
TinyOLE: Efficient Actively Secure Two-Party
Computation from Oblivious Linear Function

Evaluation

Nico Döttling1, Satrajit Ghosh1, Jesper Buus Nielsen1, Tobias Nilges1, and Roberto
Trifiletti1

Dept. of Computer Science, Aarhus University

Abstract. We introduce a new approach to actively secure two-party computation
based on so-called oblivious linear function evaluation (OLE), a natural generalisation
of oblivious transfer (OT) and a special case of the notion of oblivious polynomial
evaluation introduced by Naor and Pinkas at STOC 1999. OLE works over a finite
field F. In an OLE the sender inputs two field elements a ∈ F and b ∈ F, and the
receiver inputs a field element x ∈ F and learns only f(x) = ax + b. Our protocol
can evaluate an arithmetic circuit over a finite field F given black-box access to
OLE for F. The protocol is unconditionally secure and consumes only a constant
number of OLEs per multiplication gate. An OLE over a field F of size O(2κ) can be
implemented with communication O(κ). This gives a protocol with communication
complexityO(|C|κ) for large enough fields, where C is an arithmetic circuit computing
the desired function.

This asymptotically matches the best previous protocols, but our protocol at the same
time obtains significantly smaller constants hidden by the big-O notation, yielding a
highly practical protocol. Conceptually our techniques lift the techniques for basing
practical actively secure 2PC of Boolean circuits on OT introduced under the name
TinyOT by Nielsen, Nordholt, Orlandi and Burra at Crypto 2012 to the arithmetic
setting. In doing so we develop several novel techniques for generating various flavours
of OLE and combining these.

We believe that the efficiency of our protocols, both in asymptotic and practical
terms, establishes OLE as an important foundation for efficient actively secure 2PC.

1 Introduction

Secure two-party computation (2PC) allows two distrusting parties to compute any func-
tion of their joint input without revealing any extra information about their private inputs
other than the correct output. The more general case with more than two parties is called
multiparty computation (MPC), but we will focus on the two party case in this work.

Our Contribution in Brief

We introduce a new approach to actively secure 2PC based on so-called oblivious linear
function evaluation (OLE), a natural generalisation of oblivious transfer (OT) and a special
case of the notion of oblivious polynomial evaluation introduced by Naor and Pinkas [NP99].
The protocol is conceptually simple, provides unconditional UC-security and uses the OLE
primitive as black-box.

In a 1-out-of-2 OT the sender inputs two messages x0 and x1 and the receiver inputs
a choice bit b and learns only xb. OLE works over a finite field F, where the sender inputs
two field elements a ∈ F and b ∈ F and the receiver inputs a field element x ∈ F and
learns only f(x) = ax + b. Note that if we set b = x0 and a = x1 − x0, then f(0) = x0
and f(1) = x1. So, for the field with two elements, an OLE is equivalent to a 1-out-of-2
OT of bits. Hence an OLE can be seen as a generalisation of OT to the case of larger
fields. One can efficiently implement OLE under a number of standard assumptions both
with standalone security and UC-security [IPS09,GNN17]; even with information-theoretic
UC-security using tamper proof tokens [DKMQ12].

Our protocol can evaluate an arithmetic circuit over a finite field F given black-box access
to OLE for F. The approach consumes only 22 OLE per multiplication gate. An OLE over a
field F of size O(2κ) can be implemented with communication O(κ), where κ is the security
parameter. This gives a protocol with communication complexity O(|C|κ) for large enough
fields, where C is an arithmetic circuit computing the desired function. This asymptotically
matches the best previous protocols, but our protocol at the same time obtains significantly
smaller constants hidden by the big-O notation.

Conceptually our techniques lift the techniques by Nielsen et al. in [NNOB12] for basing
practical actively secure 2PC of Boolean circuits on OT to the arithmetic setting (known
as the TinyOT protocol). In doing so we develop several novel techniques for generating
various flavours of OLE and combining these.

Related Work

The first protocol to realize 2PC was introduced by Yao [Yao82]. In this protocol, a sender
garbles all gates in a Boolean circuit computing the desired function and with the input
of the sender hard wired, sends the garbled circuit to the receiver who learns the garbled
version of his input for each of his input wires via OT. The receiver can then evaluate the
circuit on his garbled input and obtain only the output. The protocol requires that the
garbler constructs a correctly formed garbled circuit and is therefore only secure against a
semi-honest garbler. A semi-honest party follows the prescribed protocol, but tries to learn
extra information from their view in the protocol. Garbling one Boolean gate requires a small
number of evaluations of a hash function or symmetric cipher and sending a small number of
outputs of the hash function or cipher. The communication complexity is therefore O(|C|κ)
where κ is the size of a hash value or cipher text.

For most realistic scenarios, semi-honest security is not enough. Goldreich, Micali and
Wigderson [GMW87] proposed a new semi-honest secure 2PC protocol based on OT and
they also presented a general transformation that ensures semi-honest behaviour even for
active adversaries that might deviate from the protocol. The drawback is that to achieve
active security, they have to make extensive use of zero-knowledge proofs, thus rendering
the protocol too inefficient for practical purposes.

There has been a number of works trying to improve the asymptotic efficiency of actively
secure two-party computation and more recently also many works implementing 2PC to
benchmark the practical performance of various approaches to 2PC. In the two party case
most works following the seminal papers of [Yao82,GMW87] focused on the garbled circuit
approach and have yielded considerable improvements over the earlier protocols. The amount
of work on efficient garbling is overwhelming and since our focus here is on the OT based
line of work, we have chosen to only mention some of the latest work on garbled circuits.

2

Notably, Lindell shows in [Lin13] how to get active security except with probability 2−s

at the price of s times the work of the semi-honest garbling protocol using the so-called
cut-and-choose approach where the garbler produces s garbled circuits of which some are
opened up for a correctness check and the remaining are used for evaluation. This is secure
as long as we are not unlucky to open exactly the correct garbled circuits and use exactly the
incorrect ones for evaluation. Since each circuit is selected for test uniformly at random this
gives the claimed security of 2−s. Here s is a statistical security parameter separate from
the computational security parameter.1 The complexity of the protocol is O(|C|κs), where
κ is the length of the output of a symmetric primitive like a hash function or symmetric
cipher.

In [FJN+13] Frederiksen et al. presented a different garbling approach where many in-
dividual gates are garbled, a constant fraction opened for a correctness check and the rest
stitched together to a robust circuit for computing the desired function. For large enough
circuits the asymptotic complexity of this approach is O(κ|C|s/ log(s)), which is asymptot-
ically better than [Lin13] but less efficient for meaningful levels of security because of the
large constants hidden by the big-O notation.

In [LR14] Lindell and Riva synthesised the two approaches mentioned above for the case
of evaluating the same function many times. The asymptotic complexity is stillO(κ|C|s/ log(s)),
but the constants are much smaller than in [FJN+13]. This appears to be the most practical
approach to actively secure garbling-based 2PC to date, albeit for the specialised setting of
computing the same function many times.

There has also been significant progress on OT-based 2PC. The semi-honest protocol
in [GMW87] is fairly simple. There are two parties denoted P1 and P2. Each bit b in the
computation is represented by two bits b1 and b2, where b1 is uniformly random and b2 =
b ⊕ b1 such that b = b1 ⊕ b2 and where bi is known only to Pi. Given two bits a and
b represented like this the parties can securely compute a representation of c = a ⊕ b by
letting Pi compute ci = ai⊕bi. We can reveal a bit a to party P1 by having P2 send a2 and we
can similarly reveal a bit to P2. Since exclusive or and conjunction are universal for Boolean
computations, it is therefore sufficient to be able to securely compute a representation of
c = ab from representations of a and b. This is slightly more tricky. We use that ab =
a1b1 ⊕ a1b2 ⊕ a2b1 ⊕ a2b2, where Pi can compute aibi. The only troublesome terms are
therefore a1b2 and a2b1. If we can compute secure representations of these terms we are
done as we already know how to securely compute exclusive or. For each of the troublesome
terms we will use one OT. Let us compute a representation of a1b2 as an example. Party
P1 samples a uniformly random bit c1 and offers the following two messages in the OT:
x0 = c1 and x1 = c1⊕a1. Then P2 selects the message xb2 and sets c2 = xb2 . It is easy to see
that xb2 = c1 ⊕ a1b2. Hence c1 ⊕ c2 = a1b2, as desired. This protocol is fairly efficient as it
consumes only two OTs per conjunction gate in the circuit, i.e., the complexity is O(|C|κ)
if we use κ to denote the complexity of an OT. It is, however, easy to see that the protocol
is not actively secure. We asked P1 to input x0 = c1 and x1 = c1⊕ a1 to the OT. She might
instead offer x0 = c1⊕1 and x1 = c1⊕a1⊕1 which can be used to flip the bit on an internal
wire of the circuit, which might give a wrong result and hence leak unintended information,
hence the need for zero-knowledge to prove that the right values were input.

In 1995 Crépeau, van de Graaf and Tapp [CvT95] introduced the notion of committed
oblivious transfer (COT) which is a variant of OT where the parties are committed to

1 The definition of a statistical security parameter s is that if we fix s and let the computational
security parameter κ grow, then the security of the scheme will go to 2−s faster than any inverse
polynomial in κ.

3

inputs and outputs of the OT using homomorphic commitments. This allows to open the
difference between the output of one OT and the input of another OT to prove that they
are the same. Thus the parties are forced to input the right values to the OTs which ensures
active security. They show how to implement one COT given blackbox access to O(s) OTs,
where the big-O notation hides some moderately large constants. This gives a protocol with
complexity O(|C|κs), where κ is the complexity of an OT.

In 2008 Ishai, Prabhakaran and Sahai [IPS08] introduced a radically different approach to
OT-based 2PC known as the IPS-compiler. The two parties will use a semi-honest OT-based
2PC to simulate a large number of virtual parties and use a special version of cut-and-choose
known as the watchlist mechanism. This allows to inspect some randomly selected ones of
these virtual parties to check if they are simulated according to the semi-honest protocol. If
so, then most of them must indeed have been run correctly. These virtual parties will then
run between them an asymptotically efficient secure multi-party protocol for computing the
desired function secure against a minority of actively corrupted parties. Such MPC protocols
exist with complexity O(|C|). The resulting 2PC protocol therefore has complexity O(|C|κ),
where κ is the complexity of one OT. The hidden constants resulting from creating the
virtual parties and the constant suffered by the best asymptotically good MPC protocols
like [DIK10], however, results in fairly large constants being hidden by the big-O notation.

In 2012 Nielsen et al. [NNOB12] then published a new approach to OT based 2PC.
They essentially show how to construct actively secure COT from actively secure OT by
consuming only O(s/ log(s)) OTs per COT and with very small constants hidden by the
big-O notation. In their protocol they first produce in an offline phase a number of COTs
on random values and then in the online phase use that COT is random self reducible to
run an actively secure version of [GMW87] using COT instead of OT. One COT on random
values is produced simply by running one OT on random values and then letting the parties
commit to their inputs and outputs. Then an efficient test is run on each such potential COT
to verify that the commitments were computed correctly. The commitments and the test
consume a small constant number of extra OTs. Unfortunately the test has the property that
the sender might cheat in the test itself and use it to verify a guess at the random choice bit
of the receiver. If the guess is wrong, the sender is detected in her cheating, but if the guess
is correct the cheating is undetected. This selective error attack means that the sender can
undetected guess a total of s bits with probability 2−s. By setting s large enough that 2−s is
negligible and preparing for instance s4 COTs it can however be guaranteed that at most a
fraction s−3 of these had the choice bit leaked. To get rid of these relatively few bad COTs a
COT combiner is used. This is a primitive which combines B COTs of which at most B− 1
are bad into one fully secure COT. By randomly grouping the s4 COTs into buckets of size
B a given bucket gets filled with bad COTs only with probability (s−3)B , so to get security
2−s one needs buckets of size just B = s/3 log2(s), which for a practical statistical security
parameter like s = 64 would be just B = 4. At the same time it was shown in [NNOB12]
how to do efficient actively secure OT extension, improving on the semi-honest secure OT
extension from [IKNP03]. Specifically they show how to use κ actively secure OTs, where
κ is the security parameter, to produce any polynomial number of actively secure OTs by
using only a small number of additional applications of a hash function per produced OT.
This quickly amortizes away the cost of the κ seed OTs and essentially means the prize
of an actively secure OT is a small constant number of applications of a hash function.
This overall yields a protocol with sub-optimal asymptotic complexity of O(|C|κs/ log2(s)),
but with s/ log2(s) and the hidden constants so small in practice that it yielded the most
practical protocol for actively secure 2PC at the time. The protocol was implemented and

4

benchmarking times reported in [NNOB12] indicate that the approach can be practical for
reasonably large circuits.

A common drawback of the garbling and OT based approaches is that it works with
Boolean circuits. This means that if you want to securely compute an arithmetic circuit
over a large field with |F| = O(2κ) and you implement the arithmetic operations by small
Boolean sub-circuits, then the communication complexity of [IPS08] and [NNOB12] will be
at least O(|C|κ2) and O(|C|κ2s/ log2(s)), where |C| is the number of gates in the arithmetic
circuit.

There is a line of work on implementing actively secure MPC of arithmetic circuits,
including [CDN01,DPSZ12,BDOZ11]. These protocols all use some form of homomorphic
encryption along with zero-knowledge proofs for proving correct behaviour. The complex-
ity of these protocol when run between two parties is O(|C|κ), where κ is the size of a
ciphertext of the homomorphic encryption scheme. These protocols are all designed for the
multiparty setting and not the 2PC setting, and though they can all be run between two
parties they are not well suited for this setting, i.e., they are not competitive with existing
2PC solution because of the relatively large cipher texts of homomorphic encryption schemes
and the overhead of the zero-knowledge proofs. In particular, the reported timings of the
implementations are slower than for instance [NNOB12].

The works [IPS09] and [GIP+14] are more directly comparable to our protocol. In [IPS09]
Ishai, Prabhakaran and Sahai instantiates the above mentioned IPS compiler to get an
arithmetic 2PC protocol with communication complexity O(Gκ) for evaluating an arithmetic
circuit with G gates. If the size of the field in which the arithmetic is done is Θ(2κ), this gives
a protocol with constant communication overhead in the following sense: the communication
complexity of the protocol is within a constant of the communication needed to send a trace
of an evaluation of the arithmetic circuit. In [GIP+14] Genkin et al. show how to get a
similar result by compiling passive secure 2PC protocol into active secure 2PC protocols
using circuits secure against active attacks. These works are pinnacles on the theoretical
work on active-secure arithmetic 2PC and gives very general and modular ways to build
protocols with the same asymptotic complexity as ours. As a result of the general approaches,
however, these protocols hide large constant using the big-O notation. In particular, there
seem to be no attempt in the literature to work out the exact complexity of protocols based
on a given instantiation. Compared to [IPS09,GIP+14], our work sells a lot of the generality
by focusing on a concrete primitive, namely OLE, but at the same times gains considerably
in concrete efficiency by being able to design protocols targeted for this particular primitive.

Our Contributions

We introduce a new approach to actively secure 2PC which can securely compute an arith-
metic circuit C over any field while using black-box access to only a very small constant
number of OLEs over F per arithmetic gate in C. Specifically we use 22 OLE per multiplica-
tion gate in C, while at least 8 OLE are necessary to compute an authenticated multiplication
even with semi-honest security. Additionally, the parties only have to perform a constant
number of additions and multiplications. Since one OLE over many fields can in turn be
implemented with communication O(κ), where κ is the security parameter, under standard
assumptions this gives a protocol with communication O(|C|κ). This means the protocol is
asymptotically as good as [IPS08] when the field size is large, but the concrete complexity
is much better. At the same time, the number of OLEs used by our protocol per arithmetic
gate is significantly less than the number of OTs used by [NNOB12] per Boolean gate.

5

The only previous protocol we are aware of which achieves the same communication
complexity as our protocol using black-box access to a general assumption is [IPS09]. In
[IPS09] they show how to evaluate an arithmetic circuit C while using a constant number of
black-box accesses to homomorphic encryption per gate. This gives a complexity of O(|C|κ),
where κ is the size of a ciphertext. The protocol, however, goes via the general framework in
[IPS08] and as such the big-O notation hides some fairly large constants. Our approach can
therefore be seen as combining the good asymptotic complexity of [IPS09] with the same
good practical efficiency of [NNOB12].

Another potential advantage of our protocol over [IPS09] and the other protocols for
actively secure arithmetic computation mentioned above is that they use black box access
to homomorphic encryption, whereas we use OLE. It seems to be a plausible conjecture that
we might at some point be able to construct a protocol for actively secure OLE extension
a la actively secure OT extension from [NNOB12], i.e., a protocol which given a few seed
OLEs can generate any polynomial number of OLEs while using only a few applications of
an efficient symmetric primitive per generated OLE. This hope is based on the similarity
between OT and OLE. On the other hand there does not seem to be similar support for the
hope that we might construct a homomorphic encryption extension, i.e., to implement any
polynomial number of accesses to homomorphic encryption given only a few seed applications
of homomorphic encryption plus access to for instance a hash function. If one could construct
a protocol for efficient actively secure OLE extension, our protocol would immediately yield
a very practical protocol, which would outcompete [NNOB12] even if using both protocols
to compute a Boolean circuit.

Our Techniques

Our approach is somewhat reminiscent of the approach in [NNOB12]. We start with an
arithmetic version of [GMW87]. A value a ∈ F is represented by a = a1 + a2 where a2 is
uniformly random and ai is known only by Pi. Secure addition is straight forward: ci = ai+bi.
To securely compute a representation of c = ab one again uses that ab = a1b1+a1b2+a2b1+
a2b2. To compute a secure representation of a troublesome term like c = a1b2 use one OLE.
Let the sender P1 of the OLE pick uniformly random c1 and input (a, b) = (a1,−c1) and let
the receiver input x = b2. Then they invoke the OLE to compute c2 = ax + b = a1b2 − c1.
Clearly c2+c1 = a1b2. We then construct in an offline phase a large number of authenticated
triples on random values and then we consume a small constant number of these in the
online phase when evaluating an arithmetic gate. This forces the parties to input the right
values to all gates and hence gives active security. We essentially generate one authenticated
multiplication by running one OLE on random values and then letting the parties commit
to their values. We use that OLEs themselves can be seen as commitments to the value x
to efficiently compute these commitments. Then similar to [NNOB12] we compute a test on
each intermediate value to check that the commitments were computed correctly. We call
this technique fingerprinting. These fingerprints are significantly different from the test in
[NNOB12] which used a hash function. We only use black-box access to OLE. Furthermore,
we manage to work around the selective error problem encountered in [NNOB12]. Our test in
principle has a similar problem with a selective attack, but we can carefully arrange the test
such that the sender of a and b needs to guess the random field element x to not get detected.
This immediate gives security |F|−1, which is negligible for large enough fields. Developing
the new test required developing significantly new techniques which exploit essentially that
we are in the arithmetic setting where both parties have a large random input. As a result of

6

our improved test for correct commitment, we do not need to apply the bucketing technique
of [NNOB12] which immediately saves us an asymptotic factor of O(s/ log(s)). At the same
time our test is simple enough that we get a very practical protocol.

Unfortunately our new test does not translate back to the OT based protocol from
[NNOB12], as there the value corresponding to our x is the choice bit of the receiver which
can of course be guessed with good probability. This shows that an essential prerequisite
for our efficiency improvement is moving to the arithmetic setting with a large field, and
we indeed exploit the arithmetic structure of the OLE primitive in many places throughout
our protocols.

We believe that the efficiency of our protocols, both in asymptotic and practical terms,
establishes OLE as an important foundation for efficient actively secure arithmetic 2PC.

More Technical Details We will now sketch the technical details of our dealer protocol
which produces authenticated multiplication triples using OLEs. In the semi-honest case, the
purpose of the dealer-protocol is to provide random triples (aA, bA, cA) to A and (aB, bB, cB)
to B such that the relation

(aA + aB) · (bA + bA) = cA + cB (1)

holds. We can expand this to

aAbA + aAbB + aBbB + aAbA = cA + cB (2)

In the simple semi-honest protocol A chooses the values aA and bA at at random and B the
values aB and bB. Notice that the terms clA = aAbA and clB = aBbB can be computed by A and
B respectively. Thus, we need to securely compute the mixed terms aBbA and aAbB. To do
so, we will introduce random offsets rA and rB (chosen at random by A and B respectively).
We can rewrite Equation (6) as

(aAbA − rA + aAbB + rB) + (aBbB − rB + aBbA + rA) = cA + cB. (3)

This suggests the following protocol to compute the triples (aA, bA, cA) and (aB, bB, cB):

1. A and B choose (aA, bA, rA) and (aB, bB, rB) locally at random.
2. A and B compute ciA ← Fq-OLE(aB, rB; bA) and ciB ← Fq-OLE(aA, rA; bB).
3. A sets cA = clA − rA + ciA and B sets cB = clB − rB + ciB.

Correctness of the protocol follows immediately from Equation (7). Semi-honest privacy of
the protocol follows from the fact that ciA and ciB are independent of bB and bA and thus
reveal nothing about these values (the remaining computations are local).

We will now augment this protocol into a (still semi-honestly secure) protocol such that A
and B receive MACs on the other parties’ triples. The party A chooses a global MAC key ∆B

and specific keys KaB
,KbB

and KrB
. Likewise, B chooses a global MAC key ∆A and specific

keys KaA
,KbA

and KrA
. Now, A commits to aA by running MaA

← Fq-OLE(∆A,KaA
; aA).

This MAC can be opened by A by sending aA and MaA
to B. The remaining MACs MbA

,MrA

and MaB
,MbB

,MrB
are computed likewise.

After the above protocol is finished, A obtains MACs on the values clA and ciA by MclA
←

Fq-OLE(∆A,KclA
; clA) and MciB

← Fq-OLE(∆A,KciA
; ciA), where KclA

and KciA
are sampled

on the fly by B. Likewise, B commits to clB and ciB by MclB
← Fq-OLE(∆B,KclB

; clB) and

MciB
← Fq-OLE(∆B,KciB

; ciB).

7

Now, A and B can locally compute MACs to cA and cB by using the additively homo-
morphic properties of the MAC scheme. Specifically, A computes McA

= MclA
−MrA

+MciA
and KcB

= KclB
− KrB

+ KciB
, whereas B computes McB

= MclB
−MrB

+ MciB
and KcA

=
KclA
−KrA

+KciA
.

This concludes the description of the semi-honestly secure scheme. We now provide
a mechanism to enforce semi-honest behaviour by both parties. The main ideas of this
technique can be sketched as follows. To enforce that the parties input the right values in
different Fq-OLE-instances, we compute several values twice, in two different ways. We call
this technique fingerprinting.

Since the protocol is entirely symmetric, we will describe the fingerprinting sub-protocols
only from the view of A in this outline.

– First, we want to make sure that A inputs the correct value clA to obtain MclA
. At the same

time, B must not use a different ∆A than for the other MACs. We compute a check value
γ1 as follows. A and B use another Fq-OLE to compute σ1

A ← Fq-OLE(−KaA
,KclA

+γ1; bA),

where B chooses γ1 ←$ Fq. Now A locally computes bAMaA
+σ1−MclA

, which evaluates

to γ1 if MclA
was computed with the correct clA and ∆A.

– Secondly, we have to ensure that ciA is correctly computed. Another OLE is used to
compute σ2 ← Fq-OLE(MaB

,MrB
; bA). A locally computes σ2′ = ∆Bc

i
A + KaB

bA + KrB
,

and if B used the correct inputs, it holds that σ2′ = σ2.
– Now that we know that ciA is correct, we have to verify that the MAC MciA

was generated
correctly. Towards this, we first observe that we can create MciA

in a different way than

described above: MciA
← Fq-OLE(∆AaB, ∆ArB +KciA

; bA) yields MciA
= ∆A(aBbA + rB) +

KciA
. Now we create another check value γ2 by using an additional authenticated value

sA. A locally computes d = ciA − sA and γ2 = MciA
−MsA

, and sends d to B. B locally
computes ∆Ad+KciA

−KsA
. Again, if A used the correct input for the MAC generation,

and B as well, both parties will obtain the same γ2.
– It remains to bind the input of A to the before authenticated value bA. We therefore

add a final check γ3: A obtains σ3
A ← Fq-OLE(∆A, σ

3
B; bA). Now A locally computes

γ3 = MbA
− σ3

A, while B locally computes KbA
− σ3

B.

In a final step we add all γi to a global check value γglo. Then A commits to its version
of γglo, B sends it version to A, and A has to unveil. If the values do not match, the protocol
is aborted.

2 Preliminaries

2.1 Notation

By Fq we denote a finite field of size q, x denotes a vector of field elements, while x denotes
a single field element. By a += b we denote a = a+ b.

The notation for our authenticated values is depicted in Figure 1. By Mvx (or Kvx) we
denote the MAC (resp. key) associated with the name vx, not its value.

2.2 UC Framework

We state and prove our results in the Universal Composability (UC) framework of Canetti [Can01].
In the framework, security of a protocol is shown by comparing a real protocol π in the real

8

Global Key We call ∆A, ∆B ∈ Fq the two global keys, held by B and A, respectively. These
values are uniformly random and not known by the other party.

Authenticated Value [x]A represents an authenticated secret value held by A. B holds the cor-
responding key Kx ∈ Fq, while A holds x ∈ Fq and a MAC Mx = Kx + x∆A ∈ Fq.
Let [x]A = (x,Kx,Mx). We omit ∆A since it is identical for each value x. To compute [z]A =
[x]A + [y]A, A computes [z]A = (z,Kz,Mz) = (x + y,Kx + Ky,Mx + My). Here, A locally
computes z and Mz, while B locally computes Kz.
To authenticate a constant value v ∈ Fq known to both parties, A sets Mv = 0 and B sets
Kv = v∆A. Then [v]A = (v,Kv,Mv). For a constant c we let [x]A + c = [x]A + [c]A and
[x]A · c = [xc]A = (xc,Kxc,Mxc).
We say A reveals [x]A by sending (x,Mx) to B, who aborts if Mx 6= Kx + x∆A. We say A
announces x by sending x to B without the MAC.

Authenticated Share We let [x] = [xA|xB] denote that A and B hold authenticated shares xA,
xB such that x = xA + xB.
To compute [z] = [zA|zB] = [x] + [y], A locally computes zA = xA + yA and B locally computes
zB = xB + yB.
An authenticated share on a constant value c ∈ Fq can be obtained by setting [c] = [c|0]. We
let c[x] = [cx].
To reveal an authenticated share, the parties reveal the authenticated values and abort if the
MACs are not correct.

Fig. 1. Notation of authenticated values and shares.

world with an ideal functionality F in the ideal world. F is supposed to accurately describe
the security requirements of the protocol and is secure per definition. An environment Z
is plugged either to the real protocol or the ideal protocol and has to distinguish the two
cases. For this, the environment can corrupt parties in the real protocol. To ensure indis-
tinguishability, there has to exist a simulator that produces the same protocol transcript as
the real protocol, even if the environment corrupts a party. We say π UC-realizes F if for
all adversaries A in the real world there exists a simulator S in the ideal world such that
all environments Z cannot distinguish the transcripts of the parties’ outputs.

For our constructions we assume active adversaries and static corruption and achieve
statistical indistinguishability.

2.3 Arithmetic Circuits

An arithmetic circuit C over the field F consists of addition and multiplication gates. Each
such gate has a fan-in of 2, i.e., takes as input 2 field elements a and b and computes a+ b
or a · b, respectively. These inputs can either be variables or constants.

2.4 Oblivious Linear Function Evaluation

Oblivious Linear Function Evaluation (OLE) is a special case of Oblivious Polynomial Eval-
uation (OPE). In contrast to OPE, only linear functions can be obliviously evaluated. A
party A has as input two values a, b ∈ Fq that determine a linear function over Fq, and a
party B wants to obliviously evaluate the linear function on input x ∈ Fq (cf. Figure 2).

There are several implicit and explicit constructions of OLE based on a variety of as-
sumptions, e.g. [DKMQ12,DPSZ12,KOS16,GNN17]. For our protocol we assume OLE as a
(UC-secure) black-box.

9

Fq-OLE
a ∈ Fq
b ∈ Fq
⊥

x ∈ Fq

a · x+ b y ∈ Fq

Fig. 2. The Fq-OLE primitive.

3 Tools

In this section we present the building blocks that are later needed for the 2PC protocol. The
first protocol shows how to construct Fkq -OLE from Fq-OLE with a small additive overhead.

3.1 Commitments from OLE

We will later need unconditionally secure commitments. Towards this, Döttling et al. [DKMQ12]
present a very simple protocol for commitments from OLE (cf. Figure 3). We state it here
for completeness.

Protocol ΠCom

Commit Phase: The sender gets as input s and chooses a random value b ∈ Fq and input (s, b)
into Fq-OLE. The receiver then chooses a random value x ∈ Fq and inputs it into Fq-OLE to
obtain y.

Unveil Phase: The sender sends (s, b) to the receiver. If s · x + b = y the receiver accepts,
otherwise he aborts.

Fig. 3. Commitment protocol from Fq-OLE.

Lemma 1 ([DKMQ12]). Protocol ΠCom UC-realizes FCom in the Fq-OLE-hybrid model.

The binding property directly follows from the receiver privacy of the OLE, while the
hiding property follows from the sender privacy. See [DKMQ12] for more details.

3.2 Constant Rate Dimension Extension for OLE

It will be convenient for us to have a tool that enforces the receiver to use a single input in
several OLE instances. While the receiver inputs a field elements from Fq, the sender inputs
vectors from Fkq . Fkq -OLE computes yi = ai · x + bi for all i ∈ {1, . . . , k}, i.e. uses the same
receiver input for all OLE-instances. The primitive is depicted in Figure 4.

Döttling et al. [DKM12] show how to achieve this with an overhead of a small multiplica-
tive constant of 2+ε, but their construction is more general in the sense that it works for any
field Fq. In our scenario, we only consider fields that have size exponential in the security
parameter. Our reduction has only an additive constant overhead of 2 Fq-OLE instances.

Consider the protocol in Figure 5. The sender has k pairs of random inputs (ai, bi), while
the receiver has one random input x. The main idea is to use one additional OLE to check

10

Fkq -OLE
a ∈ Fkq
b ∈ Fkq

⊥

x ∈ Fq

a · x+ b y ∈ Fkq

Fig. 4. The Fkq -OLE primitive.

that the receiver uses the same input in all OLE as specified by the protocol. The sender
chooses one additional input ak+1 =

∑k
i=1 ai, while the receiver chooses r ∈ Fk+1

q uniformly
at random. The parties execute k + 1 Fq-OLE, but from receiver to sender, i.e. the receiver
inputs (x, ri) and sender ai. Let ti = aix+ ri be the result obtained by the sender. If both
parties behaved according to the protocol, then

k∑
i=1

ti − tk+1 = γ =

k∑
i=1

ri − rk+1, (4)

where the sender locally computes the LHS of Equation (4) and the receiver the RHS
of Equation (4). Then they check the equality of both values. For this, the sender first
commits to his value, then the receiver sends his value to the sender, who checks the equality
and provides the decommitment. If the decommitment is correct, the sender sends ti + bi
to the receiver, who removes his blinding value ri to get aix + bi. This commitment can
again be realized using an OLE (cf. Section 3.1), so that the total overhead for Fkq -OLE is
2 Fq-OLE instances. Note that after the check is verified, the values can be derandomized
with standard techniques.

Protocol ΠFkq -OLE

Let COM be the commitment from Section 3.1.

Receiver: Pick random x ∈ Fq, r ∈ Fk+1
q . Input (x, rj) into OLE j for j ∈ [k + 1].

Sender: Pick random a ∈ Fkq ,b ∈ Fkq . Set ak+1 =
∑k
i=1 ai and input aj into OLE j. Obtain

t = ax+ r and compute γ = tk+1−
∑k
i=1 ti. Further compute (com, unv)← COM.Commit(γ)

and ui = ti + bi for i ∈ [k]. Send (com,u) to the receiver.
Receiver: Compute γ′ =

∑k
i=1 ri − rk+1 and send it to the sender.

Sender: If γ 6= γ′, abort. Send unv to the receiver.
Receiver: Check if COM.Open(com, unv, γ′) = 1 and abort if not. Set yi = ui− ri = aix+ bi, i ∈

[k] and output y.

Fig. 5. Reduction of Fkq -OLE to Fq-OLE.

Lemma 2. Protocol ΠFk
q -OLE in Figure 5 UC-realizes Fkq -OLE in the Fq-OLE hybrid model.

Proof (Sketch.). Corrupted Sender. Assume that AS uses ak+1 6=
∑k
i=1 ai. The simulator

extracts all inputs into the Fq-OLE and aborts if the check is passed in this case. Since COM

11

is binding, from the view of AS it holds that

γ =

k∑
i=1

ri − rk+1

=

k∑
i 6=j

ti − aix− (tk+1 − ak+1x)

=

k∑
i=1

ti − tk+1 + x(ak+1 −
k∑
i=1

ai)

Thus, γ is uniformly random over the choice of x and the check will fail in the real protocol
with probability 1− 1/|Fq|.

Corrupted Receiver. Assume w.l.o.g. that AR uses a different x′ = x + e in location
j. The simulator extracts all inputs into the Fq-OLE and aborts if the check is passed in this
case. Since COM is hiding, from the view of AR it holds that

γ =

k∑
i=1

ti − tk+1

=

k∑
i 6=j

aix+ ri + aj(x+ e) + rj − (

k∑
i=1

aix+ rk+1)

=

k∑
i=1

ri − rk+1 + aje

Thus, γ is uniformly random over the choice of aj and the check will fail in the real protocol
with probability 1− 1/|Fq|.

Remark. If several instances of the above protocol are executed, the verification of the
checks can be extended to cover all instances at once by simply adding the check values. If
the check fails, the complete protocol has to be repeated, but critically a cheating party will
be caught in any case.

Remark. If we want to execute batch-authentication, the roles are somewhat changed,
which simplifies the protocol to a certain extend. Looking ahead, the sender holds both a
global MAC key ∆ and the “local” keys K, while the receiver has a set of input values v.
The value vk+1 is generated as above, and Kk+1 is chosen uniformly at random. Then the
parties simply input these values into k + 1 OLEs and compute γ as above.

4 The Dealer Protocol

In this section we will provide a protocol to generate shared and authenticated multiplication
triples. We call this protocol the dealer protocol. The functionality FDeal realized by this
protocol is given in Figure 6.

We will start with a high level overview of our dealer protocol (cf. Figure 8). In the
semi-honest case, the purpose of the dealer-protocol is to provide random triples (aA, bA, cA)
to A and (aB, bB, cB) to B such that the relation

(aA + aB) · (bA + bB) = cA + cB (5)

12

FDeal

Initialize: On input (init) from A and B, sample ∆A,∆B ←$ Fq, vA,vB,KvA ,KvB ←$ Fnq and
set MvA = ∆AvA+KvA and MvB = ∆BvB+KvB . Store (∆A,∆B,vA,vB,KvA ,KvB ,MvA ,MvB)
and output ∆B to A and ∆A to B.
Adversarial access: On input (setInit,A, (∆B,vA,MvA ,KvB)), sample ∆A ←$ Fq,vB ←$ Fnq
and set MvB = ∆BvB + KvB and KvA = MvA −∆AvA. Symmetrically for a malicious B.

Authenticated Value(A): On input (aValue,A) from A and B, pick an unused index i. Mark
i as used and output (v[i],Mv[i]) to A and (Kv[i]) to B.

Authenticated Value(B): Symmetrical to AuthenticatedValue(A)
Authenticated Multiplication: On input (aMult) from A and B, pick two unused indices i1, i2

and let aA = vA[i1], bA = vA[i2], aB = vB[i1], bB = vB[i2]. Pick cA, cB ←$ Fq under the
restriction that cA+cB = (aA+aB)(bA+bB). Sample KcA ,KcB ←$ Fq and set McA = ∆AcA+KcA

and McB = ∆BcB+KcB . Output (aA, bA, cA,MaA ,MbA ,McA ,KaB ,KbB ,KcB) to A, symmetrically
to B.
Adversarial access: On input (setMult,A, (cA,McA ,KcB)) pick cB ←$ Fq under the restriction
that cA+cB = (aA+aB)(bA+bB). Set McB = ∆BcB+KcB and KcA = McA−∆AcA. Symmetrically
for a malicious B.

Fig. 6. Ideal dealer functionality.

holds. We can expand this to

aAbA + aAbB + aBbB + aBbA = cA + cB . (6)

In the simple semi-honest protocol A chooses the values aA and bA at random and B the
values aB and bB. Notice that the terms clA = aAbA and clB = aBbB can be locally computed
by A and B respectively. Thus, we need to securely compute the mixed terms aBbA and
aAbB. To do so, we will introduce random offsets rA and rB (chosen at random by A and B
respectively). We can rewrite Equation (6) as

(aAbA − rA + aAbB + rB) + (aBbB − rB + aBbA + rA) = cA + cB . (7)

This suggests the following protocol to compute the triples (aA, bA, cA) and (aB, bB, cB):

1. A and B choose (aA, bA, rA) and (aB, bB, rB) locally at random.
2. A and B compute ciA ← Fq-OLE(aB, rB; bA) and ciB ← Fq-OLE(aA, rA; bB).
3. A sets cA = clA − rA + ciA and B sets cB = clB − rB + ciB.

Correctness of the protocol follows immediately from Equation (7). Semi-honest privacy of
the protocol follows from the fact that ciA and ciB are independent of bB and bA and thus
reveal nothing about these values (the remaining computations are local).

We will now augment this protocol into a (still semi-honestly secure) protocol such that A
and B receive MACs on the other parties’ triples. The party A chooses a global MAC key ∆B

and specific keys KaB
,KbB

and KrB
. Likewise, B chooses a global MAC key ∆A and specific

keysKaA
,KbA

andKrA
. Now, A commits to aA by runningMaA

← Fq-OLE(∆A,KaA
; aA). This

MAC can be opened by A by sending aA and MaA
to B. The remaining MACs (MbA

,MrA
)

and (MaB
,MbB

,MrB
) are computed likewise (cf. also Figure 7).

After the above protocol is finished, A obtains MACs on the values clA and ciA by MclA
←

Fq-OLE(∆A,KclA
; clA) and MciA

← Fq-OLE(∆A,KciA
; ciA), where KclA

and KciA
are sampled

13

on the fly by B. Likewise, B commits to clB and ciB by MclB
← Fq-OLE(∆B,KclB

; clB) and

MciB
← Fq-OLE(∆B,KciB

; ciB).
Now, A and B can locally compute MACs on cA and cB by using the additively homo-

morphic properties of the MAC scheme. Specifically, A computes McA
= MclA

−MrA
+MciA

and KcB
= KclB

− KrB
+ KciB

, whereas B computes McB
= MclB

−MrB
+ MciB

and KcA
=

KclA
−KrA

+KciA
.

This concludes the description of the semi-honestly secure scheme. We now provide
a mechanism to enforce semi-honest behaviour by both parties. The main ideas of this
technique can be sketched as follows. To enforce that the parties input the right values in
different Fq-OLE-instances, we compute several values twice, in two different ways. We call
this technique fingerprinting.

Since the protocol is entirely symmetric, we will describe the fingerprinting sub-protocols
only from the view of A in this outline.

– First, we want to make sure that A inputs the correct value clA to obtain MclA
. At the same

time, B must not use a different ∆A than for the other MACs. We compute a check value
γ1 as follows. A and B use another Fq-OLE to compute σ1

A ← Fq-OLE(−KaA
,KclA

+γ1; bA),

where B chooses γ1 ←$ Fq. Now A locally computes bAMaA
+σ1−MclA

, which evaluates

to γ1 if MclA
was computed with the correct clA and ∆A.

– Secondly, we have to ensure that ciA is correctly computed. Another OLE is used to
compute σ2 ← Fq-OLE(MaB

,MrB
; bA). A locally computes σ2′ = ∆Bc

i
A + KaB

bA + KrB
,

and if B used the correct inputs, it holds that σ2′ = σ2.
– Now that we know that ciA is correct, we have to verify that the MAC MciA

was generated
correctly. Towards this, we first observe that we can create MciA

in a different way than

described above: MciA
← Fq-OLE(∆AaB, ∆ArB +KciA

; bA) yields MciA
= ∆A(aBbA + rB) +

KciA
. Now we create another check value γ2 by using an additional authenticated value

sA. A locally computes d = ciA − sA and γ2 = MciA
−MsA

, and sends d to B. B locally
computes ∆Ad+KciA

−KsA
. Again, if A used the correct input for the MAC generation,

and B as well, both parties will obtain the same γ2.
– It remains to bind the input of A to the before authenticated value bA. We therefore

add a final check γ3: A obtains σ3
A ← Fq-OLE(∆A, σ

3
B; bA). Now A locally computes

γ3 = MbA
− σ3

A, while B locally computes KbA
− σ3

B.

In a final step we add all γi to a global check value γglo. Then A commits to its version of
γglo, B sends its version to A, and A has to unveil. If the values do not match, the protocol
is aborted.

In the final protocol, we make use of the previously described Fkq -OLE primitive, which
allows us to directly authenticate a batch of inputs, and also ensures that A has to use
the same input bA in all of the above mentioned steps. The complete description is given
in Figure 8.

Theorem 1. The protocol ΠDeal UC-realizes FDeal in the (Fq-OLE,Fkq -OLE)-hybrid model
with unconditional security and constant communication and computation overhead.

Proof. Since the protocol ΠDeal is executed symmetrically by both parties, our proof strategy
proceeds as follows. We provide two simulators against both corrupted sender and receiver
in ΠDeal. We define a wrapper simulator which internally runs both simulators (since a party
P ∈ {A,B} plays both sender and receiver in a complete execution of ΠDeal). This wrapper
simulator interacts with FDeal and provides an indistinguishable simulation.

14

ΠDeal

Initialize: On input (init), A (resp. B) samples ∆B ∈ Fq (resp. ∆A) uniformly at random and
stores the value. Both parties execute the following protocol twice in parallel, one where they
play sender and one where they play receiver.
1. S: On input (aValue, n), draw two random vectors v, r ∈ Fnq and send v, r to Fnq -OLE.
2. R: Draw a random vector K ∈ Fnq . Input ∆S into Fnq -OLE and obtain ∆Sv + r. Send

w = v∆S + r + K to S. Store K.
3. S: Set M = w − r and store (v,M).

Authenticated Value(A): Pick an unused index i. A outputs vi,Mvi and B outputs Kvi , i is
marked as used.

Authenticated Value(B): Symmetrical to AuthenticatedValue(A)

Fig. 7. Authentication step of protocol ΠDeal that realizes FDeal in the (Fq-OLE,Fkq -OLE)-hybrid
model.

The wrapper simulator Swrap (cf. Figure 9) first runs the initialization phase, where a
complete state is created, i.e. all inputs of AP are extracted, and a set of simulated inputs
is generated. This state is then used by the internal simulators for the multiplication step
in order to allow the extraction of AP’s secrets.

In the following, we will show that for all environments Z, it holds that

RealAP

ΠDeal
≈s Ideal

Swrap(P)
FDeal

.

Towards this, we define two helper simulators SS and SR, and show that their simulation
of the other party P̄ is indistinguishable from a real protocol run.

Corrupted sender. The simulator SS (cf. Figure 10) creates a complete set of keys
for the initialization phase and extracts the corresponding MACs and inputs of AS. For the
multiplication phase, it is given as input a complete state of simulated and extracted inputs,
keys and MACs. Based on these, the simulator can compare AS’s input with the correct
input and abort if they do not match.

Let ∆R, (KaR
,KbR

,KrR
,KsR

) be AS’s input to the first F4n
q -OLE and (aS,bS, rS, sS)

the input and (MaS
,MbS

,MrS
,MsS

) the output of the second F4n
q -OLE. Further let ξ1 be

the input into Fq-OLE, ξ2 be the input into F5
q-OLE and ξ3 be the message sent for the

verification of MciS
(dS in the honest case).

Consider the following hybrids H0, . . . ,Hn.

H0: The real experiment.
H1,...,n For i = 1, . . . , n, Hi is identical to Hi−1, except for the following. In round i, let ξ1

be AS’s input into the Fq-OLE and let ξ2 be the input into F5
q-OLE. Further let ξ3 be

the message sent by AS to R. If (ξ1, ξ2, ξ3) 6= (aSbS, bS, dS), set γglo
R ←$ Fq.

Hn: The ideal experiment.

We first observe that for each round i, every relevant value of the receiver unknown to
AS can be expressed in terms of ∆S, i.e. we have that

rR = ciS − aRξ2 (8)

KaS
= MaS

−∆SaS (9)

KbS
= MbS

−∆SbS (10)

15

ΠDeal cont’d

Let COM be the commitment from Section 3.1.

Authenticated Multiplication: Both parties execute the following protocol twice in parallel,
one where they play sender and one where they play receiver. We split the multiplication into
several parts.

Inputs: S: Call Authenticated Value(S) four times to obtain [a]S, [b]S, [r]S, [s]S.
Multiplication of local shares: The result is [cl]S = [aSbS]S.

1. S: Compute clS = aS · bS. Input clS into Fq-OLE.
2. R: Draw Kcl

S
∈ Fq uniformly at random, input (∆S,Kcl

S
) into Fq-OLE and output

Kcl
S
.

3. S: Obtain Mcl
S

= ∆Sc
l
S +Kcl

S
and output (clS,Mcl

S
).

Multiplication of cross shares: The result is [ci]S = [aRbS + rR]S.
1. R: Draw Kci

S
∈ Fq uniformly at random and input(

(aR,∆SaR,−KaS ,MaR ,∆S), (rR,∆SrR +Kci
S
,Kcl

S
+ γ1

R,MrR , σ
3
R)
)

into F5
q-OLE.

2. S: Input bS into F5
q-OLE and obtain the following values:

– ciS = aRbS + rR

– Mci
S

= ∆S(aRbS + rR) +Kci
S

– σ1
S = −bSKaS +Kcl

S
+ γ1

R

– σ2
S = MaRbS +MrR = ∆R(rR + bSaR) +KrR +KaRbS

– σ3
S = ∆SbS + σ3

R

Output (ciS,Mci
S
).

Checks and output: The result is [aS]S, [bS]S, [cS]S. Let γglo
P for P ∈ {S,R} be the global

checksum.
1. Verification of Mcl

S
.

– S: Compute γ1
S = bSMaS + σ1

S −Mcl
S

and set γfinal
S += γ1

S .

– R: Set γglo
R += γ1

R.
2. Verification of ciS.

– S: Compute σ2′
S = ∆Rc

i
S + KaRbS + KrR . Abort if σ2′

S 6= σ2
S . Further set γ3

S =
MbS − σ

3
S and γglo

S += γ3
S .

– R: Compute γ3
R = KbS − σ

3
R and set γglo

S += γ3
R.

3. Verification of Mci
S
.

– S: Compute γ2
S = Mci

S
−MsS and set γglo

S += γ2
S . Send dS = ciS − sS to R.

– R: Compute γ2
R = ∆SdS +Kci

S
−KsS and set γglo

R += γ2
R.

4. Final check over all n triples:
– S: Compute (com, unv) = COM.Commit(γglo

S) and send com to R.

– R: Send γglo
R to S.

– S: If γglo
R 6= γglo

S , abort. Otherwise send unv to R, set [cS]
(j)
S = [cl]

(j)
S − [r]

(j)
S +[ci]

(j)
S

and output (a
(j)
S ,M

(j)
aS , b

(j)
S ,M

(j)
bS
, c

(j)
S ,M

(j)
cS) for j ∈ [n].

– R: If γglo
R 6= γglo

S , abort, otherwise output (K
(j)
aS ,K

(j)
bS
,K

(j)
cS) for j ∈ [n].

Fig. 8. Multiplication step of protocol ΠDeal that realizes FDeal in the (Fq-OLE,Fkq -OLE)-hybrid
model.

KsS
= MsS

−∆SsS (11)

16

Simulator Swrap(P)

Initialize: Run SS.Sini with S = P to obtain (vP,MvP , ∆̂P, K̂vP) and SR.Sini with R = P to ob-
tain (∆P̄,KvP̄

, v̂P̄, M̂vP̄
). Store state = ((∆P̄,Kv P̄,vP,MvP), (∆̂P, K̂vP , v̂P̄, M̂vP̄

)) and send
(setInit,P, (∆P̄,vP,MvP ,KvP̄

)) to FDeal.
Authenticated value: Simulate according to ΠDeal.
Authenticated multiplication: Run SS.Smul(state) with S = P to obtain (cP,McP) and
SR.Smul(state) with R = P to obtain KcP̄

. Send (setMult,P, (cP,McP ,KcP̄
)) to FDeal.

Fig. 9. Simulator Swrap against a corrupted party P ∈ {A,B}.

Simulator SS

SS formally consists of two algorithms Sini,Smul, where Smul gets an input
((∆R,KvR,vS,MvS), (∆̂S, K̂vS , v̂R, M̂vR)).

Initialize (Sini): Sample ∆̂S ←$ Fq. Extract AS’s inputs into F4n
q -OLE and obtain vS and rS.

Draw K̂vS ←$ F4n
q , compute MvS = ∆SvS + KvS and w = MvS + rS. Send w to AS and

output (vS,MvS , ∆̂S, K̂vS).
Authenticated value: Simulate according to ΠDeal.
Authenticated multiplication (Smul): Simulate ΠDeal and let ξ1 be AS’s input into Fq-OLE

and ξ2 be the input into F5
q-OLE. Further let ξ3 be the message from AS.

– If ξ1 6= aSbS and ξ2 6= bS, set γ1
R ←$ Fq.

– If ξ2 6= bS, set γ3
R ←$ Fq.

– If ξ3 6= ciS − sS, set γ2
R ←$ Fq.

Continue the simulation according to ΠDeal and compute cS = clS + ciS − rS and McS =
Mcl

S
+Mci

S
−MrS if no abort occurs. Output (cS,McS).

Fig. 10. Simulator SS against a corrupted sender.

KclS
= MclS

−∆Sξ1 (12)

KciS
= MciS

−∆S(aRξ2 + rR) = MciS
−∆Sc

i
S (13)

γ1R = σ1
S +KaS

ξ2 −KclS

= σ1
S + (MaS

−∆SaS)ξ2 − (MclS
−∆Sξ1)

= σ1
S +∆S(ξ1 − aSξ2) + ξ2MaS

−MclS
(14)

σ3
R = σ3

S −∆Sξ2 (15)

Thus, all of these values are uniformly distributed given AS’s view.
We will now show that for i = 1, . . . , n, the hybrids Hi−1 and Hi are statistically close.

Clearly, if (ξ1, ξ2, ξ3) = (aSbS, bS, dS), then the two experiments are identical given the view
of Z. Therefore, the only way to distinguish Hi−1 and Hi is to provide inputs (ξ1, ξ2, ξ3) 6=
(aSbS, bS, dS) and pass the checks of γglo.

The abort condition for the check γ1 can be rewritten as

0 = bSMaS
+ σ1

S −MclS
− γ1R

= bSMaS
+ σ1

S −MclS
− (σ1

S +∆S(ξ1 − aSξ2) + ξ2MaS
−MclS

)

= ∆S(aSξ2 − ξ1) +MaS
(bS − ξ2) (16)

17

using Equation (14). By applying Equations (11) and (13) we can rewrite the check of γ2 as

0 = MciS
−MsS

−∆Sξ3 −KciS
+KsS

= MciS
−MsS

−∆Sξ3 −MciS
+∆Sc

i
S +MsS

−∆SsS

= ∆S(ciS − sS − ξ3) (17)

Finally, for the check γ3 we get

0 = MbS
− σ3

S −KbS
+ σ3

R

= MbS
− σ3

S −MbS
+∆SbS + σ3

S −∆Sξ2

= ∆S(bS − ξ2). (18)

by applying Equations (10) and (15).
Clearly, if ξ1 = aSbS and ξ2 = bS, Equations (16) and (18) hold. But if ξ1 6= aSbS,

then Equation (16) is uniformly distributed given AS’s view and the check of γ1 will fail.
On the other hand, if ξ2 6= bS, then Equation (18) is uniformly distributed, and the check
for γ3 fails.

Similarly, if ξ3 6= ciS − sS, γ2R will be uniformly distributed given AS’s view. Thus, if
(ξ1, ξ2, ξ3) 6= (aSbS, bS, c

i
S − sS), the probability that AS passes the check for γglo is upper

bounded by 1/|Fq|, since γglo = γ1 + γ2 + γ3. This yields that given Z’s view, the statistical
distance between the hybrids Hi−1 and Hi is at most 1/|Fq|. Combined, the statistical
distance between H0 and Hn is bounded by n/|Fq|, which is negligible in the security
parameter. This establishes a correct simulation against a corrupted sender in ΠDeal.

Corrupted receiver. The simulator SR against a corrupted receiver AR is conceptually
very simple. During the initialization, it simply extracts the global MAC key and all other
keys from AR and also creates a consistent set of inputs and MACs from these keys. For
the multiplication, it is given a complete set of all inputs, MACs and keys of the AR. This
allows the simulator to compare the actual inputs during the multiplication protocol with
the intended inputs. If they do not match, the simulator simply sets the check values to a
random value, which forces the protocol to fail. The simulator is described in Figure 11.

Let ∆S, (KaS
,KbS

,KrS
,KsS

) be AR’s input to the first F4n
q -OLE and (aR,bR, rR, sR) the

input and (MaR
,MbR

,MrR
,MsR

) the output of the second F4n
q -OLE. Further let (α1, β1) be

AR’s input to Fq-OLE and (α2, α3, α4, α5, α6), (β2, β3, β4, β5, β6) be the inputs to F5
q-OLE.

Consider the following hybrids H0, . . . ,H2n.

H0: The real experiment.
H{1,...,n}: For i = 1, . . . , n,Hi is identical toHi−1, except for the following. If (α2, α5, β2, β5) 6=

(aR,MaR
, rR,MaR

) in round i, abort regardless of whether σ2
S = ∆Rc

i
S +KaR

bS +KrR
.

H{n+1,...,2n}: For i = n + 1, . . . , 2n, Hi is identical to Hi−1, except for the following. If

(α1, α2, α3, α4, α6) 6= (∆S, aR, ∆SaR,−KaS
, ∆S), set γglo

S ←$ Fq.
H2n: The ideal experiment.

We first observe that for each round i, every value of the sender unknown to AR can be
expressed in terms of the MAC key ∆R and inputs aS, bS and sS, i.e. we have that

KaR
= MaR

−∆RaR (19)

KrR
= MrR

−∆RrR (20)

MaS
= ∆SaS +KaS

(21)

18

Simulator SR

SR formally consists of two algorithms Sini,Smul, where Smul gets an input
((∆S,KvS,vR,MvR), (∆̂R, K̂vR , v̂S, M̂vS)).

Initialize (Sini): Sample v̂S, rS ←$ F4n
q . Extract AR’s input into F4n

q -OLE and obtain ∆S. After

obtaining w, compute M̂vS = w − rS and KvS = MvS −∆SvS. Output (∆S,KvS , v̂S, M̂vS).
Authenticated value: Simulate according to ΠDeal.
Authenticated multiplication (Smul): Simulate ΠDeal and let (α1, β1) be AR’s input into

Fq-OLE and
(
(α2, α3, α4, α5, α6), (β2, β3, β4, β5, β6)

)
be the inputs into F5

q-OLE.
– If (α1, α4) 6= (∆S,−KaS), set γ1

S ←$ Fq.
– If (α2, α5, β2, β5) 6= (aR,MaR , rR,MrR), abort.
– If (α2, α3) 6= (aR,∆SaR), set γ2

S ←$ Fq.
– If α6 6= ∆S, set γ3

S ←$ Fq.
Continue the simulation according to ΠDeal and compute KcS = Kcl

S
+Kci

S
−KrS , if no abort

occurs. Output KcS .

Fig. 11. Simulator SR against a corrupted receiver.

MbS
= ∆SbS +KbS

(22)

MsS
= ∆SsS +KsS

(23)

MclS
= α1aSbS + β1 (24)

MciS
= α3bS + β3 (25)

ciS = α2bS + β2 (26)

dS = ciS − sS = α2bS + β2 − sS (27)

σ1
S = α4bS + β4 (28)

σ2
S = α5bS + β5 (29)

σ3
S = α6bS + β6 (30)

Thus, all of these values are uniformly distributed given AS’s view. We will start by showing
that for i = 1, . . . , n the hybrids Hi−1 and Hi are statistically close to the view of Z. Hi−1
and Hi differ only in round i. If it holds that (α2, α5, β2, β5) 6= (aR,MaR

, rR,MaR
), then

the sender will always abort in Hi, possibly allowing Z to distinguish. We will now show
that in case (α1, α2, β1, β2) 6= (aR,MaR

, rR,MaR
) the sender also aborts with overwhelming

probability in Hi−1, establishing that the two hybrids are statistically close.
We rewrite the abort condition of σ2 as follows using Equations (19), (20), (26) and (29).

0 = ∆Rc
i
S +KaR

bS +KrR
− σ2

S

= ∆R(α2bS + β2) +KaR
bS +KrR

− α5bS − β5
= ∆Rα2bS +∆Rβ2 + (MaR

−∆RaR)bS +MrR
−∆RrR − α5bS − β5

= bS(MaR
− α5) + β5 −MrR

+∆R((α2 − aR)bS + β2 − rR) (31)

Define the random variables

L = bS(α5 −MaR
) + β5 −MrR

R = bS(α2 − aR) + β2 − rR,

19

and we can simplify Equation (31) into

L = ∆R ·R.

Assume first that α2 = aR and β2 = rR. In this case the random variable R is constant 0
and it must either hold that α5 6= MaR

or β5 6= MrR
. Therefore, the variable L is either

constant non-zero or uniformly random over Fq. Thus, the probability that Equation (31)
holds is at most 1/|Fq|.

Now, assume that α2 6= aR or β2 6= rR. In this case the random variable R is either
constant non-zero or uniformly random over Fq. If R is non-zero, then the probability that
Equation (31) holds is at most 1/|Fq| over the choice of ∆R. Thus

Pr[L = ∆R ·R] = Pr[R 6= 0]︸ ︷︷ ︸
<1

·Pr[L = ∆R ·R|R 6= 0]︸ ︷︷ ︸
≤1/|Fq|

+ Pr[R = 0]︸ ︷︷ ︸
≤1/|Fq|

·Pr[L = ∆R ·R|R = 0]︸ ︷︷ ︸
≤1

≤ 2/|Fq|.

We conclude that if (α2, α5, β2, β5) 6= (aR,MaR
, rR,MaR

), then the abort condition is trig-
gered, except with probability at most 2/|Fq|. Thus, the statistical distance between Hi−1
and Hi is at most 2/|Fq|.

We will now show that for i = n + 1, . . . , 2n, the hybrids Hi−1 and Hi are statistically
close. Clearly, if the inputs are according to ΠDeal, then the two experiments are identical
given the view of Z. Therefore, the only way to distinguish Hi−1 and Hi is to provide inputs
(α1, α2, α3, α4, α6) 6= (∆S, aR, ∆SaR,−KaS

, ∆S) and pass the check of γglo.
Towards this, we rewrite all checks for γ1, γ2 and γ3 using the above identities. For γ1,

we apply Equations (21), (24) and (28) and get

0 = bSMaS
+ σ1

S −MclS

= bS(∆SaS +KaS
) + α4bS + β4 − (α1aSbS + β1)

= bS((∆S − α1)aS +KaS
+ α4) + β4 − β1 (32)

If α1 = ∆S but α4 6= −KaS
, the term depending on bS in Equation (32) does not vanish,

hence the result will be uniformly distributed. The same holds for the case α1 6= ∆S because
of the dependence on the unknown aS. Combined, if (α1, α4) 6= (∆S,−KaS

), the value γ1 is
uniformly distributed given AR’s view.

Moving on, the check for γ2 can be rewritten as

0 = MciS
−MsS

− (∆SdS +KciS
−KsS

)

= α3bS + β3 − (∆SsS +KsS
)− (∆S(α2bS + β2 − sS) +KciS

−KsS
)

= bS(α3 −∆Sα2) + β3 −∆Sβ2 −KciS
(33)

using the identities in Equations (23), (25) and (27). If (α2, α3) 6= (aR,MaR
), Equation (33)

will only hold with probability 2/|Fq|. This follows from Equation (31) (i.e. it has to hold
that α2 = aR), and the fact that Equation (33) is uniformly distributed if α3 6= ∆Sα2.

Finally, we apply Equations (22) and (30) to the check for γ3 and get

0 = MbS
− σ3

S − (KbS
− σ3

R)

20

= ∆SbS +KbS
− α6bS − β6 −KbS

+ σ3
R

= bS(∆S − α6) + σ3
R − β6 (34)

Thus, if α6 6= ∆S, Equation (34) will be uniformly distributed. Combining all these observa-
tions, and considering the fact that γglo = γ1+γ2+γ3, it follows that the probability that AR

produces a correct γglo
R is upper bounded by 2/|Fq|, if (α2, α5, β2, β5) 6= (aR,MaR

, rR,MaR
).

Thus we can bound the statistical distance between Hi and Hi−1 by 2/|Fq|.
We conclude that the statistical distance between H0 and H2n can be upper bounded

by 4n/|Fq|, which is negligible in the security parameter. ut

Efficiency For a complete set of authenticated triples, ΠDeal requires an amortized 22 calls
to Fq-OLE:

– 6 for F5
q-OLE; the check requiring the commitment in the Fkq -OLE protocol can be

summed over all triples (it is a random value) and is thus amortized away.
– 4 for the MACs on the inputs; again both the additional Fq-OLE and the commitment

for Fkq -OLE are amortized over all triples.
– One for the MAC on the locally computed share.
– The verification of γglo is only done once over all triples and thus amortized away.

Since the protocol is symmetric for both parties, in summary 22 calls to Fq-OLE are necessary
for one authenticated triple. We point out that even in the semi-honest setting, 8 calls to
Fq-OLE would be necessary to generate such a triple.

Regarding computational efficiency, note that the protocol only requires a constant num-
ber of basic field operations per triple.

5 Secure Two-party Computation

In this section we describe the two-party computation protocol for arithmetic circuits. We
prove its UC-security in the FDeal-hybrid model. The protocol construction uses basic tech-
niques to turn randomized arithmetic operations into deterministic arithmetic operations.
Since we use authenticated values as input, we have to make sure that an arithmetic opera-
tion returns an authenticated result. All operations needed to de-randomize the inputs are
additions. Consider party A wants to add two authenticated values (x,Mx) and (y,My) with
corresponding keys Kx and Ky held by B. Then A computes z = x + y,Mz = Mx + My =
∆(x+ y) +Kx +Ky, and B computes Kz = Kx +Ky. Then the value z is properly authen-
ticated by Mz, and B holds the corresponding key Kz.

Theorem 2. The protocol Π2PC in Figure 13 UC-realizes F2PC in the FDeal-hybrid model.

Proof. Correctness. Correctness of the protocol is immediate with the exception of the
multiplication step. Let [a] = [aA|aB],[b] = [bA|bB] and [c] = [cA|cB] such that c = a · b.
Further let δaA

= aA − xA, δbA
= bA − yA, δaB

= aB − xB, δbB
= bB − yB, δx = δaA

+ δaB
and

δy = δbA
+ δbB

. Then

(aA + aB) · (bA + bB) = (xA + δaA
+ xB + δaB

) · (yA + δbA
+ yB + δbB

)

= (xA + xB + δx) · (yA + yB + δy)

= x · y + yAδx + yBδx + xAδy + xBδy + δxδy

21

F2PC

Rand: On input (rand, vid) from A and B, with vid being a fresh identifier, sample r ∈ Fq and
store (vid, r)

Input: On input (inp,P, vid, x) from P ∈ {A,B} and (inp,P, vid, ?) from P̄, with vid a fresh
identifier, store (vid, x).

Add: On input (add, vid1, vid2, vid3) from both parties, with vid3 being a fresh identifier, retrieve
(vid1, x), (vid2, y) and store (vid3, x+ y).

Multiply: On input (mult, vid1, vid2, vid3) from both parties, with vid3 being a fresh identifier,
retrieve (vid1, x), (vid2, y) and store (vid3, x · y).

Output: On input (output,P, vid) from both parties, retrieve (vid, x) and output it to P.

Fig. 12. Ideal arithmetic two-party computation functionality.

Protocol Π2PC

Init: A receives ∆B from FDeal, B receives ∆A.
Rand: A and B ask FDeal for random authenticated values [rA]A,[rB]B and store [r] = [rA|rB].
Input: If P = A, then A asks FDeal for a random authenticated value [xA]A and announces xB =

x - xA. The parties build [xB]B and define [x] = [xA|xB] (cf. Figure 1). This step is performed
symmetrically for B.

Add: A and B retrieve [x], [y] and compute [z] = [x] + [y]. For that, A computes [zA]A = [xA]A +
[yA]A, symmetrically for B. This can be done locally.

Mult: A and B retrieve [x], [y] and ask FDeal for a random authenticated multiplication [a] =
[aA|aB],[b] = [bA|bB] and [c] = [cA|cB] such that c = a · b. Additionally, A retrieves a random
authenticated value [rA]A from FDeal. A and B compute z = x · y as follows:
1. A computes δaA = aA − xA and δbA = bA − yA. Symmetrically, B computes δaB = aB − xB

and δbB = bB − yB.
2. A and B exchange all δ-values and compute δx = δaA + δaB and δy = δbA + δbB .
3. A computes δ = δx · δy. A and B create [δA]A via [rA]A.
4. A locally computes: [zA]A = [cA]A − [xA]Aδy − [yA]Aδx − [δA]A.
5. B locally computes: [zB]B = [cB]B − [xB]Bδy − [yB]Bδx.

Thus we have [z] = [zA|zB].
Output: The parties retrieve [x] = [xA|xB]. If A is to learn x, then B reveals xB. If B is to learn

x, then A reveals xA.

Fig. 13. Secure two-party computation in the FDeal-hybrid model.

We thus can compute

zA = cA − yAδx − xAδy − δxδy
zB = cB − yBδx − xBδy

The value δxδy has to be authenticated via a random authenticated value rA: A sends
r′ = δxδy − rA and u = MrA

+ t to B, where t←$ Fq. Blocally computes M ′δxδy = ∆Ar
′ + u

and sends it to A, who obtains Mδxδy = M ′δxδy − t.
UC-security. Consider the simulator S in Figure 14. It is easy to verify that S is

able to extract the inputs of corrupted parties and provide a correct output, as long as
the adversary follows the protocol. The only way to actively deviate from the protocol is by
sending inconsistent values, for which the simulator aborts. We now show that the simulator
aborts only with negligible probability.

22

Simulator S

Simulate FDeal to the parties and learn all shares, keys and MACs of the parties.

Rand Run the protocol honestly, send (rand, vid) to F2PC.
Input For the corrupted party C, compute x = xC + xH, where xC was sent to C by FDeal and xH

was sent to the honest party H. Send (inp,C, x) to F2PC.
For the honest party, use (inp,H, 0) as the dummy input to the simulated protocol.

Add Run the protocol honestly and call add on F2PC.
Multiply Run the protocol honestly. Call mult on F2PC.
Output If P = C, help open a value [x] after obtaining x′ from F2PC and computing xC from the

outputs of FDeal. Compute xH = xC + x′ and MxH = KxH + xHδH (KxH and ∆H are known
from FDeal).

Abort if any of the values are inconsistent, i.e., a MAC check passes, although the message was
not derived according to the outputs of FDeal.

Fig. 14. Simulator for Π2PC.

We prove through a series of hybrid experiments that the probability that the adversary
A manages to forge a MAC value is equivalent to guessing the global key ∆. Since every
MAC consists of a new random key K, the only way an adversary will gain an advantage
over guessing a new MAC is by adding/subtracting existing MACs. The proof proceeds
along the lines of [NNOB12].

Experiment 1 Sample a random global key∆ ∈ Fq.A1 is allowed to send queries (mac, v, l),
where v ∈ Fq and l is a fresh label. For each such query, sample a new local key K ∈ Fq,
store (l,K, v) and returnM = ∆v+K. IfA1 outputs a query (break, a1, l1, . . . , ap, lp, v

′,M ′),
such that (l1,K1, v1) to (lp,Kp, vp) are stored, ai ∈ {0, 1} and no break-query has been
sent, compute K =

∑p
i=0 aiKi and v =

∑p
i=0 aivi. If v′ 6= v and M ′ = ∆v′ + K A1

wins.
Experiment 2 Sample a random global key∆ ∈ Fq.A2 is allowed to send queries (mac, v, l,M),

where v,M ∈ Fq and l is a fresh label. For each such query, store (l,K, v) and re-
turn K = M − v∆. If A2 outputs a query (break, a1, l1, . . . , ap, lp, v

′,M ′), such that
(l1,K1, v1) to (lp,Kp, vp) are stored, ai ∈ {0, 1} and no break-query has been sent,
compute K =

∑p
i=0 aiKi and v =

∑p
i=0 aivi. If v′ 6= v and M ′ = ∆v′ +K A2 wins.

Experiment 3 Sample a random global key∆ ∈ Fq.A3 is allowed to send queries (mac, v, l,M),
where v,M ∈ Fq and l is a fresh label. For each such query, store (l,K, v) and return
K = M − ∆v. If A3 outputs a query (break, ∆′), and no break-query has been sent
previously, if ∆′ = ∆, A3 wins.

Experiment 4 Sample a random global key ∆ ∈ Fq. If A4 outputs a query (break, ∆′),
and no break-query has been sent previously, if ∆′ = ∆, A4 wins.

Lemma 3. For every adversary A1 in Experiment 1 there exists an adversary A2 that is
no stronger than A1, which wins Experiment 2 with the same success probability as A1.

Proof. Given an adversary A1, A2 passes all side information on ∆ to A1. For each query
(mac, v, l) from A1, A2 samples a random MAC M ∈ {0, 1}Fq , outputs (mac, v, l,M) to
Experiment 2 and sends M to A1. If A1 sends a query (break, a1, l1, . . . , ap, lp, v

′,M ′), A2

forwards it to Experiment 2. The number of queries in both experiments is identical, and the

23

distribution on K and M is identical as well, since in Experiment 1 K is chosen uniformly
and M = ∆v + K, while in Experiment 2 M is chosen uniformly and K = M −∆v. Thus
the success probability of A2 is the same as the success probability of A1, and A2’s running
time is obviously linear in the running time of A1.

Lemma 4. For every adversary A2 in Experiment 2 there exists an adversary A3 that is
no stronger than A2, which wins Experiment 3 with the same success probability as A2.

Proof. Given an adversary A2, A3 passes all side information on ∆ to A2. For each query
(mac, v, l,M) from A2, A3 outputs this message to Experiment 3 and stores (v, l,M). If A2

sends a query (break, a1, l1, . . . , ap, lp, v
′,M ′), where all tuples (vi, li,Mi), i ∈ {1, . . . , p} are

stored, compute M =
∑p
i=1 aiMi and v =

∑p
i=1 aivi.

For each (li,Mi, vi) let Ki be the corresponding key stored by Experiment 3. It holds
that Mi = ∆vi + Ki, so if we let K =

∑p
i−1 aiKi, then M = ∆v + K. If A2 wins, i.e.

M ′ = ∆v′ + K, we can compute M −M ′ = ∆v + K − ∆v′ − K− = ∆(v − v′). Dividing
by (v − v′) yields ∆, so A3 outputs (break, (M −M ′)/(v − v′)) and wins Experiment 3.
Obviously, A2 and A3 have the same success probability.

Lemma 5. For every adversary A3 in Experiment 3 there exists an adversary A4 that is
no stronger than A3, which wins Experiment 4 with the same success probability as A3.

Proof. A4 internally runs A3 and simply ignores the MAC queries, because they do not
influence the success probability of A3.

We thus showed that any adversary that can forge a MAC essentially has to guess the global
key ∆. Since the simulation is perfect until a MAC is forged and the field size is exponential,
it follows that the simulation distributed statistically close to the real protocol.

6 Efficiency of our Approach

We give a short comparison with recent 2PC protocols that follow the same paradigm of
implementing an arithmetic black box.

In order to evaluate the efficiency of our approach, we first have to find a suitable
instantiation of the OLE primitive. Currently, the very recent result of Ghosh et al. [GNN17]
based on noisy encodings seems to have the highest practical efficiency both communication-
wise and computation-wise. From their paper, we can deduce the communication cost in field
elements by

cOLE = α(2 + cOT)

for a single OLE. Here α is depending on the security parameters (basically the noise rate
of the encoding) of the underlying assumption. According to [GNN17] α = 8 is a more
optimistic choice, and α = 16 a more conservative one. The cost of OT cOT can be fixed
to 2 field elements (when using OT extension). Assuming α = 16, this means we need 64
field elements per OLE. Combining this with the overhead of our protocol we get that an
authenticated triple costs

ctriple = 2(cOLE · 11 + 4) = 1416

field elements. It might be convenient to implement the OLE and then derandomize some
of values for our protocol, because there are some dependencies between the inputs of the
OLEs. But this will only induce an small additive overhead to ctriple (there are at most 22

24

values that have to be derandomized per triple), which is insignificant in comparison to the
cost of the OLEs. All in all, we can bound the number of field elements by 1440.

Based on the above analysis we estimate the communication overhead of our protocol
per authenticated triple and compare this in Table 1 with existing solutions. Looking at
those numbers, it is interesting to see that our approach beats previous solutions even for
smaller fields or with weaker security guarantees.

Protocol Security Field Comm./Triple

SPDZ [DPSZ12] active Fp, 128-bit 430kB
covert Fp, 128-bit 132kB

MASCOT [KOS16] active Fq, 128-bit 360kB
active Fq, 64-bit 106kB

This work active Fq, 128-bit 22kB (11kB)
active Fq, 64-bit 11kB (5.5kB)

Table 1. Comparison of communication overhead with existing solutions (taken from [KOS16]).
Numbers in parentheses are obtained using optimistic parameters.

We currently have no implementation of the OLE protocol of [GNN17], so we cannot give
a fair comparison of the computational overhead with respect to other approaches. But we
want to highlight that the OLE protocol only requires basic field operations and polynomial
interpolation, which has a computational overhead of n log n for n OLEs. Our protocol itself
only needs a constant number of basic field operations. It therefore seems a reasonable
assumption that network bandwidth is the limiting factor for the triple generation, and not
the computational overhead. This favors our approach over previous solutions.

25

References

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic
encryption and multiparty computation. In Kenneth G. Paterson, editor, EURO-
CRYPT 2011, volume 6632 of LNCS, pages 169–188. Springer, Heidelberg, May 2011.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[CDN01] Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty computation from
threshold homomorphic encryption. In Birgit Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 280–299. Springer, Heidelberg, May 2001.

[CvT95] Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Committed oblivious transfer
and private multi-party computation. In Don Coppersmith, editor, CRYPTO’95, volume
963 of LNCS, pages 110–123. Springer, Heidelberg, August 1995.

[DIK10] Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty com-
putation and the computational overhead of cryptography. In Henri Gilbert, editor,
EUROCRYPT 2010, volume 6110 of LNCS, pages 445–465. Springer, Heidelberg, May
2010.

[DKM12] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. Statistically secure linear-
rate dimension extension for oblivious affine function evaluation. In Adam Smith, editor,
ICITS 12, volume 7412 of LNCS, pages 111–128. Springer, Heidelberg, August 2012.

[DKMQ12] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. David & Goliath
oblivious affine function evaluation - asymptotically optimal building blocks for
universally composable two-party computation from a single untrusted stateful
tamper-proof hardware token. Cryptology ePrint Archive, Report 2012/135, 2012.
http://eprint.iacr.org/2012/135.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer, Hei-
delberg, August 2012.

[FJN+13] Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Peter Sebastian
Nordholt, and Claudio Orlandi. MiniLEGO: Efficient secure two-party computation
from general assumptions. In Thomas Johansson and Phong Q. Nguyen, editors, EU-
ROCRYPT 2013, volume 7881 of LNCS, pages 537–556. Springer, Heidelberg, May
2013.

[GIP+14] Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer. Cir-
cuits resilient to additive attacks with applications to secure computation. In David B.
Shmoys, editor, 46th ACM STOC, pages 495–504. ACM Press, May / June 2014.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218–229. ACM Press, May 1987.

[GNN17] Satrajit Ghosh, Jesper Buus Nielsen, and Tobias Nilges. Maliciously secure oblivious
linear function evaluation with constant overhead. Cryptology ePrint Archive, Report
2017/409, 2017. http://eprint.iacr.org/2017/409.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161.
Springer, Heidelberg, August 2003.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 572–591. Springer, Heidelberg, August 2008.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with
no honest majority. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages
294–314. Springer, Heidelberg, March 2009.

26

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arith-
metic secure computation with oblivious transfer. In ACM CCS 16, pages 830–842.
ACM Press, 2016.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adver-
saries. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 1–17. Springer, Heidelberg, August 2013.

[LR14] Yehuda Lindell and Ben Riva. Cut-and-choose Yao-based secure computation in the
online/offline and batch settings. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 476–494. Springer, Heidelberg,
August 2014.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages
681–700. Springer, Heidelberg, August 2012.

[NP99] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In 31st
ACM STOC, pages 245–254. ACM Press, May 1999.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
FOCS, pages 160–164. IEEE Computer Society Press, November 1982.

27

