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ABSTRACT
We design and implement a Distributed Oblivious Random Access

Memory (DORAM) data structure that is optimized for use in two-

party secure computation protocols. We improve upon the access

time of previous constructions by a factor of up to ten, their memory

overhead by a factor of one hundred or more, and their initialization

time by a factor of thousands. We are able to instantiate ORAMs

that hold 2
34

bytes, and perform operations on them in seconds,

which was not previously feasible with any implemented scheme.

Unlike prior ORAM constructions based on hierarchical hash-

ing [21], permutation [21], or trees [40], our Distributed ORAM is

derived from the new Function Secret Sharing scheme introduced

by Boyle, Gilboa and Ishai [11, 12]. This significantly reduces the

amount of secure computation required to implement an ORAM

access, albeit at the cost of O (n) efficient local memory operations.

We implement our construction and find that, despite its poor

O (n) asymptotic complexity, it still outperforms the fastest previ-

ously known constructions, Circuit ORAM [43] and Square-root

ORAM [56], for datasets that are 32 KiB or larger, and outperforms

prior work on applications such as stable matching [16] or binary
search [25] by factors of two to ten.

1 INTRODUCTION
In spite of the substantial improvements to the efficiency of two-

party secure computation protocols, they still encounter major

obstacles when evaluating many types of functions. In particular,

functions that make data-dependent accesses to memory remain

difficult cases. A data-dependent memory access is an access to

an element within an array, at an index i that is computed from

some secret input. A secure computation protocol must guarantee

that no information about its inputs is leaked to either party, even

via intermediate computations, and thus it must be able to execute

such memory accesses without leaking any bits of i .
Data-dependent memory accesses are common even in text-

book algorithms; they are required by, for example, binary search,

most graph algorithms, sparse matrix methods, greedy algorithms,

and dynamic programming algorithms. More generally, they are

required by any program that is written in the RAM model of com-

putation. Any attempt to evaluate such an algorithm in a secure

context upon a large dataset certainly requires an efficient data-

dependent memory access mechanism.

The simplest solution to this problem is the linear scan technique,
which hides the index of an accessed element by touching every ele-

ment in the memory and using multiplexers to ensure that only the

desired element is actually read or written. This effectively ensures

data-obliviousness, but it requires an expensive secure computa-

tion involving O (n) gates for each individual memory access. With

accesses incurring overhead linear in the size of the entire memory,

scanning is impractical for all but the smallest amounts of data.

Another solution is Oblivious Random Access Memory (ORAM).

Intuitively, ORAM is a technique to transform a memory access

to a secret index i into a sequence of memory accesses that can

be revealed to an adversary, the indices of which appear indepen-

dent of i . ORAM was first proposed by Goldreich and Ostrovsky

in their seminal paper [21], which studied the general context of

client-server memory outsourcing. In this setting, a client wishes

to perform a computation on a database of size n, which is held

by some untrusted server, but does not want the server to learn

the semantic pattern of accesses to the database. Goldreich and

Ostrovsky proposed two schemes to solve this problem, the second

of which requires that the client perform O (polylogn) accesses to
the database for every access in the client’s original program. In

the subsequent two decades, ORAM techniques have been widely

studied [7, 13, 14, 18, 22–24, 30, 34–36, 39, 41, 46–48] with the goals

of reducing the communication overhead between the client and

server, reducing the amount of memory required of the client, and

reducing the server’s overall memory overhead. State of the art

approaches to ORAM design limit the overhead in all of these mea-

sures to O (logc n) where c ≤ 3.

ORAM can be applied to the domain of secure computation by

implementing ORAM client operations as secure functions, while

the mutually-untrusting computation parties share the role of the

ORAM server. This arrangement was proposed by Ostrovsky and

Shoup [35], who used it to show that secure computations need

not take time linear in the size of their input. It was later taken

up by Gordon et al. [25]. Subsequently, the development of secure-

computation-specific ORAMs began.

Wang et al. [44] observed that memory and communication over-

head, themetrics for which ORAMhad traditionally been optimized,

were inappropriate for the context of secure computation. They

proposed that circuit complexity is a more relevant measure, and de-

scribed a heuristic ORAM based on this idea. Subsequently, Wang et
al. [43] proposed Circuit ORAM, which offers asymptotically strong

parameters for a data-structure with small circuit complexity.

Zahur et al. [56] observed that by relaxing asymptotic bounds,

it is possible to produce a scheme that has a smaller concrete cir-

cuit size. They described a modification of the original Goldreich-

Ostrovsky Square-root ORAM that is asymptotically inferior to

Circuit ORAM, but outperforms it for data sizes up to 4 MiB.

Although they represent a dramatic improvement over initial

efforts, the ORAM constructions of Gordon et al., Zahur et al., and
Wang et al. suffer drawbacks. For instance, they are all recursively

structured. That is, accessing the top level ORAM data structure

for n elements requires recursively accessing another ORAM data

structure of size n/8 elements, and so on, each layer adding a com-

munication round. As a result, each semantic access requires ac-

cessing O (logn) different ORAM layers, incurring O (logn) rounds
of communication and latency.
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These constructions also have high concrete memory overhead,

due in part to their recursive nature and to the fact that they store

wire labels for each bit of their memory, each wire label being at

least 80 times larger than the data it represents. All prior research

efforts of which we are aware report on concrete experiments that

involve at most 2
20

elements. In our own experiments, we confirm

that the constructions they describe cannot handle more elements

in a reasonable amount of time and space.
1

The last, and possibly most significant problem is initialization.

In many cases, an ORAMmust be filled with some initial data before

it can be used. Circuit ORAM requires an individual write into each

element, a process that is extremely expensive: we observed it to

require more than 3000 seconds for a moderately-sized memory of

2
15

elements.
2
Zahur et al.’s Square-root ORAM is asymptotically

similar, but uses a permutation network [42] instead of individual

writes to achieve a constant-factor improvement of roughly 100.

Nevertheless, even for moderately-sized memories, initialization is

a significant cost.

These bottlenecks limit the use of secure computation proto-

cols mostly to data-independent algorithms (e.g. AES [37], edit

distance [45], or linear regression [33]) or RAM programs that ex-

ploit specific algorithmic properties to restrict their access patterns

(e.g. BFS [6], Dijkstra’s algorithm [28], or stable matching [16]).

1.1 Contributions
We propose a new data structure that addresses the drawbacks

discussed previously, and we demonstrate the first concrete secure

computation memory implementation that is capable of hosting

data at the scale of many gigabytes. Our scheme has faster access

times than all prior constructions for memories that are larger

than 32 KiB, and, as it does not have any recursive components,

each access requires only three rounds in principle. Unlike prior

ORAMs, our data structure supports read and write operations in-

dependently, and can perform read operations substantially faster.

Instead of storing wire labels, we store either XOR-shares or en-

cryptions of the data, and thereby reduce the memory overhead to

a small constant. Additionally, we have a linear-time method to fill

our structure with initial data that requires no secure computation.

As a result, an instance with 2
20

4-byte elements can be initialized

in 166 milliseconds, roughly 4000 times faster than the best prior

initialization technique from Zahur et al.’s Square-root ORAM [56].

We show that our advantages hold not only in microbenchmarks,

but also in previously-published application contexts such as binary

search and stable matching.

In contrast to most prior secure computation ORAM research, we

consider the Distributed ORAM model [32], and derive our scheme

from two-server Private Information Retrieval (PIR) techniques. In

PIR, a client wishes to retrieve an element Ai at index i in database

A, copies of which are held by two servers. The client issues a query

q1 (i ) to server 1 and query q2 (i ) to server 2, and the servers respond
with short messagesm1 andm2 respectively, which the client can

1
Wang et al. [43] report on an instance of Circuit ORAM storing 2

30
4-byte elements

using an older implementation of Circuit ORAM that stores its data as XOR-shares

instead of wire labels, but they do not report concrete performance figures for that

size. In this paper we evaluate the faster implementation reported by Zahur et al. [56];
with this implementation, an instance of Circuit ORAM larger than 64 MiB exhausts

the 122 GiB of memory in each of our two test machines.

2
See Figure 9d

use to reconstruct Ai . PIR schemes must satisfy two properties: the

total communication between client and servers must be sub-linear

in n, and the query qp (i ) in isolation must reveal no information

about i .
Gilboa and Ishai [17] and Boyle, Gilboa, and Ishai [11] recently

presented a surprisingly efficient PIR construction that is based on

the notion of a function secret sharing (FSS) scheme for a distributed
point function (DPF). Their construction offers properties new to

PIR which make it well-suited for use in an ORAM for secure

computation. In particular, it produces a query message of size

O (logn), as opposed to the size of O (n
1/3) required by many PIR

schemes [51], and it requires only a cryptographic pseudo-random

generator, whereas other PIR schemes with logarithmic query size

require public key cryptography. We discuss the specifics of this

primitive in Section 2. In our construction, the parties to the secure

computation, Alice and Bob, also act as the two servers in the PIR

scheme, and secure computation performs the role of the client.

Owing to the efficiency of FSS, our ORAM requires a very small

secure computation in comparison to prior ORAM designs (up to

one hundred times smaller for the memory sizes that we explore).

The second novel property offered by Boyle et al.’s PIR scheme is

support for “PIR-writing”, which we use to implement ORAM write

operations, in combination with a standard stash data structure that
retains updated elements until they can be reintegrated into the

ORAM’s main memory. The secure computation needed to imple-

ment the stash has an amortized computation and communication

complexity of O (
√
n) per access; however, as demonstrated by Za-

hur et al. [56], even schemes with a complexity of O (
√
n log 3n)

can outperform poly-logarithmic schemes in practice. Our stash

reintegration procedure is related to our initialization procedure,

and similarly requires linear time with no secure computation.

The theoretical disadvantage of our PIR-derived ORAM stems

from the fact that the servers in a PIR scheme (i.e., Alice and Bob, in

our case) must performO (n) local computation. This is an unavoid-

able property of any PIR system. However, unlike the O (n) secure
computation required by a traditional linear scan, this computation

is simple, highly parallelizable, and enjoys widespread hardware-

acceleration support. In practice, secure computation protocols are

typically bottlenecked by network or single-core CPU performance

and utilize a very small portion of the total computational power

and memory bandwidth available with modern hardware; thus,

the approach of replacing secure computation with asymptotically-

worse local computation can yield significant performance improve-

ments. Despite the poor theoretical complexity of our scheme, we

show via a concrete implementation that it outperforms all prior

ORAMs, even for large datasets.

Due to the heavy influence of the FSS scheme and the fact that the

computation parties make local linear scans of the memory for each

operation, we call our ORAM construction Function-secret-sharing

Linear ORAM, or Floram.

As with most prior ORAM research, our implementation is in

the honest-but-curious adversarial setting. We conjecture that our

scheme can be hardenedmore easily than others due to its simplicity,

but we leave that question for future work.

Organization. The remainder of the paper is organized as follows:

In Section 2, we review definitions of techniques we use, including
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ORAM and the recently developed technique of Function Secret

Sharing. In Section 3 we construct simple single-function ORAMs

based upon FSS, and analyze their properties, and in Section 4 we

combine and extend these constructions to yield a fully functional

ORAM. In Section 5 we present a technique for outsourcing the FSS

computation that yields a significant practical speed increase over a

naïve implementation, and in Section 6 we describe a few additional

optimizations. Finally, in Section 7, we describe an implementation

of our scheme and evaluate its performance. In the Appendices we

give formal definitions and security proofs.

2 BACKGROUND
Secure Multi-party Computation. The field of Secure Multi-Party

Computation (MPC) studies mechanisms by which a group of indi-

viduals, each individual i having some secret input xi , can evaluate

a function y = f (x1,x2, . . .) jointly, in such a way that no party i
learns anything other than what is revealed by the output y and

their private input xi . Specifically, party i must neither learn any

x j for all j , i , nor any intermediate value derived from x j during
the evaluation of f . A special case of MPC is Two-Party Computa-

tion (2PC), in which only two parties, Alice and Bob, participate.

Though many variations of MPC have been developed in its thirty-

plus year history, and it is likely possible to adapt our work to suit

a significant subset of them, this paper focuses on Yao’s Garbled

Circuits [52, 53].

Yao’s Garbled Circuits conforms to the honest-but-curious or semi-
honest security model, in which Alice and Bob are trusted to follow

the protocol instructions, but are curious adversaries who may at-

tempt to learn each others’ secrets by analyzing protocol transcripts.

Outside observers may also analyze protocol transcripts, but must

learn nothing in so doing. Selective security for Yao’s Garbled Cir-

cuits in this model has been proven by Lindell and Pinkas [31], and

adaptive security for circuits in NC1 by Jafargholi and Wichs [27].

We provide a standard security definition in Appendix A.1.

Oblivious RAM. ORAM [21] is a data structure that provides the

familiar semantics of random access memory, but translates the

logical access instructions it receives into sequences of physical

accesses in such a way that no adversary can recover the logical

accesses by observing the physical access patterns. An ORAMmust

support the functions Read(i ) and Write(i,v ), which perform se-

mantic reads and writes to locations specified by a private index i .
An ORAMmay also support functions Apply( f , i,v ), which applies

some function privately to a single location, and Init(V ), which fills

the ORAM with data from the array V .

As traditionally defined, an ORAM must satisfy the security

property that, for any two sequences of logical accesses of the

same length, transcripts of the physical accesses produced must

be indistinguishable. We concern ourselves with a variant, Dis-
tributed Oblivious RAM (DORAM) [32], which considers the context

wherein the underlying memory is split among multiple parties,

and which satisfies a slightly weaker security property: for any

two sequences of logical accesses of the same length, transcripts

of the physical accesses performed by any single party must be

indistinguishable. Intuitively, no party may learn anything about

the semantic memory by observing their own share of the physical

memory. We provide formal definitions for DORAM in Appen-

dix A.2.

ORAMs are traditionally considered to have some manner of

secure CPU that transforms semantic memory accesses into physi-

cal ones. In the setting of MPC, the CPU is typically implemented

as a multiparty protocol. Thus, in some sense, all ORAMs become

DORAMs when applied to MPC: the constructions as wholes can

be only as secure as the MPC protocols that implement their CPUs,

and no protocol can be secure when all participants are corrupt.

For simplicity, we refer to our scheme as an ORAM, except where

the distinction is important.

Function Secret Sharing. Secret Sharing [38] allows a dealer to
divide a secret value intom shares, one for each ofm parties, such

that none of the parties can individually gain any insight into the

secret value, yet allm shares, as a group, contain enough informa-

tion to reconstruct it. Recently, Gilboa and Ishai [17] observed that

it is possible to secret-share a point function using shares with sizes

sublinear in the size of the function’s domain; they call this concept

a Distributed Point Function (DPF). Boyle et al. [11, 12] subsequently
improved upon this work and described how to construct a two-

server PIR scheme using a DPF. We begin by formally defining a

Function Secret Sharing Scheme for two parties.

Definition 2.1 (Point Function). A point function is a function

fα,β : [1,n]→ G such that

fα,β (x ) =



β if x = α

0 otherwise

Definition 2.2 (Function Secret Sharing Scheme for Point Func-
tions [11, 17]). A two-party function secret sharing scheme is a

pair of Probabilistic Polynomial Time algorithms (Gen, Eval) of the
following form

(1) Gen(1λ , (α , β )) is a key generation algorithm, which on in-

put 1
λ
(a security parameter), and a description of a point

function function fα,β , outputs a tuple of keys (k
FSS
a ,k

FSS
b ).

(2) Eval(kFSS
p ,x ) is an evaluation algorithm, which on input kFSS

p
(party key share for party p ∈ {a,b}), and evaluation point

x ∈ [1,n], outputs a group element yxp ∈ G and a bit txp ∈

{0, 1} such that yxp = fp (x ) (party p’s share of f (x )) and t
x
p

is a share of 0 if f (x ) = 0, or a share of 1 otherwise.

Definition 2.3 (Security for an FSS Scheme for Point Functions). A
two-party FSS for point functions is secure if

(1) (Correctness) For all point functions fα,β , and for every

x ∈ [1,n] in the domain of fα,β

(kFSS
a ,k

FSS
b ) ← Gen(1λ , (α , β )) =⇒

Pr

[
Eval(kFSS

a ,x ) − Eval(k
FSS
b ,x ) = f (x )

]
= 1

(2) (Privacy) For every corrupted party p (either a or b), and ev-

ery sequence of point function descriptions f1, f2, . . ., there
exists a simulator Sim such that:{
kFSS
p : (kFSS

a ,k
FSS
b ) ← Gen(1λ , fλ )

}
λ∈N

c
≡

{
Sim(p, 1λ )

}
λ∈N

In other words, the simulator can produce a share (without know-

ing the function) that is indistinguishable from the real share for
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the function. Thus, the function share leaks nothing about fα,β
other than its domain and the group that contains its range.

We summarize the FSS construction of a distributed point func-

tion fα,β from Boyle et al. [11, 12] in Figure 1. The Gen(1λ , (α , β ))
method produces shares kFSS

a , kFSS
b of the point function fα,β . These

shares consist of one private seed each (sa , ta and sb , tb respec-

tively), and the rest of the information in the share is the same for

both parties. The FSS scheme follows a tree-based PRF construc-

tion, wherein each node of the tree is associated with a seed, and

a pseudo-random generator (PRG) is used to double the seed into

two seeds, one for the left child, and one for the right. At each level

j of the tree, Alice and Bob will have exactly the same seed for all

nodes except for the node along the path from the root to the leaf

α . At this node, Alice and Bob have different seeds, s
j,α j
a and s

j,α j
b

respectively, and thus the expansion of their seeds result in different

seeds for the children of this node at level j + 1, s j+1,0a , s j+1,1a and

s j+1,0b , s j+1,1b . The scheme provides a correction word σ j and two ad-
vice bits, τ j,0 and τ j,1, for each level. σ j is conditionally applied to

both child seeds of a node according to t j = Lsb(s j,α jp ) ⊕ t j−1 · τ j,α j .
This modifies the child seeds such that afterward, Alice and Bob

share the same seed for all nodes except for the node along the path

to leaf α . That is, of the two children of each node along the path

to leaf α , for which Alice and Bob’s seeds differ, one is “deactivated”

(i.e. Alice and Bob’s seeds at that position are made identical), and

the other is not. This correction is performed in such a way that

neither party can determine which branch has been deactivated.

A Private Information Retrieval (PIR) system is a mechanism

by which a client may retrieve an item from a database replicated

among some number of servers, without revealing to any server

which item was retrieved. Though similar to ORAMs, PIR systems

are notably distinct: they typically do not concern themselves with

writing or with hiding the contents of the memory from the servers,

they do not require any initialization or allow reorganization of

the database, and they do not incur memory overheads for the

client or servers. On the other hand, PIR schemes take for granted

that servers must perform O (n) work for each access, whereas

ORAM literature has hitherto focused on providing sublinear-in-n
computation complexity.When combined withmemory encryption,

a PIR scheme may be thought of as an Oblivious Read-only Memory

(OROM), and we show how to construct such a primitive from FSS

in Section 3.

3 SINGLE-FUNCTION MEMORY
We begin by explaining how to construct write-only and read-

only random access memories from the FSS scheme described in

Section 2. The constructions presented here may be independently

useful in scenarios wherein simultaneous read andwrite capabilities

are not needed; we combine them into a full ORAM in Section 4.

Oblivious Write-Only Memory. We first construct an Oblivious

Write-Only Memory (OWOM), based on the folkloric technique of

PIR-writing. Both parties hold a local XOR-share of each memory

location; in order to write to a location i (this index being given

as private data within the MPC protocol), the secure computation

must determine the difference,v∆, between the value already stored
there and the value to be written. It must then use the FSS scheme

1 function Gen(1λ, α = αm . . . α2α1, β ):

2 s′0a , s
′0
b

$← {0, 1}λ // pick random seeds

3 t 0a, t
0

b ← a random xor−share of 1

4 for j ∈ [1,m]:

5

{(
s j,0p

���
��� s

j,1
p

)}
p∈{a,b }

←
{
Prg

(
s′j−1p

)}
p∈{a,b }

6 σ j ← s
j,αj
a ⊕ s

j,αj
b // xor off-path children

7 τ j,0 ← Lsb
(
s j,0a

)
⊕ Lsb

(
s j,0b

)
⊕ α j ⊕ 1

8 τ j,1 ← Lsb
(
s j,1a

)
⊕ Lsb

(
s j,1b

)
⊕ α j

9

{
s′jp

}
p∈{a,b }

←

{
s
j,αj
p ⊕ t j−1p · σ j

}
p∈{a,b }

10

{
t jp
}
p∈{a,b }

←
{
Lsb

(
s
αj
p

)
⊕ t j−1p · τ j,αj

}
p∈{a,b }

11 γ ← sma ⊕ s
m
b ⊕ β

12 kFSS
a ←

(
s′0a , t

0

a, {σ
j , τ j,0, τ j,1 }j∈[1,m]

, γ
)

13 kFSS
b ←

(
s′0b , t

0

b, {σ
j , τ j,0, τ j,1 }j∈[1,m]

, γ
)

14 return kFSS
a , kFSS

b

15

16 function Eval(kFSS
p , x = xm . . . x2x1)

17 // Parse key kFSS
p as (s0p, t

0

p, {σ
j , τ j,0, τ j,1 }j∈[1,m]

, γ )

18 for j ∈ [1,m]:

19

(
s j,0���

��� s
j,1

)
← Prg

(
s′j−1

)
20 s′j ← s j,xj ⊕ t j−1 · σ j

21 t j ← Lsb
(
s j,xj

)
⊕ t j−1 · τ j,xj

22 y ← s′m ⊕ tm · γ

23 return y, tm

Figure 1: Pseudocode for the Function Secret Sharing scheme. Our
design follows Boyle et al. [11, 12].

to construct a distributed point function that evaluates to 0 every-

where except location i , whereat the DPF evaluates tov∆. Alice and
Bob individually evaluate their shares of the DPF, and add these

shares into the memory-shares that they hold. Because they are

adding shares of zero at all locations other than i , those values

remain unchanged. At index i , they add shares of the difference be-

tween the old and new values to shares of the old value, producing

shares of the value that was to be written.

More precisely, we represent the value at memory location i
asW i

, and party p’s share asW i
p , whereW

i =W i
a ⊕W

i
b . To write

value W ′i into the memory, the secure computation calculates

v∆ =W i ⊕W ′i and then (kFSS
a ,k

FSS
b ) ← Gen(1λ , (i,v∆ )), delivering

kFSS
a to Alice andkFSS

b to Bob, who use these keys to derive (yxp , t
x
p ) ←

Eval(kFSS
p ,x ) for all x ∈ [1,n]. For the purpose of writing, the parties

will ignore txp and use themain DPF outputyxp , which they XOR into

the underlying memory to perform the write,W ′xp ←W x
p ⊕ y

x
p .

Because write operations are performed by cumulatively XOR-

ing adjustment values with eachW i
, it is necessary to write the

difference between the old and new values, rather than writing

the new value directly. In absence of any mechanism for reading

(or otherwise determining which values are currently stored), this

limits our OWOM to use only in write-only, write-once situations.
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Alice BobSecure Computation
i,v∆

(k
a
FSS,k

b
FSS)        Gen(1λ,i,v∆)

W '
a
x        W

a
x⊕y

a
x

(y
a
x,t

a
x)        

 
Eval(k

a
FSS,x)

W '
b
x        W

b
x⊕y

b
x

(y
b
x,t

b
x)        

 
Eval(k

b
FSS,x)

k
a
FSS k

b
FSS

W
a
1

W
a
2

W
a
3

W
a
n

...

W
b
1

W
b
2

W
b
3

W
b
n

...

Figure 2: Diagram of Oblivious Write-only Memory. To perform a
write, the secure computation generates shares of a DPF, kFSS

a and
kFSS
b , which are distributed to Alice and Bob. Alice and Bob each eval-

uate the DPF at every value x ∈ [1, n] and XOR the result into their
respective corresponding shares of the OWOMmemory.

However, it will become a building block for a full ORAM in the

next section. We depict this scheme in Figure 2.

Oblivious Read-Only Memory. We implement read-only memory

in a manner similar to classic PIR constructions. Alice and Bob,

in their roles as the PIR servers, each hold identical copies of the

memory, masked by the output of a pseudo-random function (PRF)

using a key kPRF
that is known to the secure computation, but not to

Alice or Bob individually. To read an elementRi from thememory at

a private index i (again, this index is given as private data within the
protocol), Alice and Bob engage in a secure computation protocol

to calculate (kFSS
a ,k

FSS
b ) ← Gen(1λ , (i, β )). Each party receives a kFSS

p
and uses it to calculate (yxp , t

x
p ) ← Eval(kFSS

p ,x ) for all x ∈ [1,n].

Although the DPFyxp may have an arbitrary range β , for the purpose
of reading, it is necessary that they hold a DPF of magnitude 1.

Thus, the parties will use the final advice bits, txp , which essentially

represent the same DPF normalized to {0, 1}. Both parties compute

vp =
⊕

x t
x
p · R

x
. According to the properties of our FSS scheme,

since txa = txb for all x , i , it follows that va ⊕ vb = Ri . Finally,
Alice and Bob use a secure computation to evaluate PrfkPRF (i ) ⊕ Ri ,
effectively importing the semantic value of interest into the secure

computation. We depict this scheme in Figure 3.

Though this scheme permits an unlimited number of reads, it

cannot be written. Each party stores a PRF-masked copy (i.e. an

encryption) of the data rather than a secret share: were any sin-

gle memory location to be changed by a write, the access pattern

would be revealed; on the other hand, if all memory locations were

changed during a write, the semantic values of those not being

updated must be destroyed.

Complexity Analysis. For both schemes, the secure FSS compo-

nent (which forms the bulk of the secure computation) is identical.

The computation of Gen(1λ , (α , β )) requires 4 log
2
(n) evaluations

of the PRG function, along with some basic boolean operations. It

must be seeded with random data of length O (λ), and it produces

an output of sizeO (λ logn) where λ is the security parameter. This

output can be revealed to the computation parties all at once, or
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Figure 3: Diagram of Oblivious Read-Only Memory. To perform a
read, the secure computation generates shares of a DPF, kFSS

a and
kFSS
b , which are distributed to Alice and Bob. Alice and Bob each

evaluate a normalized version of the DPF at every value x ∈ [1, n],
calculate the dot product of the normalized DPF with their respec-
tive copies of the OROMmemory, and feed the result back into the
secure computation to compute the value v at location i .

incrementally, in logn chunks of λ bits, one for each layer of the FSS
scheme. In the former case, the secure component incurs a memory

complexity of O (λ logn) and O (1) communication rounds. In the

latter case, the secure component incurs a memory complexity of

O (λ), and no additional rounds, as the secure computation does

not need to wait for replies. In either case, the communication and

computation complexities are O (λ logn).
Subsequently, a local computation is required to construct the

DPF, (yxp , t
x
p ) ← Eval(kFSS

p ,x ) for all x ∈ [1,n]. If all n FSS evalua-

tions are combined into a single operation, then the FSS tree can

be constructed in its entirety only once, requiring O (n) PRG calls.

In the case of a write, each of the n elements in the output DPF’s

domain must be XORed into the corresponding memory location; in

the case of a read, the dot product of the DPF and the memory must

be taken instead. In either case, this incurs O (n) memory accesses.

All of the operations performed by the local FSS evaluation and the

application of the output DPF are highly parallelizable. We make

extensive use of this fact in our concrete implementation, and in

Section 7 we show experimentally that the local component does

not become a significant burden until the amount of data stored is

on the order of hundreds of megabytes.

4 READING ANDWRITING
We now combine the OWOM and OROM from Section 3 into an

ORAM construction. We need a few building blocks in order to

make this combination possible, and conjecture that these building

blocks are sufficient for the combination of any PIR and PIR-writing

schemes into an ORAM, assuming that the schemes themselves

are suitable (that is, their access patterns and underlying memory

formats are secure).
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Figure 4: Diagram of the Floram Refresh method. In addition to the
operations illustrated here, the secure computation must clear the
stash.

At a high level, the construction works as follows: we initialize

both an OROM and an OWOM with the same data, and create a

linear-scan stash that stores elements while they are waiting to

be returned to the main memory. Read operations are performed

by inspecting both the stash and the OROM, and returning the

most recent data.Write operations are performed by first reading

the current value at the specified index, using it to calculate the

difference necessary to correctly update the OWOM, and finally

writing the new value into both the OWOM and the stash. When

the stash fills, we perform a refresh operation to convert the OWOM

memory into OROM memory, and then clear the stash. The cost

of this refresh can be amortized over the refresh period of the

construction. Because we use this stash-and-refresh technique, our

amortized secure computation complexity becomes O (
√
n).

Refresh Procedure. To refresh our ORAM construction, we need

to convert the underlyingmemory of anOWOM into the underlying

memory of an OROM. The former stores its data as XOR-shares,

while the latter uses a masked copy of the data as the underlying

format. We can avoid incurring any secure computation overhead

at all if, instead of masking the OROM memory only once, using a

key known only to the secure computation, we mask it first with a

key known only to Alice, and then with a key known only to Bob.

To convert the OWOM into an OROM, Alice and Bob mask their

local OWOMmemory shares using two PRFs with individual secret

keys, kPRF
a and kPRF

b .

W ′p ←
{
W ′xp ← PrfkPRF

p
(x ) ⊕W x

p

}
x ∈[1,n]

They each transmit their masked OWOM memory share to the

other party, and both parties calculate

R′ ←
{
R′x ←W ′xa ⊕W

′x
b

}
x ∈[1,n]

Finally, each party feeds their key kPRF
p into the secure computation,

so that the OROM memory can be unmasked via v ← PrfkPRF
a (x ) ⊕

PrfkPRF
b

(x ) ⊕ Rx . This refresh procedure is illustrated in Figure 4.

Unlike previous Square-root ORAM constructions [21, 56], our

refresh procedure does not require access to the stash. Instead,

we simply clear it. Our stash serves only the purpose of allowing

updated elements to be accessed multiple times between refreshes.

Semi-private Access. It may be the case that some algorithms

call for both private (i.e. data-dependent) and data independent

accesses to the same memory. Ostrovsky and Shoup refer to the

latter type of accesses as semi-private [35]. To our knowledge, it

has heretofore been necessary to implement all accesses as fully
private accesses in such a scenario, or to perform costly import

and export operations upon the entire ORAM. Floram, however,

allows for a secondary, semi-private access mechanism, which has

a significantly reduced asymptotic and practical cost. Unlike all

other ORAMs of which we are aware, Floram stores each memory

element at the physical address corresponding to its semantic index.

Thus, to read the element at the publicly known semantic index

i , the two parties feed their OWOM memory sharesW i
a andW i

b
into the secure computation, which computes the valueW i

inO (1)
complexity (and potentially using only free gates [29]). Semi-private

writes must additionally append to the stash.

Private Read Access. Read operations that are publicly known to

be read operations can also be performed without invoking the

full-access mechanism: neither a write to the stash nor a write to

the OWOM is required. Because no write to the stash is required,

ORAM reads do not contribute to the refresh period.

Full Private Access. A full private access accepts some arbitrary

oblivious function f and applies it to a single element within the

ORAM. f takes an ORAM element and some auxiliary input v f
,

and produces a new element and some auxiliary output yf . We use

this general-purpose mechanism to implement ORAM writes via

simple fwrite that returns v
f
as the output element. To perform a

full access, our scheme first retrieves the desired element from the

OROM, then scans the stash to determine whether a newer version

of the same element exists. f is then applied to it. Finally, the result

is stored using an OWOM operation and appended to the stash.

Because the OROM and OWOM access the same element, they can

share a single FSS evaluation. This process is illustrated in Figure 5.

Initialization. The initialization of our ORAM can be performed

efficiently using the mechanism for refreshing that we described

earlier. That is, assuming that the parties begin with some secret

sharing of the data values with which the ORAM is to be filled,

they may initialize it by copying those shares into the OWOM’s

memory and performing a refresh. If the ORAM is hosted by a Yao’s

Garbled Circuits protocol, then the point-and-permute technique

of Beaver et al. [4] can be used to encode XOR shares of the data

within the protocol’s wire labels, effectively making the generation

of shares a free action. Furthermore, because this technique encodes

the XOR sharing of each data bit only in the final bit of a much

larger wire-label, it is actually a significant constant factor faster
to initialize our ORAM than it is to perform a single linear scan on

the same data. To our knowledge, this property is unique among

all known ORAMs.
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Figure 5: Diagram of the Floram Access method. Note that β is ran-
domly chosen on each access.

Complexity Analysis. If we briefly set aside the stash, the com-

plexities of our scheme for full access to private indices closely

follow the complexities of the individual components described in

Section 3. That is, each access requires a single FSS Gen execution

within the secure context, incurring O (logn) communication and

secure computation, followed by the evaluation of the DPF at all

points in its domain, incurring O (n) local computation by both

parties. This is in turn followed by a memory scan for the ROM

component, adding a furtherO (n) local computation, an unmasking

within the secure computation context, which accounts for O (1)
communication and secure computation complexity, and a local

memory scan for theWOM component, which incurs a furtherO (n)
local computation. Thus, still ignoring the stash, a standard access

operation incurs O (logn) secure computation and communication

overall, as well as O (n) local computation.

The stash must be traversed on each access, and its length de-

pends upon the refresh period of the ORAM. The refresh opera-

tion requires a simple masking (i.e. encryption), transmission, and

element-wise XOR ofnmemory elements by each of the two parties,

without any secure computation. Thus the total cost of a refresh

is O (n) in terms of local computation and communication. This is

optimally amortized overO (
√
n) accesses, and thus the cost of each

access must include the cost of scanning O (
√
n) elements in the

stash. The optimal constant can be determined by the relative costs

of secure and local scans. Our concrete implementation uses a stash

of size

√
n/8. A summary of these costs, along with comparisons to

other ORAM schemes, is provided in Table 1.

The asymptotic complexity of our initialization procedure is

O (n) in terms of local computation, memory, and communication.

Like the refresh procedure on which it is based, it requires no

secure computation at all. This is optimal, at least from a complexity

standpoint. Furthermore, as we shall see in Section 7, the practical

costs of our initialization procedure are so low that it is actually

faster in practice than a simple memcpy over the same data.

Comparison to other ORAM schemes. Our ORAM scheme stands

in contrast to those that have preceded it in a number of respects, as

summarized in Table 1. Here we discuss their implications.We focus

primarily on the secure component of our scheme (which cannot

be parallelized), and explore the practical consequences of the local

component in Section 7. Although our ORAM uses a simple stash

that incurs square-root overhead, it does not use recursive position

maps or permutations required by Zahur et al.’s construction [56],

nor does it need the sorting and binary searching required by the

classic Goldreich and Ostrovsky construction [21]. Consequently,

its optimal stash size is much smaller. Moreover, our scheme can

be refreshed more efficiently than that of Zahur et al., and much

more efficiently than classic Square-root ORAM, which requires

O (n) encryptions within the secure context as well as an oblivious

sort for each refresh operation. In previous Square-root ORAM con-

structions, stash scan and amortized refresh operations accounted

for the vast majority of per-access cost; in having provided asymp-

totic improvements to both (as well as significant constant cost

improvements), we have made our new ORAM far more suitable

than its predecessors for handling large data sizes. On the other

hand, our ORAM requiresO (logn) calls to a PRG within the secure

context for each access. Because these PRG calls are expensive,

our ORAM is less suitable than that of Zahur et al. for small data

sizes. In Section 5, we describe a method for reducing the number

of secure PRG calls to O (1) at the cost of incurring O (logn) com-

munication rounds. This significantly improves our performance

for small values of n, but for very small values, the construction of

Zahur et al. remains more efficient in practice.

A comparison to Circuit ORAM (and other tree-based ORAMs) is

somewhat less straightforward. Our ORAM enjoys an initialization

procedure many orders of magnitude more efficient; however, in

terms of access complexity, Circuit ORAM remains ahead. Nonethe-

less, as we shall discuss in Section 7, reduction in constant costs

renders our scheme far more efficient in practice. Boyle et al. [10]
propose a parallelizationmethod for tree-basedORAMs, fromwhich

it is possible to derive an initialization procedure that uses permu-

tations in place of individual writes. With this mechanism, Circuit

ORAMs could achieve initialization performance similar to that of

Zahur et al.’s construction, at best.3 Although the local component

of our ORAM is highly parallelizable, no equivalent parallelization

scheme for our secure component is possible.

Finally, it is worthwhile to acknowledge the distinctions between

our scheme and the recent work of Abraham et al. [2], which also

combined ORAM with PIR. Like Floram, their scheme is properly

a Distributed ORAM, but in contrast, their scheme uses PIR to

3
This mechanism has not yet been implemented, so we cannot currently provide

concrete data to support this claim.
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Access Initialization

Floram Florom Square-root Circuit Floram Florom Square-root Circuit

Secure Comp. O (
√
n) O (logn) O (

√
n log

3 n) O (log3 n) – – O (n log
2 n) O (n log

3 n)
Local Comp. O (n) O (n) O (

√
n logn) O (1) O (n) O (n) O (n logn) O (1)

Communication O (
√
n) O (logn) O (

√
n log

3 n) O (log3 n) O (n) O (n) O (n log
2 n) O (n log

3 n)
Rounds O (1) O (1) O (logn) O (logn) O (1) O (1) O (logn) O (n logn)

Table 1: Access and Initialization Complexities. Complexities include amortized refresh operations where relevant. Florom refers an instanti-
ation of Floram with a stash size of zero (i.e. one which has recently been refreshed); due to the fact that only writes increase the stash size,
refreshes can be forced before long sequences of reads to achieve these complexities.

retrieve single elements along the branches of a larger recursive

tree ORAM. Consequently, it shares more with Circuit ORAM and

Onion ORAM [15] than it does with our scheme. They optimize

for communication overhead, and their scheme achieves a commu-

nication complexity of O (logn) per access, which we can match

only when no writes are performed. Furthermore, it is likely that

PIR-server computation is significantly less burdensome in their

scheme, since their PIR requires no PRG and is evaluated over only

O (logn) elements. On the other hand, they primarily consider the

outsourcing model, and do not account for costs in an MPC context.

We find it likely
4
that these would be similar to Circuit ORAM.

Security Analysis. To argue that our scheme is semi-honest se-

cureunder the definition of security given in Appendix A.2, we

must present a simulator that produces a party’s view of an ORAM

operation (without receiving any information about other parties’

private inputs) that is indistinguishable from the same party’s view

of the real ORAM operation. Simulators for access and initializa-

tion, along with proofs of computational indistinguishability, are

presented in Appendix B.1. Informally, the security of our scheme

follows from the security properties of the MPC technique chosen

to host the construction and the security of the FSS scheme, which

guarantees that the neither the FSS key share nor the output leaks

any information about the associated point function, other than its

domain and range. The underlying memory itself reveals nothing

about its contents due to its mechanism of representation: each

party views an OROM memory that is masked by the output of a

PRF for which they key is not known, as well as an information-

theoretically secure secret-share of an OWOM memory

PRG and PRF. Among several options for the PRG, we have

chosen AES-128 [1]. Significant research effort has been put toward

optimizing the boolean-circuit representation of AES [8, 50], and

these optimizations have naturally been adapted for the context

of secure computation [26]. Specifically, we use the AES S-box

circuit of Boyar and Peralta [9], which requires less than 5000

non-free gates per block, and we accelerate local AES evaluations

using Intel’s AES-NI instruction set. In order to avoid the cost of

repeated key expansion, we assume that AES satisfies the ideal

cipher property and use the Davies-Meyer construction [49], with

independent keys for left and right expansions in the FSS tree. We

use AES in counter mode as the PRF that masks the OROM.

4
As we have no implementation of their scheme (MPC-oriented or otherwise), we

cannot perform a practical evaluation.

5 CONSTANT SECURE PRG EVALUATIONS
The costliest single component of our scheme is the repeated evalu-

ation of the PRG function within the secure computation of the FSS

Gen algorithm. In this section, we present an optimization that can

be used to achieve a significant constant-factor speed improvement

relative to a naïve implementation by outsourcing the evaluations

of the PRG in the FSS Gen algorithm to Alice and Bob. That is,

instead of Alice and Bob performing a single secure computation

which usesO (logn) PRG expansions to compute their shares of the

FSS key (line 5 in Figure 1), we instead divide Gen intom = log
2
n

iterative computations that compute the FSS key one part at a time.

Surprisingly, we can divide the computation in a manner that re-

quires no PRG evaluations inside the secure computation, and that

also maintains the security properties of the original.
5
Specifically,

we devise an equivalent method of computing the value σ j (line 6
in Figure 1) that does not require the PRG to be evaluated in a

secure computation. Hereafter, we refer to this as the Constant PRG
or CPRG optimization.

Thus far, our FSS notation has only identified seeds s
j,α j
p that

are on the path from the root to the leaf α in the FSS evaluation

tree. We now introduce notation to identify all of the nodes in the

evaluation tree. Let S
j, ℓ
p denote the ℓth node from the left at level j

of player p’s FSS evaluation tree, where p ∈ {a,b}, j ∈ [1,m], and

ℓ ∈ [0, 2j ). Thus, seed s
j,α j
a can also be identified as node S

j,α ∗ja
where α∗j is the integer with the binary representation α j . . . α2α1.

Next, we observe that the FSS construction guarantees that at

any level j, S
j, ℓ
a = S

j, ℓ
b for all ℓ , α∗ (that is, for all nodes except

the one along the path to leaf α ), and S
j,α ∗ja , S

j,α ∗j
b . It follows that

all of the PRG expansions of the nodes at level j , i.e., the uncorrected
children at level j + 1, are equal except for the two children of the

node along the path to α . Finally, consider the sum of the PRG

expansions of S
j, ℓ
p for ℓ ∈ [0, 2j ):

(
z
j+1,0
p

����
����z
j+1,1
p

)
=

⊕
ℓ∈[0,2j )

Prg
(
S
j, ℓ
p

)

5
i.e., we will still be able to simulate the view of Alice or Bob given only the output of

the function. Notice that we would not be able to simulate the view if our protocol

simply asked Alice and Bob to evaluate line 5 in Figure 1.
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Figure 6: Diagram of the modified Gen/Eval algorithm used by the CPRG optimization. Variables and processes for which Alice and Bob’s
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From the above, we have:

z
j,0
a ⊕ z

j,0
b = s

j,0
a ⊕ s

j,0
b

z
j,1
a ⊕ z

j,1
b = s

j,1
a ⊕ s

j,1
b

σ j = z
j,α j
a ⊕ z

j,α j
b

Thus, we instruct Alice and Bob to locally compute z
j,0
p and z

j,1
p

by accumulating the XOR of all left children and all right children

at each level. These two values are submitted to a secure computa-

tion, which selects the correct sum using bit α j , computes the next

advice words (σ j ,τ j,0,τ j,1) and returns them to both parties. Both

parties can then apply these values (per lines 9–10 in Figure 1) to

generate the corrected seeds for all nodes at the next level, and then

continue the process until levelm. Revised pseudocode is presented

in Figure 7. Although we model this function as returning a pair of

key values (kFSS
a ,k

FSS
b ), note that most components of each party’s

key are revealed to them over the course of the function, and fur-

thermore, that both parties will have had to perform most of the

work of evaluating Eval(kFSS
p ,x ) for all x ∈ [1,n] in order to calcu-

late (z
j,0
p , z

j,1
p ). Consequently, in practice, the CPRG-optimizedGen

algorithm returns only those key components that have not already

been revealed, and Alice and Bob evaluate Eval simultaneously with

the evaluation of Gen. This process is illustrated in Figure 6.

9



1 function Gen(1λ, α = αm . . . α2α1, β ):

2 S ′0,0a , S ′0,0b
$← {0, 1}λ // pick random seeds

3 t 0,0a , t 0,0b ← a random xor−share of 1

4 for j ∈ [1,m]:

5 for p ∈ {a, b }: // local computations

6

{(
S j,2ℓp

����
����S
j,2ℓ+1
p

)}
ℓ∈[0,2j−1 )

←

{
Prg

(
S ′j−1, ℓp

)}
ℓ∈[0,2j−1 )

7 z j,0p ←

(⊕
ℓ∈[0,2j−1 ) S

j,2ℓ
p

)
8 z j,1p ←

(⊕
ℓ∈[0,2j−1 ) S

j,2ℓ+1
p

)
9 σ j ← z

j,αj
a ⊕ z

j,αj
b // xor off-path children

10 τ j,0 ← Lsb
(
z j,0a

)
⊕ Lsb

(
z j,0b

)
⊕ α j ⊕ 1

11 τ j,1 ← Lsb
(
z j,1a

)
⊕ Lsb

(
z j,1b

)
⊕ α j

12 for p ∈ {a, b }: // local computations

13

{
S ′j, ℓp

}
ℓ∈[0,2j )

←

{
S j, ℓp ⊕ t j−1, ⌊ℓ/2⌋p · σ j

}
ℓ∈[0,2j )

14

{
t j, ℓp

}
ℓ∈[0,2j )

←

{
Lsb

(
S j, ℓp

)
⊕ t j−1, ⌊ℓ/2⌋p · τ j,Lsb(ℓ)

}
ℓ∈[0,2j )

15 γ ← zm,αm
a ⊕ zm,αm

b ⊕ σm ⊕ β

16 kFSS
a ←

(
S ′0,0a , t 0,0a , {σ j , τ j,0, τ j,1 }j∈[1,m]

, γ
)

17 kFSS
b ←

(
S ′0,0b , t 0,0b , {σ j , τ j,0, τ j,1 }j∈[1,m]

, γ
)

18 return kFSS
a , kFSS

b

Figure 7: Pseudocode for the Constant PRG optimization applied to
the FSS Genmethod. This optimization is discussed in Section 5.

Security Analysis. Relative to the originalGen algorithm, nothing

additional is revealed to either party, i.e., the output of the CPRG-

optimized Gen is exactly the same, and the view of each party can

be easily simulated with the final key. The only difference is that

the advice strings included in the output key are revealed one by

one. In the honest-but-curious setting that we consider here, the

adversary has no additional power when receiving outputs in this

manner.

Efficiency Analysis. The CPRG optimization requires no calls to

the PRG function within the secure evaluation ofGen, and only two
calls to the PRF to unmask the value retrieved from the OROM. We

still perform O (logn) differencing and advice bit generation steps,

but these require only a handful of gates each. On the other hand,

our local stage now requires a reduction to be performed over all

of the blocks in each layer of the FSS Eval algorithm. Consequently,

this variant is significantly more efficient for small and medium

sizedmemories, where secure computation dominates total runtime,

but slightly less efficient for memories on the scale of gigabytes, as

shown by our evaluations in Section 7.

6 TECHNIQUES AND OPTIMIZATIONS
In this section we present a few additional optimizations that we

employ to improve the practical performance of Floram.

6.1 Tree Trimming
During private read operations (that is, accesses wherein the index

i is private but the operation is publicly known to be a read), the

scheme as previously described generates a full FSS tree with one

leaf per ORAM element, but uses only the DPF t and never the

DPF y. As an optimization, we can truncate the last log
2
(log

2
( |G |))

levels of the FSS tree, split each leaf into individual bits, and set

β = 2
(i mod log

2
( |G |))

such that the bits formed from y are equiv-

alent to the bits t would otherwise have held. As can be seen in

Figure 8, in both the standard FSS and CPRG cases these last levels

(seven in our implementation) are by far the most expensive.

In the standard FSS case, we may save some additional time

by trimming the root of the tree. The first five iterations of the

loop in the FSS Gen algorithm expand a single seed into 32. In

our implementation (without the CPRG optimization), these five

loops account for roughly 100,000 non-free gates in the secure

computation. As an optimization, we eliminate them, and instead

collect enough random coins from each party to generate 32 seeds

directly, and include all of them in the output keys. This increases

the input size of the secure computation that evaluatesGen, but the
savings are nonetheless substantial. The Eval method is similarly

changed to index the correct starting seed from the 32 in the key.

6.2 Multithreading and Scheduling
We interleave several steps of our ORAM for efficiency. First, as

the secure computation produces the output of Gen, we use sepa-
rate threads to begin the local Eval steps. This interleaving incurs
no additional round trips and does not increase communications

costs, and thus it can only improve timing. Second, the stash scan

does not depend on the FSS construction or the OROM and can be

performed simultaneously with the final layer of the FSS Eval and
the OROM memory scan. In the case of the CPRG optimization, it

can also be interleaved with the secure FSS Gen function. Together,

these optimizations allow non-dominant components of our ORAM

scheme to effectively disappear behind dominant components, an

effect that is illustrated in the concrete benchmarks that we present

in Section 7. Using the benchmarking setup described in Section 7,

and an instrumented version of our code-base, we recorded a de-

tailed wall-clock profile, to illustrate both the temporal layout of our

scheduling strategy as it appears in practice, and the relative costs

of Floram’s various parts. We recorded this profile both for standard

Floram, and for the CPRG variant, for ORAMs of 2
20

and 2
30

4-byte

elements. The results are presented as a diagram in Figure 8.

7 EVALUATION
Experimental Setup. We implemented and benchmarked Floram,

using Obliv-C [54], a C derivate that compiles and executes Yao’s

Garbled Circuits protocols [52] with many protocol-level optimiza-

tions [4, 5, 26, 29, 55]. Additionally, we made use of Obliv-C-based

Square-root and Circuit ORAM implementations that were pro-

vided by the original authors of those works and are identical to

the ones reported on previously by Zahur et al. [56].
We created two variants of our ORAM, one using the basic con-

struction described in Section 4, and the other using the CPRG

method from Section 5. Both variants have optimized scheduling,

as described in Section 6.2. Our concrete implementation uses a 128
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Floram Standard - 220 elements

Floram CPRG - 220 elements

FSS Eval

Floram Standard - 230 elements

Floram CPRG - 230 elements
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117ms

Figure 8: Scheduling diagram for an ORAM access operation. This illustrates the way in which we interleave the various operations of our
ORAM. The x-axis represents time, in milliseconds, and the y-axes represent the divide between secure computation, and local computation.
Times are averages from a number of samples that is greater than 100 and a multiple of the refresh period. Elements are 4 bytes. Cross-
hatching indicates regions wherein two components are scheduled to run simultaneously, and may preempt one another. The misc category
includes time spent allocating and copying memory, managing threads, and performing other local setup tasks.

bit block size, this being the block size of AES-128, our chosen PRG

function. For ORAMs with element sizes smaller than 128 bits, we

pack multiple elements into a single block and linearly scan them.

For ORAMS with element sizes greater than 128 bits, we perform

an additional expansion and correction stage after the last layer of

the FSS in order to enlarge the blocks to the correct length.

Our benchmarks were performed under Ubuntu 16.04 with Linux

kernel 4.4.0 64-bit, running on a pair of identical Amazon EC2

R4.4xlarge instances. All code was compiled using gcc version

5.4.0, with the -O3 flag enabled, OpenMP was used to manage multi-

threading and SIMD operations, and local AES computations were

implemented using Intel’s AES-NI instructions. Each machine had

122GB of DDR4 memory and eight physical cores partitioned from

an Intel Xeon E5-2686 v4 CPU clocked at 2.3 GHz, each core being

capable of executing two threads. We measured the bandwidth be-

tween our two instances to be roughly four gigabits per second. In

order to ensure that the secure computation would be bandwidth-

bound, as we would expect it to be in real-world conditions, we

artificially restricted the bandwidth to 500 megabits per second,

using the linux tool tc.

Multithreading. Our two Floram implementations make exten-

sive use of multithreading for their local components, but we have

not attempted to multithread their secure components, nor have

we multithreaded the other ORAMs against which we make com-

parisons. Multithreading a secure computation does not reduce

the total communication between parties, and thus in bandwidth-

bound environments provides no advantage. Neither Square-root

nor Circuit ORAM performs significant local computation, and so

they cannot benefit significantly from local parallelism.

7.1 Full ORAMMicrobenchmarks
Full Access. We performed single-access microbenchmarks for

Floram, as well as Floram with the CPRG optimization discussed

in Section 5. For the purpose of comparison, we also performed

benchmarks for the Square-root ORAM of Zahur et al. [56], Circuit
ORAM [43], and linear scan. For all ORAMs, we used an element

sizes of 4 bytes. For linear scan, we varied the number of ORAM

elements between 2
5
and 2

20
, and for Square-root ORAM, between

2
5
and 2

22
. In both cases, this is far past the range in which those

schemes are competitive. For Circuit ORAM, we performed bench-

marks with up to 2
24

4-byte elements, corresponding to 64 MiB

of data; beyond this the ORAM’s physical size was so large that it

could not be instantiated on our machine. We benchmarked Floram

with sizes up to 2
32

4-byte elements, corresponding to 16 GiB of

data; these were the largest instances that our machine could handle.

We recorded the wall-clock times for both parties, the number of

11
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Figure 9: Microbenchmark Results. Access figures are averages from at least 100 samples; for refreshing ORAMs, the sample count was a
multiple of the refresh period. Initialization figures are averages from 30 samples. For all benchmarks, elements were 4 bytes in size.

bytes transmitted, and the number of non-free Yao gates executed.

Our results are reported in Figures 9a, 9b, and 9c, respectively.

As we expected, the wall-clock time of our scheme exhibits

a piecewise behavior. Up to roughly 2
25

4-byte elements, secure

computation (specifically, the FSS Gen algorithm) dominates the

total access time, and thus the time grows withO (logn)—noticeably
more slowly than any other ORAM. In this region, as expected, the

CPRG optimization leads to a significant concrete performance

gain, amounting to roughly a four-fold improvement. Beyond 2
25

elements, local computation becomes the dominant factor, and thus

the wall-clock time grows with O (n) and the standard FSS scheme

becomes more efficient. We estimate that the break-even point with

Circuit ORAM lies at 2
30

elements.

Initialization. We also performed initialization benchmarks. That

is, beginning with an array of data, we evaluated each construc-

tion’s native mechanism for importing that data into a fresh ORAM

instance. As before, we varied the number of elements for linear

scan between 2
5
and 2

20
, and for Square-root ORAM between 2

5

and 2
22
. Circuit ORAM has the slowest initialization process by

several orders of magnitude, and so we benchmarked only up to 2
14

elements, after which continuing was impractical. Both variants

of Floram share the same initialization procedure, and we tested

instances up to the largest size that our machines supported: 2
32

4-byte elements, or 16 GiB of data in total. Results for wall-clock

time and total communication are reported in Figures 9d and 9e

respectively; gate counts are not reported, as our ORAM requires

no gates to initialize.

As we expected, our ORAM has a clear asymptotic advantage

over other schemes in terms of initialization. Moreover, at 2
22

el-

ements, it has a 4500-fold concrete performance advantage over

Square-root ORAM, the fastest previously known construction in

this respect. In fact, in the context of garbled circuits, our con-

struction even initializes somewhat faster than a linear scan, which

requires only a simple memcpy by each party. Thus, so long as a

single access in our scheme is faster than a single linear scan, the

efficiency break-even point between the two is exactly one access.
This is far better than other schemes, which require Ω(logn) ac-
cesses in order to reach their break-even points.

Thread-restrictedMicrobenchmarks. Although ourORAM is bound

by secure computation at small sizes, for very large instances, the

local component becomes the dominant factor. Here we analyze its

performance when a varying number of threads are used, in order

to assess the performance of our algorithms in contexts where a

high level of parallelism may not be available. We collected samples

for each combination of ORAMs of 2
10, 215, 220, 225, and 2

30
4-byte

elements, and 1, 2, 4, 8, and 16 threads. The results are plotted in

Figure 10.
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Figure 10: Thread-limited Access Wall-clock Time. Sample counts
are multiples of the refresh period. Elements are 4 bytes.

At small ORAM sizes, where the entire computation might fit

into the CPU cache, it is unsurprisingly the case that additional

threads decrease performance. It is not until the linear component

of our ORAM’s complexity becomes dominant that parallelism

makes a significant difference. Note that at 2
25

elements and greater,

the execution time decreases nearly linearly with threadcount, for

threadcounts of eight and fewer. As our benchmark machines have

only eight physical CPU cores, using more than eight threads offers

little to no advantage.

7.2 Applications
In order to assess the performance of our ORAM construction in

realistic scenarios, we implemented two secure applications, and

benchmarked them with each of the ORAMs considered previously.

Binary Search. In order to highlight the ways in which the novel

properties of our ORAM differentiate it from previous ORAM con-

structions, we begin with a simple binary search benchmark. The

use of ORAM for performing binary searches was first considered

by Gordon et al. [25], who reported that searching a database of

n s Linear Circuit Square-root Floram CPRG

2
15

1 2.80 5192.4 12.87 0.79 0.37
2
5

89.75 5284.2 37.24 23.73 11.15
2
10

2872.1 8126.8 1210.0 758.89 358.0

2
20

1 89.52 – 690.99 2.04 0.99
2
5

2864.5 – 800.23 56.94 21.94
2
10

91,663. – 12,736. 1826.5 697.65

2
25

1 2864.5 – – 14.37 11.55

Table 2: Binary Search Benchmark Results. We measured the wall-
clock time required for s searches through n 16-byte data elements,
including initialization. Figures are averages in seconds from 30
samples for databases of 2

15 elements, or 3 samples for larger
databases. Linear scan figures are estimated from results in Sec-
tion 7.1.

2
20

64-byte elements required roughly 1000 seconds.
6
Our ORAM

benchmark procedure is derived from that used by Square-root

ORAM [56]: first, the data is loaded from secure computation into

an ORAM, and then a number of searches are performed (each re-

quiring log
2
n semantic accesses to complete). In this context, linear

scan has a special advantage: because it touches each element in

the memory, it requires only a single semantic access to perform

a search. As a consequence of this property, ORAM has thus far

yielded little improvement over the trivial solution for the problem

of searching.

We executed instances of this benchmark upon databases of 2
15

and 2
20

16-byte elements, with 1, 2
5
, and 2

10
searches being per-

formed. In addition, we benchmarked single searches of databases

of 2
25

elements under Floram (due to exhaustion of memory, it was

not possible to instantiate Square-root or Circuit ORAMs of this

size). We do not include in our benchmark the cost of sorting the

data, which is unnecessary for the linear scan solution. Sorting

can be performed with a Batcher Mergesort [3] inO (n log2 n), with
practical costs being lower than the that of instantiating any of the

tested ORAMs, other than Floram. Results are reported in Table 2.

Floram has the fastest access and initialization procedures at

these sizes, and so, not surprisingly, it is the fastest among the

ORAMs regardless of the number of searches performed. What is

surprising, however, is that it is significantly faster than linear scan,

even when only a single search is performed. To our knowledge, such
a thing is not possible under any other ORAM scheme, at any data

size. Our scheme achieves this due to the fact that, considering

initialization and a single access, only two full scans of XOR shares

are required, whereas in the context of Yao’s Garbled Circuits a

linear scan requires iterating over wire labels that are at least eighty

times larger than the equivalent secret-shared representation.

Stable Matching. Many previous research efforts have sought to

optimize the secure evaluation of the Gale-Shapley algorithm for

stable matching. Recently, Doerner et al. [16] developed algorithmic

6
Though we show significant improvement upon this number, our construction is

not directly comparable to theirs, due to differences in the underlying protocol and

benchmarking hardware.
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Square-root Floram CPRG

Wall-clock Time (Hours) 28.98 15.78
Billions of Non-free Gates 226.87 143.29

Table 3: Roth-Peranson Benchmark Results. Our wall-clock time
result for Square-root ORAM differs from that presented by Do-
erner et al. [16]; this is due to differences in benchmarking envi-
ronments used.

improvements which yielded a significant increase in asymptotic

and concrete performance, allowing them to execute a secure stable

matching using the related Roth-Peranson algorithm on the scale of

the stable matching performed annually by the National Resident

Matching Program (NRMP) to match graduating doctors to medical

residencies in the United States. This algorithm requires O (nr )
ORAM accesses in n, the number of doctors, and r , the number

of hospitals for which the doctors are allowed to submit rankings,

to a comparatively small ORAM of size O (m) in m, the number

of hospitals (in practice, around 5000 for NRMP-scale matchings).

Nonetheless, in terms of gates, the NRMP matching is one of the

largest secure computations ever reported. In other words, this is a

benchmark for which Floram’s initialization advantagematters very

little. The parameters of the benchmark were derived by Doerner

et al. from the 2016 NRMP Statistical Report; specifically: 35,476

residents submitting up to 15 rankings each, and 4836 hospitals

submitting up to 120 rankings each, and having at most 12 open

positions. Individual preferences were generated at random. We

collected one sample each for Square-root ORAM and Floram CPRG,

and, following Doerner et al., we did not collect any data for Circuit
ORAM or linear scan, which would not be competitive. The results

are shown in Table 3, and demonstrate a factor of 1.83 improvement

over prior work for a very small ORAM used in a real application.

7.3 Notes on Scalability
The title of this document is “Scaling ORAM for Secure Computa-

tion”, and so it is fitting that we should comment upon the limits

of scaling, and how well we believe our implementation has fared

relative to the theoretical possibilities. At 2
32

four-byte elements,

we measured our scheme to require 6.3 seconds to complete an

access, on average. During this time, it reads the underlying mem-

ories of both the WOM and the ROM, and writes the WOM. In

the course of the FSS Eval algorithm, it both reads and writes an

amount of data equal to twice the size of theWOM or ROMmemory.

The stash is negligible in size by comparison. Thus, the amount of

data transferred to and from memory inside each local machine

is 2
32 · 4 · 7 bytes in total, or 120.3 gigabytes, at 152.8 gigabits per

second. For comparison, a single DDR4-2400 memory controller

has a maximum bandwidth of 153.6 gigabits per second. We do

not know exactly how resources are apportioned among EC2 in-

stances, but we do know that we are renting eight of the 18 physical

cores in a single CPU, and that those 18 physical cores share four

memory controllers. If partitioning were perfectly fair, we would

expect our instance to have access to slightly less than two memory

controllers’ worth of bandwidth. Thus, we conjecture that we are

within roughly a factor of two of the best possible performance on

our test hardware. This is not bad, considering that the paralleliza-

tion and scheduling of our implementation are not hand-tuned, and

we have taken no pains to ensure proper affinity between CPU and

memory.

At large sizes, local CPU and memory bandwidths are the de-

finitive bottlenecks for our scheme. These are easily increased: in

modern systems each additional processor has its own set of mem-

ory controllers. Furthermore, our algorithm is parallel in such a

way that it can be run on a cluster with little performance loss: only

log(n) synchronizations per access would be required, and each

synchronization involves the transfer of a small, constant amount

of data. We suggest that further scaling and performance improve-

ment can be accomplished by the addition of computing hardware,

which is typically cheap relative to the cost of additional bandwidth,

as would be incurred were our scheme network bound.
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CODE AVAILABILITY
Complete reference implementations of the constructions described

in this paper along with implementations of Square-root and Circuit

ORAM sharing a common interface are available under the 3-clause

BSD license from https://gitlab.com/neucrypt/floram.
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A DEFINITIONS
A.1 Security
We first recall the semi-honest security model in which we claim

our scheme is secure.

Definition A.1 (Semi-honest Security [19, 31]). Let F = (Fa ,Fb )
be a probabilistic polynomial time functionality, and let π be a two

party protocol for computing F such that party A supplies input

xa and receives output Fa (xa ,xb ), while party B supplies input xb
and receives output Fb (xa ,xb ), with |xa | = |xb |. π is considered

secure in the presence of static semi-honest adversaries if there

exist probabilistic polynomial-time simulators Sima and Simb such

that{(
Simp

(
1
λ ,xp ,Fp

(
xa ,xb

))
,F

(
1
λ ,xa ,xb

))}
λ∈N,xa,xb ∈{0,1}∗

c
≡

{(
Viewπ

p

(
1
λ ,xa ,xb

)
,Outputπ

(
1
λ ,xa ,xb

))}
λ∈N,xa,xb ∈{0,1}∗

for p ∈ {a,b} where Viewπ
p (xa ,xb ) = (xp , rp ,m

1

p , . . . ,m
t
p ) is party

p’s view of the computation, with rp denoting party p’s internal

random tape andm
j
p denoting the jth message that party p received;

and whereOutputπ (1λ ,xa ,xb ) denotes the union of the outputs of

all parties; and where

c
≡ denotes computational indistinguishability

with security parameter λ. That is, a protocol π is secure in the

semi-honest setting if the full view of a party can be simulated by a

probabilistic polynomial time algorithm given only a record of that

party’s input and output. Note we assume that all protocols and

functionalities have access to the security parameter λ, and that

computational indistinguishability is relative to this parameter. In

proofs, we omit λ from our notation.

A.2 Distributed ORAM
We deviate from the standard formulation of ORAM in order to

align the security model of our scheme with the security model

of multiparty computation (Definition A.1). We assume that the

ORAM’s storage, like the protocols that implement its access an

initialization methods, is split among multiple parties, and we guar-

antee security only against the corruption of some subset of those

parties. In contrast, the standard ORAM definition [21] considers

a context wherein there exists a single trusted CPU and a single

untrusted memory, and assumes that an adversary has a full view

of all memory accesses, but no insight into the CPU. Our variant

of the ORAM definition is known as Distributed ORAM; it was

originally proposed by Lu and Ostrovsky [32], and our definitions

expound theirs.

Definition A.2 (Random Access Memory). For every n,m ∈ N, a
random access memory RAMn,m is a functionality that associates

an m-bit value with each unique integer index in [1,n] and can

recall this value when queried with the index. Indexes are by default
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associated with values of 0
m
. A RAMn,m receives instructions of

the form (o, i,v ), where o ∈ {read,write} is an operation specifier,

i ∈ [1,n] is an index, and v ∈ {0, 1}m is a value. Additionally,

a RAMn,m may receive an initialization instruction of the form

(init,V ), whereV ∈ {0, 1}n×m is an array of values. Upon receiving

an instruction (o, i,v ), a RAMn,m must behave as follows:

(1) if o = read, then RAMn,m immediately recalls and returns

the value associated with index i , and ignores v .
(2) if o = write, then RAMn,m remembers valuev and associates

it with index i , forgetting any previous associations that

index i may have had, and returns nothing.

Upon Receiving an initialization instruction (init,V ), RAMn,m im-

mediately forgets all associations it has previously made, and asso-

ciates the values in V with their corresponding indices.

Note. Any structure that implements the write operation can

implement the init operation as a sequence of writes. However, our

construction has a dedicated initialization function which requires

its own analysis. Therefore, we include init in our definition.

Definition A.3 (Distributed Random Access Memory). For every
n,m ∈ N, a Distributed RandomAccess MemoryDRAMn,m is a pro-

tocol evaluated among two parties which correctly implements the

RAMn,m functionality. An implementation of DRAMn,m may re-

quire that each party p ∈ {a,b} implements a private, local instance

Mp of the RAM
poly(n),poly(m) functionality. For each instruction

it receives, a DRAMn,m may issue to each of its local memories a

number of instructions bounded by poly(n). We assume that instruc-

tions issued to and replies received from theMp of a non-corrupt

party p are observable only by p. A DRAMn,m may additionally

have access to a random tape.

Note. For simplicity, we define DRAM for two parties and ob-

serve that it can be extended to many parties.

Definition A.4 (Access Patterns and Epochs). For any memoryM
that implementsRAMn,m , an access pattern is a sequence {x j }j ∈[1, ℓ]
of length ℓ, such that x j corresponds to the jth instruction received

byM . An epoch is an access pattern X = {x j }j ∈[1, ℓ] such that x1 is
an initialization instruction (init,V ) and all subsequent instructions
are either read or write instructions. We use Ξn,m,λ to denote the

set of all valid epochs for a RAMn,m with lengths in O (poly(λ)).
A sequence of epochs is constructed by deriving the initialization

vector for epoch j from the final state in epoch j − 1. Thus, a se-

quence of epochs has only one initialization vector. We use X to

represent a sequence of epochs, and Ξ∗n,m,λ to denote the set of all

such sequences with total lengths in O (poly(λ)).

Note. It is necessary to introduce the concept of epochs due to

the existence of an initialization instruction. While we expect an

ORAM to hide indices accessed and whether accesses are reads

or writes, we cannot expect it to hide which instructions are ini-

tialization instructions. Consequently, in subsequent definitions,

we will reason over sequences of epochs, each of which has ex-

actly one initialization. While most ORAM schemes that require

refreshing use fixed epoch lengths, this is seldom necessary, and in

fact Floram can vary its refresh period to achieve greater practical

efficiency. Consequently, we allow for arbitrary epoch lengths in

our definitions and proofs.

Definition A.5 (Distributed Oblivious Random Access Memory).
For every n,m, λ ∈ N, a suite of multi-party protocols D is a

DORAMn,m,λ if it implements DRAMn,m and there exists a simu-

lator SimD
p for p ∈ {a,b} such that for security parameter λ:{

SimD
p

(
1
λ ,
{
1
|X |

}
X ∈X

,Vp

)}
X∈Ξ∗n,m,λ

c
≡

{
ViewD

p (1λ ,X)
}
X∈Ξ∗n,m,λ

That is, the view of party p over a sequence of epochs can be

simulated given only the lengths of those epochs and p’s share of
the initialization vectorV associated with the first epoch. Note that

Vp is an array of n ×m bits.

Discussion. Although ORAM is sometimes taken as an acronym

for Oblivious Random Access Memory, Goldreich and Ostrovsky

use it to stand for Oblivious Random Access Machine, and their

model includes a trusted CPU capable of arbitrary computation in

a data-oblivious fashion. Although our definitions do not explicitly

call upon universal computation, they nonetheless imply a similar

conclusion. Specifically, our definitions, in combination with MPC

protocols, imply the ability to securely compute circuits with “mem-

ory gates”; that is, gates capable of storing and retrieving data in a

black-box fashion while maintaining data-obliviousness. From such

circuits, it is possible to construct CPUs that can execute secure

instructions in a familiar way.

B PROOFS OF SECURITY
In this section, we prove that the standard Floram construction is

a secure DORAM under Definition A.5. To do this, we prove the

protocol security of our initialization and access methods under

Definition A.1, and then compose these proofs to show security

over the course of an epoch. Given security over an epoch, a stan-

dard hybrid proof can show security over a sequence of epochs.

We do not consider semi-private access, data export, or any other

nonstandard capabilities of our construction, nor do we consider

any of the optimizations we have presented throughout this work.

Nonetheless, we have no reason to suspect that they are insecure.

Mapping definitions to concrete schemes. We have defined DO-

RAM to implement three different methods: read,write, and init,
but Floram only actually implements init and a generic access

method, which applies an arbitrary function f to the target element.

If fread and fwrite are combined into a single circuit or constructed

in such a way that they can be simulated by a single simulator, then

accesses that perform reads will be indistinguishable from accesses

that perform writes, as required.

B.1 Proof of Security for Access
Notation and Real-world View. Before we present our proof, we

specify a convenient notation describing the same access algorithm

given in Section 4. We refer to the functionality implemented by

the algorithm as FA, and the protocol as πA. Party p’s share of

the output of the functionality FA is FAp . Party p’s input to the

algorithm is denoted by InputAp , and p’s output of a protocol ex-

ecution using that input is denoted OutputπAp (InputA ), while a

complete transcript of the protocol execution for party p is denoted
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by ViewπA
p (InputA ). The access protocol can be decomposed into

a four step process, (C1,L1,C2,L2), where C1 and C2 are circuits
evaluated by some MPC protocol (we use Yao’s Garbled Circuits),

and L1 and L2 are party-local computations. These circuits receive

some of their input values as secret-shares, and party p’s secret
share of value x is denoted xp . We omit special notation for share-

creation and reconstruction operations, leaving them implicit. We

use x $

←X to signify the uniform random choice of element x from

the set X ,

c
≡ to signify computational indistinguishability, and

s
≡ to

signify statistical indistinguishability.

The first circuit, C1, implements the FSS Gen algorithm. C1 re-

ceives shares of the target index i , as well as shares of a uniformly

randomly chosen value β , such that βp ∈ {0, 1}
λ
. To Alice, C1 re-

turns the FSS key kFSS
a , and to Bob, kFSS

b (these keys may be thought

of as a sharing of the joint FSS key, kFSS
). Formally:

InputC1p =
(
ip , βp

)
OutputπC1p

(
InputC1

)
=

(
kFSS
p

)
Subsequent to C1, each party p executes a local computation,

L1, which takes as input kFSS
p and also some local state R (the ROM

memory), and produces vp .
The second circuit, C2, implements the stash scan, function ap-

plication, and FSS leaf adjustment procedures. This circuit receives

shares from both parties of i , β , and the stash state Stash. From Al-

ice, it receives as input va , k
FSS
a , kPRF

a , and from Bob, vb , k
FSS
b , kPRF

b . A

description of f , the function to be applied, is baked into the circuit

C2. As output, the circuit returns v
∆
to both parties. In addition,

it returns shares of the updated stash state Stash′. f may receive

some auxiliary input v f
as shares, and may produce some auxiliary

output yf as shares. Formally:

InputC2p =
(
ip ,vp ,v

f
p , βp , Stashp ,k

FSS
p ,k

PRF
p

)
OutputπC2p

(
InputC2

)
=

(
v∆,yfp , Stash

′
p
)

Subsequent to C2, each party p executes a local computation, L2,

which takes as input kFSS
p , v∆, and some local state,Wp (a share of

the WOM memory), and returns some updated local state,W ′p .

The sequence (C1,L1,C2,L2) composes the access protocol,

as illustrated in Figure 11. Party p’s view of an access is equal

to the union of p’s internal random tape rp , its inputs, outputs,

and the messages it receives. Using MsgsπCp (InputC ) to denote the

messages received during evaluation of circuit C via protocol πC
(excepting the input and output), this give us:

InputAp =
*.
,

ip ,R, f ,v
f
p ,

Stashp ,kPRF
p ,Wp

+/
-

InputA = InputAa ∪ InputAb
OutputπAp

(
InputA

)
=

(
yfp , Stash

′
p ,W

′
p
)

Alice BobSecure Computation
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Figure 11: Diagram of the Floram Access method, illustrating the
correspondence between the view described here and the algorithm
presented in Section 4.

ViewπA
p

(
InputA

)
=
*.
,

rp ,View
πC

1p
(
InputC1

)
,R,

ViewπC
2p
(
InputC2

)
,Wp ,W

′
p

+/
-

=

*.....
,

rp , InputAp , βp ,MsgsπC1p
(
InputC1

)
,

kFSS
p ,MsgsπC2p

(
InputC2

)
,v∆,yfp ,

Stash′p ,W
′
p

+/////
-

Valid Inputs. An input to the access protocol, InputA, is said to

be valid if and only if i ∈ [1,n], |R | = |W | = n, kPRF
a and kPRF

b are

the two keys for the PRFs that were used to mask R, and the stash

contains only those elements which differ between R andW when

R is unmasked:

(j,u) ∈ Stash ⇐⇒
(
u =W j

)
∧

(
W j , PrfkPRF

a
⊕ PrfkPRF

b
⊕ R j

)
Wedenote the set of all valid inputs forA for an ORAMofn elements

of sizem as DomA
n,m .

Lemma B.1 (Correctness for πA). If (Gen, Eval) is a secure FSS
scheme for DPFs, πC1 and πC2 are secure multiparty computation
protocols for C1 and C2 respectively, and Prf is a Pseudo-random
Function Family, then:{

FA
(
InputA

)}
InputA ∈DomA

n,m

s
≡

{
OutputπA

(
InputA

)}
InputA ∈DomA

n,m

(1)
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1 function FA
(
InputA

)
:

2 // Parse InputA as

*...
,

i, R, f , v f ,

Stash, kPRF
a , kPRF

b ,W

+///
-

3 v ←




u if ∃ (j, u ) ∈ Stash : j = i

PrfkPRFa
(i ) ⊕ PrfkPRFb

(i ) ⊕ Ri otherwise

4

(
v ′, y f

)
← f

(
v, v f

)
5 W ′ ←







v ′ if j = i

W j
otherwise


j∈[1,n]

6 Stash′ ←







(⊥, ⊥) if j = i

(j, u ) otherwise


 (j,u )∈Stash

∪
{(
i, v ′

)}

7 return
(
y f , Stash′,W ′

)
8

9 function FAp
(
InputA

)
:

10

(
y f , Stash′,W ′

)
← FA

(
InputA

)
11 return

(
y fp, Stash

′
p,W

′
p

)
// generate secret shares

Figure 12: Pseudocode for the ideal functionality of the access pro-
tocol πA .

Proof. We specify the ideal functionality for πA in Figure 12.

First we consider the circuits C1 and C2, implemented by MPC

protocols πC1 and πC2 respectively. If these protocols are secure un-
der Definition A.1 then OutputπC1

(
InputC1

) c
≡ C1

(
InputC1

)
and

OutputπC2
(
InputC2

) c
≡ C2

(
InputC1

)
. Because we consider only

the outputs and not the full views, the lengths of the elements

in these ensembles remain fixed, even as the security parameter

increases. If they are computationally indistinguishable then it fol-

lows that as the security parameter increases theymust also become

statistically close (i.e. correct with very high probability).

The remainder of the correctness proof follows by inspection.

As shown in Figures 5 and 11, the functionality of C1 is the FSS

Gen algorithm. Because (Gen, Eval) is a correct FSS scheme per

Definition 2.3, the output of the Eval function for party p will be

p’s share of a pair of point functions y and t with values β and 1

respectively at index i . Algorithm L1 implements the dot product

of t with R, and so va and vb are shares of Ri .
The functionality of C2 is given in the appropriate sections of

Figures 5 and 11. InputA is assumed to be valid, which implies that

R was twice-masked by Prf, and it follows that either

W i = PrfkPRF
a (i ) ⊕ PrfkPRF

b
(i ) ⊕ Ri

or (i,W i ) ∈ Stash. Either way, we have v =W i
, the correct value.

Note that the stash read, function application, and stash write steps

are specified identically between FA and C2, and consequently{
FA

(
InputA

)
:

(
yf , Stash′

)}
InputA ∈DomA

n,m

s
≡

{
OutputπA

(
InputA

)
:

(
yf , Stash′

)}
InputA ∈DomA

n,m

(2)

Here we reason about only two of the three elements in OutputπA ;
we must still reason aboutW ′. Recall that v =W i

, and that each

party has shares of two point functions: y and t with values β
and 1 at index i respectively. C2 calculates v

∆ =W i ⊕ v ′ ⊕ β . By
inspection of L2, we see that both parties XOR v∆ into their shares

of the point function y, conditioned element-wise on t , yielding
shares of a new point function y′ such that for j ∈ [1,n]:

y′j =



β ⊕ v∆ = β ⊕ β ⊕ v ′ ⊕W i = v ′ ⊕W i
if j = i

0 ⊕ v∆ ⊕ v∆ = 0 otherwise

The parties then combine their shares of y′ with their shares of

W to yieldW ′ as specified by FA. For j ∈ [1,n]:

W ′j =



W j ⊕ y′j =W j ⊕W i ⊕ v ′ = v ′ if j = i

W j ⊕ 0 =W j
otherwise

(3)

By the conjunction of Equations 2 and 3 we have Equation 1,

and thus Lemma B.1 holds. □

Lemma B.2 (Security for πA). If (Gen, Eval) is a secure FSS
scheme for DPFs, πC1 and πC2 are secure multiparty computation
protocols for C1 and C2 respectively, and Prf is a Pseudo-random
Function Family, then for each partyp ∈ {a,b} there exists a simulator
SimA

p such that:{(
SimA

p

(
InputAp ,FAp

(
InputA

))
,FA

(
InputA

))}
InputA ∈DomA

n,m

c
≡

{(
ViewπA

p
(
InputA

)
, outputπA (InputA )

)}
InputA ∈DomA

n,m

Proof. If (Gen, Eval) is a secure FSS scheme for DPFs, then by

Definition 2.3 there must exist some simulator, SimFSS
, for FSS keys.

Similarly, if πC1 and πC2 are secure multiparty computation proto-

cols, then byDefinition A.1 forp ∈ {a,b} theremust exist simulators

SimC1p and SimC2p for those protocols. We begin by specifying a sim-

ulator for πA, SimA
p , which has access to SimFSS

, SimC1p , and SimC2p ,

as well as L1 and the inverse of L2 with respect to v∆:

v∆ = L−1
2

(
Wp ,W

′
p
)
= max

({
W x
p ⊕W

′x
p

}
x ∈[1,n]

)
Simulator SimA

p is given party p’s share of the inputs for πA, along

with the output of FA, upon which it performs the procedure given

in Figure 13. Roughly speaking, it uses SimFSS
along with L1 and

L−1
2

to simulate the inputs and outputs for C1 and C2 given the

known inputs and outputs for πA, and then passes these to SimC1p
and SimC2p . Our proof proceeds via a series of hybrid views.

First Hybrid. Our first hybrid,H1, is identical to the real-world

view, except that subsequent to the evaluation of circuit C1, we

discard the messages produced by the real circuit and replace them

with

SimC1p
(
InputC1p ,Output

πC
1p

)
: MsgsC1Sim
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1 function SimπA
p

(
InputAp , FAp

(
InputA

))
:

2 // Parse InputAp as

*...
,

ip, R, f , v
f
p,

Stashp, kPRF
p ,Wp

+///
-

3 // Parse FAp
(
InputA

)
as

(
y fp, Stash

′
p,W

′
p

)
4 kFSS

Sim ← SimFSS
(
p, 1λ

)
5 βSim $←{0, 1}λ

6 MsgsC1Sim ← SimC1p
(
ip, βSim, kFSS

Sim

)
7 vSim ← L1

(
kFSS
Sim, R

)
8 v∆

Sim ← L
−1
2

(
Wp,W ′

p

)
9 MsgsC2Sim ← SimC2p

*...
,

ip, kFSS
Sim, βSim, vSim, f , v

f
p,

Stashp, kPRF
p , v∆

Sim, y
f
p, Stash

′
p

+///
-

10 return
*...
,

rSim, ip, βSim, MsgsC1Sim, k
FSS
Sim, R, f , v

f
p, Stashp,

kPRF
p , MsgsC2Sim, v

∆
Sim, y

f
p, Stash

′
p,Wp,W ′

p

+///
-

Figure 13: Pseudocode for a simulator for the access protocol πA .

Consequently, the view produced byH1 for party p is identical to

p’s view of the real protocol, except where these messages differ.

Suppose there were a probabilistic polynomial time (PPT) distin-

guisher, D1, that could distinguish between the ensembles

EπAp =

{(
ViewπA

p
(
InputA

)
,OutputπA

(
InputA

))}
EH1

p =

{(
ViewH1

p
(
InputA

)
,OutputH1

(
InputA

))}
for some input InputA with some advantage δ1. We could use D1 to

construct a distinguisherD2 for the MPC protocol that evaluates C1.

D2 is given some ViewD2

p , produced either by a real evaluation of

πC1 or by Sim
C1
p . Additionally, it is given the two-party output of the

associated functionality,OutputD2
, and some nonuniform auxiliary

information,AuxD2
(chosen as a function ofViewD2

p ,OutputD2
, and

D1 to give D2 the best possible advantage). Furthermore, D2 has

access to the circuit C2. D2 performs the procedure specified in

Figure 14.

If ViewD2

p was generated by SimC1p , then ED1

p = EH1

p , whereas

if it was generated by a real evaluation of the circuit C1, then

ED1

p = EπAp . D2 makes a single call to D1, and all of the inputs to

D1 that are not determined by ViewD2

p or OutputD2
are given as

non-uniform advice to provide the best discriminatory power; thus

it must be the case that D2 has advantage δ2 such that δ2 = δ1. By
Definition A.1, for security parameter λ and all choices of InputC1 :

δ2 =

���������

Pr

[
D2

(
ViewπC

1p
(
InputC1

)
,OutputπC1

(
InputC1

))
= 1

]

− Pr

[
D2

(
SimC1p

(
InputC1p

)
,FC1

(
InputC1

))
= 1

]

���������
<

1

poly(λ)

1 function D2

(
ViewD2

p , OutputD2, AuxD2

)
:

2 // Parse ViewD2

p as

(
ip, βp, MsgsC1p , kFSS

p

)
3 // Parse OutputD2 as

(
kFSS
p , kFSS

q

)
4 // Parse AuxD2 as

*...
,

iq, βq, R, v
f
p, v

f
q, Stashp, Stashq,

kPRF
p , kPRF

q ,Wp,Wq

+///
-

5 vp ← L1

(
kFSS
p , R

)
6 vq ← L1

(
kFSS
q , R

)
7 InputC2 ←

*...
,

ip, iq, vp, vq, v
f
p, v

f
q, βp, βq,

Stashp, Stashq, kFSS
p , kFSS

q , kPRF
p , kPRF

q

+///
-

8 // Evaluate both parties’ portions of the protocol for C2

9

(
v∆, y fp, Stash

′
p

)
← OutputπC2p

(
InputC2

)
10

(
v∆, y fq, Stash

′
q

)
← OutputπC2q

(
InputC2

)
11 W ′

p ← L2

(
kFSS
p , v∆,Wp

)
12 W ′

q ← L2

(
kFSS
q , v∆,Wq

)
13 ED1

p ←

*....
,

*...
,

ViewD2

p , ViewπC
2p

(
InputC2

)
,

R,Wp,W ′
p

+///
-

,
(
y f , Stash′,W ′

)+////
-

14 return D1

(
ED1

p

)

Figure 14: Pseudocode for distinguisher D2 for MPC protocols. This
distinguisher takes nonuniform input AuxD2 and has access to a dis-
tinguisher D1 for the ensembles EH1

p and EπAp .

Thus δ1 = δ2 < 1/poly(λ), and H1 is computationally indistin-

guishable from the real view.

Second Hybrid. Our second hybrid,H2, is identical to the first,

except that we omit the evaluation of C1, and replace its outputs as

follows: choose βSim
$

←{0, 1}λ (Note that βSim has the same distribu-

tion as the real value), and then generate the FSS key using a DPF

simulator:

kFSS
Sim ← SimFSS

(
p, 1λ

)
Suppose there were a probabilistic polynomial time (PPT) distin-

guisher, D3, that could distinguish between the ensembles

EH1

p =

{(
ViewH1

p
(
InputA

)
,OutputH1

(
InputA

))}
EH2

p =

{(
ViewH2

p
(
InputA

)
,OutputH2

(
InputA

))}
for some input InputA with some advantage δ3. We could use D3

to construct a distinguisher D4 for FSS keys. D4 has access to the

simulator SimC1p , as well as the real circuit C2. Given some FSS key,

kFSS
D , created either by the real FSSGen algorithm, or by its simulator,

SimFSS
, and some nonuniform auxiliary information, AuxD4

, D4

performs the procedure given in Figure 15.

If kFSS
D was generated by SimFSS

, then ED3

p = EH2

p , whereas if it

was generated by a real instance of the FSS Gen algorithm, then
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1 function D4

(
kFSS
D , AuxD4

)
:

2 // Parse AuxD4 as

*........
,

ip, iq, βq, kFSS
q , R,

v f
p, v

f
q, Stashp, Stashq,

kPRF
p , kPRF

q ,Wp,Wq

+////////
-

3 βSim $←{0, 1}λ

4 ViewSimC1
p ← SimC1p

(
ip, βSim, kFSS

D

)
5 vp ← L1

(
kFSS
D , R

)
6 vq ← L1

(
kFSS
q , R

)
7 InputC2 ←

*...
,

ip, iq, vp, vq, v
f
p, v

f
q, βSim, βq,

Stashp, Stashq, kFSS
D , kFSS

q , kPRF
p , kPRF

q

+///
-

8 // Evaluate both parties’ portions of the protocol for C2

9

(
v∆, y fp, Stash

′
p

)
← OutputπC2p

(
InputC2

)
10

(
v∆, y fq, Stash

′
q

)
← OutputπC2q

(
InputC2

)
11 W ′

p ← L2

(
kFSS
D , v∆,Wp

)
12 W ′

q ← L2

(
kFSS
q , v∆,Wq

)
13 ED3

p ←

*....
,

*...
,

ViewSimC1
p , ViewπC

2p

(
InputC2

)
,

R,Wp,W ′
p

+///
-

,
(
y f , Stash′,W ′

)+////
-

14 return D3

(
ED3

p

)

Figure 15: Pseudocode for distinguisher D4 for FSS keys. This distin-
guisher takes nonuniform input AuxD4 and has access to the distin-
guisher D3 for ensembles EH1

p and EH2

p .

ED3

p = EH1

p . D4 makes a single call to D3, and inputs to D3 that

are not determined by kFSS
D or βSim are given as non-uniform advice;

thus it must be the case that D4 has advantage δ4 such that δ4 = δ3.
By Definition 2.3, for security parameter λ and all α , β , and p:

δ4 =

���������

Pr

[
D4

(
Gen

(
1
λ , fα,β

)
: kFSS

p

)
= 1

]

− Pr

[
D4

(
SimFSS

(
p, 1λ

))
= 1

]

���������

<
1

poly(λ)

Thus δ3 = δ4 < 1/poly(λ), and H2 is computationally indistin-

guishable fromH1.

Third Hybrid. The third hybrid, H3, is identical to the second,

except that, subsequent to the evaluation of C2, we discard its

messages and replace them with

SimC2p
(
f , InputC2p ,Output

πC
2p

)
: MsgsC2Sim

Suppose there were a PPT distinguisher, D5, that could distin-

guish between the ensembles

EH2

p =

{(
ViewH2

p
(
InputA

)
,OutputH2

(
InputA

))}
EH3

p =

{(
ViewH3

p
(
InputA

)
,OutputH3

(
InputA

))}

1 function D6

(
ViewD6

p , OutputD6, AuxD6

)
:

2 // Parse ViewD6

p as

*...
,

ip, vp, v
f
p, βSim, Stashp, k

FSS
Sim,

kPRF
p , MsgsC2p , v∆, y fp, Stash

′
p

+///
-

3 // Parse OutputD6 as

(
v∆, y f , Stash′

)
4 // Parse AuxD6 as

(
kFSS
q , R,Wp,Wq

)
5 ViewSimC1

p ← SimC1p
(
ip, βSim, kFSS

Sim

)
6 vp ← L1

(
kFSS
Sim, R

)
7 W ′

p ← L2

(
kFSS
Sim, v

∆,Wp
)

8 W ′
q ← L2

(
kFSS
q , v∆,Wq

)
9 ED5

p ←

*....
,

*...
,

ViewSimC1
p , ViewD6

p

R,Wp,W ′
p

+///
-

,
(
y f , Stash′,W ′

)+////
-

10 return D5

(
ED5

p

)

Figure 16: Pseudocode for distinguisher D6 for MPC protocols. This
distinguisher takes nonuniform input AuxD6 and has access to the
distinguisher D5 for ensembles EH2

p and EH3

p .

for some InputA with some advantage δ5. We could use D5 to

construct a distinguisher D6 for the MPC protocol that evaluates

C2. D6 has access to SimC1p , and as input it is given some view,

ViewD6

p , which was produced either by a real evaluation of C2

or by its simulator, SimC2p . Given ViewD6

p , the two-party output

of the associated functionality, OutputD6
, and some non-uniform

auxilliary information AuxD6
, D6 follows the procedure given in

Figure 16. Note that the distinguisher does not simulate the FSS

key, because a simulation of a key is included in the view to be

distinguished.

If ViewD6

p was generated by SimC2p , then ED5

p = EH3

p , whereas

if it was generated by a real evaluation of the circuit C2, then

ED5

p = EH2

p . D6 makes a single call to D5, and all of the inputs to

D5 that are not determined by ViewD6

p or OutputD6
are chosen

non-uniformly to provide the best discriminatory power; thus it

must be the case that D6 has advantage δ6 such that δ6 = δ5. By
Definition A.1, for security parameter λ and all choices of InputC2 :

δ6 =

���������

Pr

[
D6

(
ViewπC

2p
(
InputC2

)
,OutputπC2

(
InputC2

))
= 1

]

− Pr

[
D6

(
SimC2p

(
InputC2p

)
,FC2

(
InputC2

))
= 1

]

���������
<

1

poly(λ)

Thus δ5 = δ6 < 1/poly(λ), and H3 is computationally indistin-

guishable fromH2.

Fourth Hybrid. Finally, we return to the full simulator, SimA
p ,

which we specified in Figure 13. The simulator is identical to

H3, except that we omit C2 entirely. The simulator is provided

FAp (InputA ) as input, from which it extracts the necessary values

of yfp , Stash
′
p , andW

′
p . L

−1
2

is employed to derive v∆ (which is an
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input to the simulator for C2) fromWp andW ′p . We conclude that

for all parties:{
FAp

(
InputA

)}
InputA ∈DomA

n,m

=

{
OutputH3

(
InputA

)}
InputA ∈DomA

n,m

=⇒

EH3

p =

{(
SimA

p
(
InputAp

)
,FA

(
InputA

))}
InputA ∈DomA

n,m

Thus by transitivity and Lemma B.1, Lemma B.2 holds. □

Corollary. In order to call the access protocol multiple times upon

the same data, it is necessary to show that the state it outputs is also

a valid input state, input validity being assumed by Lemmas B.1

and B.2. Notice that in the specification of C2, we remove any

existing elements from the stash that have the index i , and append

(i,v ′). Consequently, we have a corollary:

Corollary B.3. Assuming that πA is a secure protocol under
Definition A.1, for any valid input,

InputA =
(
i,R, f ,v f , Stash,kPRF

a ,k
PRF
b ,W

)
if (yf , Stash′,W ′) ← OutputπA (InputA ), then for any f ′ and any
v f ′ that is valid relative to f ′, and any i ′ ∈ [1,n],

Input′A =
(
i ′,R,д′,v f ′ , Stash′,kPRF

a ,k
PRF
b ,W

′
)

is a valid input for πA.

B.2 Proof of Security for Initialization
Real-world View. The real-world view of party p of the initial-

ization protocol πI comprises p’s random tape rp , the inputs and
outputs of the protocol, and the messages received byp. As specified
in Section 4 and illustrated in Figure 4, party p receives only one

message,W ′q (where q is p’s counterparty), which is a copy of q’s
local state,Wq , that has been masked by a PRF under an unknown

key. Thus we have

InputIp =
(
Wp

)
InputI =

(
Wp ,Wq

)
OutputπIp

(
InputI

)
=

(
kPRF
p ,R

′
)

ViewπI
p

(
InputI

)
=

(
rp ,Wp ,k

PRF
p ,W

′
p ,W

′
q ,R

′
)

Lemma B.4 (Correctness for πI ). For each party p ∈ {a,b}{
FI

(
InputI

)}
InputI ∈DomI

n,m

=

{
OutputπI

(
InputI

)}
InputI ∈DomI

n,m

Proof. The ideal functionality for initialization, FI
(
InputI

)
, is

specified in Figure 17. By comparisonwith the protocol specification

given in Figure 4, we observe that in both the ideal functionality

and the actual protocol, new PRF keys are chosen uniformly at

random. We further observe that R′ is calculated identically in both,

the only difference being in the associativity of XOR operations.

Thus, the output of the real initialization protocol is identical to

that of the ideal functionality. □

1 function FI
(
InputI

)
:

2 // Parse InputI as (W )

3 kPRF
a

$←{0, 1}λ

4 kPRF
b

$←{0, 1}λ

5 R′ ←
{
PrfkPRFa

(i ) ⊕ PrfkPRFb
(j ) ⊕W j

}
j∈[1,n]

6 return
(
kPRF
a , kPRF

b , R′
)

7

8 function FIp
(
InputI

)
:

9

(
kPRF
a , kPRF

b , R′
)
← FI

(
InputI

)
10 return

(
kPRF
p , R′

)

Figure 17: Pseudocode for the ideal functionality of the initializa-
tion protocol πI .

1 function SimI
p

(
InputIp, FIp

(
InputI

))
:

2 // Parse InputIp as

(
Wp

)
3 // Parse FIp

(
InputI

)
as

(
kPRF
p , R′

)
4 W ′

p ←

{
PrfkPRFp

(j ) ⊕W j
p

}
j∈[1,n]

5 W ′
q ←W ′

p ⊕ R
′

6 return
(
rSim,Wp, kPRF

p ,W ′
p,W

′
q, R

′
)

Figure 18: Pseudocode for a simulator for the initialization protocol
πI .

Lemma B.5 (Security for πI ). If Prf is a pseudo-random function
family, then for each party p ∈ {a,b} there exists of simulator SimI

p
for πI such that:{(

SimI
p

(
InputIp ,FIp

(
InputI

))
,FI

(
InputI

))}
InputI ∈DomI

n,m

=

{(
ViewπI

p
(
InputI

)
,OutputπI

(
InputI

))}
InputI ∈DomI

n,m

Proof. We specify a simulator, SimI
p , which receives as inputs

both the inputs and outputs of the original protocol and performs

the procedure given in Figure 18. The view produced by the sim-

ulator and the one generated by the real evaluation are actually

identical, and thus by Lemma B.4, Lemma B.5 holds. □

Corollary B.6. Assuming that πI is a secure protocol under
Definition A.1, for any input InputI = (W ), if (kPRF

a ,k
PRF
b ,R

′) ←

OutputπI
(
InputI

)
and Stash← ∅ then for any f and any v f that

is valid relative to f , and any i ∈ [1,n],

InputA =
(
i,R′, f ,v f , Stash,kPRF

a ,k
PRF
b ,W

)
is a valid input for πA
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1 function ViewπF
(
InputF

)
:

2 // Parse InputF as

(
W ,

{(
f j , i j , v f j

)}
j∈[2, ℓ]

)
3

(
kFSS
a , kFSS

b , R
)
← OutputπI (W )

4

{
s1p
}
p∈{a,b }

←
{
ViewπI

p (W )
}
p∈{a,b }

5 Stash← ∅

6 for j ∈ [2, ℓ]:

7 InputAj ←
(
i jp, R, f

j , v f j , Stash, kPRF
a , kPRF

b ,W
)

8

(
y f

j
, Stash′,W ′

)
← OutputπA

(
InputAj

)
9

{
s jp
}
p∈{a,b }

←
{
ViewπA

p

(
InputAj

)}
p∈{a,b }

10 W ←W ′

11 Stash← Stash′

12

{
Sp

}
p∈{a,b }

←

{{
s jp
}
j∈[1, ℓ]

}
p∈{a,b }

13 return
(
Sa, Sb

)
14

15 function ViewπF
p

(
InputF

)
:

16

(
Sa, Sb

)
← ViewπF

(
InputF

)
17 return Sp

Figure 19: Pseudocode for a party’s view of Floram over an epoch.

B.3 Proof of Security for Floram
Real-world view. Finally, we prove the security of Floram under

DefinitionA.5. Aswementioned previously, our construction differs

fromDRAM as specified in Definition A.3 in that it accepts arbitrary

functions as input rather than simple read and write commands.

Thus

InputFp =
(
Vp ,

{(
f j , i

j
p ,v

f j

p

)}
j ∈[2, ℓ]

)
where ℓ is the length of the epoch. We formally specify a party’s

view of Floram over an epoch in Figure 19, and we specify the ideal

functionality FF in Figure 20. Note that the protocol specification

πF for Floram over an epoch is identical, except that it replaces

the ideal functionalities FI and FA with the protocols πI and πA
respectively.

Theorem B.7 (Security for Floram). If πI is a secure initializa-
tion protocol and πA is a secure access protocol and Prf is a Pseudo-
random Function Family, then for each party p ∈ {a,b}, there exists a
simulator SimF

p such that:{
SimF

p

(
InputFp ,FFp

(
InputF

))}
InputF ∈DomF

n,m,λ

c
≡

{
ViewπF

p
(
InputF

)}
InputF ∈DomF

n,m,λ

whereDomF
n,m,λ is the set of valid epochs with lengths ℓ inO (poly(λ)).

1 function FF
(
InputF

)
:

2 // Parse InputF as

(
W ,

{(
f j , i j , v f j

)}
j∈[2, ℓ]

)
3

(
kFSS
a , kFSS

b , R
)
← FI (W )

4 Stash← ∅

5 for j ∈ [2, ℓ]:

6 InputAj ←
(
i jp, R, f

j , v f j , Stash, kPRF
a , kPRF

b ,W
)

7

(
y f

j
, Stash′,W ′

)
← FA

(
InputAj

)
8 W ←W ′

9 Stash← Stash′

10 return
(
W ′,

{
y f

j
}
j∈[2, ℓ]

)
11

12 function FFp
(
InputF

)
:

13

(
W ′,

{
y f

j
}
j∈[2, ℓ]

)
← FF

(
InputF

)
14 return *

,
W ′
p,

{
y f

j

p

}
j∈[2, ℓ]

+
-

Figure 20: Pseudocode for ideal functionality of Floram over an
epoch.

Proof. We specify SimF
p in Figure 21. Notice, first, that kPRF

Sim is

drawn from an identical distribution to its counterpart in the real

view, as are StashSim, and WSim for all iterations j ∈ [2, ℓ] (those
counterparts being secret shares). The only distinguishing features

in the simulated view are the messages exchanged in the course

of πA and πI , and RSim, which is drawn uniformly from its domain,

whereas in the real view it is the XOR of two PRF outputs with V .
Our proof will proceed via a series of hybrids.

First Hybrid. The first hybrid, H4, is identical to the real view,

except that after πI is evaluated, MsgsπIp is discarded and replaced

with the output of the associated simulator, SimπI
p . As the two views

differ only insofar as the simulated view of πI differs from a real

one, it follows from Lemma B.5 that the two are computationally

indistinguishable.

Second Hybrid. The second hybrid,H5, is identical toH4, except

that after each execution of πA, the corresponding instance of

MsgsπAp is discarded, and SimπA
p is called to replace it.H5 differs

fromH4 only insofar as the simulated views of πA differ from the

real ones. Thus, it follows from Lemma B.2 and Corollaries B.3

and B.6 (which provide that initialization and access protocols can

be chained) that the two are computationally indistinguishable if

the epoch length ℓ is in O (poly(λ)).

Third Hybrid. Finally, we return to the full simulation, which is

identical toH5 save for two details: First, πA is omitted entirely, and

shares of the stash and WOM (except for the final WOM state) are

chosen uniformly from the appropriate domains, as in Figure 21. As

the new values are distributed identically to the old, it is necessarily
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1 function SimF
p

(
InputFp , FFp

(
InputF

))
:

2 // Parse InputFp as

(
Wp,

{(
f j , i jp, v

f j
p

)}
j∈[2, ℓ]

)
3 // Parse FFp

(
InputF

)
as

*
,
W ′
p,

{
y f

j

p

}
j∈[2, ℓ]

+
-

4 RSim
$← {0, 1}n×m

5 kPRF
Sim

$← {0, 1}λ

6 s1Sim ← SimI
p

(
Wp, kPRF

Sim , RSim

)
7 WSim ←Wp

8 for j ∈ [2, ℓ |]:

9 if j = ℓ:

10 W ′
Sim ←W ′

p

11 else:

12 W ′
Sim

$← {0, 1}n×m

13 Stash′Sim
$← {0, 1}(j−2)×m

14 s jSim ← SimA
p

*...
,

ip, RSim, f j , v
f j
p , StashSim, kPRF

Sim ,WSim,

y f
j

p , Stash′Sim,W
′
Sim

+///
-

15 WSim ←W ′
Sim

16 StashSim ← Stash′Sim

17 SSim ←
{
s jSim

}
j∈[1, ℓ]

18 return SSim

Figure 21: Pseudocode for a simulator for Floram over an epoch.

the case that they give a distinguisher no advantage. Second, R
is replaced by RSim and the evaluation of πI is omitted. Suppose

there existed a PPT algorithm D7 that could distinguish between

the ensembles

EH5

p =

{(
ViewH5

p

(
InputF ,FFp

(
InputF

))
,OutputH5

(
InputF

))}
ESim

F

p =

{(
SimF

p

(
InputFp ,FFp

(
InputF

))
,FF

(
InputF

))}
for some valid epoch inputF with advantage δ7. We could use D7

to construct a distinguisher D8 for PRF outputs, as specified in

Figure 22, which accepts as input some valueVD8
∈ {0, 1}n×m , such

that

VD8
=
{
Prfk (i )

}
i ∈[1,n]

where k $

← {0, 1}λ and Prf {0,1}λ : {0, 1}m → {0, 1}m is a Pseudo-

random Function Family, or

VD8
=
{
x $

← {0, 1}m
}
i ∈[1,n]

In the former case, D8 constructs an ensemble with a distribution

identical to EH5

p , and in the latter case it constructs an ensemble

with a distribution identical to ESim
F

p . D8 also receives some non-

uniform advice AuxD8
. D8 implements a statistical test for PRFs,

1 function D8

(
VD8

, AuxD8

)
:

2 // Parse AuxD8 as

(
kPRF
p , V ,Wp,

{(
f j , i jp, v

f j
p , y f

j
p

)}
j∈[2, ℓ]

)
3 RD8

←

{
V j
D8

⊕ PrfkPRFp
(j ) ⊕ V j

}
j∈[1,n]

4 s1D8

← SimI
p

(
Wp, kPRF

p , RD8

)
5 WSim ←Wp

6 for j ∈ [2, ℓ]:

7 W ′
Sim

$← {0, 1}n×m

8 Stash′Sim
$← {0, 1}(j−2)×m

9 s jD8

← SimA
p

*...
,

ip, RD8
, f j , v f j

p , StashSim, kPRF
p ,WSim,

y f
j

p , Stash′Sim,W
′
Sim

+///
-

10 WSim ←W ′
Sim

11 StashSim ← Stash′Sim

12 ED7

p ←

{
s jD8

}
j∈[1, ℓ]

13 return D7

(
ED7

p

)

Figure 22: Pseudocode for distinguisher D8 for PRF outputs. This
distinguisher takes nonuniform input AuxD8 and has access to the
distinguisher D7 for ensembles EH5

p and ESimF
p .

which succeeds with advantage δ8 = δ7, and a Family of Pseudo-

random Functions must admit the success of no statistical test with

advantage greater than 1/poly(λ) [20]. In other words, it must be

the case that for any n, λ ∈ N,k $

← {0, 1}λ ,
{
Prfk (i )

}
i ∈[1,n]

c
≡
{
x $

← {0, 1}m
}
i ∈[1,n]

Consequently, δ7 = δ8 ≤ 1/poly(λ), and by transitivity, over all

valid epochs, the output of SimF
p is computationally indistinguish-

able from a real view of party p’s local memory, as required. □

Note. A standard hybrid argument yields indistinguishability

over sequences of epochs, as required by Definition A.5. The defi-

nition allowed the simulator knowledge only of the lengths of the

epochs it was to simulate, whereas in this proof we have given the

simulator function descriptions for each access as well as shares of

inputs and outputs for those functions. However, if a single circuit

is constructed to implement both the read and write functionali-

ties, and all accesses in an epoch make use of this circuit (i.e. the

functionality of Floram is reduced to simple read and write opera-

tions), and if the inputs and outputs are information-theoretic secret

shares, then it is unnecessary to pass this extra information, and

the statement in Theorem B.7 collapses to that in Definition A.5.
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