
Standardizing Bad Cryptographic Practice
A Teardown of the IEEE P1735 Standard for Protecting Electronic-design Intellectual Property

Animesh Chhotaray
University of Florida

Adib Nahiyan
University of Florida

Thomas Shrimpton
University of Florida

Domenic Forte
University of Florida

Mark Tehranipoor
University of Florida

ABSTRACT
We provide an analysis of IEEE standard P1735, which describes
methods for encrypting electronic-design intellectual property (IP),
as well as the management of access rights for such IP. We find a
surprising number of cryptographic mistakes in the standard. In
the most egregious cases, these mistakes enable attack vectors that
allow us to recover the entire underlying plaintext IP. Some of these
attack vectors are well-known, e.g. padding-oracle attacks. Others
are new, and are made possible by the need to support the typical
uses of the underlying IP; in particular, the need for commercial
system-on-chip (SoC) tools to synthesize multiple pieces of IP into a
fully specified chip design and to provide syntax errors. We exploit
these mistakes in a variety of ways, leveraging a commercial SoC
tool as a black-box oracle.

In addition to being able to recover entire plaintext IP, we show
how to produce standard-compliant ciphertexts of IP that have been
modified to include targeted hardware Trojans. For example, IP that
correctly implements the AES block cipher on all but one (arbitrary)
plaintext that induces the block cipher to return the secret key.

We outline a number of other attacks that the standard allows,
including on the cryptographic mechanism for IP licensing. Un-
fortunately, we show that obvious “quick fixes” to the standard
(and the tools that support it) do not stop all of our attacks. This
suggests that the standard requires a significant overhaul, and that
IP-authors using P1735 encryption should consider themselves at
risk.

CCS CONCEPTS
• Security and privacy→ Digital rights management; Hardware
security implementation; • Hardware→ Best practices for EDA;

KEYWORDS
syntax oracle attack, padding oracle attack, IP encryption, IP piracy,
hardware Trojan, P1735

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134040

1 INTRODUCTION
A System on Chip (SoC) is a single integrated circuit that incorpo-
rates all of the digital and analog components necessary to imple-
ment a target system architecture, e.g., a radio-frequency receiver,
an analog-to-digital converter, network interfaces, a digital signal
processing unit, a graphics processing unit, one or more central
processing units, a cryptographic engine, memory, and so on. The
vast majority of mobile and handheld devices contain a SoC, as do
many embedded devices. The complexity and cost of modern SoC
processors, amplified by time-to-market pressure, makes it infea-
sible for a single design house to complete an entire SoC without
outside support. Instead, they procure electronic design intellec-
tual property (IP) for various SoC components and integrate them
with their own in-house IP. An IP is a collection of reusable design
specifications that may include — a chip layout, a netlist, a set of
fabrication instructions, etc [13]. These IP cores are intellectual
property of one party, and could be licensed to other parties as well.
A modern SoC can include tens of IPs from different vendors dis-
tributed across the globe. This approach to SoC design has become
the norm for a large portion of the global IP market.

The current semiconductor IP market is valued at $3.306 billion,
and is estimated to reach $6.45 billion by 2022 [30] with the emer-
gence of IoT devices. Thus, IP developers have a clear economic
incentive to protect their products and their reputations. Profit
is lost if the IP is used by parties who have not paid for it, if it
divulges trade secrets, or if it is used to produce so-called “clone”
chips. Company reputations are damaged if the IP does not perform
as advertised. And if security critical design features are leaked, or
backdoors uncovered by users, the damage can be long-lasting.

In order to protect confidentiality of IP and provide a common
mark-up syntax for IP design that is interoperable across different
electronic design and automation (EDA) tools and hardware flows,
the IEEE SA-Standards Board developed the P1735 standard [13].
This standard has been adopted by Synopsys, Xilinx, and other
leaders of the semiconductor IP industry.

IEEE P1735 is broken (and potentially dangerous). We ex-
pose a number of cryptographic mistakes in the P1735 standard,
be they explicit mistakes, mistakes of omission, or failure to ad-
dress important attack vectors. We show that commercial EDA
tools that comply with this standard can actually enable attacks
that allow full recovery of the plaintext IP without the key. We
also demonstrate that, given the encryption of an IP, we can forge
a standard-compliant encryption of that IP modified to contain
targeted hardware trojans of our choosing. For example, we turn en-
crypted IP for an AES implementation into one that can be induced

https://doi.org/10.1145/3133956.3134040

Figure 1:A P1735 ver. 2Digital Envelope. The Rights Block contains
the RSA-encryption of an AES key, which is used to encrypt the
sensitive portions of the IP with AES-CBC mode. Note that only
the Rights Block is covered by the authentication mechanism.

to leak its secret key. This ability to insert HW trojans results from
the fact that, despite surface appearance to the contrary, the cryp-
tographic methods standardized in IEEE P1735 provide no integrity
protections whatsoever to the encrypted IP.

We use the Synopsys Synplify Premier EDA tool (Version L-
2016.09) to make our attacks concrete and to analyze their per-
formance. Synopsys is one of the main EDA tool vendors, with a
market share of 37% [1]. To be clear, we are not finding fault with
the tool: it is the standard that bears the blame.

Let us give a very brief summary of what P1735 gets wrong, from
a cryptographic perspective, and how we exploit these mistakes.

No confidentiality protection. Figure 1 gives a slightly simpli-
fied view of the P1735 “digital envelope.” It implements a kind of
hybrid public-key encryption scheme: it transports an AES key K
that is encrypted under the RSA public-key of the EDA tool, and
then the sensitive portion of the IP is encrypted using AES (un-
der key K) in CBC-mode. While the Data Block contains the AES
encrypted IP, the Key Block holds the encryption of the AES key.
We stress that CBC-mode is the only symmetric-key encryption
scheme discussed in the standard.1

First of all, the P1735 standard provides no guidance as to how
plaintexts should be padded prior to CBC-mode encryption. Thus,
tools wishing to support P1735 are left to make a choice that is
known to be security critical [29, 35, 37]. As an example, the Synop-
sys Synplify Premier tool implements the commonly used PKCS#7
scheme; it also reports a distinguishable padding error upon decryp-
tion. The combination of these leads to well-known padding-oracle
attacks (POA), which we exploit to recover full plaintexts without
knowledge of the key.

An informed “quick fix” to stop the padding-oracle attack might
be to employ a different padding scheme, e.g. OZ orAByte padding [9,
28]. Or to switch from CBC-mode to a block-cipher mode that re-
quires no padding, e.g., counter-mode (CTR). But none of these
would stop our new syntax-oracle attack (SOA) from recovering
plaintext. In this attack, we exploit the fact that EDA tools may

1The standard allows for DES- and 3DES-based CBC-mode (although these are depre-
cated), and requires that AES128- and AES256-based CBC-mode be supported.

provide a wealth of observable syntax-error messages, once the
encrypted IP has been decrypted and the tool begins to process the
plaintext. Indeed, the standard recommends this:

“all tools do error checking and report errors and
warnings to the user. The quality of those error mes-
sages reflects on the usability of those tools, and by
extension, the quality of protected IP.” [13, Section 10]

Moreover, the standard suggests that such error messages are not
useful to attackers:

“... for IP of more than trivial complexity, it is highly
unlikely that information in error messages will fun-
damentally compromise the IP and allow essential
information to be stolen. Therefore, there is a good
argument that protected IP is more usable with error
messages that are transparent and the risk of loss of
value will be little to none.” [13, Section 10]

Our SOA attack shows this thinking is entirely wrong-headed.

No integrity protection. In addition to providing no actual confi-
dentiality guarantees to the underlying IP, a P1735 digital envelope
provides no integrity protection. To be fair, the standard does not
call out integrity protection of the digital envelope (or even the IP)
as an explicit goal. One might even argue that there is no need for
integrity protection. After all, the standard states that the EDA tool
is assumed to be trusted, and there is no incentive for an honest
IP user to maul the digital envelope it receives from the IP author.
Our position is that this viewpoint is too narrow. Rogue entities do
exist in the modern SoC design-flow, and the existence of P1735 is
evidence that the semiconductor industry acknowledges the real
(and costly) threat they represent.

To highlight the danger of not addressing integrity protection,
we give an attack that succeeds to embed targeted hardware-Trojans
into an IP that is encrypted via a P1735 digital envelope. In fact, the
standard admits such an attack trivially, because the creator of the
digital envelope selects the AES key K , and the standard provides
no mechanism for authenticating the party who selected it. But
our attack works even if the key K is unknown and bound to the IP
author.

Broken licensing-proxy mechanism. The standard also in-
cludes a mechanism for EDA tools to communicate with an IP-
author-provided licensing proxy. Loosely, the tool sends an AES-
CBC encrypted “license request” message on behalf of the user, and
the proxy responds with an AES-CBC encrypted “license granted”
or “license denied” message. Although we did not have available a
commercial tool that implements this protocol, P1735 appears to ad-
mit multiple attacks on it. Here, the culprits are the use of the same
initialization vector (IV) for all messages sent within a single con-
nection (and there may be multiple license requests and responses
within a connection), and the fact that the “license granted” and
“license denied” messages both echo the “license request” message.

There are a number of other cryptographic errors that are not
as obviously damaging, and numerous places where the standard
is vague or silent on security critical matters. A broader summary
is found in Appendix A.

Figure 2: System-on-chip (SoC) design flow.

Summary of our contributions. At a high level, our work makes
contributions along multiple dimensions. First, it analyzes an inter-
national standard that has been adopted by major commercial EDA
tools and is likely to impact the development of future tools. Second,
while our attacks are not technically deep from a cryptographic
perspective, they demonstrate that complying with the standard
provides no real security. We optimize these attacks to make them
quite efficient, especially when one considers the amount of time
(and money) that IP developers expend to develop their products.
Third, we bring to the attention of the security community a facet
of the supply-chain attack surface that is badly in need of principled
protections. We hope our work will encourage others to examine
standards that aim to protect other pieces of this surface.

Concretely, the main results of this paper are:

• Two attacks (POA and SOA) that extract the plaintext from
standard-compliant ciphertexts without knowledge of the
key. We also provide optimizations suitable for both attacks
that reduce their complexity from a naive O(N 2) to O(N),
where N is the number of ciphertext blocks.
• Application of the POA and SOA attacks on nine IP bench-
marks of various sizes and content. We quantitatively com-
pare them according to their execution time and accuracy.
• Two integrity-violating attacks that require only partial
knowledge of the IP plaintext; this can be gained using POA,
SOA or other attacks that may yet be discovered. We show
how to insert a targeted hardware Trojan into any IP without
knowledge of the key.
• Analysis of potential vulnerabilities in the licensing scheme
described by the standard, which can result in unauthorized
access and denial of service.

We also provide recommendations for addressing the mistakes
we identify and exploit. From a cryptographic perspective, the so-
lution is simple. Use a provably secure authenticated encryption
scheme that supports associated data (AEAD) to encrypt the sensi-
tive IP and produce the Data Block, treating everything that is not
the sensitive IP (but still is to be transmitted) as the associated data
(AD). For example, the standard could mandate CTR-mode encryp-
tion of the IP for the Data Block, with an attached HMAC whose
scope covers everything to be included in the digital envelope. That
is, use CTR-mode encryption and HMAC in an “encrypt-then-MAC”
style of generic composition [8],[27], appropriately modified to ad-
mit AD. Using CTR-mode removes concerns about padding (hence

padding-oracle attacks), and using encrypt-then-MAC style AEAD
prevents (in theory) any sort of syntax-oracle attack because digital
envelopes would be rejected as invalid before any plaintext from
the Data Block was released for further processing.

However, we note that this conceptually straightforward change
would require substantial changes in the standard, and the EDA
tools that support it. Minimally, the IEEE would need to: deprecate
previous versions of the P1735 standard immediately with no sup-
port for backward compatibility, define standard specific variables
(or “pragmas”) for an AEAD scheme, define the revamped mark-
up format of the digital envelope, explicitly define the behavior
of the tool when decryption fails (due to any reason), and create
a set of standard error messages that the tool can output during
processing of the digital envelope (e.g., a version error to identify
digital envelopes complying with a previous version of the P1735
standard.) Likewise, EDA tool providers would need to: identify
deprecated versions of the standard and report version error, add
new APIs that the IP authors could use to create the digital envelope
using the standardized AEAD scheme, add error flags/messages in
its compiler to catch errors due to the AEAD scheme, and avoid
conflating cryptographic error messages with Verilog/VHDL error
messages.

2 BACKGROUND
2.1 SoC Design Flow
Figure 2 shows a typical SoC design. In the first step, the SoC in-
tegrator (design house) specifies the high-level requirements and
blocks of the SoC. It then identifies a list of IPs necessary to imple-
ment the given specification. These “IP cores” are either developed
in-house or purchased from third party IP (3PIP) developers. In the
latter case, the cores may be of the following forms:

• “Soft” IP cores are delivered as synthesizable register transfer
level (RTL) specifications written in a high-level hardware
description language (HDL) such as Verilog or VHDL. These
IP cores are human-readable by virtue of being written in a
high-level language.
• “Firm” IP cores are delivered as gate-level implementations
of the IP, i.e., sets of registers and logic gates connected by
wires. They are often visualized as gate-level schematics or
human-readable netlists, but do not expose the underlying
IP. Reverse engineering the RTL specification (even approx-
imately) from the gate-level implementation is considered

a non-trivial problem, akin to recovering source code from
machine code.
• “Hard” IP cores are delivered as GDSII representations of a
design, i.e., a set of planar geometric shapes representing
transistors and interconnects. These are human readable
(with some effort), and are easily converted to gate-level
implementations. Like firm IP, it is non-trivial to recover the
original RTL from which it was generated (if any).

Soft IPs provide greater flexibility and enable easier integration
with other IPs in the SoC. Therefore, soft IP is the most common
form of 3PIP by a large margin [38]. After developing/procuring
all the necessary soft IPs, the SoC design house integrates them to
generate the RTL specification of the whole SoC. The RTL design
goes through extensive functional/behavioral testing to verify the
functional correctness of the SoC and also to identify bugs. The
SoC integrator then synthesizes the RTL description into a gate-
level netlist based on a target technology library. (They may also
integrate firm IP cores from a vendor into this netlist.) The gate-
level netlist then goes through formal equivalence checking to
verify that the netlist is equivalent to the RTL representation.

Next, specific design-for-test (DFT) and design-for-debug (DFD)
structures are integrated into the netlist. As the names suggest,
these make it easier to test and debug a SoC design later on in the
fabrication process. (We note that DFT and DFD structures may
be integrated into the netlist in-house, or by third parties, further
complicating the security surface.) The DFT inserted netlist then
goes through static timing analysis to analyze if the implemented
design conforms to the timing requirement.

After this, the gate-level netlist is translated into a physical-
layout design. At this stage, it is also possible to import and integrate
hard IP cores from vendors. After performing static timing analysis
and power closure, the SoC integrator generates the final layout in
GDSII format and sends it out to the foundry for fabrication.

The flow discussed above is for application-specific integrated-
circuit (ASIC) designs. An SoC can also be implemented in a field-
programmable gate array (FPGA). The FPGA design flow is similar
to ASIC flow until synthesis. After the synthesis in FPGA flow,
the design goes through “place-and-route” process for the targeted
FPGA chip and a bit-stream is generated which implements the
design on FPGA.

In the SoC design flow, for either ASIC or FPGA, the P1735
standard is mainly used by developers of soft and firm IP-cores,
who wish to keep their technology confidential. This standard is
also used by SoC designers who want to ensure that the design is
not tampered by rogue employees (i.e., insider attack) or by third
party entities present in the SoC design flow.

2.2 IEEE P1735 Standard
The IEEE SA-Standards Board developed the P1735 standard to
provide guidance on protection of electronic design intellectual
property (IP) [13]. It defines three stakeholders: IP author, IP user,
and tool vendor. The IP author is the producer and legal owner
of the IP. The IP user is the party who will use the IP author(s)
product(s) to develop its SoC. The tool vendor provides an EDA tool
to the IP user. The tool should simultaneously enable the IP user to

Figure 3:Work flow of the P1735 standard.

develop its SoC, and protect the rights of the IP author. Note that
the EDA tool is run on a platform that the IP user controls.

From an economic perspective, the IP author and IP user have
competing interests. The former wants to maximize the return on
its (often signficant) research and developement investment; the
latter wants to use various pieces of IP at minimal cost. The P1735
standard effectively adopts the viewpoint that the IP user is the
adversary. A malicious IP user would like to recover the plaintext IP,
and possibly find and exploit holes in the access control mechanism.
The EDA tool is considered to be trusted, and is thus permitted by
the IP author to carry out decryption. Also, it is the EDA tool that
provides code for IP encryption to the IP author, and this code is
trusted. The working assumption is that the EDA tool will not leak
to the IP user anything beyond what the IP author deems acceptable,
this being specified in the Rights Block of the protected IP.

The P1735 standard provides recommended practices for using
encryption in order to ensure confidentiality of IP. To support inter-
operability and broad adoption, it also specifies a common mark-up
format to represent an encrypted IP. The mark-up format uses
standard-specific variables, or pragmas, to identify and encapsulate
different portions of the protected IP. It also uses these pragmas to
specify the encryption algorithms, digest algorithms, etc.

The standard also provides mechanisms to support rights man-
agement and licensing; together these enable IP authors to assert
fine-grained access control. With the rights management function-
ality, an IP author can assert which output signals are accessible to
the IP user when the EDA tool simulates the IP for the latters ben-
efit. The licensing functionality allows access to authorized users
only, e.g., companies that have paid for the rights to use the IP.

The basic work flow of the standard is shown in Figure 3. The
standard mandates AES-CBC (but allows for other blockciphers)
and RSA (≥ 2048) for symmetric and asymmetric encryption, re-
spectively. For AES it recommends a key size of 128 or 256. We note
that while the tool may perform simulation, synthesis, and other
processes on the IP, it never reveals the IP in its plaintext format to
the IP user [13].

2.3 Hardware Trojans
Due to the globalization of the semiconductor design and fabrica-
tion process, SoCs are increasingly becoming vulnerable to mali-
cious modifications often referred to as hardware Trojans [16] [25].

These hardware Trojans can create backdoors in the design, through
which sensitive information can be leaked, and other possible at-
tacks (e.g., denial of service, reduction in reliability, etc.) can be
performed.

The basic structure of a hardware Trojan consists of two main
parts: trigger and payload. A Trojan trigger is an optional part that
monitors various signals and/or a series of events in the SoC. Once
the trigger detects an expected event or condition, the payload is
activated to perform a malicious behavior. Typically, the trigger is
expected to be activated under extremely rare conditions, so the
payload remains inactive for most of the time. When the payload is
inactive, the SoC acts like a Trojan-free circuit, making it difficult
to detect the Trojan [26]. A Trojan can have a variety of possible
payloads. In this paper, we will focus on payloads which leak secret
information [34].

3 CONFIDENTIALITY ATTACKS
In general, IP authors price in a risk premium to compensate for
the risk of revenue loss should their IP be used in an unautho-
rized manner. The P1735 standard aims to mitigate this risk, and
to establish trust in the semiconductor IP market, by mandating
cryptographic mechanisms meant to provide confidentiality (at
least) for IP. Reducing the risk should reduce the cost of the IPs;
increasing trust should enable IP authors to engage in transactions
with more prospective IP users. To this end, the standard states [13,
Section 4.3]

“in its encrypted form, and in the absence of the de-
cryption key, the data is secure both in transmission
and at rest in a file ... There are no independent means
to decrypt and access it at the IP user premises”

but we show that this claim is completely false.
We present two different attacks to break the confidentiality of

an encrypted IP. The first is a standard padding-oracle attack (POA),
and the other is a new, related, syntax-oracle attack (SOA). These
attacks extract the plaintext of an encrypted IP without the knowl-
edge of the key. (Readers who are very familiar with padding-oracle
attacks may wish to skip directly to the syntax-oracle attack in
Section 3.2.) Moreover, in Section 4 we show that once the confi-
dentiality of the IP is broken, the adversary can insert any targeted
hardware Trojan into the original IP ciphertext.

3.1 Padding-Oracle Attack
The P1735 standard mandates CBC-mode for symmetric encryption.
CBC-mode operates on strings whose length is a multiple of the
blocksizse of blockcipher being used, e.g. 128-bits when using AES-
CBC as recommended by the standard. Therefore, one must attend
to padding of plaintexts to make them block-aligned. The standard
makes no recommendation for any specific padding scheme, leaving
the tool vendors to decide what to do. (Recall that the EDA tool
provides code for encryption of IP intended for use with that tool.)

The Synplify Premier tool supports PKCS#7 padding. In this
scheme, if the last block of plaintext is block-aligned, a new block
is added and filled with the padding byte (PB) which is equal to the
block-size in bytes. Otherwise, the last block is padded with PB till
the block gets full. In this case, PB is equal to the difference of block
size in bytes and the number of bytes in the last block. For example,

if the last block is short by 2 bytes, it is padded with 0x02 0x02.
During decryption, if the last plaintext block has incorrect padding,
a padding error is reported.

In the classic padding-oracle attack [35], Vaudenay used this er-
ror as an oracle (PAD) to recover the plaintext (P) without knowing
the key. In this attack, when the oracle is given a ciphertext (C)
as input, it returns 1 if there is a padding error, and 0 otherwise.
Suppose the target ciphertext is C = IV ∥C1 ∥C2 ∥C3, where IV is
the initialization vector, and all blocks are 16 bytes long. Letting
Cj [i] and Pj [i] denote the ith byte in the jth block of the ciphertext
and plaintext, respectively, the attack proceeds as follows. The ad-
versary starts guessing bytes in the last block (P3) in the reverse
order, i.e., she first guesses the 16th byte. Let the guess byte be д.
She xorsC2[16] with the guess byte and padding byte, PB (= 0x01),
i.e C ′2[16] = C2[16] ⊕ д ⊕ 0x01, where C ′2 is modified C2. She con-
catenates the ciphertext blocks and IV as shown earlier, and queries
the padding oracle. If the oracle returns 1 (padding error), she re-
peats the process with a new guess byte. When 0 (no padding error)
is returned, she stops, initializes P3[16] with the value of д, and
xors C2[16] with 0x01 to remove the padding. The adversary then
repeats the process for the 15th byte, with pad as 0x02. Note that
she has to xor C2[16] with 0x02, so that the last two bytes in P3
become 0x02 0x02 (valid padding) when the adversary correctly
guesses P3[15]. She repeats this process to guess all the bytes in P3.
Then, she truncates the last block to make C2 as the current target
block, and repeats the attack to recover plaintext from C2.

In the case of AES and a plaintext alphabet of ASCII bytes, the
attack takes a maximum of 256 × 16 × N attempts to find all of the
plaintext, where N is the number of ciphertext blocks. In each at-
tempt, the tool performs N decryptions. Therefore, the algorithmic
complexity of the attack is O(N 2).

Defense. The current versions of the standard have no means to
protect against the POA. Simple ways to fix this include

• Changing the padding scheme to AByte or OZ padding. Since
these schemes have no invalid padding, decryption never
fails due to incorrect padding [9, 28].
• Changing to AES-CTR mode, which requires no padding of
the plaintext.

The above two modifications require minimal changes to the mark-
up format mandated by the current version of the standard, al-
though both would require tool-specific modifications. Anyway,
neither of these simple defenses actually prevent recovery of the
plaintext, as we will see in the next section.

Using a proper authenticated encryption (AE) scheme would
prevent the POA and the new attack that we are about to give.
From a cryptographic perspective, we recommend mandating an
AE scheme with support for associated data (AEAD) [31]. The
associated data (AD) should be all of the digital envelope that is not
the Data Block, so that there is a proper binding between AD and
Data Block. Our recommendation would be achieved with the least
number of changes by demanding (1) that the HMAC computation
always is carried out, (2) that the scope of the HMAC computation
is the entirety of the digital envelope, specifically including the
encrypted Data Block, and (3) that every decryption failure results
in a single error signal. For the last, this means that the padding

must be checked even if the HMAC check fails, to avoid enabling
the POA via a timing-channel [11] Moreover, no processing of the
digital envelope beyond these checks should occur if decryption
fails.

That said, supporting any AEAD scheme would require signif-
icant changes to the standard and the EDA tools. So it is worth
evaluating other provably secure AEAD schemes with respect to
their efficiency and operational considerations.

3.2 Syntax-Oracle Attack
EDA tools need to provide an extensive debugging environment so
that any SoC design issues can be swiftly identified. This applies
to encrypted IPs as well, since IP users need the ability to detect
potential design errors and systhesis issues in the purchased IPs.
The P1735 standard highlights these needs, as we noted in the
Introduction with quotes from [13, Section 10].

Our SOA exploits the syntax errors reported by EDA tools in a
manner similar (but not identical) to the POA. The main strategy
is to inject into the decrypted plaintext, via manipulations of the
ciphertext, a particular character that will elicit a unique syntax-
error messagewhen the plaintext is processed by the tool.2 In Verilog
grammar, we have found that the ` (backquote) character has these
unique properties. The ` symbol is a Verilog keyword that indicates
preprocessor directives such as “define”, “include”, and “ifdef”. For
example, “` define S0 1” defines a macro S0 that is replaced by 1
during preprocessing of the plaintext IP. If the backquote character
is followed by any token other than the supported directives, the
EDA tool reports one or more syntax errors. (This is a property
of Verilog parsers.) These errors can be used akin to the padding
oracle to recover the plaintext IP.

For example, when Synplify encounters a misplaced backquote
symbol, it throws one of the following two errors: “expecting iden-
tifier immediately following back-quote” or “Unknown macro”. In
our attack, we use these two error messages to affect a syntax or-
acle (SO). When the oracle is given a ciphertext (C) as input, it
returns 1 if either of these two errors occurs, and 0 otherwise.

We use the same example as the POA to explain our SOA. Let
the ciphertext message be C = IV ∥C1 ∥C2 ∥C3. In SOA, the at-
tacker can target any ciphertext block. (In padding oracle attack,
the target block should be the last block of ciphertext; the ciphertext
can be truncated to make the target block, the last block.) Let the
target ciphertext block be C2. The attacker can guess the plaintext
characters of the target block in any order.

Let’s suppose the attacker is interested in learning the 5th byte of
the 2nd block, i.e., P2[5]. The SOA attack for this case is illustrated in
Figure 4. We first replaceC1[5]with the guess byte, д, i.e.,C ′1[5] = д,
where C ′1[5] is the modified value of C1[5]. We then query the SO.
If the oracle returns 0, the same process is repeated with a new
guess byte. When SO returns 1, we stop because it indicates that
the ` character is present at P ′2[5], the modified value of P2[5]. We
extract the P2[5] value by C1[5] ⊕ 0x60 ⊕ д. (0x60 is the ASCII
value of `). The same process is repeated to find the rest of the
plaintext.

2We define a unique syntax error as an error that is caused only by presence of a
particular character in the IP.

To see that the attack works, consider the following. Before the
attack, P2[5] = C1[5] ⊕ y[5], where y = E−1K (C2). When the SO
returns 1,
• P ′2[5] = C

′
1[5] ⊕ y[5],

• P ′2[5] = 0x60, and
• C ′1[5] = д.

So, P2[5] = C1[5] ⊕ 0x60 ⊕ д.
In case of AES and a plaintext alphabet of ASCII bytes, it would

require at most (256 × 16 × N) attempts to extract the entire IP,
where N is the number of ciphertext blocks. Each attempt requires
N AES decryption. So, the algorithmic complexity of this attack is
O(N 2).

Defense. Our SOA relies on modifying the ciphertext to inject
specific syntax errors in the decrypted plaintext. Our attack works
because the P1735 standard does not provide any integrity protec-
tion for the Data Block, and encourages the return of descriptive
syntax errors. As the latter seems crucial for facilitating SoC design,
we recommend a cryptographic solution. As noted in the discussion
of POA defenses, we recommend using a proper, provably secure
AEAD scheme, and treating all of the digital envelope that is not
the Data Block as associated data.

3.3 Optimizing the syntax-oracle attack
In the worst case, the SOA requires 256× 16×N attempts to extract
the plaintext IP consisting of N ciphertext blocks. For N = 10, 000,
the SOA would require roughly 40 million attempts to recover the
plaintext. For each attempt, the EDA tool must decrypt the IP and
run a syntax check. Our experimental results show that a single
attempt takes around 0.25 seconds, on average. Therefore, for a
10,000 block IP, the SOA would take nearly 40 months to extract
the entire plaintext. In short, the basic SOA may not be practical for
large scale industrial IPs. In this section, we provide optimizations
for the SOA that significantly reduce the run time of the attack.

Reduce sample space of guess byte (RSSGB). Consider the
example introduced in the previous section. In the first step of
the attack, C ′1[5] = д. Instead, the adversary could set C ′1[5] = д1,
where д1 = C1[5] ⊕ 0x60 ⊕ д. This optimization improves the
attack efficiency by reducing the number of attempts to extract the
plaintext. To see why, observe that

P2[5] = C1[5] ⊕ 0x60 ⊕ д1

= C1[5] ⊕ 0x60 ⊕ (C1[5] ⊕ 0x60 ⊕ д)

= д

Note that the ciphertext is an encryption of valid Verilog code. Since
the guess byte is now equal to P2[5], it would be a valid Verilog
character, and hence its range would be between 1 and 128. The
maximum number of attempts to find all of the plaintext therefore
reduces from 256 × 16 × N to 128 × 16 × N . This optimization also
works for the POA.

Reducing AES decryptions (RAD). In AES-CBC, a plaintext
block is a function of two ciphertext blocks, namely PN = DK (CN)
⊕ CN−1, where D = E−1. The Synplify tool reports errors after
it decrypts the entire ciphertext, and performs a syntax check on
the resulting plaintext. This adds a lot of latency as the tool has to

Figure 4: Syntax-oracle attack to extract the plaintext, P2[5]. Before the attack, P2[5] = C1[5] ⊕ y[5]. When C ′1[5] = д, suppose SO returns
1, i.e., P ′2[5] = 0x60. Since, P ′2[5] = C

′
1[5] ⊕ y[5], so P2[5] = C1[5] ⊕ 0x60 ⊕ д. (P ′2 and C

′
1 represent the modified plaintext and ciphertext

block.)

decrypt extra N − 2 blocks of ciphertext to recover each targeted
plaintext block. It is possible to parse and modify the ciphertext so
that it only contains the target block and the block before the target
block. However, any target block other than the last block will not
have proper padding, and the tool does not report syntax errors if it
finds a padding error. We counter this problem by using the follow-
ing preprocessing — discard all ciphertext blocks except the last two
blocks, the target block, and the block before it. The last two blocks
prevent concealing of syntax errors due to padding errors. For exam-
ple, consider a 100-block ciphertext, C = IV ∥C1 ∥ · · · ∥C99 ∥C100.
To recover C3, we could give C ′ = C2 ∥C3 ∥C99 ∥C100 as input to
the tool, instead ofC . Now, in each attempt, the tool has to decrypt
just 4 blocks of ciphertext to get the plaintext instead ofN . Owing to
this optimization, the algorithmic complexity reduces from O(N 2)
toO(N). To be precise, the tool can save up 128 × 16 × N × (N − 4)
AES decryption operations in each attack. For a 1,000-block Verilog
code IP, the attack can be 250x faster than the RSSGB optimization.
This optimization also works for POA.

All-blocks-at-once attack (ABAO) . The syntax-oracle attack
can be independently applied to extract a character from any par-
ticular position. Also, instead of aiming to inject the backquote
character/symbol at one position, we can aim to inject it at multiple
position at the same time. The EDA tool will report the respective
locations (in the decrypted IP) where it encounters errors due to
the backquote symbol. These properties make the SOA inherently
parallelizable and we can exploit it to gain a massive speedup.

The optimized attack needs some pre-processing similar to the
previous optimization. This is shown in Figure 5. We first break
the Data Block of the encrypted Verilog code into groups, where
each group consists of a target block, its preceding block, and the
last two blocks in the Data Block. A module is the basic unit of
hierarchy in Verilog. So, each group is given a unique module name
and is written on to a separate file. For example, for target block
C1, we write IV ∥C1 ∥CN−1 ∥CN in the Data Block of module1;
for target blockC2, we writeC1 ∥C2 ∥CN−1 ∥CN in the Data Block

of module2, and so on. It can be easily seen that the number of
files that needs to be created is equal to the number of encrypted
blocks in the Data Block of the original Verilog module. We then
write a main module (“top” in Figure 5) in a separate file that can
invoke the modules that we just constructed. Next, we modify (xor
with 0x60 and the guess byte) all characters of the target block in
each module and pass all files (module1, module2, . . . , module100
and top) to the EDA tool. The tool checks for syntax errors in all
the files. Notice that, in this case all instances of the guess byte (if
present in the target block of a module) and their relative position
to the start of the file will be known in a single attempt. So, after
128 attempts, which is the sample space of valid Verilog characters,
we find all the characters in the original encrypted Data Block.

For this optimization, the algorithmic complexity of the attack
is O(N) where N is the number of ciphertext blocks. To be more
precise, the attack takes a maximum of 128 attempts to find all of
the plaintext. The maximum number of AES operations that the
tool performs is equal to 128×N , as compared to 256× 16×N ×N ,
in case of no optimization. For a Data Block that contains 1,000
AES-128 encrypted blocks, this optimization reduces the worst case
by more than 4 billion AES operations. Note that, the previous
optimization was sequential in nature, while the current one is
highly parallelized, as not only can we target all blocks at once, we
can also find all instances of a single guess byte in a single run.

This gigantic stride in efficiency comes at a loss of accuracy.
The ABAO optimization can introduce characters like EOF, double-
quote and comment symbols in the decrypted plaintext. These
characters also cause syntax errors which can mask the target (the
backquote symbol). Therefore, the SOA with this optimization will
fail to extract some plaintext characters. Our experimental results
show that the SOA with ABAO optimization can extract around
85% of the total plaintext. For an adversary with subject matter
expertise, it is feasible to infer the rest of the plaintext of the overall
encrypted IP.

Figure 5:Modules creation in SOA - ABAO optimization. The blue
ciphertext block is the target block in each module.

Table 1: Trade-off of approximate accuracy v/s number of AES
operations (in worst case) in all the confidentiality attacks. The
analysis is over an encrypted IP whose Data Block consists of 1,000
ciphertext blocks.

SN Attack #AES-decryptions Approximate
accuracy

1 Basic POA 4.096 × 109 100%
2 Basic SOA 4.096 × 109 98%
3 (2) + RSSGB 2.048 × 109 98%
4 (3) + RAD 8.192 × 106 98%
5 (2) + ABAO 1.28 × 105 85%

There is a clear trade-off between the accuracy and run-time of
this attack. An adversary could use this optimization to recover a
substantial portion of the plaintext in a short time. If there is spare
bandwidth, they could run the basic SOA/POA to find the missing
characters. A tweaked version of this optimization can be applied
to the POA. We discuss this in Section 6.

Exploit frequency distribution. The attacker can also exploit
the frequency distribution of characters in Verilog grammar to
select guess bytes instead of making randomized guesses. For more
efficiency, they could use a Markov model to make adaptive guesses
based on partially decrypted plaintext.

Run parallel instances of the tool. Another trivial optimization
involves the IP user running multiple instances of the Synplify tool
in parallel to recover separate portions of the plaintext. The number
of instances that could be run in parallel are controlled by the EDA
tool. One could argue that the adversary could procure multiple
licenses of the Synplify tool and recover the plaintext IP in a short
time. But, these licenses are very expensive and cost upwards of
$100,000.

3.4 POA vs. SOA
Table 1 shows the trade-off of each optimization with respect to
the accuracy of the attack, for a 1,000 block ciphertext. Since run
time of an attack is directly proportional to the number of AES

operations, we use the maximum number of AES operations as an
approximation of the run-time. The POA and the basic SOA can
extract ∼ 100% of the encrypted plaintext. While POA is restricted
to AES-CBC with a padding scheme that reports padding errors,
the SOA relies on a unique syntax error due to a specific plaintext
character in the underlying HDL (there could be more than one
such character in the HDL). Both of these attacks have high run
time owing to a large number of AES decryption operation. The
optimizations on the SOA improve the run-time of the attack but
also cause a loss in accuracy.

4 INTEGRITY ATTACKS
The modern SoC design flow involves third parties and even in-
house teams that are located across the globe. For such a distributed
design process, the trustworthiness of entities, their IP, and their
actions are difficult to verify. For example, an SoC integrator may
have different design teams located in different parts of the world.
The design team that is responsible for designing security critical
IPs for the SoC (e.g., Trusted Platform Modules) may not trust other
design teams as they could tamper with the IP surreptitiously and
avoid detection during functional verification and testing of it. In
these scenarios, these IPs are encrypted using the P1735 standard
to protect against malicious tampering.3

The standard does not consider any authenticity check on the
identity of IP authors. However, it purports to provide integrity pro-
tection for the digital envelope by providing an HMAC computation
over the Key Block (or the entire Rights block, if this includes more
than just the Key Block). In this section, we demonstrate that the
P1735 standard cannot ensure integrity protection of an encrypted
IP based on two different attacks.

In the first attack (see Section 4.1), we present a way to maul the
ciphertext so that our desired modification appears in the resultant
plaintext without causing any syntax errors. The second attack (see
Section 4.2) allows an adversary to insert ciphertext blocks in the
encrypted IP such that no syntax errors are raised and exploit the
lack of authentication of the IP author. Both of these attacks are
performed without the knowledge of the decryption key, and can
be applied to various security critical IPs with disastrous conse-
quences. Moreover, these attacks work with any IP and any set of
RTL instructions that the adversary wants to insert in the IP.

In these attacks, we insert a hardware Trojan in an encrypted
crypto-accelerator IP that implements the AES algorithm in hard-
ware [2]. To the best of our knowledge, this is the first demonstration
of hardware Trojan implementation in an encrypted IP.When it ob-
serves one specific plaintext, our Trojan leaks the on-chip secret
key used by the AES IP. The schematic of the Trojan (T) is shown in
Figure 7(a). To implement it, an adversary needs to insert the code
shown in Figure 7(b) into the encrypted RTL. Here, PT and CT are
the plaintext and ciphertext ports of the AES module and Tj is the
triggering condition. When PT is equal toTj , the key is leaked. Note
that detecting this Trojan is extremely difficult because it delivers its
payload only when it observes a specific 128-bit plaintext. In addi-
tion, it is worth noting that traditional Trojan detection techniques

3Anecdotally, representatives of the semiconductor industry have stated that the
community is adopting the recommendations of the P1735 standard to ensure the
integrity of IPs, too.

Figure 6: Integrity attack-I on the P1735 standard. The IV is modified to insert the start-comment directive in P1. A random block (A1) is
inserted after C1. The resulting plaintext text (PA1) is not checked by the tool for syntax errors as it is treated as commented characters. The
attack block (A1) is appended to the victim block (V1 = C1). A1 is tampered to insert the end-comment directive in the first two bytes of PV1 ,
and the desired Trojan’s first twelve characters in the next twelve bytes. The process is repeated by tamperingA1 to insert the start-comment
directive in the last two bytes of PV1 . Precondition: the attacker knows at least one block of the plaintext.

[32], [12], [36] cannot be applied on encrypted IPs. We reiterate
the fact that the P1735 standard does not facilitate any authenticity
check on the encrypted IP and therefore, any modification in the
encrypted IP is not detected.

4.1 Trojan Insertion in Crypto-accelerator - I
In this attack, we first recover the plaintext IP using one of our
prior confidentiality attacks. Then, we manipulate the initialization
vector (IV ′) to insert a start-comment directive in the first block
of the plaintext (since P ′1 = DK (C1) ⊕ IV ′). Next, we insert two
additional blocks —the attack block A1, and the victim block V1—
after the first cipher text block. Each attack block is modified in an
adaptive manner; all the victim blocks are same as C1. Our aim is
to modify the attack block so that the desired changes are reflected
in the plaintext-block (PV1) corresponding to V1. This is explained
with the following equation,

PV1 = DK (V1) ⊕ A1

Note that, we know DK (V1) from the confidentiality attack. There-
fore, we can change A1 to make any specific changes in PV1 . How-
ever, the plaintext block, PA1 corresponding to A1 would consist of

Figure 7: (a) Schematic of a Trojan which leaks the on-chip private
key used by the AES IP. (b) The Verilog code which implements
this Trojan.

random characters, which in turn would cause syntax errors with
very high probability. We counter this by commenting out the PA1
block. As mentioned in the previous paragraph, we have modified
IV ′ to insert a start-comment directive in P ′1. We now modifyA1 in
such a manner that it introduces a end-comment directive in PV1 .
Therefore, the PA1 block is encapsulated inside a comment section,
and the EDA tool does not check for syntax errors in commented
sections of the IP.

Figure 6 illustrates our proposed integrity attack. The /∗ is the
Verilog directive for start of comment and ∗/ is the directive for
end of comment. Notice that, the PA1 block is encapsulated inside
a comment section. Also, we modify the last two bytes in A1 to
insert a start-comment directive in the last two bytes of PV1 . This
allows us to insert the subsequent attack blocks, Ai , and victim
blocks, Vi , where i > 1. All the victim blocks are identical in our
attack. Since each of the victim blocks has a end-comment direc-
tive in the first two bytes and start-comment directives in the last
two bytes, it allows us to insert any Verilog code in the rest of the
twelve bytes. We insert the Verilog code for the Trojan in these
twelve bytes in an incremental manner until the entire code is in-
serted. After that, we append the original ciphertext blocks. Note
that, we use the same C1 block for all victim blocks. Instead, we
could use any ciphertext block, provided we know its correspond-
ing plaintext. The Trojan-inserted ciphertext is given as follows.
C = IV ′ ∥C1 ∥A1 ∥V1 ∥A2 ∥V2... ∥Am ∥Vm ∥C2 ∥ ...Cn . Here, V1
= ... = Vm = C1, andm, n represent the number of attack/victim
blocks and original ciphertext blocks, respectively.

Defense. The defenses recommended for the SOA provide integrity
checks on the Data Block in particular, and the entire IP in general.
Hence, these defenses would stop the integrity attacks.

4.2 Trojan Insertion in Crypto-accelerator - II
In a global design process, authentication of participating IP authors
is of paramount importance. The P1735 standard does not address
this issue. Thus, it is trivial for an adversarial IP author (a rogue
employee of the SoC integrator) to insert a Trojan in its own IP.

However, it can also target security-critical IP’s belonging to non-
adversarial IP authors.

In this attack, we first extract the plaintext IP, P using one of our
confidentiality attacks. Then we insert the Trojan,T in the plaintext
IP at any desired position. We then chose a random session key, K ′,
and encrypt P ′ (trojan-inserted IP) under the session key to get the
encrypted Data Block. After that, we encrypt the session key under
the public key of the tool to get the Key Block. The Data Block and
the Key Block are bundled together as per the standard to get the
digital envelope.

To defend against this, it would be sufficient to prevent the
recovery of the plaintext IP, i.e., apply the suggestions from Sec-
tion 3.

5 LICENSING ATTACKS
The standard specifies a rights management mechanism that can
control the amount of information the tool outputs during process-
ing of the encrypted IP, such as names and location of protected
variables during error reporting, output signals during simulation,
etc. It also describes a licensing mechanism that controls such
rights based on whether the IP user has the corresponding license
or not. The standard describes a protocol to implement the licensing
scheme. The protocol consists of 4 sub-protocols. Some of these
sub-protocols are vague, and give way to trivial attacks due to use
of AES-CBC with fixed IVs, and a poor authentication mechanism
of the license-request and license-response messages.

Threat model. The principals in this threat model are the IP user,
a proxy server controlled by the IP author, and the tool that parses
the IP for licenses to make license requests on behalf of the IP user.
The IP author and the tool are trustworthy entities; the IP user is
an adversary who does not have the valid license(s) and tries to get
access to protected sections of the IP cores.

The licensing protocol. The licensing protocol can be divided
into four sub-protocols: key exchange, license request, license re-
sponse, and heartbeat. The protocol as whole proceeds as follows.
The tool creates a socket connection with the proxy server and
runs a key exchange protocol to establish a shared key (K). For
each new license, it creates a new license id (LId), encrypts the
license request under the shared secret key (K) and license id as
the initialization vector, prepends the encrypted message with the
license id, and sends the message to the proxy server. The proxy
performs license validation and sends back a license grant/deny
response. The license id, which is unique for each license request,
is used by the proxy, as well as the tool, to distinguish between
multiple licenses.

The license-request, license-grant and license-deny messages
are prepended with the command byte ‘N’, ‘G’ and ‘D’ respectively,
before carrying out the encryption. In plaintext, these messages are
identical, except the optional application-specific string or denial
message that is appended to the grant/deny message. The resultant
encrypted text is referred to as “symbolic encrypted message” (de-
noted by L in Figure 8). The tag (‘N’, ‘G’ and ‘D’) in the first byte of
the plaintext makes the symbolic encrypted messages different, de-
spite being identical in the rest of the plaintext bytes. The standard

Figure 8: Format of different messages in the licensing protocol. (a)
Format of a symmetric key encrypted message. ‘X’ represents the
command byte, and can have values like ‘N’, ‘G’, or ‘D’. L represents
the symbolic encryption of license-abc. (b) and (c) show possible
formats for (I) new license-request, (II) license-grant, and (II) license-
deny messages. While in (b), the license id is prepended to the
encrypted message, in (c), it is prepended to the symbolic encrypted
message.

cites authentication of the request message in the grant or deny
response as the reason behind this design choice [13, Section 8].

A potential attack. In all protocols for license management, the
(symmetric-key encrypted) messages that are exchanged between
the proxy server and the tool have a specific format. See Figure
8(a). As per the standard, the license id should be prepended to
the “encrypted message” in each license-request, license-deny or
license-grant message. For example, the license-request message
(LR) for license-abc can be syntactically represented as LR ←
LId ∥ ELIdK (N ∥ license-abc), which can either be the symbolic en-
crypted message (L) or the entire encrypted message (L.Hi ∥ L.Lo
∥ ‘S’ ∥ Lid ∥ L). This is shown in Figure 8(b), and 8(c). A similar
situation holds for license-grant and license-deny messages, too.
Keep in mind tha E is CBC-mode over a particular blockcipher
(likely AES).

In Figure 8(b), the license id is prepended to the entire encrypted
message. As mentioned earlier, the license id is used to distinguish
between multiple licenses. So, while processing the license-request
message, the tool could parse the first two bytes to get the license id,
check if it is a replay, and close the socket in that case. This prevents

further processing of the “symbolic encrypted message” (L). Other-
wise, if it is a new request, the proxy would call its decryption API
for symmetric messages. The API decrypts L, and returns the plain-
text (N ∥ license-abc) to the caller function. Next, the proxy checks
whether license-abc is valid, and sends an LG/LD message back to
the tool. Note that this decryption API for symmetric messages can
be used in other protocols as well.

Since, the symmetric message format ensures that the IV (=
license id) is always prepended to the “symbolic encryptedmessage”,
one could avoid prepending the IV to the entire encrypted message.
See Figure 8(c). However, the license id is used for detecting replays
and validating license requests. In this case, the decryption API for
symmetric messages has to be overloaded to return the decrypted
text and the IV. The IV, which is same as the license id, would be
used by the calling function to check for replays and validation.

While the two formats might seem alike in terms of securing the
socket communication, it is not the case. The format in Figure 8(b)
is susceptible to a simple man-in-the-middle attack, where the IP
author could intercept an LD message from the proxy, and convert
(xor first byte of license id in the IV field of the LD message with
D ⊕ G) it into an LG message, and hence get through the license
check without actually having the particular license. Note that this
is a simple exploitation of CBC with fixed IV. On the contrary, the
format in Figure 8(c), inadvertently enforces an integrity check on
the IV (by checking the license-id for replays or modifications).

More attacks. The standard is also vague in the processing of
license grant/deny response sent by the proxy. It allows the proxy
server to send optional application-specific strings concatenated
with the license grant/deny response. But, it does not specify secu-
rity checks that need to be performed on these strings. Since there
is no integrity check on the CBC encrypted messages, an adversary
(say, a competing IP user) can append any number of random cipher
text blocks with the LG/LD responses. If the tool does not check the
length of the LG/LD messages, the tool could crash due to memory
overflow.

The standard requires that the proxy and the tool send periodic
heartbeats to each other to know whether the receiver is alive or
not. But, it does not specify how the heartbeat protocol behaves
after the tool sends a license request. If the proxy and the tool send
periodic heartbeats till the tool receives an LG/LD response from
the proxy, and the proxy gets back a license release or a new license
request, an adversary can cause a denial-of-service by just dropping
these response messages.

Defense. The standard could recommend the use of TLS 1.2 (or
higher version numbers) to exchange license requests and responses.
Also, it must explicitly define protocols for all stages - handshake,
license request, license response (grant and denial), and heartbeat.

6 EVALUATIONS
In this section, we evaluate the efficiency and accuracy of the
padding-oracle attack and the syntax-oracle attack on the P1735
standard. We used open source semiconductor IPs from OpenCores
[2], which is the largest site/community for the development of
open source semiconductor IPs. We chose the following IPs for
our benchmark — flipflop (FF), square-root arithmetic core (SQRT),

SHA-256 digest core (SHA), Fast Fourier Transform DSP core (FFT),
AES-128 crypto core (AES), Reed Solomon ECC core (RS), memory
controller core (MC), and CISC processor (CISC). These IPs have
different functionalities and range from small to industrial scale in
size. Some of these IPs are generally procured/licensed from third
party IP developers. We also selected the c7552 ISCAS benchmark
which represents a firm IP. Note that the POA and SOA work on
any semiconductor IP encrypted using the P1735 standard.

In the first step, we encrypted these IPs using the P1735 stan-
dard with an encryption script provided by Synopsys [3]. We then
execute our padding-oracle and syntax-oracle attacks. We ran our
experiments with Synopsys’ Synplify Premier EDA tool (Version
L-2016.09) installed on a CentOS virtual machine with 4 Intel core
processors (each with a clock speed of 2.2GHz), and 8GB RAM.

Padding-oracle attack. We ran the padding-oracle attack with
the optimizations that are inspired by the syntax-oracle attack (see
Section 3.3). The aim of this attack was to decrypt the Data Block
of the encrypted IP, which acts as the ciphertext in this case. The
ciphertext was broken down into modules similar to the ABAO
optimization process in the SOA, except each module consisted of
two encrypted blocks instead of four. Since decryption precedes
syntax-check, padding errors are never concealed due to any syntax
errors. So, the target ciphertext block and its previous block are
sufficient to generate appropriate padding in the targeted plaintext
blocks.

In our experiment, the Synplify tool did not report any padding
error when the ciphertext blocks were tampered as per the padding-
oracle attack. But, it gives the warning “encrypted data mangled”.
We use this warning message to design our padding oracle. For
each guess, the ciphertext is modified and fed to the Synplify tool
for a syntax check. The tool writes all errors and warnings in the
“syntax.log” file. The presence/absence of the warning “encrypted
data mangled” in the log file is used as the padding oracle.

Table 2 shows the summary of the optimized POA on the 9
benchmark IPs. Figure 9(a) (red plot) shows the evaluation of time
as a function of the number of ciphertext blocks in a loglog plot,
whereas, Figure 9(b) (red plot) shows the accuracy of the POA. With
the ABAO optimization, the algorithmic complexity of the attack is
O(N), where N is the number of ciphertext blocks in the encrypted
IP. When the number of ciphertext blocks increases beyond 1,000
the tool seems to slow down, and this can be seen as a change in
slope of the plot after 1,000 blocks. We can overcome this partially
by breaking down a large IP into chunks of say, < 2, 000 blocks and
running the attack multiple times with these chunks. We did this
for the CISC and c7522 benchmark (last two points in the plot). The
accuracy, on the other hand, is nearly 100% for all the IPs.

Syntax-oracle attack. We ran our SOA with the ABAO optimiza-
tion on the nine benchmark IPs. Table 2 summarizes the result.
Figure 9(a) (blue plot) shows the evaluation of time as a function of
the number of ciphertext blocks. The plot has similar attributes as
the POA, except it is around 13 times faster. This can be observed
as the nearly constant width between the two plots in Figure 9.

Figure 9(b) shows the accuracy as a function of lines of code (LOC)
for SOA with ABAO optimization. In this case, the average accu-
racy is 85.3% with a standard deviation of 4.4%. We note that if we

Table 2: Results for SOA and POA attacks.

of Blocks 4 53 467 653 958 1268 2225 5071 9183
of Lines 7 51 614 440 712 1374 1854 2083 3858

SOA Time (sec) 54.7 60.0 130.3 165.9 228.4 287.3 439.2 1065 2524
Accuracy (%) 76.6 87.9 85.1 87.3 91.5 84.6 82.3 83.1 89.9

POA Time (sec) 706.7 798.8 1677.4 1888.6 2484.3 3203.1 5575.0 12990.163 25454.234
Accuracy (%) 100 100 100 100 100 100 100 100 100

Figure 9: Top: Time vs number of ciphertext blocks for SOA (blue)
and POA (red). Bottom: Accuracy vs LOC for SOA (blue) and POA
(red) .

do not apply the ABAO optimization, then the average accuracy
increases to 98%, while execution time increases by 16x. For ex-
ample, the accuracy for FF, SQRT, FFT, AES, and RS increases to
100%, 95.9%, 99.5%, 98%, and 97.2%, respectively without the ABAO
optimization.

Comparison between the padding-oracle attack and the syntax-
oracle attack. From Figure 9, it is evident that with the ABAO
optimization, the POA is around 13 times (mean 12.6 with a stan-
dard deviation of 1.3) slower than the SOA. This is because in the
former attack, for j < 16, the jth plaintext character can be guessed
only when the (j + 1)th character has already been found. There is
no such restriction on the latter attack. We find all instances of the
guessed character in the entire ciphertext in a single guess.

Though the SOA is fast, it loses out (some) on accuracy with
the ABAO optimization. Its accuracy has an average of 85.3% with
standard deviation of 4.4%, whereas the POA is always 100% ac-
curate. But, without the ABAO optimization, the accuracy of the
syntax-oracle attack shoots to nearly 98%. We reiterate that the POA
works only with AES-CBC and padding schemes which distinguish
between a valid and invalid padding. On the other hand, the SOA
has no such restrictions.

7 RELATEDWORK
To the best of our knowledge, Myrian and Chow [23] provide the
only work that presents any attack on the IEEE P1735 standard.

The authors show how an encrypted IP from FPGA technology can
be mapped to an ASIC technology. The proposed technique takes
the encrypted RTL code and synthesizes it to the plaintext netlist
using FPGA primitive. This FPGA implementation is then mapped
to an ASIC implementation. This technique does not reveal any
weakness of the P1735 standard as the authors did not consider
the fact that the IEEE P1735 standard has guidelines to encrypt the
synthesized netlist as well. Major FPGA vendors like Synplify and
Vivado support this feature. Also, this technique never recovers the
highi-level RTL code which is of main interest for IP piracy.

There have been numerous attacks on various protocols and
standards that use CBC mode for encryption. In [35], Vaudenay
showed that padding errors in CBC mode can be used as an oracle
to get the decrypted text without knowing the key. Canvel et al.
extended this idea in [11] by exploiting timing difference between
errors due to bad MAC and those due to improper padding, to
intercept the password of an email client that connects to an IMAP
server over SSL/TLS.

While Vaudenay exploited the RC5-CBC-PAD algorithm [7],
Paterson and Yau demonstrated efficient attacks on the ISO CBC
Mode Encryption standard to recover plaintext [29]. These attacks
required IVs to be public. The same group of researchers came
up with new padding-oracle attacks against the revamped ISO
CBC Mode Encryption standard that recommended private and
random IVs instead of public IVs [37]. Joux et al. in [15] gave attacks
on CBC mode of encryption by adversaries that can adaptively
choose chunks (one or more blocks) of plaintext bytes to find the
original message. They termed these adversaries as block-wise-
adaptive adversaries. In [9], Black et al. studied Vaudenay’s attack
with different padding schemes - XY-pad, OZ-pad, AByte-pad, to
name a few. They found that padding methods that have no invalid
paddings are immune against padding-oracle attacks, which was
corroborated by Paterson and Watson in their provable security
analysis of CBC mode against padding-oracle attacks [28]. One
such padding scheme is AByte-pad. In [19], Klíma et al. used ASN.1
encoding errors in PKCS#7 with AByte padding as an oracle to
invert the ciphertext. Most of these attacks can be thwarted by
enforcing integrity checks on the ciphertext.

Prior to Vaudenay’s attack on CBC mode, Bleichenbacher pre-
sented an adaptive chosen-ciphertext attack that exploits padding
errors in PKCS#1 v1.5 [10]. This attack was extended by Klíma et
al. in [18]. They used errors due to the version number check in
PKCS#1 as a side-channel. A plaintext-aware encryption scheme,
RSAES-OAEP was proposed to make it immune against such cho-
sen ciphertext attacks. But, Manger in [20] exploited side channels
in implementations of RSAES-OAEP as specified in PKCS#1 v2.0, to
recover the plaintext message. This attack is based on the fact that

the adversary can distinguish between errors during decoding and
those due to incorrect integer to octet conversion; this is possible
as the standard is vague on error conditions, such as unsupported
MGF, handling of timing difference between the two errors, etc.

Apart from the above attacks, there has been a plethora of side
channel attacks in the last 15 years - padding error attacks on
RSA [14, 17, 22], timing attacks onAES-CBC implementations (MAC-
encode-encrypt) in SSL/TLS [4], timing attacks on SSH [5, 6], and
other side-channel attacks [9, 21, 24, 33, 39].

8 CONCLUSION AND FUTUREWORK
The P1735 IP encryption standard is widely used in the EDA com-
munity to protect confidentiality of high-value IPs. It also enforces
fine-grained access control via rights management and licensing
mechanisms. We have presented confidentiality and integrity at-
tacks on the P1735 standard as implemented by the widely used
Synplify Premier tool, a Synopsys EDA tool that provides an ad-
vanced FPGA design and debug environment. While the confiden-
tiality attacks can reveal the entire plaintext IP, the integrity attack
enables an attacker to insert hardware Trojans into the encrypted
IP. This not only destroys any protection that the standard was
supposed to provide, but also increases the risk premium of the IP.
We also proposed various optimizations of the basic confidentiality
attacks that reduce the complexity from O(N 2) to O(N).

The design flaws in P1735 are troubling considering the fact
that it is susceptible to the classical POA that was reported in 2002,
and it is disappointing that an international organization like the
IEEE would mandate a brittle encryption mode (CBC) without
any authentication, when there has been more than a decade of
published research on AEAD schemes.

The standard also recommends PKCS#1 v1.5 as a padding scheme
for RSA. As discussed in the related work section, there are many
side-channel attacks on this padding scheme. In future work, we
plan to attack the Key Block of the encrypted IP, which holds the
encryption of the symmetric key used to create the Data Block,
using RSA PKCS#1 v1.5 encryption scheme. We will also extend
our cryptanalysis to other EDA tools (e.g. Xilinx), and evaluate
license-proxy implementations complying with the P1735 standard
as they become available.

9 ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their valuable feedback.
This research was supported in part by Cisco Systems, Inc., in part
byNSF grants CNS-1564444 and CNS-1564446, and in part by theNa-
tional Institute of Standards and Technology grant 60NANB16D248.

REFERENCES
[1] EDACafe. EDA Industry Update September 2008. http://www10.edacafe.com/

nbc/articles/. (EDACafe). Accessed: 2017-08-21.
[2] IP. OpenCores. http://opencores.org. (IP). Accessed: 2017-05-14.
[3] Synplify. Premier. https://www.synopsys.com/implementation-and-signoff/

fpga-based-design/synplify-premier.html. (Synplify). Accessed: 2017-01-30.
[4] Nadhem J. Al Fardan and Kenneth G. Paterson. 2013. Lucky Thirteen: Breaking

the TLS and DTLS Record Protocols. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy (SP ’13). IEEE Computer Society, Washington, DC, USA,
526–540. https://doi.org/10.1109/SP.2013.42

[5] Martin R. Albrecht, Jean Paul Degabriele, Torben Brandt Hansen, and Kenneth G.
Paterson. 2016. A Surfeit of SSH Cipher Suites. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security (CCS ’16). ACM,
New York, NY, USA, 1480–1491. https://doi.org/10.1145/2976749.2978364

[6] Martin R. Albrecht, Kenneth G. Paterson, and Gaven J. Watson. 2009. Plaintext
Recovery Attacks Against SSH. In Proceedings of the 2009 30th IEEE Symposium
on Security and Privacy (SP ’09). IEEE Computer Society, Washington, DC, USA,
16–26. https://doi.org/10.1109/SP.2009.5

[7] Robert Baldwin and Ronald Rivest. 1996. The rc5, rc5-cbc, rc5-cbc-pad, and rc5-cts
algorithms. Technical Report.

[8] Mihir Bellare and Chanathip Namprempre. 2008. Authenticated Encryption:
Relations Among Notions and Analysis of the Generic Composition Paradigm. J.
Cryptol. 21, 4 (sep 2008), 469–491. https://doi.org/10.1007/s00145-008-9026-x

[9] John Black and Hector Urtubia. 2002. Side-Channel Attacks on Symmetric
Encryption Schemes: The Case for Authenticated Encryption. In Proceedings of
the 11th USENIX Security Symposium. USENIX Association, Berkeley, CA, USA,
327–338. http://dl.acm.org/citation.cfm?id=647253.720297

[10] Daniel Bleichenbacher. 1998. Chosen Ciphertext Attacks Against Protocols Based
on the RSA Encryption Standard PKCS #1. In Proceedings of the 18th Annual
International Cryptology Conference on Advances in Cryptology (CRYPTO ’98).
Springer-Verlag, London, UK, UK, 1–12. http://dl.acm.org/citation.cfm?id=646763.
706320

[11] Brice Canvel, Alain Hiltgen, Serge Vaudenay, and Martin Vuagnoux. 2003. Pass-
word Interception in a SSL/TLS Channel. Springer Berlin Heidelberg, Berlin,
Heidelberg, 583–599. https://doi.org/10.1007/978-3-540-45146-4_34

[12] Matthew Hicks, Murph Finnicum, Samuel T King, Milo MK Martin, and
Jonathan M Smith. 2010. Overcoming an untrusted computing base: Detect-
ing and removing malicious hardware automatically. In Security and Privacy (SP),
2010 IEEE Symposium on. IEEE, 159–172.

[13] IEEE. 2014. 1735-2014 - IEEE Recommended Practice for Encryption and
Management of Electronic Design Intellectual Property (IP). (2014). http:
//standards.ieee.org/findstds/standard/1735-2014.html

[14] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. 2015. On the Security of TLS
1.3 and QUIC Against Weaknesses in PKCS#1 V1.5 Encryption. In Proceedings
of the 22Nd ACM SIGSAC Conference on Computer and Communications Security
(CCS ’15). ACM, New York, NY, USA, 1185–1196. https://doi.org/10.1145/2810103.
2813657

[15] Antoine Joux, Gwenaëlle Martinet, and Frédéric Valette. 2002. Blockwise-
Adaptive Attackers: Revisiting the (In)Security of Some Provably Secure Encryp-
tion Models: CBC, GEM, IACBC. In Proceedings of the 22Nd Annual International
Cryptology Conference on Advances in Cryptology (CRYPTO ’02). Springer-Verlag,
London, UK, UK, 17–30. http://dl.acm.org/citation.cfm?id=646767.704309

[16] Ramesh Karri, Jeyavijayan Rajendran, Kurt Rosenfeld, and Mohammad Tehra-
nipoor. 2010. Trustworthy hardware: Identifying and classifying hardware trojans.
Computer 43, 10 (2010), 39–46.

[17] Vlastimil Klíma, Ondrej Pokorný, and Tomáš Rosa. 2003. Attacking RSA-Based
Sessions in SSL/TLS. Springer Berlin Heidelberg, Berlin, Heidelberg, 426–440.
https://doi.org/10.1007/978-3-540-45238-6_33

[18] Vlastímil Klíma and Tomáš Rosa. 2003. Further Results and Considerations on Side
Channel Attacks on RSA. Springer Berlin Heidelberg, Berlin, Heidelberg, 244–259.
https://doi.org/10.1007/3-540-36400-5_19

[19] Vlastimil Klima and Tomáš Rosa. 2003. Side Channel Attacks on CBC Encrypted
Messages in the PKCS# 7. (2003).

[20] James Manger. 2001. A Chosen Ciphertext Attack on RSA Optimal Asymmetric
Encryption Padding (OAEP) As Standardized in PKCS #1 V2.0. In Proceedings of
the 21st Annual International Cryptology Conference on Advances in Cryptology
(CRYPTO ’01). Springer-Verlag, London, UK, UK, 230–238. http://dl.acm.org/
citation.cfm?id=646766.704143

[21] Christopher Meyer and Jörg Schwenk. 2013. SoK: Lessons learned from SSL/TLS
attacks. In International Workshop on Information Security Applications. Springer,
189–209.

[22] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg Schwenk, Sebastian
Schinzel, and Erik Tews. 2014. Revisiting SSL/TLS Implementations: New Ble-
ichenbacher Side Channels and Attacks. In Proceedings of the 23rd USENIX Con-
ference on Security Symposium (SEC’14). USENIX Association, Berkeley, CA, USA,
733–748. http://dl.acm.org/citation.cfm?id=2671225.2671272

[23] Vincent Mirian and Paul Chow. 2016. Extracting designs of secure IPs using
FPGA CAD tools. In Great Lakes Symposium on VLSI, 2016 International. IEEE,
293–298.

[24] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. 2014. This POODLE bites:
exploiting the SSL 3.0 fallback. Security Advisory (2014).

[25] Adib Nahiyan, Mehdi Sadi, Rahul Vittal, Gustavo Contreras, Domenic Forte, and
Mark Tehranipoor. 2017. Hardware Trojan detection through information flow
security verification. In International Test Conference. IEEE.

[26] Adib Nahiyan and Mark Tehranipoor. 2017. Code Coverage Analysis for IP Trust
Verification. In Hardware IP Security and Trust. Springer, 53–72.

[27] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. 2014. Recon-
sidering generic composition. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 257–274.

http://www10.edacafe.com/nbc/articles/
http://www10.edacafe.com/nbc/articles/
http://opencores.org
https://www.synopsys.com/implementation-and-signoff/fpga-based-design/synplify-premier.html
https://www.synopsys.com/implementation-and-signoff/fpga-based-design/synplify-premier.html
https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1145/2976749.2978364
https://doi.org/10.1109/SP.2009.5
https://doi.org/10.1007/s00145-008-9026-x
http://dl.acm.org/citation.cfm?id=647253.720297
http://dl.acm.org/citation.cfm?id=646763.706320
http://dl.acm.org/citation.cfm?id=646763.706320
https://doi.org/10.1007/978-3-540-45146-4_34
http://standards.ieee.org/findstds/standard/1735-2014.html
http://standards.ieee.org/findstds/standard/1735-2014.html
https://doi.org/10.1145/2810103.2813657
https://doi.org/10.1145/2810103.2813657
http://dl.acm.org/citation.cfm?id=646767.704309
https://doi.org/10.1007/978-3-540-45238-6_33
https://doi.org/10.1007/3-540-36400-5_19
http://dl.acm.org/citation.cfm?id=646766.704143
http://dl.acm.org/citation.cfm?id=646766.704143
http://dl.acm.org/citation.cfm?id=2671225.2671272

[28] Kenneth G. Paterson and Gaven J. Watson. 2008. Immunising CBC Mode
Against Padding Oracle Attacks: A Formal Security Treatment. In Proceedings
of the 6th International Conference on Security and Cryptography for Networks
(SCN ’08). Springer-Verlag, Berlin, Heidelberg, 340–357. https://doi.org/10.1007/
978-3-540-85855-3_23

[29] Kenneth G. Paterson and Arnold Yau. 2004. Padding Oracle Attacks on the ISO
CBC Mode Encryption Standard. Springer Berlin Heidelberg, Berlin, Heidelberg,
305–323. https://doi.org/10.1007/978-3-540-24660-2_24

[30] Research and Markets. 2016. Global Semiconductor IP Market - Global forecast to
2022. Technical Report.

[31] Phillip Rogaway. 2002. Authenticated-encryption with Associated-data. In Pro-
ceedings of the 9th ACM Conference on Computer and Communications Security
(CCS ’02). ACM, New York, NY, USA, 98–107. https://doi.org/10.1145/586110.
586125

[32] Hassan Salmani and Mohammed Tehranipoor. 2013. Analyzing circuit vulnera-
bility to hardware Trojan insertion at the behavioral level. In Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), 2013 IEEE International
Symposium on. IEEE, 190–195.

[33] Y Sheffer, R Holz, and P Saint-Andre. 2015. Summarizing Known Attacks on
Transport Layer Security (TLS) and Datagram TLS (DTLS). Technical Report.

[34] Mohammad Tehranipoor and Cliff Wang. 2011. Introduction to hardware security
and trust. Springer Science & Business Media.

[35] Serge Vaudenay. 2002. Security Flaws Induced by CBC Padding - Applications
to SSL, IPSEC, WTLS In Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques: Advances in Cryptology
(EUROCRYPT ’02). Springer-Verlag, London, UK, UK, 534–546. http://dl.acm.org/
citation.cfm?id=647087.715705

[36] Adam Waksman, Matthew Suozzo, and Simha Sethumadhavan. 2013. FANCI:
identification of stealthy malicious logic using boolean functional analysis. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 697–708.

[37] Arnold K. L. Yau, Kenneth G. Paterson, and Chris J. Mitchell. 2005. Padding Oracle
Attacks on CBC-Mode Encryption with Secret and Random IVs. In Proceedings of
the 12th International Conference on Fast Software Encryption (FSE’05). Springer-
Verlag, Berlin, Heidelberg, 299–319. https://doi.org/10.1007/11502760_20

[38] Lin Yuan, Gang Qu, Lahouari Ghout, and Ahmed Bouridane. 2006. VLSI design IP
protection: solutions, new challenges, and opportunities. In Adaptive Hardware
and Systems, 2006. AHS 2006. First NASA/ESA Conference on. IEEE, 469–476.

[39] YongBin Zhou and DengGuo Feng. 2005. Side-Channel Attacks: Ten Years After
Its Publication and the Impacts on Cryptographic Module Security Testing. (2005).
http://eprint.iacr.org/2005/388 zyb@is.iscas.ac.cn 13083 received 27 Oct 2005.

A CRITIQUE OF THE P1735 STANDARD
The P1735 standard recommends a lot of troubling cryptographic
design choices that make the encrypted IP vulnerable to many
attacks. Some of these attacks are described in this paper, but there
could be more. The standard is also vague and erroneous in some
of its security sensitive specifications and claims. In this section,
we enlist these shortcomings of the standard.
• The standard states, “the protected IP has 100% fidelity to the
original IP representation”. This is not true as one could drop/add
random ciphertext blocks owing tomissing authentication checks
on the Data Block.
• It makes no recommendations for AES-CBC padding, and leaves
this important security decision to the tool vendors.
• In absence of a padding scheme, and any authentication whatso-
ever, AES decryption never fails. However, the resulting plaintext
may get corrupt. The standard, on the contrary, has some mech-
anism due to which decryption could fail. This security sensitive
design decision is again left at the discretion of the tool vendors.
• The standard mentions encrypting each IP with a one-time ses-
sion key [13, Section 1], but it does not define a session explicitly.
• It recommends PKCS#1 V1.5 padding scheme for RSA. This
scheme has been exploited as a side-channel to recover the under-
lying plaintext which is the session key in the digital envelope.
• In the licensing mechanism, the length of the encrypted messages
is sent in clear text in both public-key and secret-key encryption.

This makes the encrypted messages susceptible to ciphertext
extension/truncation attacks in absence of any authentication.
• The standard is vague in its specification of the license response
protocol. There are different security sensitive parameters like
the length field, the command byte, the license id, etc, that are
exchanged between the proxy server and the tool in each of
their messages. Hence, it is crucial to clearly state how each of
these parameters is checked/handled by the tool. However, the
standard (again) leaves these security sensitive decisions at the
discretion of the tool vendors.

https://doi.org/10.1007/978-3-540-85855-3_23
https://doi.org/10.1007/978-3-540-85855-3_23
https://doi.org/10.1007/978-3-540-24660-2_24
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
http://dl.acm.org/citation.cfm?id=647087.715705
http://dl.acm.org/citation.cfm?id=647087.715705
https://doi.org/10.1007/11502760_20
http://eprint.iacr.org/2005/388

	Abstract
	1 Introduction
	2 Background
	2.1 SoC Design Flow
	2.2 IEEE P1735 Standard
	2.3 Hardware Trojans

	3 Confidentiality attacks
	3.1 Padding-Oracle Attack
	3.2 Syntax-Oracle Attack
	3.3 Optimizing the syntax-oracle attack
	3.4 POA vs. SOA

	4 Integrity Attacks
	4.1 Trojan Insertion in Crypto-accelerator - I
	4.2 Trojan Insertion in Crypto-accelerator - II

	5 Licensing attacks
	6 Evaluations
	7 Related work
	8 Conclusion and future work
	9 Acknowledgements
	References
	A Critique of the P1735 standard

