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Abstract

In a designated verifier signature (DVS) scheme a signer creates a signature

which is only verifiable by a designated verifier. A DVS is a useful scheme

for authenticating a signer without disturbing her privacy. In a universal DVS

(UDVS) scheme, everyone who holds Alice’s traditional signature on a message

(the signature holder), is able to transform it to a DVS for a specific verifier.

Non-delegatability is a critical property of a DVS scheme in applications where

the responsibility of a signer is important and cannot be delegated to another

entity. In this paper, we will propose a non-delegatable UDVS scheme and prove

its security requirements in the standard model (without random oracles). To

the best of our knowledge, our scheme is the first non-delegatable UDVS scheme

and also by considering the signer herself as the signature holder, our scheme is

also the first non-delegatable DVS scheme in the standard model.

Keywords: Designated Verifier Signature, Universal Designated Verifier

Signature, Non-Delegatability, Random Oracle Model, Standard Model

1. Introduction

Digital signature is an important primitive in security protocols in order to

provide authentication, integrity of the messages and non-repudiation [1]. In a
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traditional digital signature scheme, a signer, Alice, creates a signature which is

verifiable by every verifier such as Bob. Furthermore, Bob can convince every5

third party such as Carol that Alice has really signed a message by present-

ing Alice’s signature on that message. This public verifiability is not a desired

property in scenarios where the privacy of the signer must be preserved, such

as e-votings and e-commerce applications.

In order to overcome the conflicts between the authenticity and the privacy of10

the signer in digital signatures, many different solutions have been proposed. In

1989, the concept of undeniable signature was presented by Chaum and Antwer-

pen [2]. In undeniable signatures, the verifier requires some help of the signer to

verify the signature. In order to eliminate the interaction between the verifier

and the signer, the notion of designated verifier signature/proof (DVS/DVP)15

was proposed by Jakobsson et al. [3] and independently by Chaum [4] in 1996.

DVS schemes provide authentication and integrity of messages, without pro-

viding the non-repudiation property of traditional digital signatures. In a DVS

scheme, a signer, Alice, can convince a designated verifier, Bob, that Alice has

really signed a message while Bob cannot transfer this conviction to any third20

party such as Carol. As a result, the authenticity of Alice is proved to Bob and

also her privacy is preserved at the same time, without any interaction between

Alice and Bob.

The authors in [3] also proposed the concept of strong designated verifier sig-

nature (SDVS) scheme, in which the secret key of the verifier is required in the25

verification phase. The notion of universal designated verifier signature (UDVS)

scheme was first proposed in 2003 by Steinfeld et al. [5]. In a UDVS scheme, ev-

eryone who holds Alice’s traditional signature on a message, is able to transform

it to a DVS for a specific verifier such as Bob. If the signature holder is the signer

herself, the UDVS can be considered as a DVS. Many researches have been done30

on DVS, SDVS and UDVS schemes with different properties in different setting

models, up to now [6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16],[17],[18],[19],[20],[21],

[22],[23],[24],[25],[26],[27],[28],[29],[30].

In 2005, Lipmaa et al. Introduced a new security notion for DVS schemes, called
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non-delegatability [6]. Most of the proposed DVS, SDVS and UDVS schemes35

are delegatable, i.e. either the signer (Alice) or a designated verifier (Bob) is

able to delegate the signing rights (for a specific designated verifier or for any

designated verifiers) to a third party (Carol) without revealing her/his secret

key [3],[5],[7],[17]. As mentioned in [18], delegatability is not a desired property

in many scenarios. The followings are two examples which show the weaknesses40

of delegatable DVS schemes:

• Consider an e-voting protocol in which the voters use a DVS scheme to

sign their votes for a tallier (as a designated verifier). If this DVS scheme

is delegatable, a voter can delegate his signing rights to a coercer who can

then sign a vote instead of the voter. As a result, this voting protocol is45

coercible.

• Consider an e-commerce application which uses a DVS scheme to au-

thenticate a subscriber (the signer) to a service-provider (the designated

verifier). If the subscriber is authenticated to the service-provider, she

can enjoy an e-service. If the DVS scheme is delegatable, a subscriber can50

delegate his signing rights to a non-subscriber without revealing her secret

key. As a result, a non-subsriber can obtain the e-service freely.

Although the non-delegatability has been a focus of many recent researches, it

may be undesirable in some applications. However, as mentioned in [19], the

non-delegatable DVS schemes can be considered as a special category which55

are useful in applications where the responsibility of a signer is important and

cannot be delegated to another entity (such as two above mentioned scenarios).

In 2014, Shim presented a discusion on delegatability of existing DVS schemes

[18]. In his paper, he showed that almost all proposed DVS schemes are dele-

gatable [3],[5],[7],[17] and there are a few number of DVS schemes that seem to60

be non-delegatable [20],[21]. Although there is not any reported attacks against

non-delegatability on schemes in [20],[21], however their signature lengths are

heavy, their signing and verification phases are inefficient and their security are

proved in the random oracle model. We have found some other DVS schemes
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which are claimed to be non-delegatable in the literature [19],[22],[29]. All of65

these schemes are analyzed in the random oracle model, except the proposed

scheme in [19] which is analyzed in the standard model. However, the same

authors in [31] showed that the scheme they proposed in [19] is delegatable. In

[18], Shim also pointed out that there have never been proposed non-delegatable

UDVS schemes and he introduced that as an open problem. However, we found70

a UDVS scheme which is proposed by Haung et al. in 2006 in the random or-

acle model and is claimed to be non-delegatable [23]. Unfortunately, Haung et

al.’s UDVS scheme has a considerable weakness which is everyone (not only the

designated verifier) who receives the signature from the channel, can verify the

signature and convince that the signer (Alice) has really signed a message for a75

designated verifier (Bob). Therefore, the privacy of the signer is not preserved

in Haung et al.’s scheme and it is in contrast to the basic goal of a DVS scheme.

In summary, we can say that there are still many open problems in this field

such as:

• proposing non-delegatable UDVS schemes,80

• proposing more efficient (both in the computation and the communication

costs) non-delegatable (S)DVS schemes in comparison with the existing

schemes,

• and proposing non-delegatable-DVS schemes in the standard model (since

all existing schemes are proposed in the random oracle model and as Rog-85

away discussed in [32], the schemes which their security requirements are

proved in the random oracle model, are not secure when the random ora-

cles are replaced with the real world primitives (such as hash functions).

Therefore, it is desirable to provide schemes without random oracles (in

the standard model)).90

In this paper, we propose a non-delegatable UDVS scheme and prove its secu-

rity requirements in the standard model. Furthermore, since a UDVS scheme

can be considered as a DVS scheme when the signature holder is the signer
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herself, we will compare our scheme with a number of recently proposed non-

delegatable DVS schemes [19],[20],[21],[22],[23],[24],[25],[26],[27],[28],[29]. To the95

best of our knowledge, our scheme is the only non-delegatable (U)DVS scheme

that is analayzed in the standard model.

The rest of the paper is organized as follows. In Section 2, the formal model

and the security requirements for a UDVS scheme is described. In Section 3,

we propose our non-delegatable UDVS scheme. In Section 4, we analyze the100

security of our proposed scheme and prove its security requirements in the stan-

dard model (without random oracles). In Section 5, a comparison between our

proposed scheme and some existing schemes is provided. Finally the paper is

concluded in Section 6.

2. Universal Designated Verifier Signature Schemes105

In this section, the formal model and the security requirements for a UDVS

scheme are described.

2.1. Formal Model

A universal designated verifier signature (UDVS) scheme is included of three

parties: a signer S, a signature holder SH and a designated verifier V and is110

defined by seven main algorithms as follows [5],[7],[23]:

• Setup: It is a probabilistic polynomial time (PPT) algorithm which takes

as input a security parameter k and outputs system parameters params.

params←− Setup(k)

• Signer Key Generation (SKG): It is a PPT algorithm which takes as input

params and outputs a private/public key pair (SkS , PkS) for the signer.

(SkS , PkS)←− SKG(params)

• Verifier Key Generation (VKG): It is a PPT algorithm which takes as

inputs params and outputs a private/public key pair (SkV , PkV ) for the
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designated verifier.

(SkV , PkV )←− V KG(params)

• Public Signing (PS): It is a traditional digital signing which takes as input

system parameters params, the signer’s private key SkS , and a message

m and outputs an ordinary signature (OS) σ on message m. Note that σ

is publicly verifiable.

σ ←− PS(params, SkS ,m)

• Public Verification (PV): It is a traditional digital signature verification

which takes as input system parameters params, the signer’s public key

PkS , and the message/OS pair (m,σ) and outputs 1 if the OS is valid and

0 otherwise.

0/1←− PV (params, PkS , (m,σ))

• Designation (DS): It is a polynomial time algorithm which is performed by

the signature holder SH. This algorithm takes as input system parameters

params, the signer’s public key PkS , the designated verifier’s public key

PkV , and the message/OS pair (m,σ) and outputs the designated verifier

signature (DVS) δ.

δ ←− DS(params, PkS , PkV , (m,σ))

• Designated Verification (DV): It is a deterministic polynomial time al-

gorithm which is performed by the designated verifier V . This algorithm

takes as input system parameters params, the signer’s public key PkS , the

designated verifier’s private key SkV , and the message/DVS pair (m, δ)

and outputs 1 if the DVS is valid and 0 otherwise.

0/1←− DV (params, PkS , SkV , (m, δ))

Remark 1. Correctness must be satisfied in a UDVS scheme for both the OS

and the DVS. Correctness of the OS guarantees that if σ is created by the PS
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algorithm, it must be accepted in the PV algorithm, i.e.

Pr[1←− PV (params, PkS , (m,PS(params, SkS ,m)))] = 1.115

Also, correctness of the DVS guarantees that if δ is created by the DS algorithm,

it must be accepted in the DV algorithm, i.e.

Pr[1←− DV (params, PkS , SkV , (m,DS(params, PkS , PkV , (m,σ))))] = 1.

Remark 2. Note that a UDVS scheme can be considered as a DVS scheme

when the signature holder is the signer herself.120

2.2. Security Requirements

Unforgeability (UF) and non-transferability (NT) are two security require-

ments of a UDVS scheme [5],[7],[23]. As mentioned in Section 1, non-delegatability

(ND) was introduced as a new security notion for DVS schemes in 2005 [6]. In

this subsection, these security requirements are described.125

2.2.1. Unforgeability (UF)

In a UDVS scheme, two types of unforgeability can be considered. The first

type is unforgeability of the ordinary signature (OS-Unforgeability) which is the

usual existential unforgeability against chosen message attack (EUF-CMA) of

the ordinary signature and guarantees that no one can forge a traditional sig-130

nature σ of the signer S [1]. The second type is unforgeability of the designated

verifier signature (DVS-Unforgeability) which is the existential unforgeability

against chosen message attack (EUF-CMA) of the designated verifier signa-

ture and guarantees that an adversary, without having an ordinary signature

σ on a message m, is not able to forge a designated verifier signature δ and135

convince a designated verifier of holding σ [23]. As mentioned in [23], the DVS-

Unforgeability always implies the OS-Unforgeability. Therefore, considering the

DVS-Unforgeability is enough. The DVS-Unforgeability is defined by the fol-

lowing game between an adversary A and a challenger C [5],[7],[23]:

• C provides A system parameters params, a public key for the signer PkS140

and a public key for the designated verifier PkV .

• A can issue queries to the following oracles, adaptively:
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– OPS : which takes as input a message m and outputs a valid OS σ

on m with respect to PkS .

– ODS : which takes as input a message m and outputs a valid DVS δ145

on m with respect to PkS and PkV .

– ODV : which takes as input a message/DVS pair (m, δ) and outputs

1 if the DVS is valid and 0 otherwise.

• A outputs a DVS δ∗ on message m∗.

It is said that A wins the above game if δ∗ is a valid DVS on m∗, i.e:

DV (params, PkS , SkV , (m
∗, δ∗)) = 1,

and m∗ has never been submitted as an input to the OPS or ODS .150

Definition 1. A UDVS scheme is (t, ε, qPS , qDS , qDV )-unforgeable, if no PPT

adversary with at most qPS queries from OPS , qDS queries from ODS , and qDV

queries from ODV can win the above game in time at most t with probability

at least ε.

2.2.2. Non-Transferability (NT)155

Given a valid message/DVS pair (m, δ), it must be infeasible for any PPT

algorithm to distinguish whether δ is created by the signature holder SH or

the designated verifier V . This property guarantees the privacy of the signer,

since the designated verifier cannot convince any third party that the DVS is

produced by anyone who holds the corresponding OS σ on m (including the160

signer herself). This concept is defined by a Transcript Simulation TS which

can generate an indistinguishable DVS from that produced by SH, as follows

[5],[7],[23]:

Definition 2. A UDVS scheme is non-transferable if for all PPT algorithms D,

for any security parameter k, params←− Setup(k), (SkS , PkS)←− SKG(params),165

(SkV , PkV )←− V KG(params), any messagem, and any OS σ ←− PS(params, SkS ,m),

the value of
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δ0 ←− DS(params, PkS , PkV , (m,σ))

δ1 ←− TS(params, PkS , SkV , PkV ,m)

b ∈R {0, 1}

b′ ←− D(δb, params,m, PkS , SkS , PkV , SkV )

 : b = b′

−
1

2

∣∣∣∣∣∣∣∣∣∣∣∣
(1)

is negligible.

2.2.3. Non-Delegatability (ND)

This property guarantees that if an entity can generate a valid DVS δ (with-170

out holding the corresponding OS σ), he/she must know the private key of either

the signer or the designated verifier. This notion was first introduced by Lipmaa

et al. [6]. Tian et al. in [24] proposed a model for this notion in which via an

interaction between an extractor K and a signature creator F , the extractor can

extract the private key of the signer or the designated verifier. This is formally175

defined by the following game between K and F [19],[22]:

• K generates system parameters params and sends it to F .

• F generates a public key PkS (or PkV ) and sends it to K.

• K generates the other public key PkV (or PkS) and sends it to F .

• K sends a message m∗ to F and asks F to produce a DVS δ∗ on m∗.180

• F issues queries to the OPS , ODS and ODV oracles (if F generates PkS)

or OPS and ODS (if F generates PkV ), adaptively. Then F generates a

valid DVS δ∗ on m∗.

• K generates SkS (or SkV ).

Definition 3. A UDVS scheme is (t, ε, t′, ε′, qPS , qDS , qDV )-non-delegatable, if185

K can extract the private key in time t with a probability ε when F can generate

a valid DVS δ∗ on m∗ in time t′ with a probability ε′ in the above game, where

ε ≥ poly1(ε′) and t ≤ poly2(t′) for two polynomial functions poly1 and poly2.

Note that F can issue at most qPS queries from OPS , qDS queries from ODS ,
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and qDV queries from ODV in the above game (qDV = 0 when F generates190

PkV ).

3. Our non-delegatable UDVS Scheme

In 2006, authors in [7] presented the first UDVS scheme in the standard

model (without random oracles). However their scheme is delegatable as dis-

cussed in [18]. As Shim pointed out in [18], presenting a non-delegatable UDVS195

scheme is an open problem which has not been solved yet. In this section,

we modify the UDVS scheme in [7] in order to provide non-delegatability and

present the first non-delegatable UDVS scheme in the standard model. More-

over, by considering the signer herself as the signature holder (see Remark 2),

our scheme can be also considered as the first non-delegatable DVS scheme in200

the standard model. Note that all non-delegatable DVS schemes proposed up to

now, are provable in the random oracle model [20],[21],[22],[23],[24],[25],[26],[27],

[28],[29]. Before presenting our scheme, some preliminaries are described in the

following subsection.

3.1. Preliminaries205

3.1.1. Bilinear Pairings

Consider two multiplicative cyclic groups G1 and G2 of prime order q and

let g be a generator of G1. There exists an admissible bilinear pairing e :

G1 ×G1 −→ G2 if and only if the followings are satisfied:

1. Bilinearity: e(ga, gb) = e(g, g)ab, for all a, b ∈ Z∗q .210

2. Non-degeneracy: i.e. e(g, g) 6= 1G2
.

3. Computability: There exists an efficient algorithm for computing e(g, g).

It can be referred to [33] for more details about bilinear pairings.

3.1.2. Complexity Assumptions

Some problems in bilinear pairings are considered as hard problems in com-215

plexity theory. Some of these hard problems are as follows:
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• Computational Bilinear Diffie-Hellman (CBDH) Problem: On inputs g, ga, gb, gc ∈

G1, for unknown a, b, c ∈ Z∗q , calculate e(g, g)abc ∈ G2.

• Decisional Bilinear Diffie-Hellman (DBDH) Problem: On inputs g, ga, gb, gc ∈

G1, for unknown a, b, c ∈ Z∗q , and Z ∈ G2, decide whether Z = e(g, g)abc.220

• Gap Bilinear Diffie-Hellman (GBDH) Problem: On inputs g, ga, gb, gc ∈

G1, for unknown a, b, c ∈ Z∗q , calculate e(g, g)abc ∈ G2 with the help

of the DBDH oracle ODBDH . The DBDH oracle ODBDH is that given

g, ga, gb, gc ∈ G1 and Z ∈ G2, outputs 1 if Z = e(g, g)abc and 0 otherwise.

Definition 4. It is said that the (t, ε)-GBDH assumption holds in (G1, G2), if225

no t-time algorithm has advantage at least ε in solving the GBDH problem in

(G1, G2).

Remark 3. The UF of our scheme is based on GBDH assumption.

3.1.3. Knowledge Extractor Assumption in the Bilinear Diffie-Hellman setting

(KEA-BDH)230

Let K be a polynomial time algorithm which on inputs (g, ga, gb) for a, b ∈

Z∗q , outputs (gc, e(g, g)abc). The assumption is that there is another polynomial

time algorithm K∗ which takes the same inputs as K, uses the same coins as K,

and outputs (c, gc, e(g, g)abc) with a probability (1− ρ), where ρ is a negligible

value.235

Remark 4. KEA has been proven in a generic group model [34]. The KEA-

BDH which is a variant of KEA [21], is only used in the proof of non-delegatability

of our scheme.

3.2. Our proposed Scheme

In this section, we propose our non-delegatable UDVS scheme. Assume240

that messages are bit strings of length nm. For generality, messages can be

considered of arbitrary lengths and a hash function Hm : {0, 1}∗ −→ {0, 1}nm

can be used to convert messages to the specific length. The algorithms of our

concrete scheme are as follows:
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• Setup: This PPT algorithm takes a security parameter k as input and out-245

puts system parameters params = {G1, G2, q, g, e, g1, u
′, u1, . . . , unm

, v′, v1, . . . , vnm
},

in which G1 and G2 are two multiplicative cyclic groups with prime order

q of size k, g is a generator of G1, and e : G1 × G1 −→ G2 is an admis-

sible bilinear pairing. Other parameters are random elements of G1, i.e.

g1, u
′, u1, . . . , unm

, v′, v1, . . . , vnm
∈R G1.250

• Signer Key Generation (SKG): This PPT algorithm on input params,

picks a random xS ∈R Z∗q as the private key of the signer SkS and

computes the corresponding public key as PkS = gxS , then outputs

(SkS , PkS) = (xS , g
xS ).

• Verifier Key Generation (VKG): This PPT algorithm on input params,255

picks a random xV ∈R Z∗q as the private key of the designated verifier SkV

and computes the corresponding public key as PkV = gxV , then outputs

(SkV , PkV ) = (xV , g
xV ).

• Public Signing (PS): Let mi denotes the i−th bit of the message m of

length nm. The signer, with the private key SkS , selects a random r ∈R Z∗q
and computes the ordinary signature as follows:

σ = (σ1, σ2)

= ((g1v
′
nm∏
i=1

vi
mi)SkS (u′

nm∏
i=1

ui
mi)r, gr). (2)

• Public Verification (PV): Upon receiving (σ = (σ1, σ2)), everyone can ver-

ify the validity of the signature by checking whether the following equation

holds or not:

e(σ1, g) = e(g1v
′
nm∏
i=1

vi
mi , PkS)e(u′

nm∏
i=1

ui
mi , σ2). (3)

• Designation (DS): The SH who holds an OS σ = (σ1, σ2), can create a

DVS δ for the designated verifier V with public key PkV as follows:

δ = (δ1, δ2) = (e(σ1, PkV ), σ2). (4)
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• Designated Verification (DV): The designated verifier V can verify the

validity of δ = (δ1, δ2) by his/her private key SkV as follows:

δ1 = e(g1v
′
nm∏
i=1

vi
mi , PkS)SkV e(u′

nm∏
i=1

ui
mi , δ2)SkV . (5)

Note that the correctness is satisfied for both the OS and the DVS, since ac-

cording to (2) for a valid OS we have:

e(σ1, g) = e((g1v
′
nm∏
i=1

vi
mi)SkS (u′

nm∏
i=1

ui
mi)r, g)

= e(g1v
′
nm∏
i=1

vi
mi , gSkS )e(u′

nm∏
i=1

ui
mi , gr)

= e(g1v
′
nm∏
i=1

vi
mi , PkS)e(u′

nm∏
i=1

ui
mi , σ2).

(6)

Also, according to (2) and (4) for a valid DVS we have:

δ1 = e(σ1, PkV )

= e((g1v
′
nm∏
i=1

vi
mi)SkS (u′

nm∏
i=1

ui
mi)r, gSkV )

= e((g1v
′
nm∏
i=1

vi
mi)SkV , gSkS )e((u′

nm∏
i=1

ui
mi)SkV , gr)

= e(g1v
′
nm∏
i=1

vi
mi , PkS)SkV e((u′

nm∏
i=1

ui
mi), δ2)SkV .

(7)

Therefore, the correctness is satisfied for both the OS and the DVS in our UDVS

scheme, since (6) and (7) imply (3) and (5), respectively.260

4. Security Analysis

As mentioned in Section 2, unforgeability, non-transferability and non-delegatability

are three security requirements for a UDVS scheme. In this section, we analyze

these properties of our proposed scheme.
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4.1. Unforgeability(UF)265

In this subsection, the unforgeability of the proposed scheme is analyzed,

according to Definition 1. Since Waters presented his identity based encryp-

tion scheme in the standard model in 2001 [35], many researchers have used

his strategy in order to present and prove different encryption and signature

schemes in the standard model [7]. We presented our UDVS scheme with some270

modifications of the UDVS scheme in [7] which its UF is proved with the same

approach of the proof of the UF of Waters’ signature. We also use the similar

strategy to prove the UF of our scheme.

Theorem 1. The proposed UDVS scheme is (t, ε, qPS , qDS , qDV )-unforgeable,

assuming that (t′, ε′)-GBDH assumption holds in (G1, G2), where

ε′ ≥ ε

4(qPS + qDS)(nm + 1)
,

t′ ≤ t+ (4qPS + 4qDS + 4qDV + 2)Te + (1qDS + 1qDV + 1)Tp,

in which t is the required time for A to forge a signature, Te and Tp denote

the time for an exponentiation in G1 and the time for a pairing in (G1, G2),275

respectively.

Proof. Suppose that there exists an adversary A who can (t, ε, qPS , qDS , qDV )

break the scheme by running the unforgeability game as Definition 1. By this

assumption, we can construct an algorithm B which can solve a GBDH problem

in time at most t′ and with probability at least ε′ by using A as a sub-routine.280

A random GBDH challenge g, ga, gb, gc ∈ G1 is given to B and B tries to cal-

culate e(g, g)abc ∈ G2 with the help of the DBDH oracle ODBDH . In order to

solve this problem, B runs A as a sub-routine. B plays the unforgeability game

with A and simulates C and all oracles for A in this game, as follows:

• Setup: B sets an integer l = 2(qPS + qDS) and selects an integer k ∈

{0, 1, . . . , nm} (nm is the length of the message). Assume that l(nm+1) <

q and as a result 0 ≤ kl < q (Remember that q is the order of G1 and

G2.). B also randomly selects x′, x1, . . . , xnm
∈R Zl, y′, y1, . . . , ynm

∈R Zq
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and z′, z1, . . . , znm ∈R Zq. These values are kept internal to B. In order

to follow the proof more easily, define three following functions:

J(m) = x′ +

nm∑
i=1

mixi − kl,

K(m) = y′ +

nm∑
i=1

miyi,

L(m) = z′ +

nm∑
i=1

mizi.

Then B assigns the public key of the signer, the public key of designated285

verifier and other unknown system parameters as follows:

– B assigns the public key of the signer as PkS = ga. (Note that ga is

one of the inputs of the GBDH problem which B is trying to solve

it).

– B assigns the public key of the designated verifier as PkV = gb.(Note290

that gb is one of the inputs of the GBDH problem which B is trying

to solve it).

– B sets g1 = gc. (Note that gc is one of the inputs of the GBDH

problem which B is trying to solve it).

– B assigns u′ = gx
′−kl

1 gy
′
, ui = gxi

1 g
yi for i = 1, 2, . . . , nm, v′ = gz

′

and vi = gzi for i = 1, 2, . . . , nm. By this assignment, for any message

m we have:

u′
nm∏
i=1

ui
mi = g

J(m)
1 gK(m), v′

nm∏
i=1

vi
mi = gL(m).

Afterwards, B returns PkS , PkV and params = {G1, G2, q, g, e, g1, u
′, u1, . . . , unm

, v′, v1, . . . , vnm
}295

to A. From the perspective of A, all distributions are identical to those

in the real world.

• Oracle Accesses: A has access to the OPS , ODS and ODV oracles as men-

tioned in the unforgeability game. B plays the role of theses oracles, i.e.

when A inputs its queries to these oracles, B will generate the correspond-300

ing outputs for A as follows:
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– OPS . On input a message m, this oracle must output a valid ordinary

signature σ on m. When A gives OPS the message m as input, B

must generate a valid σ = (σ1, σ2) without knowing the private key of

the signer (Note that B does not know a). To produce σ = (σ1, σ2),305

B acts as follows:

∗ If J(m) = 0 mod q, B aborts and reports a failure.

∗ If J(m) 6= 0 mod q, B randomly selects r ∈R Z∗q . Then B

computes:

σ = (σ1, σ2)

= (Pk
−K(m)
J(m)

+L(m)

S (u′
nm∏
i=1

ui
mi)r, grPk

−1
J(m)
s ). (8)

Noting (8) and Defining r̃ = r − a
J(m) , we have:

σ1 = Pk
−K(m)
J(m)

+L(m)

S (u′
nm∏
i=1

ui
mi)r

= (g−a
K(m)
J(m) )(gaL(m))(g

J(m)
1 gK(m))r

= ga1 (g
J(m)
1 gK(m))

−a
J(m) (gL(m))a(g

J(m)
1 gK(m))r

= (g1g
L(m))a(g

J(m)
1 gK(m))

r− a
J(m)

= (g1v
′
nm∏
i=1

vi
mi)a(u′

nm∏
i=1

ui
mi)r̃

(9)

and also:

σ2 = grPk
−1

J(m)

S = grg
−a

J(m) = gr−
a

J(m) = gr̃. (10)

According to (9) and (10) and comparing them with (2), the

signature σ = (σ1, σ2) computed by (8), is a valid ordinary sig-

nature on m.310

– ODS . On input a message m, this oracle must output a valid DVS δ

on m. When A gives ODS the message m as input, B must generate

16



a valid δ = (δ1, δ2) without knowing the private key of the signer

and the designated verifier (Note that B does not know a and b). To

produce δ = (δ1, δ2), B acts as follows:315

∗ If J(m) = 0 mod q, B aborts and reports a failure.

∗ If J(m) 6= 0 mod q, B computes a valid ordinary signature σ =

(σ1, σ2) similar to that explained in the response to OPS , and

then calculates the corresponding DVS δ = (δ1, δ2), as follows:

δ = (δ1, δ2) = (e(σ1, PkV ), σ2).

– ODV . On input a message/DVS pair (m, δ = (δ1, δ2)), this oracle

must output 1 if δ is a valid DVS on m and 0 otherwise. When A

gives ODV the message/DVS pair (m, δ = (δ1, δ2)) as input, B must

verify the validity of δ without knowing the private key of the signer320

and the designated verifier (Note that B does not know a and b). To

verify δ, B acts as follows:

∗ If J(m) = 0 mod q, B submits

(g, ga, gb, gc,
δ1

e(δ
K(m)
2 (ga)L(m), gb)

), (11)

to the DBDH oracle ODBDH (Note that B is trying to solve a

GBDH problem and has access to the ODBDH). Then B outputs

1 to A if the output of ODBDH is 1 and 0 otherwise. It can be325

easily shown that if (m, δ = (δ1, δ2)) is a valid DVS on m, then

the tuple in (11) is a valid BDH tuple, as we have:

δ1

e(δ
K(m)
2 (ga)L(m), gb)

=
e((g1v

′∏nm

i=1 vi
mi)SkS (u′

∏nm

i=1 ui
mi)r, PkV )

e(δ
K(m)
2 gaL(m), gb)

=
e(gacgaL(m)grK(m), gb)

e(grK(m)gaL(m), gb)

= e(gac, gb) = e(g, g)abc.
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∗ If J(m) 6= 0 mod q, B can generate a valid DVS δ̂ = (δ̂1, δ̂2) on

m as he generates the output of ODS . Afterwards, B submits

(g, PkV , u
′
nm∏
i=1

ui
mi ,

δ2

δ̂2
,
δ1

δ̂1
), (12)

to the DBDH oracle ODBDH . Then B outputs 1 to A if the

output of ODBDH is 1 and 0 otherwise. It can be easily shown

that if δ = (δ1, δ2) is a valid DVS on m, then the tuple in (12) is

a valid BDH tuple. Noting that if δ = (δ1, δ2) is a valid DVS on

m, we have:

δ1 = e((g1v
′
nm∏
i=1

vi
mi)SkS (u′

nm∏
i=1

ui
mi)r, PkV ),

δ2 = gr,

and similarly if δ̂ = (δ̂1, δ̂2) is a valid DVS on m, we have:

δ̂1 = e((g1v
′
nm∏
i=1

vi
mi)SkS (u′

nm∏
i=1

ui
mi)r̂, PkV ),

δ̂2 = gr̂.

So, we have:

δ1

δ̂1
= e((u′

nm∏
i=1

ui
mi)(r−r̂), PkV )

= e((gcJ(m)gK(m))(r−r̂), gb),

so, noting that PkV = gb, u′
∏nm

i=1 ui
mi = gcJ(m)gK(m) and δ2

δ̂2
=

gr−r̂, the tuple in (12) is a valid BDH tuple.

• Forgery: Suppose that A forges a DVS δ∗ = (δ∗1 , δ
∗
2) on message m∗.330

(Remember that B is trying to solve a GBDH problem.) Since A creates

δ∗ = (δ∗1 , δ
∗
2), B acts as follows:

– If J(m∗) 6= 0 mod q, B aborts and reports a failure.

– If J(m∗) = 0 mod q, B can solve the GBDH problem by obtaining

e(g, g)abc as follows:335
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e(g, g)abc =
δ1
∗

e(δ
∗K(m∗)
2 Pk

L(m∗)
S , PkV )

. (13)

It is easy to check that (13) holds, if δ∗ is a valid signature on m∗.

Time Analysis: Noting the above descriptions we can see that B needs a time

t′ ≤ t + (4qPS + 4qDS + 4qDV + 2)Te + (1qDS + 1qDV + 1)Tp, for running the

game, where t is the required time for A to forge a signature, Te and Tp denote340

the time for an exponentiation in G1 and the time for a pairing in (G1, G2),

respectively.

Probability Analysis: In order to analyze the success probability of B, we

consider the events in which B will not abort. B will not abort if both the two345

following events happen [7]:

• E1: J(m) 6= 0 mod q for all queries from OPS and ODS . Let E1i denotes

the event that J(m) 6= 0 mod q in the i−th query from OPS or ODS ,

hence E1 =
⋂(qPS+qDS)
i=1 E1i.

• E2: J(m∗) = 0 mod q.350

Noting that J(m) = 0 mod q implies J(m) = 0 mod l and that if J(m) = 0

mod l, there is a unique value k ∈ {0, 1, . . . , nm} that yields J(m) = 0 mod q,

we have Pr[J(m) = 0 mod q] = 1
l

1
nm+1 [7]. By defining two events E1 and E2

as mentioned, we have:

Success Probability of B = ε′ ≥ ε.Pr[E1

⋂
E2], (14)

in which ε is the least success probability of A to forge a DVS. Noting that E1
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and E2 are independent events, we have:

Pr[E1

⋂
E2] = Pr[E1]Pr[E2]

= Pr[

(qPS+qDS)⋂
i=1

E1i]Pr[E2]

= (1− Pr[

(qPS+qDS)⋃
i=1

Ē1i])(
1

l(nm + 1)
)

≥ (1− (qPS + qDS)

l(nm + 1)
)(

1

l(nm + 1)
)

≥ (1− (qPS + qDS)

l
)(

1

l(nm + 1)
)

=
1

4(qPS + qDS)(nm + 1)
,

(15)

where the rightmost equality is simply implied from l = 2(qPS + qDS). Noting

(14) and (15), we have:

Success Probability of B = ε′ ≥ ε

4(qPS + qDS)(nm + 1)
,

as the final result. �

4.2. Non-Transferability (NT)

In this subsection, the non-transferability of the proposed scheme is analyzed

according to Definition 2.

Theorem 2. The proposed UDVS scheme is unconditionally non-transferable.355

Proof. Suppose that δ0 = (δ01 , δ02) is a DVS on m which is produced by the

signer and δ1 = (δ11 , δ12) is a designated signature on m which is produced by

the transcript simulator (TS). According to Definition 2, we must prove that

the value of (1) is negligible.

In order to generate δ0, the signer, with the private key SkS , selects a random360

element r0 ∈R Z∗q and computes δ0 = (δ01 , δ02) as follows:

δ0 = (e((g1v
′
nm∏
i=1

vi
mi)SkS (u′

nm∏
i=1

ui
mi)r0 , PkV ), gr0). (16)
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In order to generate δ1, TS picks a random r1 ∈R Z∗q and computes δ1 =

(δ11 , δ12) as follows:

δ1 = (e(g1v
′
nm∏
i=1

vi
mi , PkS)SkV e(u′

nm∏
i=1

ui
mi , gr1)SkV , gr1). (17)

It is easy to see that δ0 and δ1 have the same distributions and hence they

are indistinguishable.365

Suppose that a challenger C selects a random element r∗ ∈R Z∗q an sets δ∗2 = gr
∗
,

then picks a b ∈R {0, 1} by flipping a coin and sets δ∗1 as follows:

δ∗1 =


e((g1v

′∏nm

i=1 vi
mi)SkS (u′

∏nm

i=1 ui
mi)r

∗
, PkV ) if b = 0

e(g1v
′∏nm

i=1 vi
mi , PkS)SkV e(u′

∏nm

i=1 ui
mi , gr

∗
)SkV if b = 1

.

(18)

Noting (16), (17) and (18), we have:

Pr[δ∗ = δ0] = Pr

 δ∗1 = δ01

δ∗2 = δ02

 = Pr[r∗ = r0] =
1

q − 1
,

Pr[δ∗ = δ1] = Pr

 δ∗1 = δ11

δ∗2 = δ12

 = Pr[r∗ = r1] =
1

q − 1
.

Therefore, the distributions of δ0 and δ1 are identical and a distinguisher D

cannot distinguish whether the signature is created by the signer or by TS.370

Hence, the signature is unconditionally non-transferable. �

4.3. Non-Delegatability (ND)

In this subsection, we analyze the non-delegatability of our UDVS scheme

according to Definition 4.

Theorem 3. Our UDVS scheme is (t, ε, t′, ε′, qPS , qDS , qDV )-non-delegatable

assuming that KEA-BDH assumption holds with a probability 1− ρ, where

t ≤ t′ + (3qPS + 3qDS + 2qDV + 2)Te + (1qDS + 1qDV + 1)Tp,
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ε ≥ (
1

2
)(qPS+qDS+qDV )ε′(1− ρ).

Proof. We use the KEA-BDH assumption to prove the non-delegatability of

our proposed scheme. Indeed, we prove that if a PPT adversary F can cre-375

ate a valid DVS with a probability at least ε′ in time at most t′, then there

is a polynomial time algorithm K which can produce (gSkS , e(g, g)abSkS ) (or

(gSkV , e(g, g)abSkV )) on inputs (g, ga, gb) for a, b ∈ Z∗q , with a probability at

least ε′′ = ( 1
2 )(qPS+qDS+qDV )ε′ in time at most t′′ < t′+ (3qPS + 3qDS + 2qDV +

2)Te + (1qDS + 1qDV + 1)Tp. Therefore, according to the KEA-BDH assump-380

tion, there is another polynomial time algorithm K∗ which takes the same in-

puts as K, uses the same coins as K, and outputs (SkS , g
SkS , e(g, g)abSkS ) (or

(SkV , g
SkV , e(g, g)abSkV )), with a probability at least ε′′(1 − ρ), where ρ is a

negligible value.

Suppose that there is an adversary F which can produce a valid DVS with a385

probability at least ε′ in time at most t′. We construct a polynomial time algo-

rithm K, which takes (g, ga, gb) as inputs and plays the no-delegatability game

with F as follows:

• K sets the following assignments:

– K randomly selects z, x′, y′ ∈R Zq, and sets g1 = gz, u′ = gx
′

and390

v′ = gy
′
.

– K randomly selects xi ∈R Zq and sets ui = gxi , for i = 1, 2, . . . nm.

– Suppose that the `-th bit of message m∗ (which K will send it to F

in the fourth step of the game) is 1, i.e. m∗` = 1. K sets v` = ga

(note that ga is one of the inputs of K).395

– K randomly selects yi ∈R Zq and sets vi = gyi , for i = 1, 2, . . . nm

and i 6= `.

Afterwards, K returns params = {G1, G2, q, g, e, g1, u
′, u1, . . . , unm

, v′, v1, . . . , vnm
}

to F . From the perspective of F , all distributions are identical to those
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in the real world. In order to follow the proof more easily, define two

following functions:

J(m) = x′ +

nm∑
i=1

mixi,

K(m) = y′ +

nm∑
i=1(i 6=`)

miyi.

By the mentioned assignments, for any message m we have:

u′
nm∏
i=1

ui
mi = gJ(m), v′

nm∏
i=1

vi
mi = gK(m)gam` .

• F generates PkS and sends it to K (Assume that PkS = gc where c is

unknown to F).

• K sends gb (one of its inputs) as the public key of the verifier PkV to F .400

• K sends m∗ to F and asks F to produce a DVS δ∗ on m∗.

• F issues queries to the OPS , ODS and ODV oracles, adaptively. K must

answer these queries without the knowledge of the private key of the signer

and the designated verifier (since b and c are unknown to K). K plays the

role of these oracles as follows:405

– OPS . When F gives OPS the message m as input, K must generate

a valid σ = (σ1, σ2) without knowing the private key of the signer

(Note that K does not know c). K acts as follows:

∗ If m` = 1, K aborts the simulation.

∗ If m` = 0 and as a result v′
∏nm

i=1 vi
mi = gK(m), K selects a

random r ∈R Z∗q and computes the ordinary signature as follows:

σ = (σ1, σ2)

= (pk
z+K(m)
S (u′

nm∏
i=1

ui
mi)r, gr), (19)
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then K sends σ to F . It is easy to see that (19) is a valid ordinary

signature on m as:

σ1 = pk
z+K(m)
S (u′

nm∏
i=1

ui
mi)r

= (gzgK(m))SkS (u′
nm∏
i=1

ui
mi)r

= (g1v
′
nm∏
i=1

vi
mi)SkS (u′

nm∏
i=1

ui
mi)r.

– ODS . When F gives ODS the message m as input, K must generate410

a valid δ = (δ1, δ2) without knowing the private key of the signer

and the designated verifier (Note that K does not know c and b). To

answer F , K acts as follows:

∗ If m` = 1, K aborts the simulation.

∗ If m` = 0, K produces an ordinary signature σ similar to that

in simulating OPS , and computes the corresponding DVS, δ as

follows:

δ = (δ1, δ2) = (e(σ1, PkV ), σ2),

then sends it to F .415

– ODV . On input a message/DVS pair (m, δ = (δ1, δ2)) this oracle

must output 1 if δ is a valid DVS on m and 0 otherwise. When F

gives ODV the message/DVS pair (m, δ = (δ1, δ2)) as input, K must

verify the validity of δ without knowing the private key of the signer

and the designated verifier (Note that K does not know c and b). To420

verify δ, K acts as follows:

∗ If m` = 1, K aborts the simulation.

∗ If m` = 0, K accepts (rejects) the signature if the following

equality holds (does not hold):

δ1 = e(Pk
z+K(m)
S δ

J(m)
2 , PkV ). (20)
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It is easy to check the correctness of (20), since:

e(Pk
z+K(m)
S δ

J(m)
2 , PkV )

= e(gSkS(z+K(m))grJ(m), PkV )

= e((gzgK(m))SkS (gJ(m))r, PkV )

= e((g1v
′
nm∏
i=1

vi
mi)SkS (u′

nm∏
i=1

ui
mi)r, PkV )

= e(σ1, PkV ) = δ1.

Finally, F generates a valid DVS δ∗ = (δ∗1 , δ
∗
2) on m∗ and sends it to K.

• K generates e(g, g)abc by the following equation:

e(g, g)abc =
δ∗1

e(Pk
z+K(m∗)
S (δ∗2)J(m∗), PkV )

. (21)

It is easy to check the correctness of (21). As mentioned before, m∗` = 1,425

and as a result v′
∏nm

i=1 vi
m∗i = gK(m∗)ga, so:

δ∗1

e(Pk
z+K(m∗)
S (δ∗2)J(m∗), PkV )

=
e((g1v

′∏nm

i=1 vi
m∗i )SkS (u′

∏nm

i=1 ui
m∗i )r

∗
, PkV )

e(gSkS(z+K(m∗))gr∗J(m∗), PkV )

=
e((gzgK(m∗)ga)SkS (gJ(m

∗))r
∗
, PkV )

e((gzgK(m∗))SkS (gr∗)J(m∗), PkV )

= e(gaSkS , PkV ) = e(gac, gb) = e(g, g)abc.

In summary, K outputs (gc, e(g, g)abc) on inputs (g, ga, gb). According to

the KEA-BDH assumption, K can build another algorithm K∗ with the

same inputs and random tapes and outputs (c, gc, e(g, g)abc), where c is

the private key of the signer.430
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Remark 5. The above game considers the case in which F produces PkS and

K produces PkV . The other case (in which F produces PkV and K produces

PkS) is similar to the above game in all steps, except in the followings:

• In step 2, F generates PkV and sends it to K (Assume that PkV = gc

where c is unknown to F).435

• In step 3, K sends gb (one of its inputs) as the public key of the signer

PkS to F .

• As a result, the last line of (21) in step 6 will be as follows:

e(gaSkS , PkV ) = e(gab, gc) = e(g, g)abc,

and according to the KEA-BDH assumption, K can build another algo-

rithmK∗ with the same inputs and random tapes and outputs (c, gc, e(g, g)abc),

where c is the private key of the designated verifier.440

Time Analysis: Noting the above descriptions we can see that K requires a

time t ≤ t′ + (3qPS + 3qDS + 2qDV + 2)Te + (1qDS + 1qDV + 1)Tp, for running

the game, where t′ is the required time for F to create a DVS on m∗, Te and

Tp denote the time for an exponentiation in G1 and the time for a pairing in

(G1, G2), respectively.445

Probability Analysis: K wins the non-delegatability game, if:

• K does not abort in the simulation,

• F generates a valid DVS on m∗,

• and the KEA-BDH assumption holds in (G1, G2) with a probability 1− ρ

for a negligible value of ρ.450

Since these events are independent, we have:

Success Probability of K = ε ≥ Pr[abort].ε′.(1− ρ), (22)

in which ε′ is the least success probability of F to create a valid DVS on m∗.

In order to calculate Pr[abort], note that the probability of not aborting the
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Table 1: A Comparison Between Non-Delegatable DVS Schemes

Scheme Type Signature-size Sign-cost Verify-cost Model

[23] UDVS |1G1|+ |3Z∗q | 2Te1 + 1Te1(2) + 1Tp 1Te2 + 1Te1(2) + 2Tp ROM

[24] IBDVS |2G1|+ |1G2|+ |1Z∗q | 6Te1 + 2Tp 2Te1 + 3Tp ROM

[25] IBDVS |1G1|+ |4Z∗q | 1Te1 + 3Te2 + 3Tp 4Te2 + 4Tp ROM

[26] SDVS |4Z∗q′ | 2T ′ + 1T ′(2) 1T ′ + 2T ′(2) ROM

[27] IBDVS |2G1|+ |2G2|+ |3Z∗q | 1Te1 + 4Te2 + 4Tp 4Te2 + 5Tp ROM

[20] SDVS |1G′′|+ |2Z∗q′′ | 2T ′′ 2T ′′ ROM

[29] IBDVS |4Z∗q′ | T ′ + 1T ′(3) 2T ′(3) ROM

[21] IBDVS |2G1|+ |1Z∗q | 2Te1 + 1Te2 + 2Tp 1Te2 + 3Tp ROM

[22] SDVS |2G1| 2Te1 1Te1 + 2Tp ROM

ours UDVS |1G1|+ |1G2| 1Te1 + 1Te1(2) + 1Tp 1Te2(2) + 2Tp Standard

simulation is Pr[m` = 0] = 1
2 in any queries from OPS , ODS and ODV . De-

noting the number of queries from OPS , ODS and ODV by qPS , qDS and qDV ,

respectively we have:

Pr[abort] = (
1

2
)(qPS+qDS+qDV ). (23)

Finally noting (22) and (23) we have:

ε ≥ (
1

2
)(qPS+qDS+qDV )ε′(1− ρ), (24)

and the proof is complete. �

Remark 6. Suppose that F can create a valid DVS on m∗ with a non-

negligible probability (i.e. ε′ is non-negligible in (24)). Then ε is non-negligible

if qPS + qDS + qDV = order(log2(.)) and as a result ( 1
2 )(qPS+qDS+qDV ) is non-

negligible. Although we proved the non-delegatability of our UDVS scheme for455

logarithmic-bounded number of queries, but our scheme seems non-delegatable

for polynomially-bounded number of queries, too.
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5. Comparison

In this section, we will compare our scheme with other proposed non-delegatable

DVS schemes. As mentioned before, Shim has discussed on non-delegatability460

of DVS schemes in [18]. In his paper, he has shown that almost all DVS schemes

which proposed till then are delegatable except the schemes in [20],[21]. How-

ever, we have found some other DVS schemes in the literature that are claimed to

be non-delegatable and are not discussed in Shim’s paper [19],[22],[23],[24],[25],[26],

[27],[28],[29],[30]. Among these schemes, only the schemes in [19] and [30] are465

analyzed in the standard model. However, the scheme in [19] is delegatable as

shown in [31], and also the scheme in [30] is non-delagatable for the verification

(not for signing) and it still is delegatable according to the Lipmaa et al.’s def-

inition. We have not found any attacks against the non-delegatability of other

schemes i.e. the proposed schemes in [20],[21],[22],[23],[24],[25],[26],[27],[28],[29].470

However, the scheme in [28] uses a trusted third party which is not a common

approach in designing digital signatures, an so we do not bring this scheme in our

comparison. In Table 1, a comparison between the schemes in [20],[21],[22],[23],[24],

[25],[26],[27],[29] and our scheme is provided.

The second column of Table 1 determines the types of the DVS schemes in-475

cluding traditional designated verifier signature (DVS), universal DVS (UDVS),

strong DVS (SDVS), ID-based DVS (IBDVS) and ID-based strong DVS (IDS-

DVS) schemes.

The third column of Table 1 shows the signature size of the schemes. In this

column, the notation |aG| shows the binary length of a elements in group G.480

It is clear that the smaller signature size results in the lower communication

cost. Also, It is obvious that the signature size is related to the scheme’s system

parameters. There are three kinds of parameters as follows:

1. G1 and G2 are groups defined in this paper. The schemes in [21],[25],[27]

are defined on these groups.485

2. q′ and p′ are large primes such that q′|p′ − 1, and G′ is a subgroup with

order q′ of Z∗p′ . The scheme in [26],[29] are defined on this group.
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3. G′′ is a group on an elliptic curve E with a large prime order q′′. The

scheme in [20] is defined on this group.

The fourth and fifth columns show the computation time required for the signing490

and verification, respectively. The notations in these columns are described as

follows:

1. Te1 and Te2 show the exponentiation time in G1 and G2, respectively

and Tp denotes the time for a pairing computation e : G1 × G1 −→ G2.

Also, Te1(2) and Te2(2) shows the time for a double-exponentiation oper-495

ation in G1 and G2, respectively. Note that the computation for multi-

exponentiation has well-known accelerative algorithms [36].

2. T ′, T ′(2) and T ′(3) denote the time for an exponentiation, double-exponentiation

and triple-exponentiation in G′, respectively.

3. T ′′ denotes the time for an exponentiation in G′′.500

Finally, The sixth column determines whether the scheme is analyzed with or

without random oracles.

The corresponding comments are considerable in Table 1:

• The scheme in [23] is the only non-delegatable UDVS scheme we have

found in the literature. Our UDVS scheme has the following advantages505

in comparison with the UDVS scheme in [23]:

1. We have proved the security requirements of our UDVS scheme in

the standard model (without random oracle assumptions) but the

scheme in [23] is proved in the random oracle model and as Rogaway

discussed in [32], the schemes which their security requirements are510

proved in the random oracle model, are not secure when the ran-

dom oracles are replaced by the real world primitives (such as hash

functions).

2. As mentioned in Section 1, a considerable weakness of the UDVS

scheme in [23] is that everyone (not only the designated verifier)515

who receives the signature from the channel, can verify the signature
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and convince that the signer (Alice) has really signed a message for

a designated verifier (Bob). Our scheme does not suffer from this

weakness, since the private key of the designated verifier is required

in order to verify a DVS.520

• Among all types of DVS schemes, only our scheme is provable in the

standard model (without random oracles). As a great result, by consid-

ering the signer herself as the signature holder, our scheme is the first

non-delegatable DVS scheme in the standard model.

6. Conclusion525

We have proposed a non-delegatable universal designated verifier signature

scheme and proved its security requirements i.e. unforgeability, non-transferability

and non-delegatability in the standard model (without random oracles). Non-

delegatability is a security notion for DVS schemes which guarantees that neither

the signer nor the designated verifier is able to delegate the rights for creating530

a DVS to a third party without revealing her/his private key. This is a crit-

ical property in applications where the responsibility of a signer is important

and cannot be delegated to another entity. However, in 2014, Shim studied the

proposed DVS schemes and showed that almost all of them are delegatable. In

this paper, we tried to solve some of the open problems in this field (as Shim535

mentioned them in his paper). As a result, we have presented the first non-

delegatable UDVS scheme and proved its security requirements in the standard

model (without random oracles). As another great result, by considering the

signer herself as the signature holder, our scheme is also the first non-delegatable

DVS scheme in the standard model.540
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