
Fast FPGA Implementations of Diffie-Hellman
on the Kummer Surface of a Genus-2 Curve

Philipp Koppermann1, Fabrizio De Santis2,
Johann Heyszl1, and Georg Sigl1,2

1 Fraunhofer Institute for Applied and Integrated Security, Munich, Germany
{philipp.koppermann,johann.heyszl,georg.sigl}@aisec.fraunhofer.de

2 Technische Universität München, Munich, Germany
{desantis,sigl}@tum.de

Abstract. We present the first hardware implementations of Diffie-
Hellman key exchange based on the Kummer surface of Gaudry and
Schost’s genus-2 curve targeting a 128-bit security level. We describe
a single-core architecture for low-latency applications and a multi-core
architecture for high-throughput applications. Synthesized on a Xilinx
Zynq-7020 FPGA, our architectures perform a key exchange with lower
latency and higher throughput than any other reported implementation
using prime-field elliptic curves at the same security level. Our single-
core architecture performs a scalar multiplication in 82 microseconds
while our multi-core architecture achieves a throughput of 91,226 scalar
multiplications per second. When compared to similar implementations
of Microsoft’s FourQ on the same FPGA, this translates to an improve-
ment of 48% in latency and 40% in throughput for the single-core and
multi-core architecture, respectively. Both our designs exhibit constant-
time execution to thwart timing attacks, use the Montgomery ladder for
improved resistance against SPA, and support a countermeasure against
fault attacks.

Keywords: Diffie-Hellman key exchange, hyperelliptic curve cryptogra-
phy, Kummer surface, FPGA, Zynq, low-latency, high-throughput, fault
countermeasure.

1 Introduction

In 1989, Koblitz [15] first mentioned the application of hyperelliptic curves in
cryptography. The Jacobian, which is associated to a genus-2 curve, enables a
group structure that can be used for cryptographic algorithms such as Diffie-
Hellman (DH) key exchange and digital signatures. Unfortunately, group opera-
tions on the Jacobian have higher complexity than those on elliptic curves (genus-
1 curves). However, the Kummer surface of the Jacobian can be used to decrease
the number of operations which are required for a (pseudo)-multiplication [12].
The Kummer surface is a 2-to-1 point mapping and can be compared to the
x-coordinate-only representation of elliptic curves [1]. Table 1 shows the num-
ber of field operations for a point addition and a point doubling operation used

Table 1. Number of field operations for point addition and point doubling: multipli-
cation (M), squaring (S), constant multiplication Mc, addition (A), and subtraction
(Z).

Genus Reference Field Size M S Mc A Z
1 Curve25519 [9] 255-bit 5 4 1 4 4
2 Kummer [18] 127-bit 7 12 12 16 16

in DH key exchange for a genus-1 Montgomery curve and a Kummer surface
associated to a genus-2 curve. It can be noted that the genus-2 curve requires
1.4-times more multiplications, 3-times more squarings, and 4-times more addi-
tions and subtractions than the genus-1 curve. However, the Kummer surface
based pseudo-multiplication operates on finite fields of half the size than those
of elliptic curves while supporting the same security level. This reduced field size
can lead to performance benefits in hardware, which is crucial for time critical
applications.

In 2006, Bernstein [2] showed in a cost analysis for software that a genus-2
based implementation is potentially 1.5-times faster than a comparable elliptic
curve based implementation. At that time, however, a secure Kummer surface of
a genus-2 curve was not found yet. Since genus-2 point counting is computation-
ally expensive, it took further six years until Gaudry and Schost [13] presented
a twist secure Kummer surface targeting a 128-bit security level. Using this
Kummer surface, Bernstein proved his earlier cost analysis [2] and presented a
high-speed DH implementation on high-end CPUs that set new speed records
[1]. These speed records were only surpassed by the FourQ elliptic curve imple-
mentation of Costello and Longa [6], which exploits a four-dimensional Gallant-
Lambert-Vanstone decomposition to minimize the total number of group oper-
ations. Finally, Renes et al. [18] published implementation results of DH key-
exchange on the Kummer surface of Gaudry and Schost’s genus-2 curve [13]
for different microcontrollers reporting notable performance results. So far, in-
vestigations of DH key exchange on the Kummer surface of genus-2 curves were
confined to software implementations [1, 18] while no attention was paid to hard-
ware implementations. In this work, we show that the Kummer surface of Gaudry
and Schost’s genus-2 curve can be used to perform very fast DH key-exchanges
also in hardware.

Contribution We present the first FPGA implementations of Diffie-Hellman
using the Kummer surface of a genus-2 hyperelliptic curve and show its compet-
itiveness compared to elliptic curve based implementations. Following previous
high-speed genus-2 implementations in software [1, 18], we use the Kummer sur-
face [3, 4, 12] of Gaudry and Schost’s genus-2 curve [13]. Synthesized on a Zynq-
7020, our single-core architecture is about 1.91-times faster than the FourQ
implementation [14], which is the so far fastest prime-field curve scalar multipli-
cation on the same FPGA. In terms of throughput, our multi-core design shows

2

a factor-1.41 improvement compared to the FourQ implementation and a factor-
2.82 improvement compared to the high-throughput Curve25519 implementation
[20]. The main design decisions that allowed our results are summarized below.

Interleaving two scalar multiplications: Due to the serial nature of the considered
ladder, multiple hardware modules operate below full capacity. However, this
allows for a second scalar multiplication to be efficiently interleaved by carefully
scheduling the required field operations. The obtained instruction schedule leaves
the number of cycles unaltered while effectively doubling the throughput. Note
that this interleaved scalar multiplication can also be used as a countermeasure
against fault attacks by performing both scalar multiplications on the same input
point and check the results for equivalence.

Efficient representation of constant values: For improved performance, we in-
stantiate a dedicated circuit for multiplying field elements with 12-bit constants
in each ladder step. Compared to a conventional modular multiplication, the
constant modular multiplier requires only 4 clock cycles instead of 7. Some con-
stants, however, are negative; the naive approach would be to convert them to
positive elements of the prime field and then use the modular multiplier for mul-
tiplication. In order to avoid the increased memory requirements and decreased
performance of this naive approach, we neglect the sign when storing the con-
stants and include the conditional negation logic inside the constant modular
multiplier.

High-speed modular multiplier: The performance of the scalar multiplication is
strongly correlated with the performance of the modular multiplier. We take
the multiplier presented in [10, 16], which is explicitly optimized for Mersenne
prime fields, and modify it by applying non-standard tiling technique [19] to
further improve its performance. In this way, we additionally reduce the number
of required DSP blocks by 10%.

Organization The paper is organized as follows. In Sect. 2, we describe the
basics of DH key exchange using a genus-2 curve, describe Gaudry and Schost’s
hyperelliptic curve and its Kummer surface, and summarize the scalar multi-
plication on this Kummer surface using the Montgomery ladder. In Sect. 3, a
description of the single-core and multi-core hardware architectures is provided.
In Sect. 4 we present the performance analysis and compare our results with
related work. Finally, we conclude and discuss the results in Sect. 5.

2 Diffie-Hellman Key Exchange Using Kummer Surfaces

For elliptic and hyperelliptic curve based cryptosystems, the main operation is
the scalar multiplication Q = sP , where Q,P are two points on a curve and
s ∈ Z is a scalar value. In case of elliptic curve cryptography, the two points are
located on the elliptic curve E satisfying the curve equation E(Fq), where Fq

3

is a finite field. An abelian group is formed by all points on the elliptic curve
together with the point at infinity under the addition law, which is obtained by
the chord-and-tangent rule. A point can be multiplied with a scalar by using
an algorithm such as the Montgomery ladder [17], which repetitively performs
point addition and point doubling operations.

For a genus-2 hyperelliptic curve C, a group structure can be formed with
the corresponding Jacobian JC(Fq). The Jacobian forms an abelian group and
is defined as the quotient space JC := Div0

C/PrincC , where Div0
C denotes the

group of divisors of degree zero of curve C and PrincC the group of principal
divisors of curve C. A detailed description of Jacobians of hyperelliptic curves
can be found in [5]. Although a point can be multiplied on the Jacobian, it is
computationally expensive making it non-competitive compared to elliptic curve
based implementations. Instead, we make use of the Kummer surface KC that is
associated with JC of the hyperelliptic curve C. The Kummer surface is defined
as the quotient space of the Jacobian by its involution, which we denote by
KC := JC/〈±1〉. Gaudry [12] showed that scalar multiplication on the Kummer
surface can be computed faster than on the corresponding Jacobian. Even though
the group structure is lost when points on JC are mapped to KC , a pseudo-
multiplication [4] can be defined. For DH key exchange pseudo-multiplication is
sufficient, and thus we perform all computations on KC .

Our implemented DH key exchange works the same as the one described
by Renes et al. [18]; we also follow their notation throughout this paper. If a
point P is on the Jacobian JC , we denote its image on the Kummer surface by
±P . Each point ±P is represented by a 4-tuple where each element is 127-bit
wide which sums up to 508 bit in total. As described in [4, 18], we assume that
the public key (respectively public generator) is represented by a 3-tuple in its
wrapped 381-bit representation denoted by ±P . Renes et al. [18] showed that
keeping the input points in their wrapped representation offers two advantages:
first, it reduces the required amount of data that needs to be transmitted and
second, it results in a speed-up for the ladder computation.

For an ephemeral key exchange, the scalar multiplication is performed twice:
once for computing an entity’s public key, where the public generator is the
input point, and once for computing a shared secret, where the other entity’s
public-key is the input point.

Key exchange. Let ±P be the public generator (respectively public key) in
its wrapped representation and s be the 251-bit secret key. We then compute
Q← ±[s]P and derive the generated public key (respectively the shared secret)
as ±Q.

The scalar multiplication is implemented by Algorithm 1 (scalar_mult) and
uses three functions: unwrap computes the 4-tuple representation of the input
point, mont_ladder multiplies the unwrapped input point by a scalar value us-
ing the Montgomery ladder [17], and wrap finally computes the 381-bit wrapped
representation of the output point; all these functions are described in detail
in Sect. 2.3. As these functions depend on various parameters of the Kummer

4

Algorithm 1 scalar_mult: unwrap input point to Montgomery ladder on KC
followed by point wrapping. It is assumed that the public key (respectively public
generator) is in 381-bit wrapped representation.
Input:

(
s =

∑250
i=0 si2i

)
∈ [0, 2251),±P for ±P in KC.

Output: ±Q for ±Q← ±[s]P in KC .
1: ±P ← unwrap

(
±P
)

. compute 4-tuple representation of ±P
2: ±Q← mont_ladder

(
s,±P ,±P

)
3: ±Q← wrap (±Q) . compute wrapped 381-bit representation of ±Q
4: return ±Q

surface of Gaudry and Schost’s genus-2 hyperelliptic curve [13], we first summa-
rize the definition of this curve in Sect. 2.1 and describe the associated Kummer
surface in Sect. 2.2. More details can be found in [2, 18].

2.1 Gaudry and Schost’s Genus-2 Hyperelliptic Curve

The genus-2 hyperelliptic curve C of Gaudry and Schost [13] is defined over the
prime field Fp with p = 2127 − 1. The Rosenhain model of the curve C can be
written as follows:

C : Y 2 := X (X − 1) (X − λ) (X − µ) (X − ν) ,

where Rosenhain invariants are defined as

λ := ac/bd = 0x15555555555555555555555555555552 ,

µ := ce/df = 0x73E334FBB315130E05A505C31919A746 ,

ν := ae/bf = 0x552AB1B63BF799716B5806482D2D21F3 ,

the squared theta constants are set to

a = −11 , b = 22 , c = 19 , and d = 3 ,

e/f = (1 +
√
CD/AB)/(1−

√
CD/AB) ,

and the dual theta constants are set to

A := a+ b+ c+ d = 33 , B := a+ b− c− d = −11 ,
C := a− b+ c− d = −17 , D := a− b− c+ d = −49 .

2.2 Kummer Surface

Similar to previous works, we use the fast Kummer surface KC ∈ P3 of [3, 4, 12],
which is defined as:

KC : Exyzt =
((

x2 + y2 + z2 + t2
)

−F (xt+ yz)−G (xz + yt)−H (xy + zt)

)2

,

5

Algorithm 2 unwrap: (x/y, x/z, x/t) 7→ (x : y : z : t) unwrap point to its 508-bit
representation.
Input: (x/y, x/z, x/t) ∈ F3

p.
Output: (x : y : z : t) ∈ P3.
1: (V1, V2, V3)← ((x/z) (x/t) , (x/y) (x/t) , (x/y) (x/z))
2: V4 ← V3 (x/t)
3: return (V4 : V1 : V2 : V3)

Algorithm 3 wrap: (x : y : z : t) 7→ (x/y, x/z, x/t) compute wrapped 381-bit
representation.
Input: (x : y : z : t) ∈ P3.
Output: (x/y, x/z, x/t) ∈ F3

p.
1: V1 ← yz
2: V2 ← x/ (V1t) . inversion
3: V3 ← V2t
4: return (V3z, V3y, V1V2)

where

F = a2 − b2 − c2 + d2

ad− bc
, G = a2 − b2 + c2 − d2

ac− bd
, H = a2 + b2 − c2 − d2

ab− cd
,

and E = 4abcd (ABCD/ ((ad− bc) (ac− bd) (ab− cd)))2. For a point P in JC ,
its image KC is denoted by

(xP : yP : zP : tP) = ±P .

The identity point 〈1, 0〉 of JC maps to

±0JC = (a : b : c : d) .

2.3 Scalar Multiplication on the Kummer Surface

As described in Algorithm 1 (scalar_mult), we assume that the input and out-
put points are in their wrapped representation. The wrapped representation of
the point ±P = (x : y : z : t) in KC is composed of a 3-tuple and denoted by
±P = (x/y, x/z, x/t). Algorithm 2 (unwrap) implements the point unwrapping,
which consists of 4 multiplications in Fp. The wrapping function is described in
Algorithm 3 (wrap); it consists of a finite field inversion and 7 multiplications. As
in [18], we define three operations in the projective space P3 to improve the read-
ability of the Montgomery ladder. First, the multiplication M that multiplies
the corresponding pairs of coordinates from two distinct points in Fp:

M : ((x1 : y1 : z1 : t1) , (x2 : y2 : z2 : t2)) 7→ (x1x2 : y1y2 : z1z2 : t1t2) .

6

Algorithm 4 mont_ladder: Montgomery ladder using combined differential
double-and-add.
Input:

(
s =

∑250
i=0 si2i

)
∈ [0, 2251),

(
±P,±P

)
∈ K2

C .
Output: ±Q = (xQ : yQ : zQ : tQ) ∈ P3 for ±Q← ±[s]P in KC .
1: V5 ← (a : b : c : d)
2: V6 ← (xP : yP : zP : tP) . representation of ±P
3: V7 ←

(
1
A

: 1
B

: 1
C

: 1
D

)
4: V8 ←

(
1
a

: 1
b

: 1
c

: 1
d

)
5: V9 ←

(
1 : xP

yP
: xP

zP
: xP

tP

)
. representation of ±P

6: for i = 250 down to 0 do
7: (V1, V2)← cswap (si ⊕ si+1, (V5, V6)) . s251 = 0
8: (V1, V2)← (H (V1) ,H (V2))
9: (V3, V4)← (S (V1) ,M (V1, V2))
10: (V5, V6)← (M (V3, V7) ,M (V4, V7))
11: (V1, V2)← (H (V5) ,H (V6))
12: (V3, V4)← (S (V1) ,S (V2))
13: (V5, V6)← (M (V3, V8) ,M (V4, V9))
14: end for
15: (V1, V2)← cswap (s0, (V5, V6))
16: return ±Q = V2

Second, the special case where the two points are equal, i.e. squaring in Fp the
corresponding pairs of coordinates:

S : (x : y : z : t) 7→
(
x2 : y2 : z2 : t2

)
.

Third, the Hadamard transform H : (x : y : z : t) 7→ (xH : yH : zH : tH) with

xH =
u︷ ︸︸ ︷

(x+ y) +
v︷ ︸︸ ︷

(z + t) , zH =
r︷ ︸︸ ︷

(x− y) +
s︷ ︸︸ ︷

(z − t) , (1)
yH = (x+ y)− (z + t) , tH = (x− y)− (z − t) . (2)

Finally, Algorithm 4 (mont_ladder) describes the Montgomery ladder for the
scalar multiplication on the Kummer surface of Gaudry and Schost’s genus-2
curve. The constants that are stored in V7 and V8 are projectively derived from
the squared theta constants (a, b, c, d) and the dual theta constants (A,B,C,D)
respectively (see Sect. 2.1):(

1
a

: 1
b

: 1
c

: 1
d

)
= (114 : −57 : −66 : −418) ,(

1
A

: 1
B

: 1
C

: 1
D

)
= (−833 : 2499 : 1617 : 561) .

The Montgomery ladder consists of 251 ladder steps, each one performing a
differential-addition and a differential-doubling operation. Each ladder step in-
cludes a conditional swap of two pairs of coordinates.

7

3 Hardware Architectures

The implementation of Algorithm 1 (scalar_mult) is the essential task of our
hardware design. We present a single-core architecture for low-latency applica-
tions and a multi-core architecture for high-throughput applications. Our single-
core architecture performs two scalar multiplications on the Kummer surface at
a time by scheduling the field operations for point addition and point doubling
such that it is possible to interleave a second scalar multiplication with no cycle
penalty. The top-view architecture is illustrated in Fig. 1.

rdy

start

done

datapath

register file

ctrl

en

6x127

6x127

s,s'
2x251

co
nt

ro
l l

og
ic RAM

ctrl

±P,±P'

±Q,±Q'

127

127

Fig. 1. Single-core architecture, which contains all control and datapath logic for com-
puting Algorithm 1 (scalar_mult).

It takes two points in their wrapped representation as input, processes them,
and returns two points in their wrapped representation as output. We logically
divide our single-core design into three parts that are described in the next sub-
sections: memory, datapath, and control logic. Further we describe a multi-core
architecture that instantiates 4 independently operating cores and can perform
up to 8 scalar multiplications with different keys and input points.

A Note on Fault Attacks The two interleaved scalar multiplications can
be inherently used as a redundancy countermeasure to thwart fault attacks in
our designs, i.e. by performing two interleaved scalar multiplications on the same
points with the same key and then check the result for equivalence. This counter-
measure can be applied to both our single- and multi-core architectures without
applying any changes to the presented hardware designs.

3.1 Memory

The memory consists of a 16×127-bit register file and a 6×127-bit simple dual-
port RAM. The register file is divided in four larger blocks, where each block
is 4×127-bit wide. We follow the logical structure of Algorithm 4 (mont_ladder)

8

in which operations are performed on two points at a time (e.g. V1, V2 on line
8). We also use a simple dual-port RAM for storing the wrapped input point
xp

yp
,

xp

zp
, and xp

tp
, which is accessed in read-only mode. Note that when no design

constraints are set, the used synthesis tool instantiates distributed RAM instead
of block RAM for storing this point. We found out that forcing the synthesis
tool to use block RAM resulted in a ≈ 10% decrease of the maximum clock
frequency.

3.2 Datapath

The datapath including the register file is shown in Fig. 2. It implements the
required field operations in Fp. The register blocks Ri and R′i for i ∈ [1, 2] are

Hadamard

ctrl8x127

modular
multiplier

127

127

127 constant
multiplier

ctrl

8x127

4x127

127

8x127

ctrl

ctrl 8x127

127
ram

R2

m3

m2

R2

R1R1

m1

ctrl

Fig. 2. Datapath including register file.

required for storing intermediate values of the first and the second scalar mul-
tiplication, respectively. The register blocks R1 and R′1 are initialized with the
constants V5 = (a : b : c : d) whenever Algorithm 1 (scalar_mult) is started. The
modular multiplier is preceded by the multiplexer m3 that allows to perform
field operations using various input sources. The output of the constant modu-
lar multiplier and the Hadamard module serve as fast forward input paths for
the modular multiplier. These fast forward paths are required when data needs
to be processed immediately without any further delay. Moreover, the modular
multiplier can process 127-bit inputs that originate from the RAM and are re-
quired in each ladder step (e.g. multiplication by xp

yp
). We can store each field

operation output in the register blocks, i.e. Ri and R′i, by accordingly select-
ing the signals with the multiplexers m1 and m2. Although large multiplexers

9

result in an increased area utilization, they allow greater flexibility in schedul-
ing instructions which leads to higher overall performance. All select and enable
signals in Fig. 2 are driven by the control logic (see Sect. 3.3).

Modular Multiplier We have implemented a modular multiplier that com-
putes and accumulates its digit-products in full parallel. Combined with carefully
placed pipeline stages, this parallel approach enables us to continuously fetch
new input operands and return the result after 7 cycles including the reduction
step. This property is not only beneficial for the performance, but also required
in order to interleave a second scalar multiplication. Our implemented modu-
lar multiplier is used for both squaring and multiplication in Fp. Fig. 3 shows
the hardware architecture of our modular multiplier. After all digit-products

digit-product
computation

adder tree

+ +

reduction

C
127

127

127

130

130 4

127

1

127

M43: DSP
17x24

A[71:58]

B[71:58]
28

41
M1: DSP
17x24

A[23:0]

B[16:0]

41
M2: DSP
17x24

A[23:0]

B[33:17]

rearrange
bits

127

+

+

+

128
+

+

+

+

128

128

128

129

129

129

129

+

+

+

+

+

+

+

+

128

128

128

128

Fig. 3. Architecture of modular multiplier.

have been computed by the DSP blocks, they need to be summed up by an
adder-tree. This adder-tree is commonly implemented in slower standard LUT
logic and poses the bottleneck in most multiplier designs. A major problem is
constituted by the large adder sizes that scale up to twice the operand width,
i.e. 254-bit. Deriving a high-speed design is also complicated by the varying
sizes of the adders in the adder tree, which can lead to inefficient pipelining.
To overcome this problem, Koppermann et al. presented a technique in [16] for
high-speed multiplication in Mersenne prime fields that reduces and equalizes
the adder sizes. The main idea is to rearrange the digit-products on the bit-level
while combining the multiplication with the fast reduction procedure proposed
by Crandall [7] together.

In modern FPGAs, DSP blocks typically contain asymmetric multipliers,
e.g. in case of the Zynq-7020 FPGA a 17×24-bit multiplier is contained in each

10

M16

24477188101

40

57

81

101
105

105

M28

M27

M31

M33M34M36M38

M37

M42

M41 M39
M29

M30

M32

M35

M40 M43

02340577491108125

16

33

50

67

84

101

125
M25 126

126
M1

M2

M3

M4

M5

M6

M7M8M9M10M11M12M13

M14

M15

M17

M18

M19 M20 M21 M22 M23 M24

M26

reduced
problem

LUT-logic:
Mi s.t. i ∈ {25,26}

DSP blocks:
Mi s.t. i ∈ [1,43] \ {25,26}

zero bits:

A

B

Fig. 4. Left: Non-standard tiling [19] for 127×127-bit multiplier. Right: Non-standard
tiling for smaller 78×78-bit multiplier.

DSP block. In order to exploit these asymmetries to reduce the amount of DSP
blocks used to perform large multiplications, different optimization strategies
were proposed [8, 11, 21]. In particular, the authors of [8] showed that operand
decomposition boils down to a tiling problem, where each tile represents the
result of a smaller digit-product computation. Roy et al. [19] proposed the non-
standard tiling algorithm as a solution to this tiling problem. They presented
a formal procedure to compute this non-standard tiling for large multipliers
with arbitrary operand sizes. For a 127×127-bit multiplier, Fig. 4 presents the
implemented non-standard tiling [19]. The left side of Fig. 4 illustrates the initial
tiling for the 127×127-bit multiplier. With this initial tiling, the problem of
finding an efficient placement for a 127×127-bit multiplier is reduced to a 78×78-
bit multiplier. Again, we perform non-standard tiling for the reduced problem
which results in a smaller 14×14-bit multiplier M43. The size of the tiles Mi

where i ∈ [1, 43] \ {25, 26} corresponds to the asymmetric multiplier widths and
can consequently be implemented in a single DSP block. The two tiles M25 and
M26, however, correspond to a 126×1-bit multiplier and a 1×127-bit multiplier,
respectively, both implemented in LUT logic. The horizontal side represents
operand A and the vertical side represents operand B. Comparing non-standard-
tiling with standard-tiling, only 41 DSP blocks are required instead of 64 [21].

Constant Modular Multiplier In order to speed up the Montgomery ladder,
we instantiate a constant modular multiplier that multiplies one of the constants
in
{ 1

a ,
1
b ,

1
c ,

1
d ,

1
A ,

1
B ,

1
C ,

1
D

}
with a variable 127-bit operand. The constant mod-

ular multiplier returns with a latency of 4 cycles, which is 3 cycles less than the
generic modular multiplier, and is implemented using 6 DSP blocks only. The
multiplication itself is pipelined and followed by two reduction steps including
a conditional negation. The conditional negation is required for the multipli-
cation with projectively negative constants, i.e. 1

b ,
1
c ,

1
d , and

1
A . For all other

11

constants, i.e. 1
a ,

1
B ,

1
C , and

1
D , the negation output is ignored. All constants

are hard-decoded and then selected for multiplication via a select signal. Over-
all, 12 modular multiplications in each ladder step can be replaced by constant
multiplications.

Hadamard Transform A core computation step in Algorithm 4 (mont_ladder)
is the Hadamard transform. It is essentially composed of 4 modular additions
and 4 modular subtractions, which we implemented using 2 modular adders
and 2 modular subtractors. In order to parallelize the execution of independent
operations, a modular adder is implemented using two addition circuits that are
connected in series, each one having a clocked register output. The first adds two
127-bit wide operands and the second reduces the sum again by using Crandall’s
fast reduction [7]. Because a register is placed after each addition circuit, a result
is obtained each cycle after an initial delay of 2 cycles. The modular subtraction
circuit is implemented similarly; modular addition and modular subtraction are
both implemented in LUT logic.

Two successive Hadamard transforms, i.e. H(V1),H(V2), are computed at
the beginning of each ladder step before any other computation can take place.
Therefore, the modular adder and the modular subtractor circuits are connected
with a multiplexer in a way that two Hadamard transforms are finished in succes-
sive clock cycles. Table 2 shows the scheduling for a Hadamard transform of two
points, i.e. V1 = (x1 : y1 : z1 : t1) and V2 = (x2 : y2 : z2 : t2), plotted over cycles
to compute Equation (1) and Equation (2) (see Sect. 2.3). The cycles plotted

Table 2. Instruction scheduling for two successive Hadarmard computations as in line
8 of Algorithm 4 (mont_ladder) using modular addition (A) and subtraction (Z).

A1 A2 Z2 Z2

cycle 1 3 1 3 1 3 1 3
1 u1 - v1 - r1 - s1 -
2 u2 - v2 - r2 - s2 -
3 xH1 u1 zH1 v1 yH1 r1 tH1 s1

4 xH2 u2 zH2 v2 yH2 r2 tH2 s2

5 - xH1 - zH1 - yH1 - tH1

6 - xH2 - zH2 - yH2 - tH2

under the corresponding component (e.g. modular adder A1) represent the pro-
cessing stage. To give an example, u1 in cycle 1 means that u1 = x1 +y1 is in the
first processing stage in the modular adder. In cycle 3, the computation of u1 is
finished and can be further processed by other modules. The transformed points
H(V1) and H(V2) are returned in the 5th cycle and in the 6th cycle, respectively.

12

Table 3. Latency and throughput of field operations.

Operation Latency Throughput
(cycles) (op/cycles)

Addition/subtraction in Fp 2 1
Multiplication/squaring in Fp 7 1
Constant multiplication in Fp 4 1
Inversion in Fp 952 1/476
Hadamard transform 4 1/2

A Note on Lazy Reduction To reduce the number of modular reductions and
hence the number of required cycles, lazy reduction is a popular technique. In
software, lazy reduction comes typically for free because field elements are often
smaller than a multiple of the word size which results in unused bits at higher
positions. In hardware, however, lazy reduction leads to increased memory re-
quirements, larger multipliers, and a more complex control logic to distinguish
between reduced and unreduced field elements when initiating a modular mul-
tiplication.

3.3 Control Logic

The control logic takes care of performing the necessary memory operations in
the register file and RAM, and schedules the instructions required by Algorithm
1 (scalar_mult). The unwrapping and wrapping function, and the Montgomery
ladder logically divide the control logic into separate control blocks. The control
logic is implemented using a Finite State Machine (FSM). Inside the FSM mul-
tiple counters are used to track the processing status of arithmetic modules such
as the modular multiplier. For an efficient instruction scheduling, the latency and
throughput characteristics of the underlying functions such as modular multipli-
cation and Hadamard transform are required. Table 3 shows the performance of
the field operations in Fp and the Hadamard transform. The throughput denotes
how often an instruction can be scheduled, e.g. a throughput of 1/2 (op/cycles)
means 1 instruction can be scheduled in 2 cycles. Table 4 reports the latency of
all high-level operations.

Montgomery Ladder Over 90 percent of all cycles are spent for the Mont-
gomery ladder, and hence it is crucial to efficiently schedule field-level instruc-
tions. Table 5 shows the instruction scheduling for a Montgomery ladder step for
two scalar multiplications. Instructions of the second scalar multiplication are
complemented by a prime symbol, e.g. y′1. Montgomery ladder calls 251 Mont-
gomery ladder steps, each implementing a combined differential double-and-add
which takes 41 cycles to run. All scheduled instructions denote the expected out-
put, e.g. in cycle 5 the squaring y3 is an abbreviation and stands for the computa-
tion of y3 = V3,y = V1,yV1,y as described in line 9 of Algorithm 4 (mont_ladder).

13

Table 4. Latency of high-level functions.

Operation Latency
(cycles)

Unwrap 30
Combined differential double-and-add 41
Montgomery ladder 10,302
Wrap 998
Scalar multiplication 11,330

Table 5. Instruction scheduling for single ladder step as described in Algorithm 4
(mont_ladder) for the modular multiplier (M), the constant modular multiplier (Mc),
and the Hadamard transform module (H).

M H Mc M H Mc

cycle 1 8 1 5 1 5 cycle 1 8 1 5 1 4
1 - - H1 - - - 28 z3 z′

3 - - z′
5 y′

6

2 - - H2 - - - 29 t3 t′3 - - t′5 z′
6

... - - - - - - 30 x3 x′
3 - - x′

5 t′6
5 y3 - - H1 - - 31 y6 y4 H′

2 - - x′
6

6 y4 - - H2 - - 32 z6 z4 - - - z′
5

7 z4 - - - - - 33 t6 t4 - - - t′5
8 t4 - - - - - 34 x4 y3 H′

1 - y5 x′
5

9 x4 - - - - - 35 y′
4 z3 - H′

2 z5 -
10 z3 - - - - - 36 z′

4 t3 - - t5 -
11 t3 - - - - - 37 t′4 x3 - - x5 -
12 x3 y3 H′

1 - y5 - 38 y′
3 y6 - H′

1 - y5

13 - y4 H′
2 - y6 - 39 z′

3 z6 - - - z5

14 - z4 - - z6 - 40 t′3 t6 - - - t5

15 - t4 - - t6 - 41 x′
3 x4 - - - x5

16 y′
3 x4 - H′

1 x6 y5 1 y′
6 y′

4 - - - -
17 y′

4 z3 - H′
2 z5 y6 2 z′

6 z′
4 - - - -

18 z′
4 t3 - - t5 z6 3 t′6 t′4 - - - -

19 t′4 x3 - - x5 t6 4 x′
4 y′

3 - - y′
5 -

20 x′
4 - H2 - - x6 5 - z′

3 - - z′
5 -

21 z′
3 - - - - z5 6 - t′3 - - t′5 -

22 t′3 - - - t5 7 - x′
3 - - x′

5 -
23 x′

3 y′
3 H1 - y′

5 x5 8 - y6
′ - - - y′

5

24 y4 y′
4 - H2 y′

6 - 9 - z6
′ - - - z5

′

25 z4 z′
4 - - z′

6 - 10 - t6
′ - - - t5

′

26 t4 t′4 - - t′6 - 11 - x4
′ - - - x5

′

27 y3 x′
4 - H1 x′

6 y′
5 - - - - - - -

14

The conditional-swap function is implemented with no timing-penalty by simply
swapping the arguments of the first two Hadamard transforms. Our control logic
schedules modular multiplications and multiplications by constants in parallel
for best performance results. Note that the constant multiplier uses the direct
output of the modular multiplier.

Modular Inversion We use Fermat’s little theorem to compute the multiplica-
tive inverse x−1 of an integer x ∈ Fp\{0}. The finite field inversion is given by
x−1 ≡ x2127−3.This exponentiation is computed with a sequence of 126 modular
squarings and 10 modular multiplications as described by Renes et al. [18]. We
implemented the modular inversion such that two elements of the prime field
are inverted simultaneously by interleaving the field multiplication and squaring
operations.

3.4 Multi-core Architecture

For multi-core architectures, the amount of cores which can be instantiated in
parallel is strongly limited by the number of DSP blocks available on the target
FPGA device. Our multi-core architecture implements 4 independently operat-
ing single-cores each featuring its own control logic. As a result, up to 8 scalar
multiplications with different keys and input points can be computed. Instan-
tiating multiple single-cores is a common concept and was similarly applied by
Sasdrich and Güneysu [20] for Curve25519 and Järvinen et al. [14] for FourQ.
Sasdrich and Güneysu used a shared inversion module and Järvinen et al. used a
shared control logic component. We also implemented a multi-core architecture
with a shared control logic using a single shared key to reduce the area utiliza-
tion. However, the LUT logic was only reduced by approximately 10% which is
a rather small improvement compared to its limitations. In fact, this shared con-
trol logic architecture requires all scalar multiplications to be started in parallel
as there is only one control logic for all cores.

4 Results and Analysis

We synthesized our single-core and multi-core architectures with Xilinx Vivado
2017.2 on a Xilinx Zynq-7020 FPGA (XC7Z020CLG484-3). All our results are
obtained after place-and-route. Table 6 presents the area utilization including
the maximum clock frequency for the single-core and multi-core architecture.
Our single-core architecture requires 20% of the available slices and 22% of the
available DSP blocks. We constrained our clock frequency to 138.7 MHz, which
corresponds to a clock period of 7.21 ns. Two interleaved scalar multiplications
require 11,330 cycles, and thus a session-key can be computed in 82 µs. Because
we compute two scalar multiplication at a time, this translates to a throughput of
24,283 scalar multiplications per second. For our multi-core design we instantiate
the maximum amount of 4 single-cores on the Zynq-7020 FPGA. Compared

15

Table 6. Device utilization and maximum clock frequency on Xilinx Zynq-7020 FPGA.

Component Single-core Multi-core Available
@138.7 MHz @129.2 MHz

LUTs 8,764 (16%) 35,015 (66%) 53,200
Registers 6,852 (6%) 27,300 (26%) 106,400
DSP48E1 49 (22%) 196 (89%) 220
Block RAM 0 (0%) 0 (0%) 140
Occupied slices 2,657 (20%) 10,554 (79%) 13, 300

to our single-core design, we see a decrease in the maximum clock frequency;
using Vivado tools, we can place-and-route our design with a clock frequency of
129.2 MHz which corresponds to a clock period of 7.74 ns. For the multi-core
architecture with independently operating single-cores we report a throughput
of 91,226 scalar multiplications per second.

Table 7 provides a comparison of our results with state-of-the-art scalar mul-
tiplication implementations on the same Zynq-7020 FPGA device all featuring
a 128-bit security level. Namely, we compare our work with the Curve25519

Table 7. Comparison of single- and multi-core architectures with ECDH implementa-
tions featuring a 128-bit security level on a Zynq-7020.

Reference Curve Cores Resources Latency T-put
Slices DSP BRAM (µs) (op/s)

[20] Curve25519 1 1,029 20 2 397 2,519
[14] FourQ (Mont.) 1 565 16 7 310 3,222
[14] FourQ (End.) 1 1,691 27 10 157 6,389
This work Kummer 1 2,657 49 0 82 24,283
[20] Curve25519 11 11,277 220 22 397 32,304
[14] FourQ (End.) 11 5,697 187 110 170 64,730
This work Kummer 4 10,554 196 0 88 91,226

implementation by Sasdrich and Güneysu [20] and the FourQ implementation
by Järvinen et al. [14]. Comparing the latency of the single-core designs, our
proposed implementation is 1.91-times faster than FourQ using endomorphisms,
3.78-times faster than FourQ using the Montgomery ladder, and 4.84-times faster
than Curve25519. The improvement in latency is related to the increased slice
and DSP block utilization. Yet, our implementation performs better than the
fastest implementation so far (FourQ with End.) in the LUT-latency product
(217,787 against 265,487) as well as the DSP-latency product (4,018 against
4,239). Our multi-core architecture with independently operating single-cores
offers a throughput that is 1.41-times higher than FourQ and 2.82-times higher

16

than the Curve25519 implementation. In terms of latency, we also report the
fastest scalar multiplication, i.e. our architecture is 1.93-times faster than FourQ
and 4.51-times faster than Curve25519. Note that all reported multi-core designs
use the maximum number of cores that can be successfully placed on the target
device. However, only our multi-core design features fully independent single-
cores, i.e. neither the inversion unit (e.g. Curve25519 implementation [20]) nor
the scalar multiplication unit (e.g. FourQ implementation [14]) are shared. Also
note that we make use of distributed RAM implemented by LUT logic for mem-
ory, which leaves a notable amount of BRAM available for other applications.

5 Conclusions

We presented the first hardware implementation results for a key exchange on
the Kummer surface of Gaudry and Schost’s genus-2 curve. Although a Kummer
surface based key exchange has an increased number of field operations per lad-
der step when compared to elliptic curves, our presented architectures perform
a scalar multiplication with lower latency and higher throughput than any other
reported prime-field elliptic curve key exchange featuring a 128-bit security level
on a Zynq-7020 FPGA. Our single-core architecture achieves a latency of 82 µs
with a throughput of 24, 283 operations per second while the multi-core archi-
tecture with 4 independently operating single-cores achieves a latency of 88 µs
with a throughput of 91, 226 operations per second. These results set new records
for latency and throughput among state-of-the-art 128-bit secure key exchange
implementations known so far, such as Curve25519 [20] and FourQ [14].

Acknowledgements

The authors acknowledge Abhijith Chikrapla Danappa and Zohaib Khan for
their valuable effort in developing the initial prototypes of the presented imple-
mentations.

References

1. Bernstein, D.J., Chuengsatiansup, C., Lange, T., Schwabe, P.: Kummer Strikes
Back: New DH Speed Records, pp. 317–337. Springer Berlin Heidelberg, Berlin,
Heidelberg (2014), https://eprint.iacr.org/2014/134.pdf

2. Bernstein, D., Lange, T.: Elliptic vs. hyperelliptic, part 1. Talk at ECC p. 4 (2006),
http://cr.yp.to/talks.html#2006.09.20

3. Chudnovsky, D., Chudnovsky, G.: Sequences of Numbers Generated by Addition
in Formal Groups and New Primality and Factorization Tests. Adv. Appl. Math.
7(4), 385–434 (Dec 1986), http://dx.doi.org/10.1016/0196-8858(86)90023-0

4. Chung, P.N., Costello, C., Smith, B.: Fast, uniform scalar multiplication for genus 2
Jacobians with fast Kummers. Cryptology ePrint Archive, Report 2016/777 (2016),
https://eprint.iacr.org/2016/777

17

5. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography, Second Edition.
Chapman & Hall/CRC, 2nd edn. (2012)

6. Costello, C., Longa, P.: FourQ: Four-Dimensional Decompositions on a Q-curve
over the Mersenne Prime, pp. 214–235. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2015), http://dx.doi.org/10.1007/978-3-662-48797-6_10

7. Crandall, R.: Method and apparatus for public key exchange in a cryptographic
system (1992), US Patent 5,159,632

8. Dinechin, F.D., Pasca, B.: Large multipliers with fewer DSP blocks. In: 2009 Inter-
national Conference on Field Programmable Logic and Applications. pp. 250–255
(Aug 2009)

9. Düll, M., Haase, B., Hinterwälder, G., Hutter, M., Paar, C., Sánchez, A.H.,
Schwabe, P.: High-speed curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers
(2015), http://eprint.iacr.org/2015/343

10. Fraunhofer Institute for Applied and Integrated Security: GitHub repository: mod-
mul-mersenne. https://github.com/Fraunhofer-AISEC (2017)

11. Gao, S., Al-Khalili, D., Chabini, N., Langlois, P.: Asymmetric large size multipliers
with optimised FPGA resource utilisation. IET Computers Digital Techniques 6(6),
372–383 (November 2012)

12. Gaudry, P.: Fast genus 2 arithmetic based on Theta functions. Journal of Mathe-
matical Cryptology JMC 1(3), 243–265 (2007)

13. Gaudry, P., Schost, É.: Genus 2 point counting over prime
fields. Journal of Symbolic Computation 47(4), 368 – 400 (2012),
http://www.sciencedirect.com/science/article/pii/S0747717111001386

14. Järvinen, K., Miele, A., Azarderakhsh, R., Longa, P.: FourQ on FPGA: New Hard-
ware Speed Records for Elliptic Curve Cryptography over Large Prime Character-
istic Fields (2016), http://dx.doi.org/10.1007/978-3-662-53140-2_25

15. Koblitz, N.: Hyperelliptic cryptosystems. Journal of Cryptology 1(3), 139–150
(1989), http://dx.doi.org/10.1007/BF02252872

16. Koppermann, P., De Santis, F., Heyszl, J., Sigl, G.: Automatic generation of high-
performance modular multipliers for arbitrary mersenne primes on FPGAs. In:
2017 IEEE International Symposium on Hardware Oriented Security and Trust
(HOST). pp. 35–40 (May 2017)

17. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Mathematics of computation 48(177), 243–264 (1987)

18. Renes, J., Schwabe, P., Smith, B., Batina, L.: µKummer: efficient hy-
perelliptic signatures and key exchange on microcontrollers (2016),
http://eprint.iacr.org/2016/366

19. Roy, D.B., Mukhopadhyay, D., Izumi, M., Takahashi, J.: Tile before multiplication:
An efficient strategy to optimize DSP multiplier for accelerating prime field ECC
for NIST curves. In: 2014 51st ACM/EDAC/IEEE Design Automation Conference
(DAC). pp. 1–6 (June 2014)

20. Sasdrich, P., Güneysu, T.: Implementing Curve25519 for Side-Channel–Protected
Elliptic Curve Cryptography. ACM Trans. Reconfigurable Technol. Syst. 9(1), 3:1–
3:15 (Nov 2015), http://doi.acm.org/10.1145/2700834

21. Srinath, S., Compton, K.: Automatic Generation of High-performance Multi-
pliers for FPGAs with Asymmetric Multiplier Blocks. In: Proceedings of the
18th Annual ACM/SIGDA International Symposium on Field Programmable
Gate Arrays. pp. 51–58. FPGA ’10, ACM, New York, NY, USA (2010),
http://doi.acm.org/10.1145/1723112.1723123

18

