.org/rfc/rfc4251.txt

A Correctness of waiting causal broadcast

We prove that the causal broadcast protocol from Figure 4 (on page 8) fulfills the correctness property
specified in Section 3.3.

Theorem 4 (Correctness of waiting causal broadcast). Let Ch = (init, bc, rcv) be a broadcast
channel constructed according to Figure 4. If the network provides FIFO delivery then Ch provides a causal
broadcast channel. More precisely, for every (even unbounded) scheduler A we have Advfunc

Ch (A) = 0.

Proof. The core of the proof is to use the assumption of reliability of the network, i.e., that datagrams
are received in FIFO order and without modification, to show that delivery of messages also happens
without modification and according to a causal order. Specifically, we show that if pairs (vc, m) are
enqueued in a FIFO way (in line 19 of Figure 4), they are dequeued in a causal way (in line 21).

Consider the FUNC game from Figure 3, and fix arbitrary i, j ∈ [1 .. N], i 6= j. Note that the
assumption of FIFO delivery on the network is fulfilled as long as A remains passive, i.e., psvi = T for
all i ∈ [1 .. N]. We can thus assume wlog that A never sets psvi ← F in line 17—otherwise it would be
declared active and could not win the game in the first place—and hence whenever rcv(i, j, D) is invoked
it holds that sji > rij and Dji[rij] = D, meaning precisely that every datagram D that user i receives
from user j has been previously sent by j and that it arrives according to the corresponding sending
order. In particular, queries rcv(i, j, ∗) have the effect that a prefix of the datagram sequence Dji (i.e.,
datagrams sent by user j to user i) is stored in Qij .

Now, given the above assumption on the network, we will show that messages are delivered according
to causal order and without modification (formally: the condition specified in line 27 of Figure 3 never
holds). Observe that, by construction, every bc(stj ; m) operation induces snd(j, i, D) operations, for
all i 6= j, where D = (vc, m). Thus, the sequence of pairs stored in Qij contains a prefix of the sequence
of messages m broadcast by user j together with their associated counter vectors vc (see line 19 of
Figure 4).

Further, by construction, dlv operations happen as long as there exist vc′, m′, j′ 6= i such that
Qij′ [dij′] = (vc′, m′) and vc′ ≤ vci (see line 21 of Figure 4). Let us consider any i, j′, vc′, and m′ that
meet this property. Then, when invoking the corresponding delivery subroutine dlv(i, j′, m′)—meaning
that m′ is on its way to be delivered from user j′ to user i, but has not been delivered yet—in game FUNC
we have psvi = T (in line 26) by assumption, and thus

dij′ < rij′ ≤ sj′i = bj′ ,

where the first relation holds by construction (the numbers of dlv operations is dominated by the number
of rcv operations), the second by the assumption of FIFO delivery, and the third again by construction.

From the assumption of FIFO delivery we also can conclude that pair (vc′, m′) coincides with data-
gram Dj′ [dij′], and hence by construction we have m′ = Mj′ [dij′] and vc′ = VCj′ [dij′]. Finally, note
that vc′ ≤ vci (this is again by construction, otherwise pair (vc′, m′) could not be dequeued from Qij′

yet), hence in particular VCj′ [dij′] ≤ vci. Putting all together we have bj′ > dij′ and Mj′ [dij′] = m′ and
VCj′ [dij′] ≤ vci, (as in line 21 of Figure 3,) meaning that user i delivers message m′ from j′ in correct
causal order. ut

Note that the statement above also implies the correctness of the construction of Figure 9, as long as
the AEAD in use is also correct.

16

http://dx.doi.org/10.1007/BF02277859
http://www.ietf.org/rfc/rfc4251.txt

B Definitions of AEAD

We recall the definition of AEAD from [23], slightly adapting it to a new syntax. The security properties
that we give interpolate the ones of [23,24].

Definition 2 (AEAD). A scheme providing authenticated encryption with associated data (AEAD)
for a message spaceM and an associated data space AD consists of a key space K, a ciphertext space C,
and three algorithms, Gen, Enc, Dec, with the following syntax. The key generation algorithm Gen is
randomized, takes no input, and outputs a key K ∈ K. The encryption algorithm Enc, which may be
randomized or deterministic, takes a key K, an associated data string ad ∈ AD, and a message m ∈M;
its output is a ciphertext c ∈ C. Finally, the decryption algorithm Dec is deterministic and takes a
key K, an associated data string ad, and a ciphertext c; its output is a message m, or an indication that
decryption failed (the latter is often encoded by writing m = ⊥). A helpful shorthand form for expressing
this syntactical convention is

Gen→ K and K ×AD ×M→ Enc→ C and K ×AD × C → Dec→M/⊥ .

For correctness we require that for all K ∈ [Gen], ad ∈ AD, and m ∈ M, if c ∈ [Enc(K, ad, m)] then
Dec(K, ad, c) = m.

Note that we do not require Enc to be a randomized algorithm. The reason is that randomization is
not necessary in our application where the associated data input to Enc never repeats. Correspondingly,
the security definitions we give for AEAD are one-time notions in the sense that they do not promise
anything if the ad input is not fresh for each invocation of Enc. This is a weaker requirement than
standard, and thus allows for more efficient instantiations. (Or, put differently, if ‘only’ a randomized or
nonce-based AEAD scheme is at hand, it doesn’t hurt to use it). We formalize IND-CPA security as a
confidentiality notion and INT-CTXT security as an authenticity notion. It is a folklore result that an
AEAD scheme that fulfills both notions is actually IND-CCA secure.

Definition 3 (IND-CPA). We say scheme AEAD = (Gen, Enc, Dec) provides (one-time) indistin-
guishability under chosen-plaintext attacks (IND-CPA) if it is hard to distinguish the encryptions of
two messages in a passive attack. Formally, to an adversary A we assign the advantage Advind-cpa

AEAD (A) =
|Pr[INDcpa,1

AEAD(A)⇒ 1]−Pr[INDcpa,0
AEAD(A)⇒ 1]|, where the games are in Figure 12. Intuitively, the scheme

is secure if all realistic adversaries have small advantage.

Game INDcpa,b
AEAD(A)

00 D← ∅
01 K ←$ Gen
02 b′ ←$ AEnc

03 Stop with b′

Oracle Enc(ad, m0, m1)
04 If (ad, ·) ∈ D: Stop with 0
05 c←$ Enc(K; ad, mb)
06 D← D ∪ {(ad, c)}
07 Return c

Fig. 12. One-time IND-CPA security games for AEAD. Note that line 04 encodes the requirement for a fresh
associated data string per Enc query.

Definition 4 (INT-CTXT). We say scheme AEAD = (Gen, Enc, Dec) provides (one-time) integrity
of ciphertexts (INT-CTXT) if it is hard to find ciphertexts (beyond regularly created ones) that validly
decrypt. Formally, to an adversary A we assign the advantage Advint-ctxt

AEAD (A) = Pr[INTctxt
AEAD(A) ⇒ 1],

where the game is in Figure 13. Intuitively, the scheme is secure if all realistic adversaries have small
advantage.

Game INTctxt
AEAD(A)

00 D← ∅
01 K ←$ Gen
02 AEnc,Dec

03 Stop with 0

Oracle Enc(ad, m)
04 If (ad, ·) ∈ D: Stop with 0
05 c←$ Enc(K; ad, m)
06 D← D ∪ {(ad, c)}
07 Return c

Oracle Dec(ad, c)
08 m← Dec(K; ad, c)
09 If (ad, c) /∈ D and m 6= ⊥:
10 Stop with 1
11 Return m

Fig. 13. One-time INT-CTXT security game for AEAD. Note that line 04 encodes the requirement for a fresh
associated data string per Enc query.

17

	With one it is easy, with many it gets complicated:

