
A Framework for Constructing Fast MPC over Arithmetic
Circuits with Malicious Adversaries and an Honest-Majority∗

Yehuda Lindell

Bar-Ilan University

lindell@biu.ac.il

Ariel Nof

Bar-Ilan University

nofarie@cs.biu.ac.il

ABSTRACT
Protocols for secure multiparty computation enable a set of parties

to compute a function of their inputs without revealing anything

but the output. The security properties of the protocol must be

preserved in the presence of adversarial behavior. The two classic

adversary models considered are semi-honest (where the adversary

follows the protocol speci�cation but tries to learn more than al-

lowed by examining the protocol transcript) and malicious (where

the adversary may follow any arbitrary attack strategy). Protocols

for semi-honest adversaries are often far more e�cient, but in many

cases the security guarantees are not strong enough.

In this paper, we present a new e�cient method for “compiling”

a large class of protocols that are secure in the presence of semi-

honest adversaries into protocols that are secure in the presence

of malicious adversaries. Our method assumes an honest majority

(i.e., that t < n/2 where t is the number of corrupted parties and n
is the number of parties overall), and is applicable to many semi-

honest protocols based on secret-sharing. In order to achieve high

e�ciency, our protocol is secure with abort and does not achieve

fairness, meaning that the adversary may receive output while the

honest parties do not.

We present a number of instantiations of our compiler, and ob-

tain protocol variants that are very e�cient for both a small and

large number of parties. We implemented our protocol variants and

ran extensive experiments to compare them with each other. Our

results show that secure computation with an honest majority can

be practical, even with security in the presence of malicious adver-

saries. For example, we securely compute a large arithmetic circuit

of depth 20 with 1,000,000 multiplication gates, in approximately

0.5 seconds with three parties, and approximately 29 seconds with

50 parties, and just under 1 minute with 90 parties.

1 INTRODUCTION
1.1 Background
Protocols for secure computation enable a set of parties with private

inputs to compute a joint function of their inputs while revealing

nothing but the output. The security properties typically required

from secure computation protocols include privacy (meaning that

nothing but the output is revealed), correctness (meaning that the

∗
Supported by the European Research Council under the ERC consolidators grant

agreement n. 615172 (HIPS) and by the BIU Center for Research in Applied Cryptogra-

phy and Cyber Security in conjunction with the Israel National Cyber Bureau in the

Prime Minister’s O�ce.

CCS ’17, Dallas, TX, USA
© 2017 ACM. This is the author’s version of the work. It is posted here for your

personal use. Not for redistribution. The de�nitive Version of Record was published in

Proceedings of CCS ’17, October 30-November 3, 2017 , https://doi.org/10.1145/3133956.

3133999.

output is correctly computed), independence of inputs (meaning

that a party cannot choose its input as a function of the other

parties’ inputs), fairness (meaning that if one party gets output

then so do all), and guaranteed output delivery (meaning that all

parties always receive output). Formally, the security of a protocol

is proven by showing that it behaves like an ideal execution with

an incorruptible trusted party who computes the function for the

parties [10]. In some cases, fairness and guaranteed output delivery

are not required. This is standard in the case of no honest majority

(since not all functions can be computed fairly without an honest

majority), but can also be the case otherwise in order to aid the

construction of highly e�cient protocols.

Protocols for secure computation must remain secure in the face

of adversarial behavior. There are many parameters determining

the adversary:

• Adversarial behavior: If the adversary is semi-honest, then it

follows the protocol speci�cation but may try to learn more than

is allowed by inspecting the protocol transcript. If the adversary

is malicious, then it may follow an arbitrary attack strategy in

its attempt to break the protocol.

• Adversarial power: If the protocol is guaranteed to remain

secure even if the adversary is computationally unlimited, then

the protocol is said to be information-theoretically secure. If the

adversary is bounded to probabilistic polynomial-time, then the

protocol is computationally secure.
• Number of corruptions: Denote by t the number of corrupted

parties and by n the overall number of parties. There are typically

three main thresholds that are considered in the literature: t < n
(meaning any number of parties may be corrupted), t < n/2
(meaning that there is an honest majority), and t < n/3 (meaning

that less than a third of the parties are corrupted).

• Corruption strategy: If the set of corrupted parties is deter-

mined at the onset of the protocol, then we say that the adver-

sary is static. If the adversary can determine who to corrupt

throughout the execution, then it is adaptive.
In the late 1980s, it was shown that any function can be securely

computed. This was demonstrated in the computational setting

for any t < n [24, 36], in the information-theoretic setting with

t < n/3 [7, 11], and in the information-theoretic setting with

t < n/2 assuming a broadcast channel [34]. These feasibility results

demonstrate that secure computation is possible. However, signif-

icant improvements are necessary to make it e�cient enough to

use in practice.

1.2 Our Protocol Framework
In this paper, we consider the problem of constructing highly e�-

cient protocols that are secure in the presence of static malicious
adversaries who control at most t < n/2 corrupted parties. Our

https://doi.org/10.1145/3133956.3133999
https://doi.org/10.1145/3133956.3133999

protocol is fundamentally information-theoretic, but some e�cient

instantiations are computational. In the aim of achieving high e�-

ciency, our protocols do not achieve fairness (even though this is

possible in our setting where t < n/2).

We construct two protocol frameworks that can be used to com-

pile a large class of semi-honest protocols based on secret shar-

ing (for the case of t < n/2) into protocols that are secure in the

presence of malicious adversaries. Our protocols are designed for

arithmetic circuits over a �eld F. Our protocol compiler works by

computing a circuit using a semi-honest protocol and then run-

ning a veri�cation step that ensures that the honest parties detect

cheating with high probability. We follow the Beaver multiplica-

tion triple methodology [4] in which the parties generate shares of

triples (a,b, c) where c = a · b. Such triples are very useful as they

can be used to carry out multiplication e�ciently, and to verify that

multiplications were carried out correctly. We present two ways

of verifying multiplication, and show how to construct a tightly

optimized protocol that uses these methods. Our veri�cation meth-

ods involve inserting fresh randomness into the process, which

enables us to detect cheating even if the multiplication triples are

incorrect. Previous works that used the Beaver method required

the multiplications triples to be correct in order to be able to detect

cheating. The fact that we are able to detect cheating even if they

are not correct enables much faster generation of these triples. We

believe that this technique is of independent interest and will be

useful in other protocols as well.

We present two frameworks; one that is better suited when

working over “large” �elds and one that is better suited to “small”

�elds. Then, we provide e�cient instantiations of the semi-honest

protocols, that when plugged into our frameworks yield highly

e�cient protocols that are secure for malicious adversaries. We

consider two main instantiations: one based on Shamir sharing for

any number of parties, and one based on replicated secret sharing

for the speci�c case of three parties. For the case of Shamir sharing,

we have several di�erent instantiations; for example, multiplication

can be computed using [25] or [17], veri�cation can be carried out in

one of two methods, and so on. We focus on two of the instantiations

here: the �rst that is best for a small number of parties, and the

second that is best for a large number of parties. We summarize

our best instantiations with the following theorems. Our protocols

have statistical error 2
−σ

. For the sake of simplicity, we consider

the case that the �eld for the arithmetic circuit has the property

that |F| > 2
σ

(this is not necessary for our framework, but it yields

the highest e�ciency).

The �rst theorem is suited for a large number of parties, and is

based on Shamir sharing.

Theorem 1.1 (large number of parties). Letn be any number of
parties, and let f be an n-party functionality. Then, there exists a pro-
tocol π that computes f with computational security in the presence
of a malicious adversary controlling up to t < n/2 corrupted parties,
where each party sends 42 �eld elements per multiplication gate.

The next theorem is also based on Shamir sharing. However, it

uses the PRSS methodology of [13] for generating random shares

that is only computationally secure. In addition, it involves local

work by each party that is exponential in the number of parties.

Thus, it is only e�cient for small values of n.

Theorem 1.2 (small number of parties). Let n be any number
of parties, and let f be an n-party functionality. Then, there exists a
protocol π that computes f with computational security in the pres-
ence of a malicious adversary controlling up to t < n/2 corrupted
parties, where each party sends 5(n − 1) �eld elements per multiplica-
tion gate.

Note that the protocol of Theorem 1.1 is preferable for a large

number of parties since the number of elements sent per gate is

constant (this holds even if PRSS is not used in the protocol for a

small number of parties). Observe that when n > 9 it holds that

5(n − 1) > 42, and thus the constant is smaller than the linear

function. Finally, we state our result that is speci�c to 3 parties and

uses replicated sharing.

Theorem 1.3 (three parties). Let f be a 3-party functionality.
Then, there exists a protocol π that computes f with computational
security in the presence of a malicious adversary controlling up to 1

corrupted party, where each party sends 4 �eld elements per multipli-
cation gate.

Observe that for the case of 3 parties, in the protocol of Theo-

rem 1.2 each party sends 10 elements per multiplication gate, versus

just 4 elements in the protocol of Theorem 1.3.

1.3 Experimental Results
We implemented our protocol versions in C++ and ran our protocols

on Azure in a single region, with a ping time of approximately 1ms.

Each machine is a 2.4GHz Intel Xeon E5-2673 v3, with 4 cores and

8GB RAM; our code is single-threaded so does not utilize more than

one core. We ran extensive experiments to analyze the e�ciency

of the di�erent protocols for di�erent numbers of parties. All of

our protocols scale linearly in the size and depth of the circuit, and

we therefore ran all of our experiments on a depth-20 arithmetic

circuit over a 61-bit �eld with 1,000,000 multiplication gates. Our

experiments show that our protocols have very good performance

for all ranges of numbers of parties. In particular, this large circuit

can be computed in half a second with three parties, 4 seconds with

9 parties, 29 seconds with 50 parties and 59 seconds with 90 parties.

Thus, our protocols can be used in practice to compute arithmetic

computations (like joint statistics) between many parties, while

providing malicious security.

1.4 Related Work
There has been a huge amount of work that focuses on improv-

ing the e�ciency of secure computation protocols. This work is

roughly divided up into constructions of concretely e�cient and

asymptotically e�cient protocols. Concretely e�cient protocols are

often implemented and aim to obtain the best overall running time,

even if the protocol is not asymptotically optimal (e.g., it may have

quadratic complexity and not linear complexity, but for a small num-

ber of parties the constants are such that the quadratic protocol is

faster). Asymptotically e�cient protocols aim to reduce the cost of

certain parts of the protocols (rounds, communication complexity,

etc.), and are often not concretely very e�cient. However, in many

cases, asymptotically e�cient protocols provide techniques that

inform the construction of concretely e�cient protocols.

As explained earlier, there are two main thresholds considered

for an honest majority: t < n/2 and t < n/3. For the case of t < n/3,

it was shown in [17] and [6] how to achieve unconditional and

perfect security in the presence of a malicious adversary, with com-

munication that grows linearly with the number of parties. The

VIFF protocol [14], provided the �rst concretely e�cient implemen-

tation for t < n/3. VIFF has quadratic communication complexity,

and thus is suitable for a small number of parties. Although their

execution times are 3-4 orders of magnitude slower than ours (for

4 players, they report on 200 multiplications per second), we esti-

mate that an optimized implementation on modern machines and

a network identical to ours would achieve similar times.

We stress, however, that for malicious adversaries, it is consid-

erably harder to achieve a similar level of e�ciency with t < n/2
since there is far less redundancy in the secret sharing. (To be exact,

with t < n/3 it is possible to multiply two polynomials together and

the degree is still less that 2n/3, in contrast to the case of t < n/2.)

Thus, techniques like those used in [6] do not apply to our case.

Clearly, it is always best to guarantee security against more pow-

erful adversaries, and thus a protocol that is secure for t < n/2
is preferable to a protocol that requires t < n/3. Furthermore, in

practice, this is of great signi�cance for a small number of parties.

Speci�cally, for n = 3 it is not possible to run a protocol that re-

quires t < n/3, and for n = 9 a protocol with t < n/2 can tolerate up

to 4 corrupted parties whereas a protocol with t < n/3 can tolerate

only 2 corrupted parties. Thus, protocols that are secure for t < n/2
are preferable.

For t < n/2 corrupted parties, it is much harder to achieve linear

complexity without relying on cryptographic assumptions. This

was �rst achieved in [23] using additively-homomorphic encryp-

tion [33] which is far from concretely e�cient. Secure computation

that scales linearly with the number of parties was also presented

in [15], but this protocol requires that t < n/2−O(n), and its focus is

on asymptotic and not concrete e�ciency. Thus, both protocols, al-

though achieving full security, are much more expensive than ours.

The protocol of [5] is the only protocol, to the best of our knowledge,

that achieves near-linear communication complexity per multipli-

cation gate, namely O(n logn), in the information-theoretic model

and with full security. This protocol uses expensive techniques

for player elimination and computing authentication tags, and is

therefore also not concretely e�cient. However, it achieves full

security, whereas we do not guarantee fairness. Recently, [21, 22]

show how to compile semi-honest protocols into maliciously se-

cure protocols for a variety of parameters, and also achieve linear

complexity for the case of t < n/2. No concrete cost analysis or

implementation was given in [21, 22], and thus it is di�cult to

estimate the concrete e�ciency on speci�c instantiations. However,

the constants are signi�cantly higher than ours. At the core, [22]

requires 16 semi-honest multiplications per gate in contrast to 6

in our best protocol; in addition, [22] requires more communica-

tion. We stress, however, that [21, 22] is far more general and also

works in the dishonest majority setting, unlike our compiler. The

work of [12] also considers the setting of t < n/2, malicious ad-

versaries and arithmetic circuits. Their protocol works in a very

di�erent way to ours. In particular, they do not follow the Beaver

triples methodology [4] in order to achieve security for malicious

adversaries. Rather, they carry out the computation redundantly on

the input and on the input multiplied by a secret (shared) random

value. Correctness of the computation is validated by verifying that

the di�erent computation outputs ful�ll a given equation. In [12],

the majority of the work is in the circuit computation phase and

the veri�cation step is cheap, whereas in our work the majority of

the work is in the veri�cation and the circuit computation phase

is cheap. The setting of t < n/2 and malicious adversaries was

also studied in [1, 31], including implementations. However, they

consider only three parties and Boolean circuits.

Finally, we remark that concrete e�ciency for the case of a

dishonest majority has also been studied [8, 16, 18, 28, 32]. This

setting is considerably harder, and thus protocols are naturally far

less e�cient. The state-of-the-art MASCOT protocol [28] achieves

a rate of below 1,000 multiplication gates (for 3 parties), which

is orders of magnitude slower than what can be achieved in the

honest-majority setting.

2 PRELIMINARIES
Notation. Let P1, ..., Pn denote the n parties participating in the

computation, and let t denote the number of corrupted parties.

Since we assume an honest majority, it follows that t < n
2

. Finally,

let F be a �nite �eld and let |F| denote its size.

2.1 Threshold Secret Sharing
A secret sharing scheme with threshold t enables n parties to share

a secret v ∈ F among n parties so that no subset of t parties can

learn any information about it, whereas any subset of t + 1 parties

can reconstruct it. We require that the scheme used in our protocol

supports the following procedures:

• share(v): In this procedure, a dealer shares a value v ∈ F. For

simplicity, we consider non-interactive secret sharing, and thus

there exists a probabilistic algorithm D that receivesv (and some

randomness) and outputs sharesv1, . . . ,vn , wherevi is the share

intended for party Pi . We denote the sharing of a value v by [v].
We stress that if the dealer is corrupted, then the shares received

by the parties may not be correct. Nevertheless, we abuse nota-

tion and say that the parties hold shares [v] even if these are not

correct. Informally, we call a sharing correct if it de�nes a single

valid secret; we will de�ne this more formally below.

• reconstruct([v], i): Given a sharing of v and an index i held by

the parties, this interactive protocol guarantees that if [v] is not

correct (see formal de�nition below), then Pi will output ⊥ and

abort. Otherwise, if [v] is correct, then Pi will either output v or

will abort.

• open([v]): Given a sharing ofv held by the parties, this procedure

guarantees that at the end of the execution, if [v] is not correct,

then all the honest parties will abort. Otherwise, if [v] is correct,

then each party will either output v or will abort. Clearly, open
can be run by any subset of t + 1 or more parties. We require

that if any subset J of t + 1 honest parties output a value v , then

any superset of J will output either v or ⊥ (but no other value).

• local operations: Given correct sharings [u] and [v] and a scalar

α ∈ F, the parties can generate correct sharings of [u +v], [α ·
v] and [v + α] using local operations only (i.e., without any

interaction). We denote these local operations by [u]+ [v],α · [v],
and [v] + α , respectively.

We now de�ne what it means for a sharing to be correct. The natural

way to de�ne this is to say that the honest parties’ shares are the

valid output of an execution of D. Formally, let H ⊆ {P1, . . . , Pn }
denote the set of honest parties. Then, a sharing [v] = (v1, . . . ,vn)
is correct if there exists a value v ′ and randomness r such that

for every i ∈ H it holds that vi is the ith share output by the

dealer algorithm D with input v ′ and randomness r . Although

natural, we will actually require only a more relaxed version of

correctness. For a subset of honest parties J of size t+1, we denote by

val([v])J the value obtained by these parties after running the open
procedure (and where no corrupted parties or additional honest

parties participate). Note that val([v])J may equal ⊥ if the shares

held by the honest parties are not valid. We are now ready to

formally de�ne correctness.

De�nition 2.1. Let H ⊆ {P1, . . . , Pn } denote the set of honest

parties. A sharing [v] is correct if there exists a valuev ′ ∈ F (v ′ , ⊥)

such that for every J ⊆ H with |J | = t+1 it holds that val([v])J = v ′.

Observe that if a sharing [v] is incorrect then either (a) there

exists a subset of t +1 honest parties J ⊆ H such that val([v])J = ⊥,

or (b) there exist two subsets of t + 1 honest parties J1, J2 ⊆ H
such that val([v])J1 , val([v])J2 . In case (a) occurs we say that [v]
is invalid; in case (b) occurs we say that [v] is value-inconsistent. If

a sharing is not invalid, then we say that it is valid.

In some cases, like Shamir’s secret sharing, for every J of size

t +1 the shares of the parties de�ne a valid value. However, in some

other cases, like replicated secret sharing, this is not necessarily the

case. In such cases, we need an additional requirement on the secret

sharing scheme, as follows. A secret sharing scheme is robustly-
linear if for every pair of invalid shares [u] and [v] (as de�ned above)

it holds that there exists a unique α ∈ F such that α · [u]+[v] is valid

when computed via local operations (and thus when α is chosen

randomly, α · [u] + [v] is almost always invalid). Note that if a

secret sharing scheme has no invalid sharings, like Shamir’s secret

sharing, then it is trivially robustly-linear.

We now prove some useful claims about such secret sharing

schemes. The �rst claim is a triviality and follows from the fact that

addition and scalar multiplication are local operations, and so the

honest parties’ values are not in�uenced by the adversary.

Claim 2.2. If [u] and [v] are correct sharings, then for every α ∈ F
it holds that [w] = α · [u] + [v] is correct.

We derive the following corollary by taking the contrapositive:

Corollary 2.3. Let [u] and [v] be sharings and let α ∈ F. If
[w] = α · [u] + [v] is not correct, then [u] or [v] are incorrect.

The following lemma is used for checking correctness.

Lemma 2.4. Let [u] be an incorrect sharing of a robustly-linear
secret sharing scheme and let [v] be any sharing. Then, the probability
that [w] = α · [u] + [v] is a correct sharing where α ∈R F \ {0} is
randomly chosen, is at most 1

|F |−1
.

Proof. First, consider the case that [v] is correct, and assume

by contradiction that [w] = α · [u]+ [v] is correct. By Claim 2.2, this

implies that [w] − [v] is correct and thus that [u] = α−1 · ([w] − [v])
is correct, in contradiction.

Next, consider the case that [v] is not correct, and thus both [u]
and [v] are incorrect. There are two cases regarding the incorrect-

ness of [u] (recall that [u] may be invalid or value-inconsistent, as

de�ned above):

(1) Case 1 – [u] is invalid: Let J be a subset of t + 1 honest parties

such that val([u])J = ⊥. There are two subcases:

(a) If [v] is valid, then val([v])J , ⊥, and by the same ar-

gument as Corollary 2.3 it must hold that val([w])J = ⊥.

Thus, [w] is invalid and so incorrect.

(b) If [v] is invalid, then we have that both [u] and [v] are

invalid. By the assumption that the secret sharing scheme

is robustly-linear, there exists a unique α such that [w] =
α · [u] + [v] is valid. Since α ∈R F \ {0}, we have that the

unique α making the result valid is chosen with probability

only
1

|F |−1
.

(2) Case 2 – [u] is value-inconsistent: Let u1,u2 ∈ F be distinct

values and let J1 and J2 be subsets of t + 1 honest parties such

that val([u])J1 = u1 and val([u])J2 = u2. If val([v])J1 = ⊥,

then by the same reasoning as in Corollary 2.3, it follows that

val(α · u + v)J1 = ⊥ and thus val([w]) is invalid; likewise if

val([v])J2 = ⊥. We therefore proceed to analyze the case that for

somev1,v2 ∈ F it holds thatv1 = val([v])J1 andv2 = val([v])J2 .

There are two subcases:

(a) If v1 = v2 then α · u1 + v1 , α · u2 + v2 (this holds since

v1 = v2, α , 0 and u1 , u2), and thus val(α · [u]+ [v])J1 ,
val(α · [u] + [v])J2 , implying that [w] is incorrect.

(b) If v1 , v2 then val([w])J1 = val([w])J2 if and only if α ·
u1 + v1 = α · u2 + v2 which holds if and only if α =
(v2 −v1) · (u1 −u2)

−1
. (Note that this is well de�ned since

u1 , u2.) Since α is random in F \ {0}, this equality holds

with probability only
1

|F |−1
.

We therefore conclude that [w] is correct with probability at most

1

|F |−1
, as required. �

2.2 De�nitions
Privacy for malicious adversaries. Our protocol works by running

a multiplication protocol (for multiplying two shares [x] and [y])
that is secure for semi-honest adversaries, and then compiling it

into a protocol that is secure for malicious adversaries by adding a

veri�cation step that allows the honest parties to detect cheating.

For our compiler, it is necessary that the semi-honest multiplication

protocol used achieves privacy in the presence of malicious adver-

saries. We use the formulation of this notion as provided in [3].

As we will see, this condition is easily met by all standard secret

sharing based semi-honest multiplication protocols.

Let ViewA, I,π (®x ,κ) denote the view of an adversary A who

controls parties {Pi }i ∈I (with I ⊂ {1, . . . ,n}) in a real execution of

the n-party protocol π , with inputs ®x = (x1, . . . ,xn) and security

parameter κ. Loosely speaking, a protocol is private in the presence

of t malicious corrupted parties if the view of the corrupted parties

when the input is ®x is computationally indistinguishable from its

view when the input is ®x ′. In order to rule out a trivial protocol

where nothing is exchanged, we also require correctness, which

means that when all parties are honest they obtain the correct

output.

De�nition 2.5. Let f : Fn → Fn be an n-party functionality and

let π be an n-party protocol. We say that π t-privately computes
f in the presence of malicious adversaries if it is correct and if

for every non-uniform probabilistic polynomial-time adversary A,

every I ⊂ {1, . . . ,n} with |I | ≤ t , and every two vectors ®x , ®x ′ ∈ Fn{
ViewA, I,π (®x ,κ)

}
κ ∈N

c

≡
{
ViewA, I,π (®x

′,κ)
}
κ ∈N

where all elements of ®x and ®x ′ are of the same length.

We say that a protocol is private semi-honest if it is private in the

presence of malicious adversaries (as in De�nition 2.5) and secure

in the presence of semi-honest adversaries (under the standard

de�nition of security).

Security in the presence of malicious adversaries. We use the stan-

dard ideal-real paradigm to prove security. We stress that our proto-

col provides security with abort only and not full security, despite

the fact that an honest majority exists. For details, see Appendix A.

Security up to additive attacks. In one of the variants of our

compiler (Section 3.4), we will need a stronger notion than just

privacy. We say that a protocol is secure up to additive attacks in

the presence of malicious adversaries if, in addition to privacy as

de�ned above, it guarantees that a malicious adversary can only

cheat by (obliviously) adding a value to the output.

Formally, consider the case that exactly t + 1 parties are honest.

Then, de�ne an ideal functionality for multiplication that receives

shares of x ,y from the honest parties and a value d from the adver-

sary, and gives the parties shares of x · y + d for output. Then, a

multiplication protocol is secure up to additive attacks in the presence
of a malicious adversary if it securely computes this ideal function-

ality in the presence of malicious adversaries (under the standard

de�nition). Note that we de�ne it here for multiplication only, since

that is what we need. More information about this model and de�-

nitions can be found in [21].

We stress that many semi-honest protocols based on secret shar-

ing actually achieve security up to additive attacks. Speci�cally,

it was proven in [21] that the BGW [7], GMW [24] and DN [17]

semi-honest protocols, are all secure up to additive attacks. We

utilize this in Section 6, where we present instantiations of our

protocol.

3 SUB-PROTOCOLS AND BUILDING BLOCKS
In this section, we present the main building blocks that are used

in our protocol.

3.1 Generating Random Value and Shares
Generating random shares. We use an ideal functionality F

rand

that generates a sharing [r] of a random value r ∈ F and provides

each party with its share. We stress that in our protocol, the random

shares that are generated need not to be correct, and thus it is not

required that the protocol for generating random shares securely

realizes F
rand

as de�ned above. In fact, for our proofs to work, it

su�ces that the random shares are only valid, but not necessarily

correct. However, for simplicity and clarity of the presentation, we

use the stronger de�nition. As we will see in Section 6, in some

instances this functionality can be securely realized at very low cost

(even non-interactively). In one of our instantiations we will use the

weaker variant; this will be discussed and justi�ed in Section 6.1.

Generating random coins. The functionality F
rand

can be used

to securely compute a functionality Fcoin that chooses a random

element from F \ {0} and hands it to the parties. This functionality

can be easily realized by having the parties call F
rand

once and then

open the result (if the sharing received from F
rand

is to 0, then the

parties simply repeat the process).

3.2 Correctness Check of Shares
In this section, we show how to verify that a series of m shares are

correct. This is needed, for example, to ensure that the shares of

the inputs provided by the parties at the onset of the protocol are

correct. The veri�cation method follows the approach of [12] and

is formally described in Protocol 3.1. The idea is to choose random

coe�cients and then use them to compute a linear combination

of the shares. Since the values of the coe�cients are not known

before the shares were generated, it follows that if there exists a

sharing that is not correct, then the resulting share is correct with

small probability (utilizing Lemma 2.4). In order to preserve the

privacy of the shared values, the parties also add a random sharing

to the linear combination, so that when the resulted sharing is open,

nothing can be learned about the inputs of the parties.

PROTOCOL 3.1 (Batch Correctness Check of Shares).

• Inputs: The parties hold m shares [x1], . . . , [xm].
• The protocol:

(1) The parties call Fcoin to receive random elements

ρ1, . . . , ρm ∈ F \ {0}.
(2) The parties call F

rand
and obtain a sharing [r].

(3) The parties locally compute

[v] = ρ1 · [x1] + . . . + ρm · [xm] + [r]

.(4) The parties run open([v]).
(5) If no abort message was received, then the parties output

accept.

Lemma 3.2. If there exists j ∈ [m] such that [x j] is not correct,
then the honest parties output accept in Protocol 3.1 with probability
at most 1

|F |−1
.

Proof. Assume that there exists an index j ∈ [m] such that

[x j] is not correct. Let [u] =
∑
i ∈[m]\{j } ρi · [xi] + [r], and observe

that [v] = ρ j · [x j] + [u]. Then, since [x j] is not correct, we have

by Lemma 2.4 that [v] is correct with probability at most
1

|F |−1
as

required. Finally, recall that the open procedure guarantees that all

parties abort (and so don’t output accept) if an incorrect sharing is

opened. �

We do not prove full security of this protocol; rather, we directly

simulate it in the main protocol. Although this is a less modular

approach, it actually signi�cantly simpli�es the proof. For example,

formalizing this as an ideal functionality would require knowing

how to generate the inconsistent messages for the case that some

shares are inconsistent. This requires the simulator knowing the

honest parties’ shares in the case that they are inconsistent, which

leads to an unnatural modeling of the functionality. In the full

protocol simulation, the simulator already knows the honest parties’

shares since it generated them itself (albeit as shares of 0, but the

distribution over the messages in the simulation is not dependent

on the value).

3.3 Triple Veri�cation Based on the Open
Procedure

A multiplication triple is a triple of shares ([a], [b], [c]) with the

property that c = a · b. We say that a multiplication triple is ran-
dom if [a] and [b] are sharings of random values in F. We de�ne

correctness, as follows:

De�nition 3.3. ([a], [b], [c]) is a correct multiplication triple if

([a], [b] and [c]) are correct sharings and c = a · b.

In this section, we show how to verify that a multiplication triple

is correct without revealing anything about its values, by using (and

wasting) an additional random multiplication triple. We use the

same method as [16, 18], described in Protocol 3.4. The idea behind

the protocol is as follows. Given shares of x ,y, z and a,b, c the

parties compute and open shares of ρ = α · x + a and σ = y + b,

where α is a random element generated at the beginning of the

protocol. These values reveal nothing about x and y since a and b
are random. In addition, from the way opening is de�ned, it follows

that all the honest parties hold the same values for ρ and σ . As

we will see in the proof below, if ([a], [b], [c]) is a correct triple

and ([x], [y], [z]) is not, then α[z] − [c] + σ · [a] + ρ · [b] − ρ · σ
is either incorrect or a sharing of some element d , 0. Thus, by

computing and opening this share, the honest parties can detect

cheating and abort. In the case where [a], [b], [c] is also incorrect,

we show that the multiplication of [z] by the random α ensures

that the probability that the parties obtain a correct sharing of 0 is

bounded by
1

|F |−1
. As can be seen, the communication cost of this

protocol is due to the three executions of the open procedure.

PROTOCOL 3.4 (Triple Verification Using Open).

• Inputs: The parties hold a triple ([x], [y], [z]) to verify and an

additional random triple ([a], [b], [c]).
• The protocol:

(1) The parties call Fcoin to generate a random α ∈ F \ {0}.
(2) Each party locally computes [ρ] = α · [x] + [a] and [σ] =
[y] + [b].

(3) The parties run open([ρ]) and open([σ]), as de�ned in Sec-

tion 2, to receive ρ and σ . If a party receives ⊥ in an open-

ing, then it sends ⊥ to all the other parties and aborts.

(4) Each party locally computes

[v] = α [z] − [c] + σ · [a] + ρ · [b] − ρ · σ .

(5) The parties run the open([v]) procedure to receive v . If a

party receives ⊥ in the opening, then it sends ⊥ to all the

other parties and aborts.

(6) Each party checks that v = 0. If not, then it sends ⊥ to the

other parties and aborts.

(7) If no abort messages are received, then the parties output

accept.

We now prove the security guarantee provided by Protocol 3.4.

Lemma 3.5. If [x] and [y] are correct shares, and ([x], [y], [z]) is
not a correct triple, then:

(1) If ([a], [b], [c]) is a correct triple, then all honest parties abort in
Protocol 3.4 with probability 1.

(2) If ([a], [b], [c]) is not a correct triple, then the honest parties output
accept in Protocol 3.4 with probability at most 1

|F |−1
.

Proof. Assume that [x], [y] are correct shares and that the triple

([x], [y], [z]) is not correct. First, observe that by the de�nition of

the open procedure, if Step 3 concluded without the honest parties

aborting, then it is guaranteed that [ρ] and [σ] are correct and that

all the honest parties hold the same values ρ and σ . By Claim 2.2,

this implies that [a] and [b] are correct shares as well. Thus, for the

remainder of the proof, we can assume that [x], [y], [a] and [b] are

all correct and that all the honest parties hold the correct values

ρ = α · x + a and σ = y + b. Recall that since ([x], [y], [z]) is not

correct, either [z] is not correct or z , x · y.

To prove Item (1) in the lemma, assume that ([a], [b], [c]) is a

correct multiplication triple, i.e., all the shares are correct and c =
a · b. Then, by Claim 2.2, [u] = [c] + σ [a] + ρ[b] − ρσ is correct. If

[z] is not correct, then [v] is not correct (since [z] = α−1 · ([v]+ [u])
and so by Claim 2.2, correctness of [v] would imply correctness

of [z]). Thus, the honest parties would all abort when running the

open([v]) procedure. Else, if [z] is correct but z , x ·y, then it holds

that z = x · y + d for some d ∈ F \ {0}. Then, when the parties

locally compute [v], it holds that:

[v] = α[z] − [c] + σ [a] + ρ[b] − ρσ

= [αz − c + (y + b)a + (αx + a)b − (αx + a)(y + b)]

= [αz − c + ya + ab + αxb + ab − αxy − ay − αxb − ab]

= [αz − αxy + ab − c]

= [α(z − xy) − (c − ab)]. (1)

Since c = a · b and z = x · y + d , it follows that [v] = [α · d] , [0],
and thus the honest parties abort in Step 6 with probability 1, as

required.

Next, we prove Item (2) in the lemma, where ([a], [b], [c] is not a

correct triple. Since we are guaranteed that [a] and [b] are correct,

this means that either [c] is not correct or that c , a · b. Note

that in both cases, we are guaranteed that [u] = σ [a]+ ρ[b] − ρσ is

correct. Now, if the parties do not abort in Step 5, then it follows that

[v] = α · [z] − [c] + [u] is a correct sharing of 0. Since [u] is correct,

then it follows from Claim 2.2 that α · [z] − [c] is also correct. Using

Claim 2.2 yet again, we have that this can happen only if both [z]
and [c] are incorrect or both are correct. If they are both incorrect,

then by Lemma 2.4, the probability that α · [z] − [c] is correct is

bounded by
1

|F |−1
, as required. If both [z] and [c] are correct, we

have that c = a · b + d2 and z = x · y + d1 for some d1,d2 ∈ F \ {0}.
Plugging this into Eq. (1), we have that [v] = [α · d1 − d2]. By

Step 6 of the protocol, the honest parties output accept only if

α · d1 − d2 = 0, which holds if only if α = d2 · d
−1

1
. Since α is

distributed uniformly in F \ {0} and independent of d1,d2 (since

it is chosen randomly after d1 and d2 are �xed), we have that the

honest parties output accept with probability at most
1

|F |−1
. We

conclude that in all cases the probability that the protocol ends

with the honest parties outputting accept is bounded by
1

|F |−1
. �

As with Protocol 3.1, we do not prove the security of the protocol

with respect to an ideal functionality. This is because such an ideal

functionality would actually be very complex. For example, the

ideal functionality would have to deal with the case that [x], [y]
may not be correct. However, this case can never actually happen

in our protocol (due to the way that [x], [y] are generated). Thus, it

is preferable to not complicate matters with such a functionality.

3.4 Triple Veri�cation Based on Multiplication
Secure Up to Additive Attacks

In this section, we present a di�erent protocol for verifying that a

multiplication triple is correct. The protocol is similar to that of the

previous section, except that here we use a multiplication protocol

that is secure up to additive attacks (as de�ned in Section 2.2) instead

of the open procedure. In more detail, in Protocol 3.4, the parties

compute shares of

v = α · z − c + σ · a + ρ · b − ρ · σ

where ρ = αx + a and σ = y + b, and verify that it equals 0. This

is computed by �rst computing ρ,σ and opening them, and then

using (local) scalar multiplication to obtain shares of v . However,

openings are expensive operations, and in many cases are actually

more expensive than semi-honest multiplication (this is true in

the 3-party case, as well as when multiplying using the protocol

of [17] as discussed in Section 6.1). Thus, in the protocol in this

section, the parties compute shares of v by carrying out all of the

multiplications using a secure protocol, and then only opening

v . Thus, we construct two veri�cation protocols that are based

on di�erent building blocks; one that is based on invocations of

the open procedure and another that is based on a semi-honest

multiplication protocol that is secure up to additive attacks [21]. As

we will see later, this enables us to obtain di�erent protocols that

are better suited for di�erent settings, depending on the number of

parties, secret sharing method used, and so on.

We present the protocol based on multiplication in two steps.

First, we introduce a protocol that still requires one opening for

each triple veri�cation; namely the parties open [v] to verify that

it equals 0. Next, we show how to check that many shares are all

equal to 0 with a single opening. Since only one open procedure is

run for many executions, this yields a protocol where the amortized

cost per triple depends only on the cost of the multiplication and

the random sharing generation protocols.

The �rst protocol is described in Protocol 3.6. As mentioned

above, in this protocol, the values of ρ and σ are not opened as in

the previous protocol. Instead, we compute the sharing

[α] · [z] − [c] + [σ] · [a] + [ρ] · [b] − [ρ] · [σ]

= [α] · [z] − [c] + [σ] · [a] − [ρ] · [y]

using secure multiplication (where the equality holds because σ =
y + b and so b − σ = −y). Intuitively, this protocol is secure for

the same reason as Protocol 3.4 that uses opening, since the mul-

tiplications are used to compute the same equation. However, we

note that in this case we need to generate a random sharing [α]
that is kept secret, and we cannot let its value be publicly known.

To see why this is necessary, assume that ([a], [b], [c]) is a correct

multiplication triple and [x], [y] and [z] are all correct sharings, but

z , x · y, i.e., z = x · y + d for some d , 0 known to the adver-

sary. If the value of α is known to the adversary, then it knows

that α · [z] is a sharing of α · xy + α · d . Then, when comput-

ing [u] = [c] + [σ] · [a] + [ρ] · [b] − [ρ] · [σ] the adversary can

cheat in one of the multiplications and make [u] be a sharing of

(c +σ · a + ρ ·b − ρ · σ)+α ·d , thus causing [v] = α · [z] − [u] to be

a sharing of 0. In contrast, when α is not known, this attack cannot

be carried out. See Protocol 3.6 for all details.

PROTOCOL 3.6 (Triple Verification Based on Multiplication).

Let π
mult

be a multiplication protocol that is secure up to additive

attack, as described in Section 2.

• Inputs: The parties hold a triple ([x], [y], [z]) to verify, and an

additional random triple ([a], [b], [c]).
• The protocol:

(1) The parties execute F
rand

to generate a random sharing [α].
(2) The parties execute π

mult
on [x] and [α] to obtain [α · x].

(3) Each party locally computes [ρ] = [α · x] + [a] and [σ] =
[y] + [b].

(4) The parties execute π
mult

on [z] and [α] to obtain [α · z].
(5) The parties execute π

mult
on [a] and [σ] to obtain [σ · a].

(6) The parties execute π
mult

on [ρ] and [y] to obtain [ρ · y].
(7) Each party locally computes

[v] = [α · z] − [c] + [σ · a] − [ρ · y].

(8) The parties run the open([v]) procedure to receive v . If a

party receives ⊥ in the opening, then it sends ⊥ to all the

other parties and aborts.

(9) Each party checks that v = 0. if not, then it sends ⊥ to the

other parties and aborts.

(10) If no abort messages are received, then output accept.

Before proceeding, observe that if the parties are all honest then

they accept, since

v = α · z − c + σ · a − ρ · y

= α · x · y − a · b + (y + b) · a − (α · x + a) · y

= α · x · y − a · b + a · y + a · b − α · x · y − a · y = 0,

as required. The protocol can be proven secure as long as all shares

of the input are guaranteed to be valid (but not necessarily value-

consistent or form correct triples). Thus, this method is only suited

for protocols where validity is always guaranteed.

The following lemma shows the security provided by Proto-

col 3.6.

Lemma 3.7. Let [a], [b], [c] be valid shares and let π
mult

be a mul-
tiplication protocol that is secure up to additive attacks. If [x],[y] are
correct shares and [z] is valid, but ([x], [y], [z]) is not a correct multi-
plication triple, then the honest parties output accept in Protocol 3.6
with probability at most negligibly greater than 1

|F |
.

Proof. Assume that [x],[y] are correct shares, that [z] is valid

(meaning that all subsets of honest parties of size t+1 reconstruct to

a value, and not to ⊥) and that the triple ([x], [y], [z]) is not correct

(note that since x and y are well de�ned, then so is x · y). This

implies that either [z] is value-inconsistent or that z is correct but

z , x ·y. In both cases, there exists a subset J0 of t +1 honest parties

such that val([z])J0 = x · y + ¯d where
¯d ∈ F \ {0}. We consider the

values val([a])J0 = a J0 and val([b])J0 = b J0 that the honest subset J0
would open for [a] and [b], respectively. Since [c] is valid, it holds

that val([c])J0 = a J0 · b J0 + d1 for some d1 ∈ F (note that d1 may

equal 0).

In the protocol, the parties execute π
mult

four times. Looking at

the shares of parties in J0, we obtain that there exist d2, . . . ,d5 ∈ F
such that

val([α · x])J0 = α · x + d2 (2)

val([α · z])J0 = α · (x · y + ¯d) + d3 (3)

val([σ · a])J0 = (y + b J0) · a J0 + d4 (4)

val([ρ · y])J0 = (α · x + d2 + a J0) · y + d5. (5)

The above holds by the assumption that π
mult

is secure up to ad-

ditive attacks and therefore these di values are well de�ned (and

can be extracted by a simulator). By the properties of the open
procedure, if all the honest parties output accept at the end of the

protocol, then [v] is a correct sharing of 0. In particular, this implies

that for J0 it holds:

val([v])J0 = val([α · z])J0 − val([c])J0 + val([σ · a])J0 − val([ρ · y])J0
= α · (x · y + ¯d) + d3 − (a J0 · b J0 + d1)

+ (y + b J0) · a J0 + d4 − (α · x + d2 + a J0) · y − d5

= α · ¯d − d1 − d2 · y + d3 + d4 − d5 = 0.

This holds if and only if

α · ¯d = d1 + d2 · y − d3 − d4 + d5. (6)

We claim that for x ,y, z as in the lemma, Eq. (6) holds with prob-

ability at most negligibly greater than
1

|F |
. To see this, assume by

contradiction, that there exists an adversary A who participates in

Protocol 3.6 and succeeds in causing Eq. (6) to hold with probability

ϵ that is non-negligibly greater than
1

F . We will show by reduction

that if such anA exists, then this contradicts the security of the se-

cret sharing scheme. Let [x], [y], [z], [a], [b], [c] be inputs for which

A succeeds in having Eq. (6) holds with probability ϵ .

Before describing S, let Π denote Protocol 3.6 where the π
mult

executions are replaced with “ideal functionalities” computing mul-

tiplication under an additive attack; Π is a “hybrid” protocol con-

taining both regular messages and ideal calls. As described in Sec-

tion 2.2, this functionality receives d from the adversary, shares

of two values x ,y from the honest parties, and returns shares of

x ·y + d to all parties. Now, letAΠ be the adversary obtained from

A by replacing the π
mult

executions with these ideal calls; such an

adversary exists by the sequential modular composition theorem

of [9]. Accordingly, the probability that Eq. (6) holds whenAΠ runs

Protocol 3.6 on input [x], [y], [z], [a], [b], [c] is negligibly close to ϵ .

We are now ready to describe S who breaks the security of

the secret sharing scheme. Adversary S receives t < n/2 shares

of a random element α , and internally plays the honest parties

in set J0 running the hybrid protocol Π with AΠ , using inputs

[x], [y], [z], [a], [b], [c], up to and including Step 6.S obtainsd2,d3,d4,d5

from AΠ during the internal simulation, computes
¯d = z − x · y

and d1 = c − a · b. Then, S outputs

α ′ = (d1 + d2 · y − d3 − d4 + d5) · ¯d−1.

By the assumption that z , x · y, we have
¯d , 0 and thus

¯d−1
is

well de�ned. Furthermore, if Eq. (6) holds, then α ′ = α and so S

outputs the secret value, despite receiving less than n/2 shares. By

the assumption on A, we have that S succeeds with probability

that is negligibly close to ϵ . This contradicts the security of the

secret sharing scheme if ϵ is non-negligibly greater than 1/|F|. This

completes the proof of the lemma. �

Removing the remaining call to the open procedure. Protocol 3.6

requires one execution of the open procedure. Stated di�erently,

each veri�cation of a triple requires one invocation of the open
procedure. We now show how to verify many triples with just one

call to the open procedure. The idea behind this improvement is

straightforward: compute a random linear combination of many

[v]’s and then open the result. If any [v] , 0, then since the coef-

�cients are random, the �nal result will not equal 0, except with

probability 1/(|F| − 1). This is speci�ed in Protocol 3.8. Observe

that this method also applies to Protocol 3.4, thereby reducing the

number of openings there from 3 to 2. From an asymptotic view,

this is less signi�cant, as the overhead of the protocol still depends

on the cost of the open procedure.

PROTOCOL 3.8 (Batch Verification of Triples based on

Semi-Honest Multiplication).

• Inputs: The parties hold a list of triples {([xi], [yi], [zi])}Li=1

to verify and a list of random triples {([ai], [bi], [ci])}Li=1
.

• The protocol:
(1) For i = 1 to L: The parties run Steps 1-7 of Protocol 3.6 on

([xi], [yi], [zi]) and ([ai], [bi], [ci]), to obtain [vi].
(2) The parties call Fcoin to receive random elements

ρ1, . . . , ρL ∈ F \ {0}
(3) The parties locally compute

[v] = ρ1 · [v1] + . . . + ρL · [vL]

.(4) The parties run open([v]).
(5) If no abort message was received, then the parties output

accept.

Lemma 3.9. Let {([ai], [bi], [ci])}Li=1
be valid shares and let π

mult

be a protocol that is secure up to additive attack. If {([xi], [yi])}Li=1

are correct, but there exists some k ∈ [L] such that [zk] is valid
and ([xk], [yk], [zk]) is not a correct multiplication triple, then the
honest parties output accept in Protocol 3.8 with probability at most
negligibly greater than 1

|F |−1
.

Proof. Assume that {([xi], [yi])}
L
i=1

are correct, and that ∃k ∈
[L] such that [zk] is valid and ([xk], [yk], [zk]) is not a correct mul-

tiplication triple. If the honest parties output accept at the end of

the protocol, then by the properties of the open procedure, [v] is a

correct sharing of 0. There are three cases to consider:

(1) [vk] is a correct sharing of 0. By Lemma 3.7, the probability that

this happens is at most negligibly greater than
1

F <
1

|F |−1
.

(2) [vk] is an incorrect sharing. Then, by Lemma 2.4, the probability

that [v] is a correct sharing is at most
1

|F |−1
.

(3) [vk] is a correct sharing of somedk ∈ F\{0}. Let [u] =
∑
j ∈[L]\{k } ρ j ·

[vj]. Then, we have that [v] = [u] + ρk [vk]. Since [v] and [vk]
are both correct, it follows from the linear property of the

scheme that [u] is also correct. Thus, if v = 0 then it must hold

that 0 = u + ρk · dk , which in turn holds only if ρk = −u · d
−1

k .

Since ρk ∈ F \ {0} is random, this happens with probability of

at most
1

|F |−1
.

Thus, in all cases, the honest parties accept with probability at most

1

|F |−1
, as required. �

4 THE PROTOCOL FRAMEWORK FOR
LARGE FIELDS

In this section, we present our protocol for large �elds (the protocol

works for any �eld, but as we will see it is most e�cient for large

�elds). The protocol has a set-up phase to generate random triples

and an online phase to compute any arithmetic circuit.

The set-up protocol is presented in Protocol 4.1. In this protocol,

we utilize the fact that the random triples ([ai], [bi], [ci]) used in

the veri�cation protocols only need to be valid (but not necessarily

correct). This enables us to generate the tuples very e�ciently,

using a private semi-honest multiplication protocol.

PROTOCOL 4.1 (Generating Random Multiplication Triples).

Let π
mult

be a private semi-honest multiplication protocol.

• Inputs: The parties have the number N of triples to generate.

• The protocol:
(1) The parties call F

rand
to obtain 2N random sharings, ar-

ranged in a list of the form {([ai], [bi])}Ni=1
.

(2) For i = 1 to N : the parties execute π
mult

on [ai] and [bi]
to obtain [ci].

• Outputs: The parties output {([ai], [bi], [ci])}Ni=1
.

We now proceed to the main protocol, that computes an arith-

metic circuit on the private inputs of the parties. The protocol

works by computing the circuit using a private semi-honest proto-

col, and then running a veri�cation step where the computations of

all multiplication gates are veri�ed using the random triples from

the o�ine phase. A full description appears in Protocol 4.2. Note

that the veri�cation stage of the protocol has two versions, as we

have two protocols for verifying triples: the �rst uses share opening

whereas the second uses semi-honest multiplication. If the second

veri�cation protocol is used, then π
mult

also needs to be secure up

to an additive attack.

We now prove the security of the protocol. The proof follow

a straightforward simulation strategy, with the simulator provid-

ing shares of random values throughout (except for the output

phase). The fact that the simulation works is due to the proofs al-

ready carried out that the adversary can cheat with only negligible

probability.

Theorem 4.3. Let f be a n-party functionality and let π
mult

be a
private semi-honest multiplication protocol (if VERSION 2 is used: that
is secure up to additive attack). Then, Protocol 4.2 securely computes
f with abort in the (Fcoin,Frand

)-hybrid model with statistical error
2
−σ , in the presence of a malicious adversary controlling t < n

2

parties.

Proof Sketch. We will show that if the adversary cheats it suc-

ceeds with probability of at most p = (1

|F |−1
)δ . Speci�cally, if it

provides incorrect shares in the “input sharing” step of the online

protocol, then by Lemma 3.2, it is not caught with probability at

most p (it is undetected with probability 1/(|F| − 1) in each of the

δ iterations). If it cheats in the multiplication gate computation in

the circuit emulation phase, then regardless of the version of veri�-

cation step used, it is also caught with probability p, by Lemma 3.5

and by Lemma 3.9. Note that in both cases, this holds regardless of

whether or not the triples obtained from the o�ine protocol are

correct.

Denote by bad, the event that the adversary succeeds in cheating

without being caught, by either dealing incorrect shares for its in-

puts or by cheating in the computation of at least one multiplication

gate. Then, Pr[bad] ≤
(

1

|F |−1

)δ
. Since δ · log(|F| −1) ≥ σ , it follows

that (|F| − 1)δ ≥ 2
σ

and so

(
1

|F |−1

)δ
≤ 2
−σ

. Thus, Pr[bad] ≤ 2
−σ

.

We now show to simulate the protocol; the simulation will be

“good” assuming that the bad event does not occur. Let A be the

adversary. The simulator S works as follows:

(1) S extracts the (correct) input values v shared by A for the

corrupted parties, and hands A the honest parties’ messages

computed using 0 as the input on every wire associated with

an honest party’s input.

(2) S simulates the input correctness check by running the honest

parties’ instructions based on the messages from the previous

round. If any of the input shares dealt by the adversary is not

correct, but the honest parties’ simulated by S do not catch A

in any iteration, then S outputs fail. Otherwise, S simulates

the honest parties aborting at the relevant point, sends abort
to the trusted party, and outputs whatever A outputs.

(3) S runs the honest parties’ instructions as above in the circuit

emulation phase. If A cheats in any of the multiplication pro-

tocols, then S records in which multiplications cheating took

place (S knows the values on the wires and so can determine

if cheating took place).

(4) S runs the honest parties’ instructions in the veri�cation stage.

If there is a multiplication that A cheated in, but was not de-

tected at any point by the honest parties in the simulated veri-

�cation, then S outputs fail and halts. Otherwise, S simulates

the honest parties aborting at the relevant point, sends abort
to the trusted party, and outputs whatever A outputs.

(5) If there was no cheating, then S sends the trusted party the

extracted input values, and receives back the corrupted parties’

outputs. Then, S simulates the reconstruction so that A re-

ceives these outputs for all corrupted parties. This is achieved

by choosing “new” shares for the honest parties such that the

reconstruct procedure will yield the correct output.

(6) S receives the messages from A for the reconstructions to the

honest parties. If any of the messages for honest Pj are incorrect

(.i.e., the shares are not correct), then S sends abortj to instruct

the trusted party to not send the output to Pj . Otherwise, S

sends continuej to the trusted party, instructing it to send Pj
its output.

Observe that the probability that S outputs fail is exactly the prob-

ability that the event bad occurs. Furthermore, when this does not
occur, the only di�erence between the real and simulated execu-

tions is due to the fact that S used 0 for all honest inputs instead

of the real values. By the information-theoretic security of secret

sharing, this makes no di�erence in the input sharing phase. Fur-

thermore, by the privacy of the multiplication protocol, the view

of A in the simulated circuit emulation phase is indistinguishable

from its view in the real phase. Finally, the output phase is once

again perfectly simulated, by the information-theoretic properties

of the secret sharing scheme. �

PROTOCOL 4.2 (Computing an Arithmetic Circuit Over Finite Fields).

Let π
mult

be private semi-honest multiplication protocol. If VERSION 2 is used, then π
mult

must also be secure up to additive attack.

• Inputs: Each party Pj (j ∈ {1, . . . ,n}) holds an input x j ∈ F
`
.

• Auxiliary Input: The parties hold a description of an arithmetic circuit C that computes f on inputs of length ` · n. Let N be the

number of multiplication gates in C . In addition, the parties hold a statistical security parameter σ .

• The protocol:
(1) Precomputation: Each party sets δ to be the smallest value for which δ ≥ σ/log(|F| − 1). The parties then run δ executions of

Protocol 4.1 with input N , and obtain vectors
®d1, . . . , ®dδ of N triples.

(2) Sharing the inputs: For each input wire with an input v , the parties run share(v) with the dealer being the party whose input

is associated with that wire.

(3) Correctness checking of inputs: Let [v1], . . . , [vm] be the shares on the input wires, generated in the previous step.

Repeat δ times: The parties run Protocol 3.1 on [v1], . . . , [vm].
If there exists an execution in which a party did not output accept, it sends ⊥ to the other parties and halt.

(4) Circuit emulation: Let G1, ...,GL be a predetermined topological ordering of the gates of the circuit. For k = 1, ...,L the parties

work as follows:

– If Gk is an addition gate: Given shares [x] and [y] on the input wires, the parties locally compute [x + y].
– If Gk is a multiplication-by-a-constant gate: Given share [x] on the input wire and a public constant a ∈ F, the parties

locally compute [a · x].
– IfGk is a multiplication gate: Given shares [x] and [y] on the input wires, the parties run π

mult
on [x] and [y], and de�ne

the result as their share on the output wire.

(5) Veri�cation stage: Before the secrets on the output wires are reconstructed, the parties verify that all the multiplications were

carried out correctly, as follows. Let {([xk], [yk], [zk])}
N
k=1

be the triples generated by computing multiplication gates (i.e.,

[xk] and [yk] are the shares on the input wires of the kth multiplication gate and [zk] is the share on the output wire), and let

®di =
{
([aik], [b

i
k], [c

i
k])

}N
k=1

be the triples generated in ith iteration of the o�ine phase.

For i = 1 to δ , the parties work as follows:

– VERSION 1:

For k = 1, . . . ,N : The parties run Protocol 3.4 on input ([xk], [yk], [zk]) and ([aik], [b
i
k], [c

i
k]) to verify ([xk], [yk], [zk]).

(Observe that all executions of Protocol 3.4 can be run in parallel).

– VERSION 2:

The parties run Protocol 3.8 on {([xk], [yk], [zk])}
N
k=1

and

{
([aik], [b

i
k], [c

i
k])

}N
k=1

to verify {([xk], [yk], [zk])}
N
k=1

.

If a party did not output accept in every execution, it sends ⊥ to the other parties and outputs ⊥.

(6) If any party received ⊥ in any of the previous steps, then it outputs ⊥ and halts.

(7) Output reconstruction: For each output wire of the circuit, the parties run reconstruct([v], j), where [v] is the sharing of the

value on the output wire, and Pj is the party whose output is on the wire.

(8) If a party received ⊥ in any call to the reconstruct procedure, then it sends ⊥ to the other parties, outputs ⊥ and halts.

• Output: If a party has not output ⊥, then it outputs the values it received on its output wires.

Using pseudo-randomness to reduce the number of calls to Fcoin.
Observe that in some phases, we need to generate many random

elements at once. Instead of calling Fcoin for every value, it su�ces

to call it once to obtain a seed for a pseudorandom generator, and

then each party locally uses the seed to obtain as much randomness

as needed. (Practically, the key would be an AES key, and random-

ness is obtained by running AES in counter mode.) It is not di�cult

to show that by the pseudorandomness assumption, the probability

that the adversary can cheat is only negligibly di�erent.
1

E�ciency. We analyze the performance of our protocol. As the

protocol takes black-box building blocks (such as F
rand

, π
mult

and

the open procedure), and compiles them into a maliciously secure

1
Note that this is not as immediate as it seems since the adversary has the seed/key

as well, and so at this point the pseudorandom property is actually lost. However,

the checks work by generating the randomness after everything else is �nished (see

Protocol 3.8) and then verifying that some equality holds, or that the results are correct.

These properties are actually determined before the key is revealed, and thus security

is maintained even after the key is revealed.

protocol, we measure the cost as a function of these building blocks.

In addition, we focus on the cost that increases with the size of the

circuit, and so the cost of input sharing and output reconstruction

is ignored (these steps are very cheap in practice anyway). Since ad-

dition and multiplication-by-a-constant gates are computed locally,

this reduces to measuring the cost per multiplication gate.

For computing multiplication gates, the protocol requires one

execution of a semi-honest multiplication when emulating the cir-

cuit. In addition, for each gate, δ random multiplication triples are

generated in the o�ine phase. This comes at the cost of generating

two random shares using F
rand

and multiplying them using one

semi-honest multiplication.

Next, for the �rst version of the veri�cation step, three opening

of shares. Thus, overall, the cost of version 1 of the protocol per

each multiplication gate is

(1 + δ) · t(π
mult
) + 2δ · t(F

rand
) + 3δ · t(open) (7)

where t(X) denotes the cost of running procedure X .

In contrast, the second version of the veri�cation step, requires

4 semi-honest multiplications in each iteration plus one addition

call to F
rand

to generate [α], instead of the three openings. Thus,

the overall cost per multiplication gate in this protocol version is

(1 + 5δ) · t(π
mult
) + 3δ · t(F

rand
). (8)

Observe that when using a �eld F with |F| > 2
σ

(e.g., F = Zp with

p being a 40-bit prime, and where the allowed statistic error is 2
−40

),

it su�ces to take δ = 1. In this case, the cost of the �rst version of

the protocol is 2 · t(π
mult
) + 2 · t(F

rand
) + 3 · t(open) and the cost

of the second version is 6 · t(π
mult
) + 3 · t(F

rand
). Thus, when 4

semi-honest multiplications plus one random-share generation are

cheaper than 3 openings, the second protocol version is preferable.

5 THE PROTOCOL FRAMEWORK FOR SMALL
FIELDS

In this section, we describe a protocol for generating multiplication

triples in small �elds, that combines the veri�cation method of Sec-

tion 4 together with the “cut-and-choose” methodology designed

for Boolean circuits in [19]. Informally speaking, the parties start

by generating NB +C random triples by calling F
rand

and running

the semi-honest multiplication protocol π
mult

for each triple. Next,

the parties randomly permute the triples. Then, the parties open

the �rst C triples, so that if one of the opened triples is incorrect,

the honest parties will detect it and abort. The remaining triples are

divided into N bucket of size B, and the �rst triple in each bucket

is veri�ed using the other B − 1 triples. The required property in

this check is that if one of the bucket is “mixed”, i.e., contains both

correct and incorrect triples, then the honest parties will detect

cheating with probability 1. The important observation is that this

veri�cation of triples in a bucket can be carried out using Proto-

col 3.4 (veri�cation based on openings), since by Lemma 3.5 if an

incorrect triple is veri�ed by a correct triple, then the honest parties

will abort with probability 1. However, the result is much stronger

than that achieved in [19]. Speci�cally, when considering Boolean

circuits, the adversary can evade detection if a bucket contains only

incorrect triples. However, in our setting where |F| > 2, even if a

bucket has only bad triples, the adversary can still get caught. Thus,

the cheating probability of the adversary is much lower.

For the formal description, we de�ne the Fperm ideal functional-

ity that receives a vector from all the parties and returns a random

permutation of it to the parties. The functionality can be securely

computed by generating randomness via Fcoin and then using that

randomness to compute a permutation using the Fisher-Yates algo-

rithm [20]. The pre-processing protocol for �elds of small size is

formally described in Protocol 5.1.

We now prove that the main protocol securely computes any

functionality in the presence of a malicious adversary who controls

a minority of the parties, when using Protocol 5.1 in its o�ine

phase.

Theorem 5.2. Let f be a n-party functionality, assume thatC ≥ B

and let δ ,B and C be such that δ · log

(
(NB+C

B)(|F |−1)B

N

)
≥ σ . Then,

PROTOCOL 5.1 (Generating Random Multiplication Triples

Using Cut-and-Choose).

Let π
mult

be a private semi-honest multiplication protocol according

to De�nition 2.5.

• Input: The number N of triples to be generated.

• Auxiliary input: Parameters B and C .

• The Protocol:
(1) Generate random sharings: The parties invoke 2(NB +C)

calls to F
rand

; denote the shares that they receive by

[([ai], [bi])]NB+C
i=1

.

(2) Generate multiplication triples: For i = 1, . . . , NB +C , the

parties run π
mult

to compute [ci] = [ai] · [bi].
Denote ®D = [([ai], [bi], [ci])]NB+C

i=1
.

(3) Cut and bucket: Let M = NB +C . In this stage, the parties

perform a �rst veri�cation that the triples were generated

correctly by opening C triples, and then randomly divide

the remainder into buckets.

(a) The parties call Fperm with vector ®D .

(b) For i = 1, . . . , C , the parties run open([ai]),
open([bi]) and open([ci]) and then each party

checks that ci = ai · bi . If not, then the party sends

⊥ to all the other parties and aborts.

If a party did not output accept in all the open pro-

cedure executions, it sends ⊥ to the other parties

and outputs ⊥.

The parties remove the opened triples from ®D .

(c) The remaining NB triples in ®D are divided into

N sets of triples ®D1, . . . , ®DN , each of size B .

For i = 1, . . . , N , the bucket ®Di contains the

triples ([a(i−1)·B+1
], [b(i−1)·B+1

], [c(i−1)·B+1
]), ...,

([ai ·B], [bi ·B], [ci ·B]).
(4) Check buckets: The parties initialize a vector

®d of length N .

Then, for i = 1, . . . , N :

(a) Denote the triples in ®Dk by

([a1], [b1], [c1]), ..., ([aB], [bB], [cB]).
(b) For j = 2, . . . , B , the parties run Protocol 3.4

(triple veri�cation based on openings) on in-

put ([a1], [b1], [c1]) and ([aj], [bj], [c j]), to verify

([a1], [b1], [c1]).

(c) If a party did not output accept in every execution,

it sends ⊥ to the other parties and outputs ⊥.

(d) The parties set
®di = ([a1], [b1], [c1]); i.e., they store

these shares in the ith entry of
®d .

• Output: The parties output
®d .

Protocol 4.2, when using Protocol 5.1 for its o�ine phase, securely com-
putes f with abort in the (Fcoin,Frand

,Fperm)-hybrid model with sta-
tistical error 2

−σ , in the presence of a malicious adversary controlling
t < n

2
parties.

proof sketch. We �rst bound the probability that the adversary

cheats without being caught. Denote this event by bad. Then, bad =
bad1 ∧ bad2 ∧ bad3, where:

• bad1 is the event that there are exactly t buckets that have only

bad triples; i.e., the adversary corrupted tB triples that were not

chosen to be opened and these were placed by the permutation

in exactly t buckets.

• bad2 is the event that no cheating is detected in the veri�cation

step in the pre-processing phase, given that there are t fully bad

buckets; i.e., the t · (B − 1) executions of the triples veri�cation

protocol where a bad triple is veri�ed, ended without detecting

cheating.

• bad3 is the event that the adversary cheated in the computation

of t multiplication gates and was not caught, given that there

are t bad random triples output from the pre-processing phase.

We remark that these bad events cover all possibilities. In particular,

if the number of bad buckets does not match the number of bad

multiplications, then the adversary will be caught with probability 1.

Thus, we only consider the case that the number t is the same in

both events.

From [19, Theorem 5.2] it follows that

Pr[bad1] =

(
N

t

) (
NB +C

tB

)−1

.

By Lemma 3.5, we have that

Pr[bad2] =
1

(|F| − 1)(B−1)t

since the adversary is not caught in a single veri�cation with prob-

ability 1/(|F| − 1) and B − 1 veri�cations are carried out per bucket.

Furthermore, once again applying Lemma 3.5, we have that

Pr[bad3] =
1

(|F| − 1)t

since the adversary evades detection each time with probability

1/(|F| − 1) and there are t bad multiplications. Since the online

veri�cation stage is run δ times, we obtain that

Pr[bad] =

(
1

(|F| − 1)B ·t
·

(
N

t

) (
NB +C

tB

)−1

)δ
.

Now, since both
1

(|F |−1)B ·t
and

(N
t
) (NB+C

tB
)−1

are maximized when

t=1 (where the latter was proven in [19, Theorem 5.3] assuming

that c ≥ B), we have that

Pr[bad] ≤

(
1

(|F| − 1)B
· N

(
NB +C

B

)−1

)δ
.

Therefore, we obtain that assuming that C ≥ B, it holds that

Pr[bad] ≤ 2
−σ

when 2
σ ≤

(
(|F |−1)B (NB+C

B)
N

)δ
. Taking log of both

sides yields that σ ≤ δ · log

(
(|F |−1)B (NB+C

B)
N

)
as stated in the theo-

rem.

Simulation works as in the proof of Theorem 4.3, and we leave

the details to the full version of the paper. �

E�ciency. Each multiplication gate requires running the semi-

honest multiplication protocol once in the online computation and

Bδ times in the o�ine phase (to generate a bucket of B triples for

each veri�cation iteration). In addition, for each gate the parties

run the veri�cation protocol δ (B − 1) times on the o�-line and δ
times in the online, at the cost of 3 openings per execution. Finally,

to generate B random triples, the parties need to call F
rand

exactly

2B · δ times. Thus, the overall cost per multiplication gate is

(1 + δB) · t(π
mult
) + 2B · δ · t(F

rand
) + 3 · δB · t(open).

At �rst sight, this looks much higher than the overhead of the

protocol of the previous section. However, the idea here is to choose

a smaller δ , thus reducing the overall cost. For example, assume that

σ = 40 and |F | = 2
8

(e.g., computing an AES circuit over GF [28]).

If we were to use the large-�eld protocol of Section 4, we would

have to set δ = 5 in order to have δ · log(|F|) ≥ 40. The cost per

gate in this case, assuming we use the �rst version of the protocol,

is 6 · t(π
mult
) + 10 · t(F

rand
) + 15 · t(open).

In contrast, if we need to produce 2
10

triples, we can set δ = 1

and B = C = 3, resulting in having (|F| − 1)B = (28)3 = 2
24

and

1

N
(NB+C

B
)
= 2
−10

(
2

10 ·3+3

3

)
≥
(3·210)3

3·210
≥ 2

20
and so

δ · log

((|F| − 1)B
(NB+C

B
)

N

)
≥ log(224 · 220) = 40.

For these parameters, the cost per gate is 4 · t(π
mult
)+ 6 · t(F

rand
)+

9 · t(open), which is lower than using the protocol of Section 4.

6 INSTANTIATIONS
Our protocol/compiler is generic and can be instantiated in many

ways (with di�erent secret sharing schemes, multiplication pro-

tocols, and more). Clearly, the e�ciency of our protocol depends

signi�cantly on the instantiations. In this section, we present two

main instantiations of our protocol, with di�erent options for some

of the subprotocols within. The �rst instantiation is for the general

case of any number of parties n, and we use Shamir’s secret shar-

ing [35] for this instantiation. We provide di�erent approaches to

implementing the basic building blocks, including the open proce-

dure, randomness generation F
rand

, and semi-honest multiplication

π
mult

, and analyze their e�ciency. The second instantiation is for

the speci�c case of three-parties, and utilizes tools from the highly

e�cient semi-honest protocol of [3]. Using our compiler, we show

that it is possible to obtain a protocol that is secure in the presence

of a malicious adversary with very low communication; speci�cally,

only a few �eld elements are sent for each multiplication gate. For

simplicity, we analyze our instantiations using the protocol of Sec-

tion 4 for large �elds only; similar analysis using the protocol for

small �elds of Section 5 can be easily obtained.

6.1 Multi-Party Computation Based on
Shamir’s Secret Sharing Scheme

Most secure computation protocols with an honest majority use

Shamir’s secret sharing scheme [35]. In this scheme, a secret is dis-

tributed among n parties with a threshold of t , by de�ning a polyno-

mial of degree t , and handing each party a point on this polynomial.

Formally, given a secret v , the dealer chooses random coe�cients

q1, ...,qt ∈ F and de�nes a polynomial q(x) = v +
∑j=t
j=1

qjx
j
. Then,

each party Pi is given the value q(i).2 It is well known that no subset

of t parties can compute the secret by themselves, but a subset of

t + 1 parties can compute the secret, as any t + 1 points uniquely

de�ne one polynomial of degree t .
For this secret sharing scheme, a sharing [v] is correct if there

exists a single polynomial q(x) of degree ≤ t such that for every

honest party Pi holding value vi , it holds that q(i) = vi . Therefore,

a sharing [v] is incorrect if for every polynomial q(x) of degree at

most t , there exists an honest party Pi holdingvi such thatq(i) , vi .
Note that for this scheme, if the sharing [v] is not correct, then it is

2
More generically, we associate a unique αi ∈ F for the i th party. For simplicity, we

will consider F = Zp for a prime p , in which case i ∈ F.

value-inconsistent (see Section 2). This holds since any subset of

t + 1 shares de�nes a t-degree polynomial, and thus for any subset

of t +1 honest parties J it holds that val([v])J , ⊥. (Technically, for

this to work, all honest parties must hold some share in the �eld F.
Thus, if an honest party receives a value in any protocol that does

not de�ne a value in F, it replaces it with some default �eld value.)

Shamir’s secret sharing scheme is linear, and enable parties lo-

cally add shares and multiply them by a constant, as required for

our protocol.

6.1.1 The Basic Procedures and Sub-Protocols.

The share(v) procedure. As explained above, in this procedure

the dealer chooses a random polynomial q(x) of degree t under

the constraint that q(0) = v , and then sends each Pi the point q(i).
Recall that our protocol does not require the share sent by the

corrupted parties to be correct, and thus this is su�cient (in places

where correctness is required, we run a separate check).

The reconstruct([v], i) and open([v]) procedures. In order to re-

construct to party Pi , each party sends its share to Pi . Then, Pi uses

any of the t + 1 shares to compute the unique degree-t polynomial

de�ned by the points, and checks that all other shares lie on the

same polynomial. If not, then it sends ⊥ to all the other parties and

halts. Since there are at least t + 1 honest parties (whose shares

uniquely de�ne a polynomial and so the value to be reconstructed),

we are guaranteed that the corrupted parties cannot cause Pi to

output an incorrect value.

The open procedure simply works by running reconstruct([v], i)
for all Pi . Since each party sends n − 1 elements, the overall com-

plexity of the open procedure is quadratic in the number of parties.

F
rand

- generating shares of random values. We describe two

ways of implementing F
rand

. The �rst method of generating ran-

dom shares is the PRSS method of [13], which enables the parties to

generate a sharing of a pseudorandom element without any inter-

action. This is done by distributing random keys among the parties

via replicated secret sharing (i.e., for each subset of t parties, all the

parties in the complement subset receive a key). These random keys

are used to generate pseudorandom values that are then converted

to Shamir shares. Since this protocol is non-interactive, it is easy

to see that generated shares are always correct, and the adversary

cannot learn anything about the shared value. Thus, this protocol

securely realizes F
rand

. The problem with this approach is that the

number of keys held by each party grows exponentially in the num-

ber of parties, which dramatically increases the computational work

of generating the shares. Thus, this method is only e�cient when

the number of parties in the protocol is small. A full description of

this method appears in Appendix B.1 (Protocol B.1).

We now describe a second way of generating random shares

due to [17], in which each party sends only a constant number

of elements per random share. This method uses a Vandermonde

matrix, which can be used to “extract randomness” from n shares

into n − t new shares. The protocol works by having each party

share a random element to the other parties. Then, upon holding

a vector of n shares, each party locally multiplies this vector of

size n with a Vandermonde matrix of n − t rows and n columns to

receive a vector of n − t “new” random shares. By the randomness

extraction property, we have that the new shares are sharings of

random elements in F. Since t < n
2

, we have that each party obtain

at least n
2
+ 1 shares, in a process that requires sending n − 1

elements by each party. Thus, the amortized communication cost

per random share is roughly 2 elements per party. A full description

is in Appendix B.1 (Protocol B.2); for more details on the method

see [17]. We stress that although this method guarantees that the

shares generated are to random values unknown to the adversary,

the method actually does not securely realize F
rand

, as malicious

parties may cheat and cause the resulting sharing to be incorrect.

However, the requirements on the shares [a], [b] in Lemmas 3.7

and 3.9 are merely that they be valid, and all Shamir shares are

valid as we have mentioned. (Note that in Lemma 3.5, this is not

even needed.) Thus, this method su�ces for our protocol.

π
mult

– semi-honest multiplication that is private and secure up
to additive attack. The �rst instantiation for π

mult
is the GRR mul-

tiplication improvement [25] of the BGW protocol [7]. This pro-

tocol enables n parties with t < n
2

semi-honest corrupted parties,

to compute a multiplication gate with quadratic communication

complexity overall. Speci�cally, it works by each party locally mul-

tiplying its shares on the input wires and sending shares of the

result to all other parties. Then, each party locally computes a linear

combination of the shares it received. The overall communication

is thus exactly n − 1 elements sent by each party per multiplication

gate. This protocol is very e�cient for a small number of parties.

The second instantiation is more e�cient for a large number of

parties. The semi-honest multiplication protocol with the best as-

ymptotic e�ciency to our knowledge is the DN protocol presented

in [17], that has amortized constant communication complexity per

party. We optimized the protocol even further, cutting the commu-

nication by half. The di�erence is due to the fact that [17] generate

correct multiplication triples and use them to carry out the mul-

tiplications in the circuit. In contrast, we generate just one share

(under degree-t and degree-2t) and use this to multiply directly.

Their method is preferable for minimizing the online time, but ours

yields a faster overall time. Our optimized version of the [17] pro-

tocol works as follows. A set of random shares is generated in a

preprocessing step, and later used to multiply two elements that

are shared among the parties. Speci�cally, the parties generate two

random shares [r]t and [r]2t for each multiplication gate, where

the former is a sharing of r using a degree-t polynomial, and the

latter is a sharing of the same r , but this time using a degree-2t
polynomial. Then, to multiply x and y, the parties locally multi-

ply their shares to obtain [x · y]2t (the result is of degree-2t since

two degree-t polynomials are multiplied). Then, the parties locally

compute [x ·y]2t − [r]2t and open the result to P1. Party P1 obtains

x · y − r in the clear, and sends it to all the other parties. Finally,

each party locally computes x · y − r + [r]t to obtain [x · y]t , as

required (the result is a degree-t polynomial with constant term x ·y
since the constant term of [r] − r is 0). If we use the “Vandermonde”

protocol for generating the random shares, we obtain that each

party needs to send only 6 �eld elements per multiplication gate.

Both semi-honest multiplication protocols are presented in Ap-

pendix B.2 (Protocol B.3 and Protocol B.4). We claim that these two

protocols prevent any leakage of information, and are private in the

presence of malicious adversaries according to De�nition 2.5. For

the GRR protocol, this follows from the fact that the adversary’s

view consists of random shares it receives from the honest parties,

which reveal nothing. For the protocol of [17], the view of the ad-

versary consists of random shares or of values that are a masking

of some secret using a random value, thus once again revealing

nothing about the actual values.

In instantiations that rely on multiplication-based veri�cation,

we will only use the DN protcol, as these instantiations yield higher

performance when the computation involves large number of par-

ties, and the DN protocol, with its constant communication per

party, is clearly preferable in this case over the GRR protocol. Thus,

it is required that this protocol be secure up to additive attack. For-

tunately, it was already proven in [21, Corollary 5.6] that the DN

protocol has this property.

6.1.2 Protocol Variants. We have described two protocols for

generating random shares and two semi-honest multiplication pro-

tocols. Together with the two versions of our protocol (veri�cation

via opening in Section 3.3 and via multiplication in Section 3.4), we

have six variants of our multiparty protocol with Shamir’s secret

sharing (recall that we did not prove that the GRR protocol can be

used with the multiplication-based veri�cation). We analyze two

of these variants; one is best for a small number of parties and the

other is best for a large number of parties.

A protocol for a small number of parties. When the number of

parties is small, we use the PRSS protocol to generate random shares

(with zero communication cost), the GRR multiplication protocol

(with n − 1 elements sent per party) and version 1 of our protocol

(which uses veri�cation based on opening of shares). The reason

why we use veri�cation via opening of shares is that the open

procedure is very e�cient for a small number of parties and thus

is preferable here (here, each party sends n − 1 elements for both

multiplication and opening).

For large �elds where |F| > 2
−σ

we can set δ = 1. In this case,

referring to Eq. (7), we obtain that the overall communication cost

is 5(n − 1) �eld elements sent by each party for each multiplication

gate (due to 2 semi-honest multiplications and 3 openings). This

therefore proves Theorem 1.2 from the Introduction.

A protocol for a large number of parties. When considering a

large number of parties, the PRSS protocol cannot be used (since

the computational cost of the PRSS protocol blows up exponen-

tially). We therefore use the “Vandermonde” protocol for generating

random shares. Likewise, we use the optimized DN [17] protocol for

semi-honest multiplication and the second version of our protocol

(which is based on semi-honest multiplications). For large �elds,

where we can set δ = 1, we obtain that by Eq. (8), each party needs

to send 42 elements per multiplication gate (due to 6 semi-honest

multiplications at a cost of 6 elements each, and 3 random share

generations at a cost of 2 elements each). This therefore proves

Theorem 1.1 from the Introduction.

The threshold. Based on the above, when 5(n − 1) < 42 the �rst

protocol is better. Thus, the �rst protocol should perform better

when the number of parties isn ≤ 9, and the second protocol should

perform better when n > 9. This theoretical analysis is validated

experimentally in Section 7 and con�rms this exactly. In Table 1,

the protocol labeled PRSS_GRR_open is the �rst protocol, whereas

van_DN_mult is the last protocol. As can be seen, PRSS_GRR_open
is better than van_DN_mult for up to 9 parties. As shown in Sec-

tion 7, other protocol variants are however better between 9 and

70 parties.

6.2 Three-Party Computation Based on
Replicated Secret Sharing

In [3], a three-party protocol based on a type of replicated secret

sharing was presented, in which each party sends a single �eld

element per multiplication gate. In this section, we instantiate our

protocol compiler with the semi-honest protocol of [3] (for arith-

metic circuits) to obtain a highly e�cient protocol with security in

the presence of a malicious adversary corrupting at most 1 party.

We stress that protocols that require that less than 1/3 of the parties

are corrupted cannot be used at all for the case of 3 parties.

We begin by presenting the replicated secret-sharing scheme,

prove some properties of it, and characterize correctness. Our repli-

cated secret-sharing is a simpli�ed version of that presented in [3],

and the multiplication protocol has the same complexity as theirs.

We also show how to optimize Protocol 4.2 even further in this

speci�c case.

We stress that for Boolean circuits (i.e., the �eld F2), a malicious

version for the semi-honest protocol of [3], was already presented

in [19]. However, our construction for large �elds is fundamentally

di�erent from theirs, as it is tailored for large �elds.

6.2.1 The Secret Sharing Scheme and Its Properties.

Replicated secret-sharing. In order to share an element v ∈ F,
the dealer chooses three random elements r1, r2, r3 ∈ F under the

constraint that r1 + r2 + r3 = v . Then, the dealer shares the secret

so that P1’s share is (r1, r3), P2’s share is (r2, r1) and P3’s share

is (r3, r2). We abuse notation and denote Pi ’s share by (ri , ri−1),

even for i = 1. It is easy to see that this is a valid secret sharing

scheme that preserves privacy. In addition, the secret together with

the share of any one party fully determines the shares of the other

parties. We use [v] to denote a sharing ofv according to this scheme.

Linearity. We de�ne the following local operations on shares:

• Addition [v1] + [v2]: Given a share (r1

i , r
1

i−1
) of v1 and a share

(r2

i , r
2

i−1
) of v2, the sum of the shares is obtained by each party

Pi computing: (r1

i + r
2

i , r
1

i−1
+ r2

i−1
).

• Multiplication by a scalar σ · [v]: Given a share (r1

i , r
1

i−1
) of v and

a value σ ∈ F, each party Pi computes (σ · ri ,σ · ri−1).

• Addition of a scalar [v] + σ : Given a share (ri , ri−1) of v and a

value σ ∈ F, party P1 computes (r1 + σ , r3), party P2 computes

(r2, r1 + σ), and party P3 leaves its share as is.

Note that when writing [v1]+ [v2] the symbol ‘’+” is an operator

on shares and not addition of two numbers, whereas when we

writev1+v2 the symbol ‘’+” is addition in the �eld; likewise for the

product notation. The following claim states that these operators

are correct, and is straightforward to prove.

Claim 6.1. Let [v1], [v2] be shares and let σ ∈ F be a scalar. Then:
(1) [v1] + [v2] = [v1 +v2],
(2) σ · [v1] = [σ · v1], and
(3) [v1] + σ = [v1 + σ].

Correctness. In the three parties setting, it is not possible to have

shares that are value-inconsistent, since there is only one ever

subset of t+1 honest parties. However, the sharing might be invalid.

This is the exact opposite situation to Shamir shares which are

always valid but may be value-inconsistent when n > 3.

It will be useful to characterize the correctness of shares in this

case. Consider the case that P1 is corrupted. Then, P2 is supposed

to hold (r2, r1) and P3 is supposed to hold (r3, r2). Thus, the sharing

is valid (and thus correct) if and only if the �rst element held by P2

equals the second element held by P3. In general:

Claim 6.2. Let (r1, s1), (r2, s2) and (r3, s3) be the shares held by
parties P1, P2 and P3, respectively, and let Pi be the corrupted party.
Then, the shares are correct if and only if ri+1 = si+2.

6.2.2 Basic Building Blocks and Sub-Protocols.

F
rand

- Generating shares of random values. The parties can gen-

erate shares of random values non-interactively in the following

way. Let Fk (·) be a pseudorandom function. Then:

• Initialization: Each party Pi chooses a random key ki and sends

it to Pi+1. Each party initializes a counter id = 0.

• Share generation: Upon each request to generate a sharing, each

party Pi holding two keys ki and ki−1 sets id = id + 1 and

computes ri−1 = Fki−1
(id) and ri = Fki (id). Then, Pi outputs the

share (ri , ri−1).

Note that the random sharing output from the protocol is guar-

anteed to be correct, since the protocol requires no communication.

It is not di�cult to show that this protocol securely realizes F
rand

.

π
mult

– Semi-Honest Multiplication Protocol. We describe the

multiplication protocol in which each party sends only one �eld

element. Let (r1, r3), (r2, r1), (r3, r2) be a secret sharing ofv1, and let

(s1, s3), (s2, s1),(s3, s2) be a secret sharing of v2. We assume that the

parties P1, P2, P3 hold correlated randomness α1,α2,α3, respectively,

where α1 + α2 + α3 = 0. The parties compute shares of v1 · v2 as

follows:

(1) Step 1 – compute
(
3

3

)
-sharing: Each party Pi computes ti =

risi + risi−1 + ri−1si + αi and sends it to Pi+1. These messages

are computed and sent in parallel.

(2) Step 2 – compute
(
3

2

)
-sharing: Party Pi computed ti and re-

ceived ti−1 from Pi−1; party Pi outputs (ti , ti−1) as its share on

the output wire. (If Pi received ti−1 < F then it sets ti−1 to a

default element in F.)

Observe that t1+t2+t3 =
∑i=3

i=1
(risi +risi−1+ri−1si)+

∑i=3

i=1
αi =

v1 · v2, where the equality follows since

∑
3

i=1
αi = 0 and v1 · v2 =

(r1 + r2 + r3)(s1 + s2 + s3). Thus, when the parties are honest, the

obtained sharing is a correct sharing of v1 · v2. In addition, the

protocol achieves privacy in the presence of a malicious adversary

according to De�nition 2.5, as the adversary’s view consists of one

element that looks random, due to the fact that it is masked using

a random element αi . We now show that the above multiplication

protocol (for semi-honest adversaries) always yields correct shares,

even when run in the presence of a malicious adversary. Speci�cally,

the result is either a correct sharing of the product or of a di�erent

�eld element (depending on the adversary), but it is always correct.

Lemma 6.3. If [v1] and [v2] are correct and [v3] was generated by
executing the (semi-honest) multiplication protocol on [v1] and [v2]

in the presence of one malicious party, then [v3] is a correct sharing
of either v1 · v2 or of some element v ∈ F.

Proof. If the corrupted party follows the protocol speci�cation

then [v3] is a correct sharing ofv1 ·v2. Else, since the multiplication

protocol is symmetric, assume without loss of generality that P1 is

the corrupted party. Then, the only way that P1 can deviate from

the protocol speci�cation is by sending an incorrect element t̃1 to

the honest P2 instead of t1, and in this case P2 will de�ne its share

to be (t2, t̃1). Meanwhile, P3 de�nes its share to be (t3, t2), since it

receives t2 from the honest P2. By Claim 6.2 the shares are correct,

since the �rst element of P2’s share equals the second element of

P3’s share. Furthermore, the shares that P2 and P3 hold de�ne the

secret v = t̃1 + t2 + t3 ∈ F, as required. �

Using similar arguments as in Lemma 6.3, it can be shown that

the semi-honest multiplication protocol is also secure up to addi-

tive attack. However, we won’t be needing this property in this

instantiation as explained below.

Generating correlated randomness non-interactively. Generating

elements α1,α2,α3 ∈ F under the constraint that α1 + α2 + α3 = 0

can be done in an almost identical way as generating shares of

random values described above. In a set-up step, each party Pi
chooses a key ki and sends it to Pi+1. Then, in order to generate

correlated randomness, each party computesαi = Fki−1
(id)−Fki (id)

using the two keys it holds (and after incrementing id); observe

that α1 + α2 + α + 3 = 0, but each party knows nothing beyond its

own α . Using this method, the parties can generate all the correlated

randomness needed at the cost of one exchange of keys.

The open and reconstruct procedures. We use the fact that the

protocols described so far guarantee that correctness of shares

is maintained even in the presence of a malicious adversary, to

construct these procedures in an e�cient way.

The open([v]) procedure (the opening of a share to all parties)

works in the following way: Holding the share (ri , ri−1), each party

Pi sends the element ri−1 to party Pi+1. Then, upon receiving ri−2

(i.e., ri+1) from Pi−1, party Pi computes v = ri+1 + ri + ri−1. Note

that this does not guarantee that the parties will hold the same

correct value. However, if the sharing is correct, then we are guar-

anteed that one of the honest parties will hold the correct value,

and thus the parties can compare their views to detect cheating.

Let compareview(vi) be a procedure where each party Pi sends vi
to Pi+1. Then, Pi checks that vi = vi−1 and aborts if not. Adding

this comparison to the open procedure doubles the communica-

tion. However, in the protocol, we can reduce communication by

deferring all view comparisons to the end of the protocol, and then

compare a hash of all of the values to be compared throughout

the execution. This method of deferring comparisons to the end is

similar to the deferred MAC veri�cation of the TinyOT and SPDZ

protocols [16, 18, 32]; we use this method throughout. Thus, we

conclude that the procedure requires each party to send 1 �eld

element only per multiplication gate.

The reconstruct([v], i) procedure works by having party Pi−1

send ri−2 to Pi and party Pi+1 send ri+1 to Pi . Then, Pi checks that

ri−2 = ri+1. If not, it sends ⊥ and aborts. If yes, it computes v =
ri−2 + ri−1 + ri . This works since, if the corrupted party cheats and

sends the wrong value, then it will be detected by Pi . As before, this

procedure works only when [v] is correct. If this is not guaranteed,

then reconstruction can be carried out by both parties sending Pi
their entire share (at double the communication cost).

The share(v) procedure. We de�ne this procedure in a similar

way to [19], relying on the fact that the protocol for generating

random shares provides correct sharings. First, the parties generate

a random sharing [r]. Then, they run reconstruct([r], i). Holding r ,

the dealer Pi sends b = v −r to the other parties. Finally, the parties

run compareview(b) to ensure that the dealer sent them the same

value (recall that in the protocol we defer the view comparisons

to the end and then only send a single hash value, so this does not

require communication).If no ⊥ message was received, the parties

de�ne their share of v to be [r] + b (as de�ned above).

Since we are guaranteed that [r] is correct, then [v] = [r] + b is

also correct, assuming that the honest parties hold the same b as

ensured by running compareview(b).

6.2.3 Optimizing the Protocol - Reducing the Communication.
With the building blocks that we presented in the previous section,

the protocol is now completely de�ned. However, we can improve

the performance even further, using an optimization that is unique

to the secret sharing scheme used in this instantiation.

Before proceeding, observe that the cost of the opening proce-

dure and the semi-honest multiplication protocol are identical (one

element sent per party). Thus, it is clear that in the three-party case,

Protocol 3.4 (triple veri�cation based on opening shares) is cheaper

than Protocol 3.8 (triple veri�cation based on multiplication), as

the former requires 3 openings whereas the latter requires 4 multi-

plications per gate. We now present an optimization that reduces

the number of openings in Protocol 3.4 from 3 to 2, reducing the

communication per multiplication gate by 1 �eld element. Recall

that in Protocol 3.4 the parties compute a sharing [v], and then

open it and verify that it is a sharing 0. In addition, recall that in

the sharing scheme, each party Pi holds a pair (ri , ri−1). Thus, if

v = 0, then ri−1 + ri + ri+1 = 0 and so ri−1 + ri = −ri+1. Now, since

we are guaranteed that the parties hold a correct sharing of v (the

triples that are input to the multiplication protocol are correct and

all operations during the protocol maintain this property), the only

question that remains is whether [v] is a sharing of 0 or of some

other value in the �eld. This can be veri�ed by having each pair of

parties Pi and Pi+1 compare the values of ri−1 + ri and −ri+1. Thus,

it is possible to include these values in the view comparison hash

that is veri�ed at the end of the entire protocol, instead of running

open([v]) at each multiplication gate. This single comparison can

be done e�ciently by comparing the hash values of the strings that

hold the shares from all Protocol 3.4 executions. Speci�cally, each

party Pi needs to hold two strings; in the �rst string, it stores the

ri−1 + ri from the [v] shares it viewed, whereas in the second, it

stores −ri from these shares. The hash of the �rst string is com-

pared with the hash value of party Pi+1, and the hash of the second

string is compared with the hash value of Pi−1. For completeness

we present the resulted veri�cation protocol in Appendix C.

6.2.4 Pu�ing It All Together.

The protocol. For the three-party setting based on replicated se-

cret sharing, we obtain a single protocol (unlike the Shamir case).

First, observe that using our sharing procedure presented above,

there is no need to run the input correctness-checking step. In addi-

tion, the parties run the optimized veri�cation protocol explained

in the previous section. Finally, we add an additional step before

the output reconstruction, where the parties compare their views

by sending each other a hash of their views. This step comes with

constant small communication cost, and thus does not change the

cost per gate. The full protocol is presented in Appendix C.

E�ciency. As generation of random shares is essentially free,

the cost of the protocol per multiplication gate involves two semi-

honest multiplications and two openings for veri�cation. Thus,

1 + 3δ elements are sent by each party per gate, as both opening

and multiplication involves sending one element per party.

In large �elds, where |F| > 2
σ

and δ = 1, we obtain that each

party needs to send only 4 �eld elements per multiplication gate.

This therefore proves Theorem 1.3 from the Introduction.

7 EXPERIMENTAL RESULTS
We implemented our protocol in C++ and ran our protocols on

Azure in a single region with a ping time of approximately 1ms.

Each machine is a 2.4GHz Intel Xeon E5-2673 v3, with 4 cores and

8GB RAM. Each party was implemented with a single thread and

so each party utilizes only on a single core.

We implemented our protocol versions and ran extensive ex-

periments to analyze the e�ciency of the di�erent protocols for

di�erent numbers of parties. All of our protocols scale linearly in

the size and depth of the circuit, and we therefore ran all of our

experiments on a depth-20 arithmetic circuit with 1,000,000 mul-

tiplication gates. We ran the circuit over two di�erent �elds, one

de�ned by a 31-bit Mersenne prime and the other de�ned by a 61-

bit Mersenne prime. Using these two di�erent �elds is of interest

since our veri�cation protocol must be run twice (δ = 2) when

|F| < 2
σ

. That is, for security 2
−40

, we need to take δ = 2 for the

31-bit prime, and δ = 1 for the 61-bit prime. Thus, this provides

a tradeo� between more phases in the protocol vs working with

and sending larger �eld elements. The protocol versions that we

implemented are all for the framework for large �elds as described

in Section 4, and we did not implement the small �eld framework

of Section 5.

We have described 6 possible instantiation of our Shamir-based

protocol: (1) random share generation via PRSS [13] or using the

Vandermonde method [17]; (2) multiplication via GRR [25] or via

DN [17]; (3) veri�cation via opening (Section 3.3) or via multiplica-

tion (Section 3.4). Since the veri�cation via multiplication requires

that the semi-honest multiplication protocol be secure up to ad-

ditive attacks for malicious adversaries, this is only relevant for

the [17] protocol. Thus, there are 6 possible options. We denote the

random generation options by PRSS and van, the multiplication

options by GRR and DN, and the veri�cation options by open and

mult. Using this notation, we denote by van_DN_mult the protocol

that uses Vandermonde randomness generation, DN multiplication

and veri�cation via multiplication. We ran only 4 versions of the

protocol. Speci�cally, we did not run the versions combining PRSS

randomness generation and DN multiplication. This is because

PRSS randomness generation works only for a small number of

parties (it is exponential in the number of parties and therefore

Protocol version 3 5 7 9 11 30 50 70 90 110
replicated (3 party) 513 - - - - - - - - -

PRSS_GRR_open 1229 1890 3056 6719 18024 - - - - -

van_GRR_open 1428 2104 3214 4009 5187 20855 45902 79655 124353 177621

van_DN_open 1999 2661 3463 4426 5694 15954 28978 44599 63522 83815

van_DN_mult 3218 4521 5924 7279 8570 21437 34832 47379 58966 72096

Table 1: Execution time in milliseconds of the circuit with a 61-bit prime, for di�erent numbers of parties. The best time for
each number of parties is highlighted.

was run only for up to 11 parties) whereas DN multiplication is

only better for a large number of parties. Thus, this combination is

not optimal. In addition, we implemented our three-party protocol

using replication sharing, from Section 6.2. We denote this protocol

by replicated.

See Table 1 for the results of these protocol executions. Our

results clearly validate our theoretical analysis that our 3-party

protocol based on replicated sharing is the best for 3 parties, that

PRSS randomness generation is best for only a very small number

of parties (n ≤ 7), that DN multiplication becomes better than GRR

multiplication only for a large number of parties (n > 11), and that

veri�cation with multiplication is preferred for a very large number

of parties (n > 70) since it is asymptotically linear.

Figure 1 below shows the comparison of the 4 di�erent Shamir-

based protocols for 3 to 90 parties. The graph clearly demonstrates

the linear complexity of the van_DN_mult protocol, and thus it is

less e�cient for a small number of parties but far more e�cient

as the number of parties grows. In contrast, the PRSS protocol

increases exponentially, and the others quadratically (at di�erent

rates). In order to more closely see the behavior of the protocols

for a small number of parties; see Figure 2 below.

Field size. As mentioned above, we ran experiments both for the

31-bit and 61-bit �elds. As can be seen in Figure 3, the running time

is very similar when using a 61-bit �eld (and taking δ = 1) versus

using a 31-bit �eld (and taking δ = 2). This makes sense because by

Equations (7) and (8), the communication is almost linear in δ . Thus,

the number of �eld elements sent when δ = 2 is approximately

twice the number of �eld elements sent when δ = 1. Since the size

of a single 61-bit �eld element is approximately twice the size of

a 31-bit �eld element, we have that the communication is similar.

Having said the above, we do observe that the protocol using a

61-bit �eld is slightly better for a small number of parties (n ≤ 9),

whereas the protocol using a 31-bit �eld is slightly better for a larger

number of parties (n ≥ 11). This can be explained by the fact that

communication costs are more signi�cant for a larger number of

parties, and two times Eq. (7) with δ = 1 is slightly higher than one

times Eq. (7) with δ = 2. Concretely, in van_DN_open the number

of �eld elements is t(π
mult
) = 6, t(F

rand
) = 2 and t(open) = n − 1;

thus, for n = 11, we have that 46 group elements are sent with

δ = 1 and 86 group elements are sent with δ = 2. Given that each

group element is twice the size for δ = 1, we have that this is 7%

more communication.

Figure 1: A comparison of the 4 di�erent Shamir-based protocols
with a 61-bit prime

Figure 2: A comparison of the 4 di�erent Shamir-based protocols
with a 61-bit prime, for a small number of partiets

Figure 3: A comparison of the best running-times with 31-bit and
61-bit primes, for Shamir-based instantiations

Arithmetic or Boolean protocols. It is instructive to compare our 3-

party protocol (that computes at a rate of 1,000,000 multiplications

per second) to the best 3-party protocol with malicious security

for Boolean circuits [1], that computes approximately 73,000,000

AND gates per second on a single core [2]. A back of the envelope

calculation shows that multiplication in our protocol cost about

the same as addition in a Boolean circuit (whereas addition is free

here, but multiplication is very expensive in Boolean circuits). Thus,

for arithmetic-based computation, our protocol is far superior (of

course, in computations that require many comparisons and other

types of operations, the reverse is true).

ACKNOWLEDGEMENTS
We thank the anonymous reviewers and Mike Rosulek for helpful

comments and discussion. We also thank Meital Levy and Hila Da-

hari for the protocol implementation, and Lior Koskas for running

the experiments.

REFERENCES
[1] T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell, A. Nof, K. Ohara, A. Watz-

man and O. Weinstein. Optimized Honest-Majority MPC for Malicious Ad-

versaries - Breaking the 1 Billion-Gate Per Second Barrier. In the 38th IEEE
Symposium on Security and Privacy, pages 843–862, 2017.

[2] T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell, A. Nof, K. Ohara, A. Watz-

man and O. Weinstein. Personal communication, May 2017.

[3] T. Araki, J. Furukawa, Y. Lindell, A. Nof and K. Ohara. High-Throughput Semi-

Honest Secure Three-Party Computation with an Honest Majority. In the 23rd
ACM CCS, pages 805–817, 2016.

[4] D. Beaver. E�cient Multiparty Protocols Using Circuit Randomization. In

CRYPTO 1991, Springer (LNCS 576), pages 420–432, 1992.

[5] E. Ben-Sasson, S. Fehr and R. Ostrovsky. Near-Linear Unconditionally-Secure

Multiparty Computation with a Dishonest Minority. In CRYPTO 2012, Springer

(LNCS 7417), pages 663-680, 2012.

[6] Z. Beerliová-Trubíniová and M. Hirt. Perfectly-secure MPC with linear com-

munication complexity. In TCC 2008, Springer (LNCS 4948), pages 213–230,

2008.

[7] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for

Non-Cryptographic Fault-Tolerant Distributed Computation. In 20th STOC,
pages 1–10, 1988.

[8] S.S. Burra, E. Larraia, J.B. Nielsen, P.S. Nordholt, C. Orlandi, E. Orsini, P. Scholl,

and N.P. Smart. High Performance Multi-Party Computation for Binary Cir-

cuits Based on Oblivious Transfer. ePrint Cryptology Archive, 2015/472.

[9] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.

Journal of Cryptology, 13(1):143–202, 2000.

[10] R. Canetti. Universally Composable Security: A New Paradigm for Crypto-

graphic Protocols. In 42nd FOCS, pages 136–145, 2001.

[11] D. Chaum, C. Crépeau and I. Damgård. Multi-party Unconditionally Secure

Protocols. In 20th STOC, pages 11–19, 1988.

[12] K. Chida, K. Hamada, D. Ikarashi and R. Kikuchi. Actively Private and Correct

MPC Scheme in t<n/2 from Passively Secure Schemes with Small Overhead.

IACR Cryptology ePrint Archive, report 2014/304, 2014.

[13] R. Cramer, I. Damgård and Y. Ishai, Share Conversion, Pseudorandom Secret-

Sharing and Applications to Secure Computation. In the 2nd TCC, Springer

(LNCS 3378) pages 342–362, 2005.

[14] I. Damgård, M. Geisler, M. Krøigaard and J.B.Nielsen. Asynchronous Multiparty

Computation: Theory and Implementation. In Public Key Cryptography 2009,

Springer (LNCS 5443), pages 160–179, 2009.

[15] I. Damgård and Y. Ishai. Scalable Secure Multiparty Computation. In CRYPTO
2006, Springer (LNCS 4117), pages 501–520, 2006.

[16] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N.P. Smart. Practical

covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In

18th ESORICS, pages 1–18, 2013.

[17] I. Damgård and J. Nielsen. Scalable and unconditionally secure multiparty

computation. In CRYPTO 2007, Springer (LNCS 4622), pages 572–590, 2007.

[18] I. Damgård, V. Pastro, N.P. Smart and S. Zakarias. Multiparty Computation

from Somewhat Homomorphic Encryption. In CRYPTO 2012, pages 643–662,

2012.

[19] J. Furukawa, Y. Lindell, A. Nof and O. Weinstein. High-Throughput Secure

Three-Party Computation for Malicious Adversaries and an Honest Majority

In EUROCRYPT 2017, Springer (LNCS 10211), pages 225–255, 2017.

[20] R.A. Fisher and F. Yates. Statistical Tables for Biological, Agricultural andMedical
Research (3rd ed.), pages 26–27, 1938.

[21] D. Genkin, Y. Ishai, M. Prabhakaran, A. Sahai and E. Tromer. Circuits Resilient

to Additive Attacks with Applications to Secure Computation. In STOC 2014,

pages 495-504, 2014.

[22] D. Genkin, Y. Ishai and A. Polychroniadou. E�cient Multi-party Computation:

From Passive to Active Security via Secure SIMD Circuits. In CRYPTO 2015,

Springer (LNCS 9216), pages 721–741, 2015.

[23] M. Hirt and J.B. Nielsen. Robust Multiparty Computation with Linear Commu-

nication Complexity. In CRYPTO 2006, Springer (LNCS 4117), pages 463–482,

2006.

[24] O. Goldreich, S. Micali, and A. Wigderson. How to Play Any Mental Game. In

19th STOC, pages 218–229, 1987.

[25] R. Gennaro, M. Rabin and T. Rabin. Simpli�ed VSS and Fact-Track Multiparty

Computations with Applications to Threshold Cryptography. In 17th PODC,

pages 101–111, 1998.

[26] O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications.
Cambridge University Press, 2004.

[27] S. Goldwasser and Y. Lindell. Secure Computation Without Agreement. In the

Journal of Cryptology, 18(3):247–287, 2005.

[28] M. Keller, E. Orsini and P. Scholl. MASCOT: Faster Malicious Arithmetic Secure

Computation with Oblivious Transfer. In the 23rd ACM CCS, pages 830–842,

2016.

[29] E. Kushilevitz, Y. Lindell and T. Rabin. Information-Theoretically Secure Pro-

tocols and Security Under Composition. In the SIAM Journal on Computing,

39(5):2090–2112, 2010.

[30] Y. Lindell and B. Pinkas. Secure Two-Party Computation via Cut-and-Choose

Oblivious Transfer. In the 8th TCC, Springer (LNCS 6597), 329–346, 2011.

[31] P. Mohassel, M. Rosulek and Y. Zhang. Fast and Secure Three-party Compu-

tation: The Garbled Circuit Approach. In ACM Conference on Computer and
Communications Security, pages 591–602, 2015.

[32] J.B. Nielsen, P.S. Nordholt, C. Orlandi and S.S. Burra. A New Approach to

Practical Active-Secure Two-Party Computation. In CRYPTO 2012, Springer

(LNCS 7417), pages 681–700, 2012.

[33] P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity

Classes. In EUROCRYPT 1999, Springer (LNCS 1592), pages 223–238, 1999.

[34] T. Rabin and M. Ben-Or. Veri�able Secret Sharing and Multi-party Protocols

with Honest Majority. In 21st STOC, pages 73–85, 1989.

[35] A. Shamir. How to share a secret. Communications of the ACM, 22(11), pages

612–613, 1979.

[36] A. Yao. How to Generate and Exchange Secrets. In the 27th FOCS, pages

162–167, 1986.

A DEFINITION OF SECURITY
The security parameter is denoted κ; negligible functions and com-

putational indistinguishability are de�ned in the standard way, with

respect to non-uniform polynomial-time distinguishers.

Ideal versus real model de�nition. We use the ideal/real simulation

paradigm in order to de�ne security, where an execution in the

real world is compared to an execution in an ideal world where

an incorruptible trusted party computes the functionality for the

parties [9, 26]. We de�ne security with abort (and without fairness),

meaning that the corrupted party may receive output while the

honest parties do not. Our de�nition does not guarantee unanimous
abort, meaning that some honest party may receive output while the

other does not. It is easy to modify our protocols so that the honest

parties unanimously abort by running a single (weak) Byzantine

agreement at the end of the execution [27]; we therefore omit this

step for simplicity.

Note that with an honest majority, it is possible to achieve fair-

ness (assuming a broadcast channel). Nevertheless, our protocol

does not guarantee this, and we do not know how to modify it to

guarantee fairness without signi�cantly sacri�cing e�ciency,

The real model. In the real model, an-party protocol π is executed

by the parties. For simplicity, we consider a synchronous network

that proceeds in rounds and a rushing adversary, meaning that the

adversary receives its incoming messages in a round before it sends

its outgoing message.
3

The adversary A can be malicious; it sends

all messages in place of the corrupted party, and can follow any

arbitrary strategy. The honest parties follow the instructions of the

protocol.

LetA be a non-uniform probabilistic polynomial-time adversary

controlling t < n
2

parties. Let realπ ,A(z), I (x1, . . . ,xn ,κ) denote

the output of the honest parties and A in an real execution of

π , with inputs x1, . . . ,xn , auxiliary-input z for A, and security

parameter κ.

The ideal model. We de�ne the ideal model, for any (possibly

reactive) functionality F , receiving inputs from P1, . . . , Pn and

providing them outputs. Let I ⊂ {1, . . . ,n} be the set of indices

of the corrupted parties controlled by the adversary. The ideal

execution proceeds as follows:

• Send inputs to the trusted party: Each honest party Pj
sends its speci�ed input x j to the trusted party. A corrupted

party Pi controlled by the adversary may either send its

speci�ed input xi , some other x ′i or an abort message.

• Early abort option: If the trusted party received abort
from the adversary A, it sends ⊥ to all parties and termi-

nates. Otherwise, it proceeds to the next step.

• Trusted party sends output to the adversary:The trusted

party computes each party’s output as speci�ed by the func-

tionality F based on the inputs received; denote the output

of Pj by yj . The trusted party then sends {yi }i ∈I to the

corrupted parties.

• Adversary instructs trusted party to continue or halt:
For each j ∈ {1, . . . ,n} with j < I , the adversary sends the

trusted party either abortj or continuej . For each j < I :
– If the trusted party received abortj then it sends Pj

the abort value ⊥ for output.

– If the trusted party received continuej then it sends

Pj its output value yj .
• Outputs: The honest parties always output the output

value they obtained from the trusted party, and the cor-

rupted parties outputs nothing.

Let S be a non-uniform probabilistic polynomial-time adversary

controlling parties Pi for i ∈ I . Let idealF,S(z), I (x1, . . . ,xn ,κ)
denote the output of the honest parties and S in an ideal execution

with the functionality F , inputs x1, . . . ,xn to the parties, auxiliary-

input z to S, and security parameter κ.

Security. Informally speaking, the de�nition says that protocol π
securely computes f if adversaries in the ideal world can simulate

executions of the real world protocol. In some of our protocols there

is a statistical error that is not dependent on the computational

security parameter. As in [30], we formalize security in this model

by saying that the distinguisher can distinguish with probability at

most this error plus some factor that is negligible in the security

parameter. This is formally di�erent from the standard de�nition of

3
This modeling is only for simplicity, since in our protocol, all parties receive and

send messages in each round. Thus, by instructing each party to only send their round

i + 1 messages after receiving all round-i messages, we have that an execution of

the protocol in an asynchronous network is the same as for a rushing adversary in a

synchronous network. Note that we do not guarantee output delivery, so “hanging” of

the protocol is also allowed.

security since the statistical error does not decrease as the security

parameter increases.

De�nition A.1. Let F be a n-party functionality, and let π be a

n-party protocol. We say that π securely computes f with abort in
the presence of an adversary controlling t < n

2
parties, if for every

non-uniform probabilistic polynomial-time adversaryA in the real

world, there exists a non-uniform probabilistic polynomial-time

simulator/adversary S in the ideal model with F , such that for

every i ∈ {1, . . . ,n},{
idealF ,S(z), I (x1, . . . ,xn ,κ)

} c

≡
{
realπ ,A(z), I (x1, . . . ,xn ,κ)

}
where x1, . . . ,xn ∈ F

∗
under the constraint that |x1 | = · · · = |xn |,

z ∈ F∗ and κ ∈ N. We say that π securely computes f with abort

in the presence of one malicious party with statistical error 2
−σ

if

there exists a negligible function µ(·) such that the distinguishing

probability of the adversary is less than 2
−σ + µ(κ).

The hybrid model. We prove the security of our protocols in a

hybrid model, where parties run a protocol with real messages and

also have access to a trusted party computing a subfunctionality for

them. The modular sequential composition theorem of [9] states

that one can replace the trusted party computing the subfunction-

ality with a real secure protocol computing the subfunctionality.

When the subfunctionality is д, we say that the protocol works in

the д-hybrid model.

Universal Composability [10]. Protocols that are proven secure

in the universal composability framework have the property that

they maintain their security when run in parallel and concurrently

with other secure and insecure protocols. In [29, Theorem 1.5], it

was shown that any protocol that is proven secure with a black-box

non-rewinding simulator and also has the property that the inputs

of all parties are �xed before the execution begins (called input
availability or start synchronization in [29]), is also secure under

universal composability. Since the input availability property holds

for all of our protocols and subprotocols, it is su�cient to prove

security in the classic stand-alone setting and automatically derive

universal composability from [29]. We remark that this also enables

us to call the protocol and subprotocols that we use in parallel and

concurrently (and not just sequentially), enabling us to achieve

more e�cient computation (e.g., by running many executions in

parallel or running each layer of a circuit in parallel).

B PROTOCOLS FOR COMPUTATION BASED
ON SHAMIR’S SECRET SHARING SCHEME

B.1 Protocols For Generating Random Sharings
The PRSS protocol [13]. In this protocol, there is a setup step

where the parties generate a random key kA for each subset A ⊂
{P1, . . . , Pn } ofn−t parties (known only to the parties in the subset).

In addition, for each such subset there is a polynomial fA of degree

t + 1 de�ned by the points: (1) fA(0) = 1; (2) fA(i) = 0 for all i such

that Pi ∈ {P1, . . . , Pn } \A. Then, each party uses the keys it holds

to generate random shares without any interaction. The protocol

is described in Protocol B.1.

Batch generation of random shares using hyper-invertible matrices.
The previous protocol is communication free, but its computational

PROTOCOL B.1 (The PRSS Protocol for Generating Random

Shares).

Let Fk () be a pseudo-random function with security parameter κ .

• Set-up step: For eachA ⊂ {P1, . . . , Pn }, such that |A | = n−t ,

the party with the smallest lexicographic index chooses a random

key kA and sends it to all the other parties in A.

• Upon request: For each A ⊂ {P1, . . . , Pn }, such that |A | =
n−t , let fA be a t+1-degree polynomial de�ned by the points: (1)

fA(0) = 1; (2) fA(i) = 0 for all i such that Pi ∈ {P1, . . . , Pn }\A.

Then, each party Pi computes

si =
∑

A⊂{P1, . . .,Pn }:|A |=n−t,Pi ∈A

FkA (id) · fA(i)

where id is public counter that is incremented for each new

request, and de�ne si as its share.

cost grows exponentially with the number of parties, as the number

of random keys is

(n
t
)
. The next protocol has linear communication

and computational cost. The idea behind the protocol is to use

the Vandermonde matrix to extract randomness from n random

sharings into n− t random sharings. Let γ1, . . . ,γn ∈ F be n distinct

non-zero elements. The Vandermonde matrix ®V` ∈ F
(n, `)

is a matrix

of n rows and ` columns de�ned by

®V`
def

=

©«
1 γ1 · · · γ `

1

1 γ2 · · · γ `
2

...
...
. . .

...

1 γn · · · γ `n

ª®®®®®¬
We use the notation ®V −1

`
to denote the inverse of the Vander-

monde matrix. Likewise, the transpose of the matrix is denoted by

®VT
`

. The Vandermonde matrix has the property that if we take a

subset of ` rows to form a square matrix of ` rows and ` columns,

then the obtained matrix is guaranteed to be invertible. A matrix

with this property is called “hyper-invertible“. A consequence of

this property is that the Vandermonde matrix can be used to ex-

tract randomness in the following way. First, each party chooses a

random element and shares it to the other parties. Then, holding

a vector of n shares, the parties generate “new” random shares by

multiplying this vector with the Vandermonde matrix. It can be

shown that the hyper-invertible property of the matrix implies that

the obtained shares are sharings of a random elements in F [6]. The

protocol is described in Protocol B.2.

PROTOCOL B.2 (Batch Generation of random shares using

Vandermonde matrix).

Let ®Vn−t be the Vandermonde matrix de�ned above.

(1) Each party Pi chooses a random element ui ∈ F and shares it

to the other parties.

(2) Holding n shares ([u1], . . . , [un]), each party Pi computes

([r1], . . . , [rn−t]) = ®VT
n−t · ([u1], . . . , [un]), and de�nes

([r1], . . . , [rn−t]) as its output of the protocol.

Note that each party sends n−1 elements to generate n−t shares.

Thus, the amortized communication complexity per generated share

is roughly 2, since t < n
2

.

B.2 Protocols For Semi-Honest Multiplication
The GRR protocol. This protocol works by having each party

locally multiply its shares of the inputs, and share the result to all

the other parties. Then, upon holding n shares, each party locally

computes a linear combination of the shares, and de�ne the result

as its share on the output wire. The coe�cients used for the linear

combination are taken from the �rst row of ®V −1

n , which is the

inverse of the square n × n Vandermonde matrix de�ned above. To

understand why the protocol is correct see [25]. The protocol is

described in Protocol B.3.

PROTOCOL B.3 (The GRR Semi-Honest Multiplication Proto-

col).

Let ®Vn be the Vandermonde matrix de�ned above, and let

λ1, . . . , λn be the values in the �rst row of ®V −1

n .

• inputs: The parties hold sharings [x] and [y].
• The protocol:

(1) Let f ix , f
i
y be the shares held by party Pi . Then, each party

Pi computes vi = f ix · f
i
y and sends shares of vi .

(2) Let h ji be the share sent from Pi to Pj in the previous step.

Upon receiving shares from all the other parties, each party

Pi sets its share of x · y to be the result of the linear combi-

nation

∑n
j=1

λj · hij .

In the protocol, each party sends exactly n−1 elements, and thus

the overall communication complexity is quadratic in the number

of parties.

The DN protocol. This next protocol, which is an optimized ver-

sion of [17], requires each party to send few �eld elements regard-

less of the number of parties. The protocol has a set-up step where

the parties generate two random sharings [r]t and [r]2t of the same

value r , using t-degree and 2t-degree polynomials in respectively.

These shares are then used to multiply x and y which are shared

among the parties. A full description appears in Protocol B.4.

PROTOCOL B.4 (The DN Semi-Honest Multiplication Proto-

col).

Let ®Vn−t be the Vandermonde matrix de�ned above.

• Inputs: The parties hold sharings [x] and [y].
• Setup phase: The parties generate a list of n − t double random

shares {[rk]t , [rk]2t }
n−t
k=1

where [rk]t is a sharing of rk using

a t -degree polynomial and [rk]2t is a sharing of rk using a 2t -

degree polynomial. This generation works as follows:

Each party chooses a random element u and shares it twice,

using a t -degree polynomial and a 2t -degree polynomial.

Then, upon holding two vectors of random shares, the parties

multiply each of them with ®Vn−t as described in Protocol B.2.

• The protocol:
(1) The parties locally compute [x] · [y] − [r]2t and send the

result to party P1 ([x] · [y] is locally computed by each party

multiplying its own shares together).

(2) Party P1 use the �rst 2t shares it received from the parties

and its own share to reconstruct x · y − r , and then send it

to all the other parties (Note that this is not the same as in

the reconstruct procedure, as here there is no correctness

check of the shares!).

(3) The parties locally compute [r]t + (xy − r). Each party sets

its result to be its share of x · y .

C PROTOCOLS FOR THREE-PARTY
COMPUTATION BASED ON REPLICATED
SECRET SHARING

Protocol C.1 is the optimized veri�cation of a multiplication triple

using another, for the three-party setting. The di�erence between

this protocol and the general veri�cation based on opening protocol

presented in Section 3.3 is the replacement of the last opening with

a comparing of views which is su�cient in this case to ensure that

the sharing held by the parties is a sharing of 0.

PROTOCOL C.1 (Triple Verification - Three-Parties and Repli-

cated Secret Sharing).

• Inputs: The parties hold a triple ([x], [y], [z]) to verify and an

additional random triple ([a], [b], [c]).
• The protocol:

(1) The parties call Fcoin to receive a random element α ∈
F \ {0}.

(2) Each party locally computes [ρ] = α · [x] + [a] and [σ] =
[y] + [b].

(3) The parties run open([ρ]) and open([σ]) as de�ned in Sec-

tion 6.2, to receive ρ and σ . If any of the parties received

⊥ in one of the executions, then it sends ⊥ to the other

parties and aborts.

(4) Each party locally computes

[v] = α [z] − [c] + σ · [a] + ρ · [b] − ρ · σ .

Denote by (r j , sj) the share of v held by party Pj .
(5) The parties run the compareview(r j + sj) by having each

Pj sending r j + sj to Pj+1. Upon receiving r j−1 + sj−1 from

Pj−1, party Pj checks that r j = −(r j−1 + sj−1). If yes, it

outputs accept. Else, it sends ⊥ to all the other parties and

outputs ⊥.

(6) If no abort messages are received, then output accept.

The main protocol for the three-party setting is described in

Protocol C.2. Recall that in this protocol, there is no need for the

correctness check step after the input are shares, as the share pro-

cedure outputs correct shares.

Deferring compareview. In each execution of the open procedure

or the veri�cation protocol, the parties are required to compare their

views. Instead of comparing the views each time a sub-protocol is

executed, we can save communication by having the parties storing

their views and comparing them at the end of the entire execution.

Speci�cally, each party Pj will need to hold three strings, denoted by

Hj ,Hj, j+1 and Hj, j−1. The string Hj will be used to store the views

in the open procedure. The strings Hj, j+1 and Hj, j−1 will store the

t and s parts of [v] that were viewed in all the executions of the

veri�cation protocol in the way described at the end of Section 6.2.

At the end of the entire execution, each party Pj computes hj =
HASH (Hj), hj, j+1 = HASH (Hj, j+1) and hj, j−1 = HASH (Hj, j−1)

whereHASH () is collision-resistant hash function. Then, each party

Pj sends hj and hj, j+1 to Pj+1. Upon receiving hj−1 and hj−1, j from

Pj , party Pj checks that hj = hj−1 and that hj, j−1 = hj−1, j . If not,

party Pj sends ⊥ to the other parties and aborts.

PROTOCOL C.2 (Computing an Arithmetic Circuit- Three–

Parties).

• Inputs: Each party Pj where j ∈ [3] holds an input x j ∈ F` .

• Auxiliary Input: Same as in Protocol 4.2.

• The protocol – o�line phase: Same as in Protocol 4.2.

• The protocol – online phase:
(1) Sharing the inputs: For each input wire with an input v ,

the parties run share(v) as speci�ed in Section 6.2 with the

dealer being the party whose input is associated with that

wire.

(2) Circuit emulation: Same as in Protocol 4.2.

(3) Veri�cation stage: Before the secrets on the output wires are

reconstructed, the parties verify that all the multiplications

were carried out correctly, as follows.

Let {([xk], [yk], [zk])}
N
k=1

be the triples generated by com-

puting multiplication gates.

For i = 1 to δ :

Let
®di =

{
([aik], [b

i
k], [c

i
k])

}N
k=1

be the triples generated

in ith iteration of the o�ine step.

For k = 1, . . . , N : The parties run Protocol C.1 on

input ([xk], [yk], [zk]) and ([aik], [b
i
k], [c

i
k]) to verify

([xk], [yk], [zk]).
(Observe that all executions of Protocol C.1 can be run in

parallel).

If a party did not output accept in every execution, it sends

⊥ to the other parties and outputs ⊥.

(4) If any party received ⊥ in any of the previous steps, then it

outputs ⊥ and halts.

(5) Output reconstruction: For each output wire of the circuit,

the parties run reconstruct([v], j), where [v] is the sharing

of the value on the output wire, and Pj is the party whose

output is on the wire.

(6) If a party received ⊥ in any call to the reconstruct proce-

dure, then it sends ⊥ to the other parties, outputs ⊥ and

halts.

• Output: Same as in Protocol 4.2.

	Abstract
	1 Introduction
	1.1 Background
	1.2 Our Protocol Framework
	1.3 Experimental Results
	1.4 Related Work

	2 Preliminaries
	2.1 Threshold Secret Sharing
	2.2 Definitions

	3 Sub-Protocols and Building Blocks
	3.1 Generating Random Value and Shares
	3.2 Correctness Check of Shares
	3.3 Triple Verification Based on the Open Procedure
	3.4 Triple Verification Based on Multiplication Secure Up to Additive Attacks

	4 The Protocol Framework for Large Fields
	5 The Protocol Framework for Small Fields
	6 Instantiations
	6.1 Multi-Party Computation Based on Shamir's Secret Sharing Scheme
	6.2 Three-Party Computation Based on Replicated Secret Sharing

	7 Experimental Results
	References
	A Definition of Security
	B Protocols for Computation Based on Shamir's Secret Sharing Scheme
	B.1 Protocols For Generating Random Sharings
	B.2 Protocols For Semi-Honest Multiplication

	C Protocols for Three-Party Computation Based on Replicated Secret Sharing

