Indistinguishable Predicates: A New Tool for
Obfuscation

Lukas Zobernig, Steven D. Galbraith and Giovanni Russello
The University of Auckland
Email: {lukas.zobernig, s.galbraith, g.russello}@auckland.ac.nz

Abstract—Opaque predicates are a commonly used technique
in program obfuscation, intended to add complexity to control
flow and to insert dummy code or watermarks. We survey a
number of methods to remove opaque predicates from obfuscated
programs, hence defeating the intentions of the obfuscator. Our
main contribution is an obfuscation technique that introduces
opaque constant predicates that are provably indistinguishable
from obfuscations of certain other predicates in the program.
Our technique resists all known efficient static attacks on opaque
predicates. We present an evaluation of our implementation
of the scheme. This includes measurements of its performance
impact on an obfuscated instance versus a vanilla one and
an experimental verification that the obfuscator is functionality
preserving.

I. INTRODUCTION

Program obfuscation is a general tool used to protect intel-
lectual property (IP) from reverse engineering. This paper is
concerned with obfuscating predicates. Opaque predicates [1],
[2], [3], [4], [5] are commonly used to add complexity to
control flow and to insert dummy code or watermarks. For
example, a reverse-engineer may compute the control flow
graph (CFG) of a program and then try to deduce something
about the structure of the program from this information.
Opaque predicates are constant predicates (always true or
always false) that have been obfuscated with the intention of
hiding the fact they are constant. One can add complexity to
the CFG by introducing opaque predicates that appear to create
extra branches and program blocks, even though these blocks
are never executed when the program is run.

A major problem with current software obfuscation schemes
that protect compiled applications is that they are not secure
against automated attacks. Typical schemes that complicate
the CFG can be broken by using static analysis [5], [6], [7],
[8], [9], [10], [11]. Other obfuscation approaches based on
virtual machines are readily defeated by employing advanced
dynamic analysis and symbolic execution techniques [12],
[13]. In case all automated attacks fail, an adversary could
always try to manually deobfuscate programs by employing
enough reverse engineering manpower. Thus it is interesting
and important to build and improve on existing schemes to
make them more resilient against deobfuscation by both static
and dynamic approaches.

A. Our Contribution

We aim to improve the existing obfuscation approach of
using constant predicates to introduce complexity into a pro-
gram’s control flow graph. First, we survey known attacks

that can determine whether a given obfuscated predicate is
constant or not. We present new attacks that detect constant
predicates using approaches that have been considered for
deobfuscation before, such as taint analysis. In this work,
we mainly consider static program analysis. Once a constant
predicate is identified, the control flow of the obfuscated
program can be simplified, and any blocks of dummy (non-
executed) code can be removed. Second, we present an ob-
fuscation technique that creates opaque (constant) predicates
that are indistinguishable from obfuscations (”dressed”) of real
predicates in the program. This means it is infeasible for an
adversary to distinguish between originally existing predicates
in a program and the ones we introduce in the obfuscation step.

Our solution is applicable when obfuscating programs or
program segments that contain a large number of constant
comparisons (“if x = ¢” where x is a variable and c a constant)
or variable comparisons (“if y = ax + 0” where = and y are
variables). These are very common code constructs and we
have found libraries such that around 80% of predicates are
of this form. Our tool obfuscates these predicates and also
inserts opaque predicates (obfuscated constant predicates) to
complicate the control flow. The main security property of
our tool is that the real predicates and opaque predicates are
indistinguisghable under automated static attacks. We give
both theoretical and experimental evidence to support our
security claim.

We have implemented our proposed obfuscation scheme on
top of the LLVM compiler infrastructure as a generic compiler
plugin. This allows our obfuscator to target the many different
high level programming languages that compile to LLVM
bitcode, such as C and C++ for example. It further allows us
to support all the different processor architectures that LLVM
compiles to, such as x86(_64) and ARM(64) to name a few.
We use our LLVM based implementation of the proposed
scheme to show how it affects the execution performance of
selected examples of open source code.

B. Outline

The remainder of this work is structured as follows. Sec-
tion II presents related work and other program obfuscation
approaches. In Section III, we present our attack model and
a list of static detection methods for constant predicates. Sec-
tion IV formalises the different classes of predicates we will
use throughout this work. In Section V, we construct a special
class of constant predicates and explain our construction of

mailto:lukas.zobernig@auckland.ac.nz
mailto:s.galbraith@auckland.ac.nz
mailto:g.russello@auckland.ac.nz

transforming existing predicates in a program to appear to
be of the same form as our constant predicates. Finally, in
Section VI, we close the gap between constant predicates
and obfuscation. Section VII presents a discussion of how to
improve our approach in case of a dynamic attacker setting.
In Section VIII, we present our current implementation and
in Section IX, we discuss the performance impact of our
obfuscation scheme when applied to real code. Section X
concludes our paper and presents future research directions.

II. RELATED WORK

In this section we survey the literature on obfuscation. On
the one hand, transformations to various levels of a program’s
representation are applied [14], [15], [16]. Obfuscation is
possible on a source code or an intermediate language level.
Alternatively, one can obfuscate the processor instructions that
a compiled program consists of. The goal of transforming
existing program instructions is to hide the underlying func-
tionality. This means that an addition might for example be
rewritten as a subtraction of a negative number. An exclusive
or operation could be written as a series of not and statements.
It is possible to extend this basic idea to be applied to more
complex statements, such as transforming a mathematical for-
mula to a different and ideally more complex one that exhibits
the same functionality [17]. This idea captures the general
idea of most obfuscation schemes in use today. Additionally,
we can also consider instructions that modify themselves at
runtime to change their functionality [18].

Instead of transforming existing program instructions, an-
other strategy is to introduce superfluous or inert instructions
interleaved with the original ones. Special care has to be
taken such that the new instructions do not interfere with the
original computation. This opens the schemes up for different
types of attacks that filter the superfluous instructions from an
obfuscated sequence by means of dynamic program analysis
and taint tracking [6], [19], [20], [21]. These attacks seek
to remove the added instructions and restore the original
sequence. Other dynamic approaches are based on symbolic
or concolic (concrete+symbolic) execution using SMT solvers
[22], [23]. Certain obfuscation schemes are weak against
symbolic execution. To counteract this, control flow loops are
transformed in a way that increases symbolic execution time.

Yet another method is concerned with execution flow
through a program’s control flow graph [24]. The considered
approaches range from introducing superfluous control flow
[25], [26] to flattening control flow which rewrites a control
flow graph into a state machine [27]. In general, a control
flow transformation always needs to be chosen in a way that
the original control flow is contained in the newly generated
control flow graph while introducing artificial complexity. The
problem with these techniques is that they are susceptible to
automated deobfuscation techniques [6]. Control flow flatten-
ing for example can be combatted by using dynamic analysis
to identify the state variable and after that rebuilding the
original control flow graph by interpreting the state machine.

As we have already stated, another possibility to introduce
additional superfluous control flow into a program is by
using obfuscated constant predicates. A further application
of constant predicates is to encode watermarking information
in the program code. This can be utilised by a vendor to
distribute unique instances of a compiled program to different
consumers. In the event of an unauthorized redistribution of
commercial software, watermarking can thus be helpful to
uniquely identify the initial source.

Another heavily used technique is virtualisation which
rewrites existing processor instructions into instructions that
are executed by a virtual processor [7], [12], [28], [29],
[30]. This processor is then either emulated by interpreting
the virtual instructions or by just-in-time compilation and
execution on the target architecture. The latter solution is
very similar to what existing platforms like Java and .NET
are doing for optimising execution speed. However, obfusca-
tors based on virtualisation have been completely broken by
dynamic analysis and taint tracking to extract the embedded
functionality in terms of target processor instructions [13],
[31].

III. ATTACKS ON OPAQUE PREDICATES

We now survey techniques to detect obfuscated constant
predicates. The possible methods involve human interaction
as well as automated algorithmic interaction [2], [5].

Let P : X — {0,1} be a predicate (here the element 1
will usually represent the Boolean true and the element O the
Boolean false), computed in an obfuscated program segment,
where X is the predicate’s domain. We wish to have automated
tools to determine whether P(x) is constant or not, i.e. whether

Vee X :P(z)=p

for p constant. If we can solve this problem, then we can
build an automated reverse engineer tool that takes an ob-
fuscated program, enumerates all its predicates, determines
which are constant, and then removes the predicates and any
non-executed program blocks. By iterating the process the
adversary can try to recover the original version of the program
or a close version of it.

We shall first consider a static attacker that does not execute
the program. Later in the section we consider dynamic attacks.

A. Brute Force Search

If X is a small enough set that one can efficiently execute
the program P(x) for all | X| possible values « € X then one
can easily check if P(z) is an obfuscated constant predicate.
For example, if = is a 32-bit word then this requires 232
executions of the program segment, which is non-trivial but
feasible. On the other hand, if = is a 64-bit word then
this requires 2% executions of the program segment and
this is probably more work than one wants to spend on a
simple reverse-engineering task. Here we are assuming that the
running time of P(x) is more-or-less constant. However, the
task may be easier if the value P(z) can already be computed
more quickly on some large subset of inputs.

TABLE III.1: List of constant predicates often found in liter-
ature and obfuscation solutions. These predicates have been
constructed to always evaluate to the same result independent
of the input value. Here the value z is usually considered as
an unsigned integer of a fixed bitlength or as an element of
Z/2™7.

Ty? — 1 # 22

20z(x 4+ 1)

3lz(z +1)(z +2)

2 >0

Tz2+1%0 mod 7

224+ x+7#0 mod 81

x > 0 for € I random where / C X \ {0} a random interval

As an example susceptible to a brute force attack, we
consider the predicate P(x) = “2|z(x + 1)” where z is an
8-bit byte interpreted as an unsigned integer in [0, 255]. This
predicate tests whether x(x 4 1) is divisible by 2, which is
always true. A brute-force automated tool can obviously try
all x and determine that the predicate is constant.

B. Probabilistic Check

Instead of trying all x € X, one could choose a number of
randomly chosen € X and execute the program segment to
compute P(z) for all these values. If the output is always the
same then one might suspect that P is a constant predicate
and hence flag it for removal from the program.

The danger is that the program segment may be an obfus-
cation of a valid predicate that is “mostly” constant (examples
of such predicates frequently occur in programs, such as error
handling, loop termination conditions, and evasive functions
like password checks). Hence this approach is risky. But it
is sensible as a pre-processing before applying more sophisti-
cated methods to determine if a predicate is constant or not.

C. Pattern Matching

We have surveyed the literature [1], [3], [32], [33], as
well as studied samples of code produced by both free and
commercial obfuscation solutions, to collect specific proposals
for obfuscated constant predicates. Surprisingly, there are
relatively few predicates that are used over and over again.
TABLE III.1 list the most-used constant predicates.

One immediately realises that this leads to a possible
dictionary attack, where one takes obfuscated predicates from
the program being attacked and pattern-matches the source
code against example code for the predicates in TABLE III.1.
This attack has been mentioned in [1], [3] in the context of
removing watermarking.

As an example, we consider the open source implementation
of Obfuscator-LLVM [33]. It uses a unique static constant
predicate P(x,y) = y < 10V 2|z(x + 1) where x and
y are global program variables. In this case we can simply
apply pattern matching to the instructions to detect all opaque
predicates in the obfuscated program. Once we have detected
such a constant predicate, we are able to clean up the control

flow graph by removing the predicate and the superfluous
execution path. Hence we see that this pattern-matching attack
already defeats (very efficiently) the use of opaque predicates
in most obfuscators in the open literature.

Of course, it is easy to create additional constant predicates
that are not listed in TABLE III.1, but this does not seem to
have been done in any large-scale way in current obfuscation
solutions. One can also use the approach in [1] to introduce
a class of constant predicates that is parametrised by some
parameter n (a multiple of an algebraic identity for example).
Even though this methods yields a large set of different
constant predicates, it is still possible to detect them using
a pattern matching approach, so the attack is still powerful.

Pattern matching is partially independent of the processor
architecture. A first approach is to implement the matching
for certain common processor architectures that known obfus-
cation solutions target. In a generalisation of this approach,
the matching rules are given in terms of a higher level
intermediate language such as LLVM for example. In this more
general case, translators from different processor architectures
to the intermediate language are required. The advantages
are that future matching rules can be given in terms of the
intermediate language and new processor architectures are
readily supported by implementing new translators. This way a
new architecture automatically supports all the existing known
constant predicates already.

D. Automated Proving

Another approach to determining if a program segment
computes a constant predicate is to run an SMT-solver. We
shall call an obfuscated predicate P : X — {0,1} SMT-
solvable if a SMT solver is able to efficiently answer whether
P is constant or not. It is clear that this strongly depends on
the size of the space X and the complexity of P.

As an example consider again the predicate P(x) =
“2)z(x + 1)” where X is some subset of Z. A human or
automated solver could come up with a proof that the predicate
is constant by expanding P(z) for x = 2k and « = 2k + 1,
where k € Z. We verify that P(2k) is always true and
P(2k + 1) is always true.

E. Taint Analysis

Instead of considering the code for a predicate in isolation
we can look at the code blocks that are selected by the
conditional expression. Fig. 1 presents in (a) a code block and
in (b) an obfuscated constant predicate (that is always true)
and a code block (“dummy code”) that is never executed. If
the “dummy code” is chosen poorly then there may be no data
dependency on the input variables of an obfuscated function.
Taint analysis [21] can then be used to identify code blocks
with no data dependencies. Hence, one can use taint analysis
to flag predicates as being potentially constant. This is a more
dynamic type of attack than considered in the earlier sections.

F. Execution Traces

This is essentially a dynamic version of the probabilistic
check mentioned in Section III-B. One executes the obfuscated

< - ¥

y + f(x)

|
A

Yy

(a) Original input control flow graph. The basic block produces an
output y that depends on the input x.

X
I
I

Y
’ constant predicate ‘

‘y — f(x) ‘ ’dummy code‘

N s
N s

N
(

g
\
\‘/

!

¥
Yy

(b) Control flow graph obfuscated by introducing a constant predicate.
Note that the inserted basic block does not depend on the input x.

Fig. 1: Example of extracting the original CFG from obfus-
cated CFG using taint analysis. The nodes that have no data
dependence on the input can be ignored when extracting the
logic that operates on the input.

program in a debugger or other controlled environment and
records the computed values of all predicates. Since the
predicates are being evaluated on actual executions of the
program, it is possible to identify nearly-constant predicates
such as loop terminations. As with the probabilistic check, this
approach allows to efficiently flag certain predicates as being
opaque, but one cannot be certain that the program obtained
by removing all such predicates is error free.

IV. CLASSES OF PREDICATES

For future reference we briefly introduce some terminology
that is relevant in our discussion of predicates.

Definition 1. A predicate P on a set X is called evasive if
Pr,. x[P(z)=1] < ﬁ

for some small constant c.

In other words, a predicate is evasive if it is false for almost
all inputs = € X.

In practice one should consider different classes of pred-
icates. A class C of predicates is evasive if each predicate
individually is evasive and if, for each = € X, the probability
over all P + C that P(x) = 1 is small. An example of an
evasive predicate class is the set of password check functions
P(z) = “x == pw” over all possible passwords.

Since it is hard to find an input = that satisfies an evasive
predicate class, this class of predicates is a good candidate for
obfuscation, and there is a large literature on the problem [34],
[35].

Definition 2. A predicate P is called balanced if

Pr,. x[P(xz)=0] = %

This means that for a balanced predicate the probability for
it to evaluate to either value in {0, 1} is the same.

Definition 3. A predicate P is called noticeable if

1
Vp € {0,1} : Pry x[P(z) = p] > m

where | X| = 2.

Noticeable predicates can be efficiently distinguished from
constant predicates by the probabilistic check method of
Section III-B.

V. INFEASIBLE PREDICATES

This section describes our main contribution, which is an
obfuscation tool for constant and certain evasive predicates.
Our obfuscation tool is based on standard cryptographic no-
tions such as hash functions and encryption. We will consider
classes C of predicates and show that no adversary can
efficiently determine if an obfuscated predicate in the class
is constant or not.

A. Obfuscating Constant Comparison Functions using Hash
Functions

It is folklore that one can obfuscate a password check
(constant comparison) “x == pw” using a cryptographic hash
function H by computing h = H(pw) and publishing the
obfuscated predicate “H (x) == h”. This has been considered
before to hide code checking for malware triggers [36] for
example. We will use this idea to give an obfuscation process,
such that no efficient adversary can distinguish whether the
obfuscated predicate is a constant predicate or a constant
comparison.

The following lemma is a basic tool in our security analysis.
We use the notation € for the empty string, and if w,v are
binary strings we write u||v for their concatentation.

Lemma 1. Ler H : {0,1}" — {0,1}"™ be a cryptographic
hash function. For each 1 < k < n let X}, = {0,1}*. Define
an oracle O that takes as input (Xj,t € {0,1}" %y €
{0,1}™) and returns 1 if there exists © € Xy such that
H(z||t) = y and O otherwise. Then given y € {0,1}"
one can, using polynomially many calls to O, compute some
x € {0,1}"™ such that H(z) =y or determine that no such x
exists.

Proof. Calling O(X,,€,y), where e is the empty string,
decides if x exists or not. If x exists, set t; = € and
iterate the following process for : = 0,1,2,...: Given that
O(Xn—i ti,y) = 1 we call O(X,,_(541),0[|ts, y). If the result
is 1 then set ¢; 1 = 0||t;, else set t;41 = 1||t;. On termination
we set x = t,. L]

With this result in hand, here is our construction of an
obfuscator. Let H : {0,1}" — {0,1}™ be a cryptographic

hash function. Let X = {0,1}* C {0,1}". Let C be
the class consisting of all constant comparison predicates

P(z) = “x == ¢” for x,c € X together with the constant
predicate P(z) = 0. To obfuscate a comparison predicate
“r == ¢” for some ¢ € X the obfuscator randomly chooses

t € {0,1}" % and computes C = H(c||t). The obfuscated
predicate P(x) computes y = H(z||t) and then checks if
y=C.

To make an opaque predicate (obfuscate the constant func-
tion) we choose a random C' € {0,1}" and ¢t € {0,1}"*
and publish the obfuscated predicate P(x) that computes
y = H(x||t) and checks if y = C. With probability 1/2"—*
there is no solution = € {0, 1}* to this equation, and so with
high probability the predicate is always false.

Theorem 1. Ler H : {0,1}™ — {0,1}" be a hash function
such that it is hard to compute pre-images.. Then, there does
not exist any efficient adversary that, for all X = {0,1}* and
for any obfuscated predicate as above, can determine whether
the predicate is constant or not.

Proof. Let A be an efficient adversary that, for all k, takes
an obfuscated predicate on X = {0,1}* and determines if
the predicate is constant or a constant comparison. Then A
performs the function of the oracle O in Lemma 1. Hence one
can use A (executed at most n times) to compute a preimage of
H. But this contradicts the assumption that the hash function
is preimage-resistent. O

It is natural to use a cryptographic hash function in this con-
struction, but note that we do not require collision resistance
for the security result. Hence one can consider less strong
hash functions than many other crypto applications (and also
shorter output lengths). One can also consider replacing H
with a deterministic encryption function.

B. Obfuscation using Homomorphic Encryption

We now consider a different class of predicates, that are
still evasive. Let X = Z/qZ (for example with ¢ = 2™) and
let k € N. Consider the class Cy, of predicates P(x1,...,xg),
each corresponding to a vector (a1,...,ax) € X* that return
1 if and only if

ap+a1xy + -+ apzrry =0 (mod q). (V.1)

This is a large class of predicates (there are ¢**' elements
in Cy). The class is evasive: If (ag,a,...,ar) € X* is not
known then the probability that a random input (z1,...,zy) €
X satisfies the predicate is 1/q. Such predicates have been
considered in [35].

An important member of this class is the variable com-
parison predicate P(x,y) = “z == y”. Predicates of this
form appear frequently in real programs, and it is valuable to
produce tools to obfuscate them. However, it is important to
remember that attacks such as those given in Section III can
always be used to test whether an obfuscated predicate is of
a particular form (for example, executing it on inputs that are
known to satisfy the predicate; in this case on pairs (z,x)).

Hence the tools in this section are most appropriate when the
program naturally contains a rich variety of predicates from
the class Cj,.

The solution from [35] relies on the discrete logarithm
problem. Let g be an element of a group, such that the order
of g is g and such that the discrete logarithm problem is
hard (hence we require ¢ to be very large). One can publish
bog = g™, by = g**,..., b = g* as the obfuscated predicate.
On input (x1,...,x;) € X* the program computes

1 T2 Tk __ aoJer’: a;T;
bobl - b5 b = g 106

If the predicate is true then this is the element 1 = ¢" in the
group, otherwise it is a random group element.

We can extend this approach using homomorphic encryp-
tion. Denote by E,(m) the encryption of a plaintext message
m with respect to a public key pk. Here Ep, : X — YV
where (X, +x, X x) is the space of all possible messages m
and (Y, +y, Xy) is the space of all corresponding ciphertexts
c. Note that we do not necessarily have |X| = |Y|, think
of a semantically secure cryptosystem for example where
| X| # |Y|. Epy satisfies the homomorphism properties

Epr(m1) +v Epr(ma) =

Epk(ml) Xy Epk(mQ) =

Epi(m1 +x ma),
Epk(ml Xx m2).

To obfuscate a predicate from the class C, one publishes
b; = Epk(a;) for 1 < i < k. Then to compute the predicate
on input (z1,...,T)) one computes

k
Z bz X Epk (ﬁz)
i=1

which will be an encryption of 0 iff the predicate is true.
Assuming one can detect encryptions of zero without knowing
the private key then this scheme can be used as an obfuscator.

C. Variable Point Comparisons

We return to the class of predicates in equation (V.1). In
this section we call them variable point comparisons, since
they include special cases such as P(z,y) = “z ==y and
P.(z,y) = “o = y+ r (mod ¢)”. As already mentioned,
Canetti et al [35] showed how to obfuscate this class using
the discrete logarithm problem. We will now explain how
to make constant predicates that are indistinguishable from
obfuscations of predicates of this form.

Let ¢ be a large prime and let X C Z be a set of size
|X| < g. Suppose we have a predicate P(z1,...,z;) on X¥
such that the set of k-tupes (21, ...,2;) € X* that satisfy the
predicate are exactly the k-tuples that satisfy equation (V.1).
For example, we might have X = [0,2%% — 1] corresponding
to 64-bit words and yet ¢ > 2256, To obfuscate the predicate
P(xy,...,x) we publish the group elements b; = g% for
0 <4 < k where g is an element of order ¢ in some group
such that the discrete logarithm problem is hard. To execute
the obfuscated program, as before we compute

k
bo [[01
i=1

and check if the value is equal to 1.

Now suppose we want to disguise a constant predicate as
being a predicate of this form. We then simply choose random
group elements by,...,b, of order ¢. If | X|¥ < ¢ then it
is likely that there is no k-tuple (x1,...,2;) € XF that
satisfies Equation (V.1). This means the obfuscated predicate
is a constant predicate, but it cannot be distinguished from an
obfuscation of a real variable point comparison.

D. Obfuscating Variable Comparison Functions using Hash
functions

For a variable point comparison of the form P(xz,y) =
“ax+b == y" we can also employ a hash function to disguise
it as a constant predicate. Here a and b are constants. For this
let H : {0,1}" — {0,1}"™ be a cryptographic hash function.
Let X = {0,1}* C {0,1}". Let C be the class consisting of
all variable comparison predicates P(z,y) = “ax + b ==1y”
for z,y € X, a,b € X constant together with the constant
predicate P(z) = 0. The obfuscator chooses a random
t € {0,1}" % and a random r € X and computes the hash
C = H(r||t). The obfuscated predicate P(x,y) computes
h = H(ax +b—y + r||t) and then checks if h = C.

For an opaque predicate we choose a random ¢ € {0, 1}
a random r € X and a random C' € {0,1}" and publish the
obfuscated predicate P(z,y) that computes h = H(ax + b —
y + r||t) and checks whether h = C'. Then again with high
probability this opaque predicate is always false.

n—=k
9

VI. CONSTANT PREDICATES AND OBFUSCATION

Now that we have introduced all required notions concern-
ing constant predicates, we are able to close the gap between
constant predicates and obfuscation. For this we first state a
formalism of program obfuscation and subsequently state a
short definition of the control flow graph and its elements -
basic blocks and program instructions. After this introduction
we describe how the obfuscation scheme inserts constant pred-
icates into the program and how it dresses existing predicates.

A priori a program obfuscator O is a mapping that takes a
given input input program P;, and transforms it into an output
program Pyt

O : Pin — Pout-

Here the programs are defined over Pi,, Pout : {0,1}" —
{0,1}™ taking an n-bit input vector and producing an m-bit
output vector. Note that we have not made any assumptions
about the functionality of P,t. We will construct our ob-
fuscation method such that it preserves the input program’s
functionality.

Definition 4. We say that an obfuscator O is functionality
preserving if O satisfies

Vx € {0,1}" : Pr[O(Pw)(x) = Pn(x)] =1 —¢
where € is negligible.

This means that the program returned by a functionality
preserving obfuscator has a negligible possibility of producing
a different result than the non-obfuscated program.

A. Control Flow Graph

We assume that a general program is made up of many
smaller building blocks, namely functions. In the following
we will focus on obfuscating the control flow graph (CFG) of
a function. We closely follow LLVM’s definition of the CFG
[37]. The CFG G = (V, E) is the graph consisting of the set
of all basic blocks V and the set of all control flow edges
E € V xV of a program. A basic block B; € V)i € I is
an ordered tuple B; = [3;];e.s of program instructions ;. A
control flow edge can also be represented by the ordered pair
(i,7) with 4,5 € I modelling the control flow transfer from
basic block B; to B;.

Note that a basic block can have multiple predecessors and
multiple successors. The control flow in a basic block is linear.
A control flow transfer can only possibly happen with the last
program instruction in a basic block. Thus basic blocks can
be considered as the basic building blocks of a function.

A program instruction 3; generally models the assignment
of register or memory locations with the result of a function
applied to several values taken from registers or memory
locations. We shall denote this by writing

y + F(x)

where x is the vector of inputs and y is the memory of
assigned outputs. Additionally, there exists a special class of
instructions, namely those that result in control flow transfers.
These branch instructions terminate the basic block tuple of
instructions and can never appear in any other position. A
branch may additionally depend on the output value of a
predicate y = P(x). In the unconditional case we denote the
branch by B(B;) with B; the branch target. In the conditional
case we writt BCOND,(By, B1) which results in a branch
to the target block B, with y € {0,1}.

B. Obfuscation

Using constant predicates, the idea is now to introduce
superfluous control flow into an existing control flow graph.
In the simplest possible model we take a full or partial CFG
and prepend it with a constant predicate. An example for a
basic block modelling this is given by

|y + CONSTP(x)
~ |[BCOND,(B,,B,)|

Here CONSTP (x) computes a constant predicate P(x). The
entry block of the original CFG is given be B; and the entry
block of the inserted inert CFG is given by B,.

The inserted inert CFG can be generated of arbitrary com-
plexity as it will never be executed. The situation is depicted
in Fig. 2. Instead of merging the paths, it is also possible to
have the inert path finally branch to any other basic block in
the CFG or back to the basic block evaluating the constant
predicate to form a loop.

A more advanced approach is to dress existing predicates
as constant predicates to harden the obfuscated program
against pattern matching. In Section V we have described
schemes that allow us to dress point comparison predicates

B

v
(partial) CFG

I
v

(a) Input control flow graph that is to be obfuscated.

¥
’ constant predicate ‘

\

N

(b) Output control flow graph after inserting a constant predicate and
random superfluous code.

Fig. 2: Obfuscating control flow graph using a constant
predicate. The input is prepended by a constant predicate and
random superfluous code is inserted in the branch that is never
taken.

as constant predicates. By doing so a static attacker will not
be able to distinguish between the original predicate and an
injected constant one. Consider a constant point comparison
P(z) = “x == ¢’. Our obfuscation scheme O transforms
this predicate according to

x%... x%.'.

y < CMP(z,¢) 3 h < H(z)
BCOND, (B, B,) y < CMP(h, he)
yA=0 BCOND, (By, B;)

where h. = H(c) the hash of the constant ¢ and CMP(a, b)
is the operation that compares a and b and returns true or false
accordingly.

Analogously we define the process for variable point com-
parisons following the construction of Section V-D. Suppose
a variable point comparison P(z,y) = “@ == y”. To dress
it, we generate a random integer r and its hash h, = H(r).
The comparison predicate is the dressed according to

€T .-
€T .-
ye... (@) y<—“‘
» < CMP(z,y) = | h+H(z—y+r)

2+ CMP(h, h,)
BCOND. (B, B;)

Any other constant predicate that we might introduce into
the CFG should then ideally be of the same form. Note that
this way of introducing constant predicates avoids the pattern-
matching attack from Section III-C: an attacker cannot remove
all predicates that “look like” constant predicates, as some of
them are real comparisons and their removal will not maintain
correctness of the program. This implementation does not use

BCOND. (B, B;)

X
I
I

A2
’ constant predicate ‘

‘y +— f(x) ‘y + g(x), inert statement

Fig. 3: Obfuscated control flow graph with both branches
showing a data dependency on the input variable x. This is
done to mitigate against data flow analysis being able to detect
the superfluous branch.

the randomiser ¢ which was defined in the schemes proposed
in Section V as our evaluation implementation will make use
of 64-bit values and a 64-bit hash function.

We also have to protect our scheme against taint analysis, an
approach we described in Section III-E. To mitigate the attack,
we have to introduce a dependency on the input variable x in
the inert CFG in Fig. 1b. This way both possible execution
paths will depend on x and an adversary will not be able
to discard the superfluous path without having to solve the
predicate.

In Fig. 3 we can see how such a superfluous statement has
been introduced in the path that is never taken. This statement
depends on the input variable x. A priori the statement could
produce an output variable vector y’ # y that is not equal
to the output of the original path. Yet to protect the scheme
against taint analysis that traverses the CFG in the reverse
direction, the statement needs to produce y or at least feature

y Cy.
VII. DISCUSSION

In this section, we present further ideas for improving
our obfuscator against a dynamic adversary and a possible
application of the obfuscator for program watermarking.

A. Protection Against Dynamic Analysis

In our approach we use infeasible constant predicates and
dressed predicates to obfuscate a program that can resist
deobfuscation against static analysis methods. Given the way
in which we dress original predicates, an adversary is not able
to distinguish between original and inserted predicates. Using
an SMT solver will not help an adversary to identify the con-
stant predicates our obfuscator inserts. Moreover, because the
constant predicates have data dependences on input variables
used in the original program, they also evade detection using
taint analysis.

Here, we briefly address the case in which an adversary
employs dynamic program analysis such as symbolic exe-
cution and taking program traces for random inputs. While
in this setting infeasibility is still a strong protection against

v
’ balanced/noticeable predicate

(original) CFG

I
v

(a) The balanced/noticeable path branches to the original CFG.

v
’ balanced/noticeable predicate

S
(partial) CFG

inert CFG
(partial) CFG

!

!

|
A

(b) The original CFG was appended to or interleaved with the inert
CFG.

Fig. 4: A control flow graph is obfuscated using a balanced/no-
ticeable predicate.

automated solving for constancy, an attacker might alterna-
tively employ other means of extracting the original code
paths. The adversary might run the obfuscated program under
a probabilistic detection method to detect all the predicates that
show a constant behaviour up to some probability. Removing
these (almost) constant predicates would give the adversary
a simplified CFG close to the original program CFG. The
assumption here is that even if some of the removed predicates
are dressed predicates, these might be used in the original
program for exceptional cases (e.g., error and exception han-
dling branches). Therefore, the adversary would still be able
to deobfuscate the main functionality of the program.

A possible solution to this is to introduce balanced or
noticeable predicates instead of constant ones. Fig. 4 shows
two cases on how to use balanced/noticeable predicates to
obfuscate the CFG of a program. The new path is constructed
by appending the original CFG to an inert CFG or interleaving
both of them. We could also modify the original path to contain
superfluous instructions. Although not shown in the figure, the
original predicates are also dressed to look like the inserted
ones.

Using this technique, we are able to obfuscate the CFG of
the original program to resist a dynamic adversary as long as
the behaviour of the inserted predicates is indistinguishable
from the original predicates. To achieve this, the balanced/no-
ticeable predicates need to exhibit the same behaviour as the
dressed predicates. For an explicit construction we can for
example use a correctly tuned evasive function as described

in Section V-A.

Note that it is important to construct the inert path in a way
that it does not affect the original execution behaviour. Yet,
to mitigate the possible use of taint analysis as described in
Section III-E, we have to make sure it also depends on the
function’s input variables. The question of how to construct
an inert yet intelligible CFG needs to be looked at carefully
in the future. The instructions need to be generated in a
random fashion such that pattern matching is not possible on
any abstraction level. Furthermore, the instructions need to
exhibit a data dependency on the input such that taint analysis
cannot simply identify them as dead code. 1deally, the output
data should also depend on the inert instructions in a non-
trivial yet identity preserving way. This means that we need
transformations of the form y <« F'(x) that are non-trivial
yet may be replaced by a simple y < x. From an intuitive
point of view such a function could be created by dressing the
identity function as an evasive function.

B. Program Watermarking

An interesting question is reproducibility of the compilation
step. While our implementation uses a generic random number
generator, it is possible to switch to a seeded cryptographic
number generator. For the same random seed, the obfuscated
binaries would then be identical provided the same compiler
version is used. One could also imagine to encode special in-
formation in the distribution and parameters of the dressed and
constant predicates. This would make the scheme applicable
to software watermarking as described in [1].

VIII. IMPLEMENTATION

We have implemented our proposed obfuscation scheme
as a plug-in on top of the LLVM compiler infrastructure
[37], [38]. LLVM offers an excellent set of tools that support
several programming languages and can compile for different
hardware architectures. Our obfuscator is implemented in
C++ and consists of approximately 500 lines of code (LoC).
Integrating the obfuscator into the LLVM toolchain makes our
tool language- and architecture-agnostic.

Fig. 6 provides an overview of how our plug-in integrates
into the LLVM pipeline. To obfuscate a target program with
our obfuscator, first the input source code is compiled into
LLVM intermediate language. The obfuscator then processes
the intermediate representation (IR) of the target program
operating as an LLVM optimiser. Finally, the obfuscated IR is
then compiled for the specified architecture.

To see how our obfuscator transforms the control flow graph
of a function, we consider the simple function listed in Fig. 5.
Fig. 9 shows the graphical representation of the CFG corre-
sponding to Fig. 5 before (Fig. 9-(a)) and after the obfuscation
pass (Fig. 9-(b)). From the figure, one can appreciate visually
how the obfuscated CFG appears to be more complex and that
its structure is randomised in comparison to the original input.

Fig. 7 lists the decompiler-generated output of the compiled
binary created from the source code in Fig. 5. We note that
the decompiler was able to reproduce the original source

int64_t foo()
{

int64_t sum =
for(int64_t i
{

0;
= 0; i != 20000; i++)
if(i % 2)
sum += 1i;
}

return sum;

SO XA N B LN~

—
—

Fig. 5: The source code of a sample function that returns the
sum of all even integers ¢ € [0,20000).

’ Obfuscator plug-in ‘

D

Input

)

A

Obfuscated

source code

LLVM

binary object

Fig. 6: Overview of the intgration of our obfuscator plug-in
in the LLVM pipeline.

code very closely. Fig. 8 lists the decompiler-generated output
of the obfuscated binary generated from the source code in
Fig. 5. Due to the dressing of the existing predicates and
the additional constant predicates, the decompiler was not
able to generate any immediately meaningful source code. In
particular, lines 9-10 in Fig. 8 are an example of a constant
comparison predicate as described in Section V-A. Lines 24-25
in Fig. 8 are one instance of a variable comparison predicate
as described in Section V-D. Due to our construction, it is
infeasible to tell whether they are dressed or inserted constant
predicates.

Note that given the original source, we are able to match
the predicate of line 6 in Fig. 5 with lines 20-22 in Fig. 8.
However, we cannot immediately match the loop predicate
of line 4 in Fig. 5 as easily. This further shows that our
obfuscation solution is useful to protect against adversaries
that have access to advanced static reverse engineering tools
such as decompilers.

Currently, our implementation applies our obfuscation tech-
nique to each compiled function, dressing every dressable
predicate and inserting a constant predicate in every control
flow edge. Although this approach maximises the robustness
of the obfuscation, it also represents the worst case in terms
of a possible performance penalty. One optimisation that we
could easily implement is to let the developer decide which
functions should be obfuscated by leveraging LLVM’s anno-
tation metadata. Moreover, we could let the developer specify
the number of constant predicates that should be inserted and
which fraction of dressable predicates should be dressed.

In Section V, we have established that a cryptographic hash
function needs to be used in a secure real-world implementa-

{
* (_LQWORD *)&v0 = 1i;
* ((_QWORD *)&v0 + 1) =
>> 64;

1 _ int64 foo()

2 {

3 V2 V4

4 v3 = OLL;

5 for (1 = 0OLL; i !'= 20000; ++1i)
6

7

8

(unsigned __int128)1i

9 if ((unsigned __int64) (vO % 2))
10 v3 += i;

11 }

12 return v3;

Fig. 7: Decompiler output of the non-obfuscated version of
Fig. 5.

tion. In our implementation, we have relaxed this requirement
and decided to use the 64-bit version of the FNV hash [39]. We
have experimentally tested the robustness of this hash function
using the SMT solver Z3 [40] to invert the hash of the constant
value 0: After 72h of runtime the solver did not manage to
succeed. We concluded from this test that the use of the FNV
hash is quite adequate for the purpose of our prototype.

IX. PERFORMANCE EVALUATION

In this section, we analyse the experimental results we
collected using the implementation of our obfuscator. The
following experiments were conducted on a test machine
running Ubuntu 17.04 64-bit. The hardware setup consisted
of 32 GB RAM and an Intel(R) Core(TM) i7-4770 CPU
clocked at 3.40GHz. The obfuscator was present as a LLVM
optimizer plug-in on top of LLVM/Clang version 4.0.0. In all
experiments, all dressable predicates have been transformed
and a constant predicate was introduced for each existing edge
in the input CFG. As a result, the number of edges in the
output CFG is doubled when compared to the CFG of the
original program.

As benchmark programs for our tests, we have chosen to
obfuscate two open source cryptographic libraries: ' OpenSSL
1.1.0f and >mbed TLS 2.5.1. The reasons behind our choice
can be explained as follows. First of all, OpenSSL was already
used for testing the performance of the Obfuscator-LLVM
presented in [33]. This gives us a baseline to compare our
approach to. Second, both libraries are large software projects
deployed in real-world applications and feature a reasonable
variety of program constructs. Third, these libraries ship with
self-testing and benchmarking logic: the testing logic allows us
to verify that our obfuscator generates code that is functionally
equivalent to the original code; the benchmarking logic enables
us to measure the performance impact introduced by our
obfuscator. The opaque predicates inserted by our obfuscation
tool are constant with very high probability, but there is the
potential for errors to occur at runtime if some predicate turns

Uhttps://www.openssl.org/source/openssl-1.1.0f tar.gz
Zhttps://tls.mbed.org/download/mbedtls-2.5.1-apache.tgz

https://www.openssl.org/source/openssl-1.1.0f.tar.gz
https://tls.mbed.org/download/mbedtls-2.5.1-apache.tgz

1 _ int64 foo()

2 {

3 V2 IV

4 v1l4 = OLL;

5 v13 = 0LL;

6 while (1)

7 {

8 LABEL_2:

9 LODWORD (v0) = fnv64_u64(v13);

10 if (vO == -6175153156727064853LL)

11 {

12 fnv64_u64d (v1i3);

13 return vl14;

14 }

15 LODWORD (v6) = fnv64_u6d (vl3);

16 if (ve == 7014728644095366902LL)

17 goto LABEL_18;

18 * (_QWORD «*)&vl = v13;

19 * ((_QWORD x)&vl + 1) = (unsigned
__intl128)v13 >> 64;

20 viz = vl % 2;

21 LODWORD (v2) = fnv64_u6d (vl12);

22 if (v2 == -6284781860667377211LL)

23 break;

24 LODWORD (v7) = fnv64_u64d (v13 - v12 + 23);

25 if (v7 != 5761928859755592534LL)

26 goto LABEL_6;

27 LABEL_18:

28 while (1)

29 {

30 LODWORD (v10) = fnv64_u64 (-329LL);

31 if (v10 == 6784497596726496898LL)

32 break;

33 vd = v13++;

34 LODWORD (v11l) = fnv64_u6d(vd - v13 + 111);

35 if (v1ll !'= 1874020204673976065LL)

36 break;

37 LABEL_6:

38 v3 = vl14;

39 v1ld += v13;

40 LODWORD (v9) = fnv64_u6d(v3 - v13 + 7);

41 if (v9 == 900005853637713081LL)

42 goto LABEL_2;

43 }

44 }

45 LODWORD (v8) = fnv64_u6d(vl3 - v12 + 118);

46 if (v8 != 3035873277477129725LL)

47 goto LABEL_18;

48 return vl14;

49 1}

Fig. 8: Decompiler output of the obfuscated version of Fig. 5.

out to be non-constant. Hence we have used the self-testing
suites to confirm the correct execution of our obfuscated
programs.

A. OpenSSL 1.1.0f

OpenSSL is an open source collection of routines imple-
menting the TLS (Transport Layer Security) and SSL (Secure
Socket Layer) protocols. It consists of roughly 470K LoC
and is widely used in different Unix-like operating systems
distributions [41]. The main application of OpenSSL is to
secure and encrypt the network communication between web
clients and web servers. In addition to that, it provides generic
access to various symmetric and asymmetric cryptographic

]

]
I
— |
:

(b) Random instance of the obfus-

(a) Input CFG. cated CFG.

Fig. 9: Example of input and a random output by applying
our implementation of the proposed obfuscation method. The
entry respectively exit blocks have been shaded.

TABLE IX.1: Vanilla OpenSSL vs. obfuscated OpenSSL self-
test results. The vanilla reference version passes all 548 tests.
The obfuscated version also passes all 548 tests. Note that the
time required for the obfuscated version to finish all tests is
roughly 4 times the time it took the vanilla version.

OpenSSL Type # Tests passed (of 548) | Running time
Vanilla 548 23s
Obfuscated 548 80s

algorithms such as encryption, secure hashing and large integer
arithmetic to name a few.

In our analysis, out of 36855 integer comparisons present
in the library a total of 28890 (78.4% of the total predicates)
resulted as constant or variable point comparisons that our
obfuscator dressed as infeasible predicates. Moreover, a total
of 88458 infeasible constant predicates were inserted.

After the code was obfuscated, we executed the tests in-
cluded with the library for both the vanilla and obfuscated
versions. From TABLE IX.1, we can see that the obfuscated
version of OpenSSL passes all self-tests in roughly 4 times
the amount of time that the vanilla version requires.

Next, we executed the benchmark tests for the symmetric
cryptographic algorithms for both the vanilla and obfuscated
versions. OpenSSL’s benchmark operates on block sizes rang-
ing in 16, 64, 256, 1024, 8192 and 16348 bytes. For each of
these block sizes, it produces a mean performance value by
executing the symmetric algorithms for one block size multiple
times. We have computed the mean performance for each
algorithms over all the block sizes along with the standard
deviation, shown on Fig. 10. In Fig. 11, we can see the
performance impact that the obfuscation has on the individual
symmetric algorithms. As we can see, the performance of the
obfuscated version is not too far from the vanilla version. This

107 4 mm Vvanilla
mmm Obfuscated

105 4

Throughput [1000by/s]

rc4

aes-192 ige
aes-256 chc
aes-256 ige
blowfish cbc
cast cbc
des chc
des ede3
ghash
hmac(md5s)
idea cbc
md4

md5

mdc2

rc2 cbhe
md160
seed cbc
shal
sha256
sha512
whirlpool

camellia-128 cbc

o
,ﬂg‘
g .2
-]
2N
R
P
2 u
L

aes-192 cbc
camellia-192 cbc
camellia-256 cbhc

Fig. 10: OpenSSL 1.0.0f vanilla vs obfuscated symmetric
algorithms benchmark results. The vertical axis is scaled
logarithmically and shows the throughput in 1000 bytes per
second. The horizontal axis denotes the different algorithms.

100 1

80 1

60

Performance Ratio [%]

20 4

aes-128 chc
aes-128 ige
aes-192 chc
aes-192 ige
aes-256 cbc
aes-256 ige
blowfish cbc
camellia-128 cbc
camellia-192 cbc
camellia-256 cbc
cast cbc

des chc

des ede3

ghash
hmac(md5)

idea cbc

md4

md5

mdc2

rc2 cbe

rc4

md160

seed cbc

shal

sha256

sha512

whirlpool

Fig. 11: OpenSSL 1.0.0f vanilla vs obfuscated symmetric
algorithms performance. The vertical axis shows the perfor-
mance ratio of the obfuscated version of each algorithm as
a percentage of the vanilla version. The black bars show
the standard deviation of the percentage. The horizontal axis
denotes the different algorithms.

can be explained by the fact that the obfuscation has little
performance impact on the symmetric algorithms due to opti-
mized source code and the compiler performing loop unrolling.
These optimisations result in larger and more complex blocks
that are not affected by our obfuscator.

Fig. 12 and Fig. 13 show the benchmarks results for
asymmetric signature generation and verification for both the
vanilla and obfuscate versions. In this case, the obfuscation
has a higher performance impact on the asymmetric algorithms
when compared to the symmetric algorithms. This difference is
explained by the different structure of the control flow graphs
of both algorithm types. The asymmetric algorithms feature a
larger variety of small basic blocks and tighter loops that are

mm Vvanilla
10* 4 mm Obfuscated

103 4

102 4

Performance [#Signatures/s]

101 4

=
=
S
o
=l
o
o
@
w
o
v
b=
o
@
E=
o
=}
<}
=1

dsa 1024 bits
dsa 2048 bits
rsa 512 bits
rsa 1024 bits
rsa 15360 bits
rsa 2048 hits
rsa 3072 bits
rsa 4096 bits
rsa 7680 bits

163 bit ecdsa
163 bit ecdsa
192 bit ecdsa
224 bit ecdsa
233 bit ecdsa
233 bit ecdsa
256 bit ecdsa
283 bit ecdsa
283 bit ecdsa
384 bit ecdsa
409 bit ecdsa
409 bit ecdsa
521 bit ecdsa
571 bit ecdsa
571 bit ecdsa

Fig. 12: OpenSSL 1.0.0f vanilla vs obfuscated asymmet-
ric signature benchmark results. The vertical axis is scaled
logarithmically and shows the throughput in the number of
signatures per second. The horizontal axis denotes the different
algorithms.

mmm vanilla
10° 3 W Obfuscated

104 4

103 4

102 4

Performance [#Verifications/s]

=
=
S
©
=1
a
o
[
a
P
n
©
51
[
£
a
o
©
—

rsa 512 bits
rsa 1024 bits
rsa 15360 bits
rsa 2048 hits
rsa 3072 bits
rsa 4096 bits
rsa 7680 bits

dsa 1024 bits
dsa 2048 bits

163 bit ecdsa
163 bit ecdsa
192 bit ecdsa
224 bit ecdsa
233 bit ecdsa
233 bit ecdsa
256 bit ecdsa
283 bit ecdsa
283 bit ecdsa
384 bit ecdsa
409 bit ecdsa
409 bit ecdsa
521 bit ecdsa
571 bit ecdsa
571 bit ecdsa

Fig. 13: OpenSSL 1.0.0f vanilla vs obfuscated asymmetric
verification benchmark results. The vertical axis is scaled
logarithmically and shows the throughput in the number of
verifications per second. The horizontal axis denotes the
different algorithms.

affected more by our obfuscation approach. The symmetric
algorithms feature larger basic blocks and less loops that can
additionally be unrolled by the compiler in case they are
executed a constant number of times.

Fig. 14 shows the comparison of the benchmark results for
asymmetric key exchange algorithms. The results feature the
same performance behaviour as for the signature generation
and verification as the key exchange algorithms are based on
the same cryptographic primitives.

Mind that in Fig. 10, Fig. 12, Fig. 13 and Fig. 14 the
throughput and performance scales are logarithmic.

The overall performance of the obfuscated asymmetric al-
gorithms compared to the vanilla versions is 20.9% 4= 23.1%.

mmm vanilla
mmm Obfuscated

= =
o o
T =

Performance [#0Operations/s]
=
o

160 bit ecdh (secpl60rl

163 bit ecdh
163 bit ecdh
192 bit ecdh
224 bit ecdh
233 bit ecdh
233 bit ecdh
256 bit ecdh
283 bit ecdh
283 bit ecdh
384 bit ecdh
409 bit ecdh
409 bit ecdh
521 bit ecdh
571 bit ecdh
571 bit ecdh

Fig. 14: OpenSSL 1.0.0f vanilla vs obfuscated asymmetric
key exchange benchmark results. The vertical axis is scaled
logarithmically and shows the throughput in the number of
key exchanges per second. The horizontal axis denotes the
different algorithms.

It heavily varies for the individual algorithms as can be see
from Fig. 12, Fig. 13 and Fig. 14. This can be explained by
taking the specific predicate usage of the different algorithms
into account. Specifically algorithms featuring tight loops
and lots of small basic blocks show a worse performance
compared to algorithms with a less complicated structure.
This explains why asymmetric algorithms relying on handling
of large integers perform worse than symmetric encryption
algorithms.

To further evaluate our results, we have analysed the
3published benchmark results for OpenSSL 1.0.1e obfuscated
with Obfuscator-LLVM. We found that the performance of
the obfuscated asymmetric algorithms compared to the vanilla
versions is 1.3% + 0.7% for a worst case obfuscation. This
amounts to an approximately tenfold increase in execution
performance of our obfuscator compared to Obfuscator-LLVM.

Finally, we also compared the file sizes of the vanilla and the
obfuscated libraries (libcrypto.so and libssl.so) and found out
that the obfuscated file size is approximately twice as big as
their vanilla counterparts: 2726 kB and 490 kB for the vanilla
files versus 5412 kB and 1116 kB for the obfuscated files.

B. mbed TLS 2.5.1

Similar to OpenSSL, mbed TLS is also an open source col-
lection of routines implementing the TLS and SSL protocols.
It consists of roughly 155000 LoC and is targetting embedded
and fully fledged systems likewise. One of the major uses of
mbed TLS is to secure and encrypt the network communica-
tion between network clients and servers, but it also provides
generic access to various cryptographic algorithms. These
algorithms range from symmetric and asymmetric encryption
over secure hashing to large integer arithmetic.

3https://github.com/obfuscator-1lvm/obfuscator/wiki/Benchmarks

TABLE IX.2: Vanilla OpenSSL vs. obfuscated OpenSSL self-
test results. The vanilla reference version passes all 60 tests.
The obfuscated version also passes all 60 tests. Note that the
time required for the obfuscated version to finish all tests is
roughly 8 times the time it took the vanilla version.

mbed TLS Type # Tests passed (of 60) | Running time

Vanilla 60 14s
Obfuscated 60 117s
m vanilla

B Obfuscated

105 4

Throughput [1000b/s]

128
192
256
128
192
256
DES

HMAC_DRBG SHA-1 (NOPR)
MD5

RIPEMD160

3DES
AES-CBC-128
AES-CBC-192
AES-CBC-256
AES-CCM-128
ARC4

CBC

CBC

CBC

CBC

CBC

CBC
SHA-1
SHA-256
SHA-512

AES-CCM-192
AES-CCM-256
AES-GCM-128
AES-GCM-192
AES-GCM-256

CTR_DRBG (PR)

BLOWFISH
BLOWFISH
BLOWFISH
CAMELLIA
CAMELLIA
CAMELLIA
CTR_DRBG (NOPR)

HMAC_DRBG SHA-1 (PR}

HMAC_DRBG SHA-256 (PR)

HMAC_DRBG SHA-256 (NOPR)

Fig. 15: mbed TLS 2.5.1 vanilla vs obfuscated symmetric
algorithms benchmark results. The vertical axis is scaled
logarithmically and shows the throughput in 1000 bytes per
second. The horizontal axis denotes the different algorithms.

As for OpenSSL, we have found that a large part of the
predicates can be dressed. Out of 21038 integer comparisons,
a total of 17062 them were constant or variable point com-
parisons and have been dressed as infeasible predicates. This
amounts to 81.1% of predicates that the obfuscator was able
to dress. A total of 52437 infeasible constant predicates were
inserted.

After the code was obfuscated, we executed the tests in-
cluded with the library for both the vanilla and obfuscated
versions. From TABLE IX.2, we can see that the obfuscated
version of mbed TLS passes all self-tests in roughly 8 times
the amount of time that the vanilla version requires.

In Fig. 15, we can see the benchmark results for the
vanilla and obfuscated symmetric cryptography algorithms
in logarithmic scale. When compared with Fig. 10, we see
that this implementation of symmetric algorithms is more
affected by the obfuscation. This is because the mbed TLS
2.5.1 implementation features less optimized algorithms than
OpenSSL 1.0.0f counterparts. In the mbed TLS code, the
obfuscation affects a larger number of small basic blocks
that appear in tight unoptimized loops leading to a larger
performance impact. As a result, for the symmetric algo-
rithms the obfuscated versions reach a mean performance of
24.1% + 16.5% of the vanilla versions.

In Fig. 16, we compare the benchmark values for the mbed

https://github.com/obfuscator-llvm/obfuscator/wiki/Benchmarks

mmm vanilla
10°] mmm Obfuscated

102 4

Performance Score

256

IP512r1
IP512r1

RSA-4096 -

poolP384rl -
poolP256r
poolP384r

poo

ECDH-sec]|
poo

HE-sec

cEE

55
<<
wunn
[alala]
o

ECDH-secp256k:

ECDH-sec|

IT

il

ECDH-Curve2551
ECDH-brainpoo|P256r1

ECDH-brain
E-brain

ECDH-brain:
DHE-brain|
DHE-brain,

D

Fig. 16: mbed TLS 2.5.1 vanilla vs obfuscated asymmetric
algorithms benchmark results. The vertical axis is scaled
logarithmically and shows the throughput in the number of
asymmetric operations per second. The horizontal axis denotes
the different algorithms.

TABLE IX.3: Vanilla mbed TLS vs. obfuscated mbed TLS
benchmark results. We can see the performance of the ob-
fuscated cryptographic algorithms as percentage of the vanilla
versions for different obfuscation levels.

Dressed Inserted Symmetric perf. Asymmetric perf.
100% 100% 24.1% £+ 16.5% 9% + 8.5%
100% 50% 34.7% + 20.8% 13.4% + 12%
50% 100% 25.7% + 18.9% 8.8% £+ 7.3%
50% 50% 41.1% + 23% 14.8% £ 12.1%
33% 33% 45.6% +26.7% | 22.2% +12.8%

TLS asymmetric cryptographic algorithms in logarithm scale.
In the asymmetric case the obfuscated versions reach a mean
performance of 9% =+ 8.5% of the vanilla versions.

We have conducted the same experiment for different com-
binations of dressing and constant predicate insertion percent-
ages. TABLE IX.3 contains a complete list of the results we
have found from running the benchmark. Our results show
that inserting constant predicates has a larger impact on the
performance compared to dressing already existing predicates.
In the case where we reduced the number of dressed and
inserted predicates by half, we gained almost double the
performance compared to the worst case obfuscation. This
shows that controlling the number of dressed and especially
the number of inserted predicates allows for a fine-tuning of
the performance overhead. Of course, tuning the obfuscation
parameters strongly depends on the structure of the code that
is obfuscated.

For the vanilla build of mbed TLS, we found the file sizes
of libmbedcrypto.a, libmbedtls.a and libmbedx509.a to be 628
kB, 238 kB and 98 kB, respectively. When obfuscated, these
libraries file sizes went up to 1367 MB, 586 kB and 301 kB,
respectively. This amounts to the obfuscated files again ending

up roughly twice to trice as big as their vanilla counterparts.

C. Analysis

We stress that the benchmark results presented above repre-
sent the worst-case scenarios where all the dressable predicates
are modified and for each edge a constant predicate is added.
From these results we can see that obfuscating tight loops and
small blocks that are called in rapid succession (featured by
large integer arithmetic) exhibit most of the penalty. The larger
number of CFG edges is affected more severely by the addition
of constant predicates. However, in the case of the symmetric
encryption algorithms in OpenSSL with larger CFG blocks
the performance of the obfuscated code is better and in some
cases show almost no overhead.

To counteract heavy overhead, the obfuscator behaviour
could be modified. This is possible by either leveraging
LLVM’s analysis logic to detect poorly obfuscable structures
or by explicit user interaction. We could for example omit
inserting constant predicates in these tight loops or choose not
to dress the loop header predicate. Any omissions come at a
price though - they weaken the obfuscation scheme. This is not
surprising as less constant predicates respectively less dressed
predicates imply easier reverse engineering and recovery of
the original program.

X. CONCLUSION

We have seen how to construct infeasible constant predicates
for which it is hard to prove constancy. Furthermore, we have
given ways to dress existing predicates of a special form
in a program to be indistinguishable from our constructed
infeasible constant predicates. For now the possible forms are
constant and variable point comparisons. We have shown that
dressing is not possible for ordering predicates. One open
question is how well the idea of dressing predicates can be
extended to other types of predicates.

We have surveyed attacks on the proposed schemes by
means of static and dynamic program analysis. Additionally,
we have shown techniques to harden the obfuscation scheme
against these attacks by adding superfluous program paths that
have data dependencies on the input variables.

An important follow-up problem is the generation of inert
code that can be inserted into paths following balanced or
noticeable predicates featuring the required data dependencies
on the input values. We also require that the output values
should depend on them in a non-trivial yet functionality-
preserving way. Another interesting follow-up question is
how to generate the superfluous instruction stream to appear
reasonable in the sense that it might be found in a non-
obfuscated program as well.

REFERENCES

[1]1 G. Arboit, “A method for watermarking java programs via opaque pred-
icates,” in The Fifth International Conference on Electronic Commerce
Research (ICECR-5), 2002, pp. 102-110.

[2] M. Dalla Preda, M. Madou, K. De Bosschere, and R. Giacobazzi,
“Opaque predicates detection by abstract interpretation,” in Interna-
tional Conference on Algebraic Methodology and Software Technology.
Springer, 2006, pp. 81-95.

[3]

[4]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

G. Myles and C. Collberg, “Software watermarking via opaque pred-
icates: Implementation, analysis, and attacks,” Electronic Commerce
Research, vol. 6, no. 2, pp. 155-171, 2006.

A. Majumdar and C. Thomborson, “Manufacturing opaque predicates
in distributed systems for code obfuscation,” in Proceedings of the
29th Australasian Computer Science Conference-Volume 48. Australian
Computer Society, Inc., 2006, pp. 187-196.

J. Ming, D. Xu, L. Wang, and D. Wu, “Loop: Logic-oriented opaque
predicate detection in obfuscated binary code,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 757-768.

S. K. Udupa, S. K. Debray, and M. Madou, “Deobfuscation: Reverse
engineering obfuscated code,” in Reverse Engineering, 12th Working
Conference on. 1EEE, 2005, pp. 10—pp.

B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, “A generic
approach to automatic deobfuscation of executable code,” in Security
and Privacy (SP), 2015 IEEE Symposium on. 1EEE, 2015, pp. 674—
691.

M. Madou, L. Van Put, and K. De Bosschere, “Understanding obfuscated
code,” in Program Comprehension, 2006. ICPC 2006. 14th IEEE
International Conference on. 1EEE, 2006, pp. 268-274.

J.-Y. Marion and D. Reynaud, “Dynamic binary instrumentation for
deobfuscation and unpacking,” in Depth Security Conference, 2009.

Y. Guillot and A. Gazet, “Automatic binary deobfuscation,” Journal in
computer virology, vol. 6, no. 3, pp. 261-276, 2010.

F. Biondi, S. Josse, A. Legay, and T. Sirvent, “Effectiveness of synthesis
in concolic deobfuscation,” 2015.

K. Coogan, G. Lu, and S. Debray, “Deobfuscation of virtualization-
obfuscated software: a semantics-based approach,” in Proceedings of
the 18th ACM conference on Computer and communications security.
ACM, 2011, pp. 275-284.

J. Salwan, M.-L. Potet, and S. Bardin, “Deobfuscation of vm
based software protection,” http://shell-storm.org/talks/SSTIC2017_
Deobfuscation_of_VM_based_software_protection.pdf, 2017.

C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Department of Computer Science, The University of
Auckland, New Zealand, Tech. Rep., 1997.

C. S. Collberg and C. Thomborson, “Watermarking, tamper-proofing,
and obfuscation-tools for software protection,” IEEE Transactions on
software engineering, vol. 28, no. 8, pp. 735-746, 2002.

M. Madou, L. Van Put, and K. De Bosschere, “Loco: An interactive
code (de) obfuscation tool,” in Proceedings of the 2006 ACM SIGPLAN
symposium on Partial evaluation and semantics-based program manip-
ulation. ACM, 2006, pp. 140-144.

D. Low, “Protecting java code via code obfuscation,” Crossroads, vol. 4,
no. 3, pp. 21-23, 1998.

N. Mavrogiannopoulos, N. Kisserli, and B. Preneel, “A taxonomy of
self-modifying code for obfuscation,” Computers & Security, vol. 30,
no. 8, pp. 679-691, 2011.

X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, “Still: Exploit code detection
via static taint and initialization analyses,” in Computer Security Ap-
plications Conference, 2008. ACSAC 2008. Annual. 1EEE, 2008, pp.
289-298.

M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Automatic reverse engineer-
ing of malware emulators,” in Security and Privacy, 2009 30th IEEE
Symposium on. 1EEE, 2009, pp. 94-109.

E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted
to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask),” in Security and privacy (SP), 2010
IEEE symposium on. 1EEE, 2010, pp. 317-331.

B. Yadegari and S. Debray, “Symbolic execution of obfuscated code,”
in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 732-744.

S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, and A. Pretschner,
“Code obfuscation against symbolic execution attacks,” in Proceedings
of the 32nd Annual Conference on Computer Security Applications.
ACM, 2016, pp. 189-200.

S. Chow, Y. Gu, H. Johnson, and V. A. Zakharov, “An approach to
the obfuscation of control-flow of sequential computer programs,” in
International Conference on Information Security. Springer, 2001, pp.
144-155.

J. Ge, S. Chaudhuri, and A. Tyagi, “Control flow based obfuscation,” in
Proceedings of the 5th ACM workshop on Digital rights management.
ACM, 2005, pp. 83-92.

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]
[36]

(371

[38]
(391

[40]

[41]

T. Toyofuku, T. Tabata, and K. Sakurai, “Program obfuscation scheme
using random numbers to complicate control flow,” Lecture notes in
computer science, vol. 3823, p. 916, 2005.

T. Laszl6 and A. Kiss, “Obfuscating c++ programs via control flow flat-
tening,” Annales Universitatis Scientarum Budapestinensis de Rolando
Eotvos Nominatae, Sectio Computatorica, vol. 30, pp. 3-19, 2009.

R. Rolles, “Unpacking virtualization obfuscators,” in 3rd USENIX Work-
shop on Offensive Technologies.(WOOT), 2009.

S. Ghosh, J. Hiser, and J. W. Davidson, “Replacement attacks against
vm-protected applications,” ACM SIGPLAN Notices, vol. 47, no. 7, pp.
203-214, 2012.

J. Kinder, “Towards static analysis of virtualization-obfuscated binaries,”
in Reverse Engineering (WCRE), 2012 19th Working Conference on.
IEEE, 2012, pp. 61-70.

J. Salwan and R. Thomas, “How triton can help to reverse virtual
machine based software protections,” https://triton.quarkslab.com/files/
csaw2016-sos-rthomas-jsalwan.pdf, 2016.

C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap, re-
silient, and stealthy opaque constructs,” in Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages.
ACM, 1998, pp. 184-196.

P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-LLVM
— software protection for the masses,” in Proceedings of the IEEE/ACM
1st International Workshop on Software Protection, SPRO’1S5, Firenze,
Italy, May 19th, 2015, B. Wyseur, Ed. IEEE, 2015, pp. 3-9.

H. Wee, “On obfuscating point functions,” in Proceedings of the thirty-
seventh annual ACM symposium on Theory of computing. ACM, 2005,
pp. 523-532.

R. Canetti, G. N. Rothblum, and M. Varia, “Obfuscation of hyperplane
membership.” in TCC, vol. 5978. Springer, 2010, pp. 72-89.

M. L. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Impeding malware
analysis using conditional code obfuscation.” in NDSS, 2008.

C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar 2004.

“The llvm compiler infrastructure project,” http://llvm.org/, accessed:
2017-06-19.

“Fnv hash,” http://www.isthe.com/chongo/tech/comp/fnv/index.html, ac-
cessed: 2017-06-19.

L. de Moura and N. Bjgrner, Z3: An Efficient SMT Solver. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 337-340. [Online].
Available: https://doi.org/10.1007/978-3-540-78800-3_24

“April 2014 web server survey,” https://news.netcraft.com/archives/2014/
04/02/april-2014-web-server-survey.html, accessed: 2017-07-28.

http://shell-storm.org/talks/SSTIC2017_Deobfuscation_of_VM_based_software_protection.pdf
http://shell-storm.org/talks/SSTIC2017_Deobfuscation_of_VM_based_software_protection.pdf
https://triton.quarkslab.com/files/csaw2016-sos-rthomas-jsalwan.pdf
https://triton.quarkslab.com/files/csaw2016-sos-rthomas-jsalwan.pdf
http://llvm.org/
http://www.isthe.com/chongo/tech/comp/fnv/index.html
https://doi.org/10.1007/978-3-540-78800-3_24
https://news.netcraft.com/archives/2014/04/02/april-2014-web-server-survey.html
https://news.netcraft.com/archives/2014/04/02/april-2014-web-server-survey.html

	Introduction
	Our Contribution
	Outline

	Related Work
	Attacks on Opaque Predicates
	Brute Force Search
	Probabilistic Check
	Pattern Matching
	Automated Proving
	Taint Analysis
	Execution Traces

	Classes of Predicates
	Infeasible Predicates
	Obfuscating Constant Comparison Functions using Hash Functions
	Obfuscation using Homomorphic Encryption
	Variable Point Comparisons
	Obfuscating Variable Comparison Functions using Hash functions

	Constant Predicates and Obfuscation
	Control Flow Graph
	Obfuscation

	Discussion
	Protection Against Dynamic Analysis
	Program Watermarking

	Implementation
	Performance Evaluation
	OpenSSL 1.1.0f
	mbed TLS 2.5.1
	Analysis

	Conclusion
	References

