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Abstract. Fault injection attack models are normally determined by
analyzing the cipher structure and finding exploitable spots in non-linear
and diffusion layers. However, this level of abstraction is often too high to
distinguish vulnerable parts of software implementations, due to specific
operations and optimizations. On the other hand, manually analyzing
the assembly code requires non-negligible amount of time and expertise.
In this paper, we propose an automated approach for analyzing cipher
implementations in assembly. We represent the whole assembly program
as a graph, allowing us to find vulnerable spots efficiently. Fault propa-
gation is analyzed in a subgraph constructed from each vulnerable spot,
allowing us to automatically generate equations for differential fault anal-
ysis.
We have created a tool that implements our approach: ATLAS – Auto-
mated TooL for Assembly analysiS. We have successfully used this tool
for attacking PRESENT-80, being able to find implementation-specific
vulnerabilities that can be exploited in order to recover the secret key
with 16 faults. Our results show that ATLAS is useful in finding attack
spots that are not visible from the cipher structure, but can be easily
exploited when dealing with real-world implementations.

Keywords: automated fault attack, software implementations, assem-
bly code, differential fault analysis

1 Introduction

When it comes to attacking cryptographic algorithms, fault injection attacks are
among the most serious threats, being capable of revealing the secret information
by just one single disturbance in the execution [21, 11, 18].

However, in the end, the attack always has to be mounted on a real-world de-
vice, in an implementation that is either hardware- or software-based. When we
focus on software, there are many different ways to attack such implementations
– one can corrupt the instruction opcodes resulting to instruction change, skip
the instructions completely, flip the bits in processed constant values or register
addresses, or change the values in the registers and memories directly [3, 4].



2 J. Breier and X. Hou

The problem is that different implementations of the same encryption al-
gorithm do not necessarily share the same vulnerabilities, and therefore, some
attacks that work in theory might either not be possible, or be hard to execute
in practice. On the other hand, there might be an exploitable spot in the imple-
mentation that is not visible from the specification of the encryption algorithm
and can only be found by analyzing the assembly code.

Our Contribution. In our work, we focus on automatic analysis of assem-
bly code that implements a cryptographic algorithm w.r.t. fault injection attack.
We develop a methodology to represent an assembly code as an oriented graph
– a memory/operation flow (MOF) graph, that preserves the operations (edges)
and memory structures (nodes) holding the data. By analyzing the nodes of
this graph, we are able to find vulnerable spots in the cipher implementation.
From these, we construct subgraphs that represent propagation of faults from
vulnerable nodes to the ciphertext, while affecting some parts of round key(s).
Ultimately, this allows us to automatically generate differential fault attack equa-
tions, by solving which we can mount a successful fault injection attack. Our
methodology was implemented in a tool named ATLAS - Automated TooL for
Assembly analysiS, that takes an assembly code as input, and outputs subgraphs
and equations for each vulnerable node according to selected criteria. We provide
a case study on PRESENT-80 cipher implementation for 8-bit AVR microcon-
troller that shows capabilities of ATLAS by finding an implementation specific
fault attack, being able to recover the secret key by 16 fault injections. More-
over, we provide an analysis of SPECK 64/128 and SIMON 64/128 lightweight
ciphers. We would like to point out that our tool is modular and enables an easy
extension to the instruction set.

The rest of the paper is structured as follows. Sec. 2 provides an overview of
related works. Sec. 3 formalizes fault attacks in software and provides notation
that is used in the rest of the paper. Sec. 4 specifies our approach, by detailing
each step of the evaluation implemented by ATLAS. Sec. 5 explains the usage
of ATLAS on PRESENT-80. Sec. 6 provides a discussion and finally, Sec. 7
concludes this work and provides a motivation for future works.

2 Related Work

In this section we will detail several works focusing on analyzing implementations
w.r.t. fault attacks.

Given-Wilson et al. [14] made a tool to detect vulnerabilities in the process
of compilation, to show that there might be new exposures introduced during
the transformation of the code from C to assembly.

Agosta et al.[2] used a compiler approach as well. They utilized the LLVM
compiler in order to check single bit-flip vulnerabilities in the code to point out
the exploitable parts. However, together with the previous approach, the inter-
mediate representation is used for the analysis, and it therefore excludes the as-
sembly implementations written directly by the programmer. Such implementa-
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tions are usually more optimized, depending on the requirements (speed/memory/
security) and therefore, often used for critical applications.

Khanna et al. [19] proposed XFC – a method that checks exploitable fault
characteristics of block ciphers considering the differential fault analysis (DFA)
method. Their approach takes a cipher specification as an input and then uses
colors to indicate the fault propagation through the cipher. The main drawback
of this work is its focus on a high-level cipher representation, and therefore, being
unable to check the security of a cipher implementation.

Goubet et al. [15] developed a framework that generates a set of equations
for an SMT solver from assembly code. Then it uses this representation for
evaluating robustness of countermeasures against fault injection attacks. The
evaluation is based on comparison of two code snippets: one that represents
a code without any protection, and a hardened code. These snippets are then
represented as a finite automata, unfolded, and analyzed. The main drawback of
this work is its focus on code snippets instead of real implementations and the
fact that analyzing 10 lines of code requires 10.7 s, therefore it is not feasible to
analyze the full cipher in a reasonable time.

Dureuil et al. [12] proposed an approach using fault model inference – they
first determine fault models that can be achieved on a target hardware, together
with probability of occurrence of these models. Based on this information, they
compute a “vulnerability rate” that gives an estimate of the software robustness.
The focus of this paper is to estimate time required in order to successfully inject
the required fault model.

Our approach analyzes the assembly code directly, by building a customized
graph data structure, allowing us to tailor the requirements for vulnerabilities
according to desired fault models. Thanks to this, we can identify the points
of interest efficiently and design DFA equations automatically, so that only the
solving part is left to the user.

3 Formalization of Fault Attack

Definition 1. We define a program to be an ordered sequence of assembly in-
structions F = (f0, f1, . . . , fNF−1). NF is called the number of instructions
for the program. For each instruction f ∈ F , we associate f with a 4-tuple
(fseq, fmn, f io, fdo), where fseq is the sequence number and fmn is the mnemonic
of f , f io is the set of input operands of f , which can be registers, constant values
or pointers to memory addresses. Similarly, fdo is the set of destination operands
of f , which can be registers or pointers to memory addresses.

We have used an instruction set of 8-bit AVR microcontroller for examples in
this paper.

Example 1. The assembly implementation Fex of a simple sample cipher in
Tab. 1 has NFex = 15 instructions. Instruction f6 = ANDI r0 0x0F has in-
put operands r0 and 0x0F, and output operand r0. Thus f6 is associated with
the 4−tuple (6, ANDI, {r0, 0x0F}, {r0}).
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Table 1: Assembly code Fex for a sample cipher.

# Instruction # Instruction # Instruction

//round 1 6 ANDI r0 0x0F 11 EOR r0 r2

0 LD r0 x+ 7 ANDI r1 0xF0 12 EOR r1 r3

1 LD r1 x+ 8 OR r0 r1 //store ciphertext

2 LD r2 key1+ //round 2 13 ST x+ r0

4 EOR r0 r4 9 LD r2 key2+ 14 ST x+ r1

5 EOR r1 r5 10 LD r3 key2+

We note that for an instruction f = ADD r0 r1, the output operands of f
are actually r0 and carry, where carry is a flag, usually represented by a bit in
the status register of a microcontroller. The carry itself does not appear in the
assembly code directly, however, we consider it in our analysis as a standalone
operand.

Fault attack is an intentional change of the original data value into a different
value. This change can either happen in a register/memory, on the data path, or
directly in ALU. In general, there are two main fault models to be considered –
program flow disturbances and data flow disturbances. The first one is achieved
by disturbing the instruction execution process that can result in changing or
skipping the instruction currently being executed. The second one is achieved
either by directly changing the data values in storage units, or by changing the
data on the data paths or inside ALU.

Formally, we define a fault injection in a program F = {f0, f1, . . . , fNF−1} to
be a function ϑi : F 7→ F ′, where 0 ≤ i < NF and F ′ is a program obtained from
F with the instruction fi being tampered. Thus ϑi represents a fault injection
on the instruction with sequence number i in F .There are different possible fault
models, we are interested in the following:

– Instruction skip: ϑi(F) = F\fi, i.e. instruction i is skipped.
– Bit flip: ϑi(F) = {f0, f1, . . . , fi, f ′i+1, f

′
i+2, . . . , f

′
NF−1, f

′
NF
} such that f ′j+1 =

fj for i < j < NF and f ′i+1 = r xor ∆, where r ∈ fdoi ∪f ioi is either a desti-
nation operand or an input operand of instruction fi and ∆ is a pre-defined
value which is called a fault mask. In the case fdoi = ∅, f ′i+1 = NOP.

– Random byte fault: ϑi(F) = {f0, f1, . . . , fi, f ′i+1, f
′
i+2, . . . , f

′
NF−1, f

′
NF
}

such that f ′j+1 = fj for i < j < NF and f ′i+1 = r xor ∆, where r ∈ fdoi ∪f ioi
and ∆ is a random value. In the case fdoi = ∅, f ′i+1 =NOP.

In the rest of this paper we assume that the attacker uses a known ciphertext
attack with the knowledge of the fault model for the differential fault analysis.

4 Automated Assembly Code Analysis

The main idea of this work is to analyze the assembly code and find vulnerable
spots w.r.t. differential fault injection attack. This can be a non-trivial task since
it is non-deterministic – the same instruction can be vulnerable in one part of
the code, but secure in the other part, depending on the context.
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Assembly code

MOF graph

Vulnerable nodes

Subgraphs

Fault Analysis Equations

r0(22) = r0(18) ∧0x0F (22)

r2(24) = r2(20) ∧0xF 0(24)

r0(26) = r0(22) ∨ r2(24)

r4(28) = key2[0](28)

r0(32) = r0(26)⊕ r4(28)

x(36) = r0(32)

Output criteria

Fig. 1: Our evaluation method for analyzing assembly code w.r.t. fault injection vul-
nerabilities.

There are various intermediate forms that can represent a program, ranging
from the simplest, such as control-flow and data-flow graphs, to more advanced
static single assignment (SSA) and control dependence graphs [9]. These forms
are normally used in compilers for optimizing the program. For example, Java
HotSpot VM [20] and LLVM [1] use SSA as the intermediate representation. For
our purposes, we have to capture the following details when transforming the
assembly code:

– Memory units holding the data (registers, RAM, flash, etc.) as well as direct
operands (constants) – these will be represented as nodes.

– Transitions between the nodes.

– Operations (instructions) responsible for changes and transitions – repre-
sented as edges.

– Properties of operations (linear/non-linear).

– Ability to distinguish important nodes, such as round keys and ciphertext.

Since none of the intermediate forms mentioned above contains details that are
necessary for fault vulnerability assessment, we have decided to design a new
representation that fits our purposes – Memory/Operation Flow graph (MOF).

Our evaluation method is depicted in Fig 1. First, an assembly code is fetched
as the input. Based on its structure, an MOF graph is created. Based on the
output criteria, vulnerable nodes are identified – places that will be later tested
for the fault injection in order to determine the propagation pattern. This pattern
specifies which data values will be affected by the fault and is captured by the
subgraph – one subgraph is created for each vulnerable node. Together with it,
fault analysis equations are generated – based on them, a fault attack can be
executed. Each step is explained in a greater detail below.

Our approach was implemented in Java programming language and named
ATLAS - Automated TooL for Assembly analysiS. ATLAS is capable of analyzing
any microcontroller instruction set, after specifying this set as a subclass of
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the Mnemonics class and specifying instruction properties (linearity, table look-
up, etc.) in a subclass of the MnemonicRecognizer class. The class diagram of
ATLAS is provided in Appendix B.

In the rest of this section, we provide details on how our approach works.

4.1 From Assembly to MOF Graph

Given a program F = (f0, f1, . . . , fNF−1), a memory/operation flow graph is a
directed graph GF,full = (V,E), where the set of nodes V = A∪B is the union
of two sets of labeled nodes. A consists of labeled nodes with labels “x (i)” such
that x is a destination operand of instruction i. B consists of labeled nodes with
labels “y (i)” such that y is an input operand of instruction i and y is not a
destination operand of any instruction.
− A = {“x (i)” : x ∈ fdoi for some 0 ≤ i < NF};
− B = {“y (i)” : y ∈ f ioi for some 0 ≤ i < NF and y /∈ fdoi for any 0 ≤ i <
NF}.

Then we draw an edge from node a = ‘y (i)′′ to node b = “x (j)′′ if and only
if the following conditions are satisfied:
− i ≤ j,
− x is a destination operand of instruction j,
− y is an input operand of instruction j,
− y is not an output operand for any instruction between instruction i and
instruction j, which means the value in y is not changed between instructions i
and j.

Formally, an edge (a, b) ∈ E for a = “y (i)”, b = “x (j)” ∈ V iff i ≤ j,
x ∈ fdoj , y ∈ f ioj and “y (k)” /∈ V ∀i+ 1 ≤ k < j. Furthermore, we label such an
edge with “fmn

j (j)” and we say that this edge is associated with instruction fj .
We also refer to a as an input node of f and b as an output node of f . Following
the terminologies from graph theory, a is called the tail of the edge (a, b) and b
is called the head of (a, b).

Example 2. The MOF graph GFex,full corresponding to the assembly program
Fex in Tab. 1 is shown in Fig. 2. Instruction f6 has input operands r0 and 0x0F,
where r0 is the output operand of f4 and 0x0F is not an output operand of any
previous instructions. The output operand of f6 is r0. Hence f6 has two input
nodes: “r0 (4)”, “0x0F (6)” and one output node “r0 (6)” . Furthermore, f6
is related to two edges in the graph, both labeled “ANDI (6)”. Both edges have
head “r0 (6)”, one with tail “r0 (4)” and one with tail “0x0F (6)” (see the nodes
and edges highlighted in gray).

Since we are dealing with implementations of ciphers, we highlight the round
keys as well as the ciphertext in the graphs. As shown in Fig. 2, the node that
corresponds to round key in round i will be denoted by “keyi+ (j)”, where j is
the sequence number of the first instruction that loads key values to registers in
this round. Furthermore, the output nodes of those key loading instructions are
called key word nodes. Depending on which word is loaded first, they are more
specifically called the first key word node, the second key word node, etc.
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load_plaintext

round_2

round_1

store_ciphertext

X+ (0)

r0 (0)

ld (0)

r1 (1)

ld (1)

r0 (4)

eor (4)

r1 (5)

eor (5)

key1+ (2)

r2 (2)

ld (2)

r3 (3)

ld (3)

eor (4) eor (5)

r0 (6)

andi (6)

r1 (7)

andi (7)

0x0F (6)

andi (6)

r0 (8)

or (8)

0xF0 (7)

andi (7)

or (8)

r1 (12)

eor (12)

r0 (11)

eor (11)

key2+ (9)

r2 (9)

ld (9)

r3 (10)

ld (10)

eor (11) eor (12)

x+ (13)

st (13)

x+ (14)

st (14)

Fig. 2: MOF graph GFex,full corresponding to the assembly program Fex in Tab. 1
constructed by ATLAS.

Example 3. In Fig. 2, “r2 (2)” is the first key word node of round key for round
one. “r3 (10)” is the second key word node of round key for round two.

The nodes representing output operands that give us different words of the
ciphertext are labeled “x+ (j)”, where “x+ (j)” is an output node of instruction
fj , i.e. j is the sequence number of the instruction that stores this word. We
refer to them as the words of the ciphertext. For example, in Fig. 2, “x+ (13)”
and “x+ (14)” are the words of the ciphertext.

4.2 Output Criteria

For a directed graph G, a directed path from node v to node u is a sequence of
edges e1, e2, . . . , ek such that e1 = (v, x1), e2 = (x2, x3), e3 = (x3, x4), . . . , ek−1 =
(xk−1, xk), ek = (xk, u). For any pair of nodes v and u, if there exists a directed
path from v to u, we say u is a Gchild of v and v is a Gparent of u. For any edge
e which appears in the sequence, we say e belongs to this directed path from v
to u.

Now let us look at the following two simple scenarios in Tabs. 2 and 3.
1. In Tab. 2, let us assume a fault is injected at f1 such that some bits in

r1 are flipped before the execution of EOR. Then the exact same bits will be
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Table 2: Assembly code snippet 1.

# Instruction

0 LD r0 key0+

1 EOR r1 r0

2 ST x+ r1

Table 3: Assembly code snippet 2.

# Instruction

0 LD r0 key0+

1 AND r1 r0

2 ST x+ r1

changed in x+. Knowing how r1 is changed and values of ciphertext with and
without fault injection won’t give us any information about r0.

2. In Tab. 3, we assume a fault is injected in f1 such that some bits in register
r1 are flipped before the execution of AND. For example, suppose the first bit of
r1 is changed. Then we look at the first bit of the ciphertext. If the first bit of the
ciphertext is also changed, we know that the first bit of the key is 1, otherwise,
it is 0.

In view of the above, we say an instruction f is non-linear (with respect to
a bit-wise operation) if fmn ∈ {EOR, LD, MV, ST}. And we say an edge e is
non-linear if the instruction associated with e is non-linear.

For a pair of nodes v and u such that u is a Gchild of v, the Gdistance
between v and u, denoted by Gdistance(v,u) is defined to be the cardinality of
the following set:

{e : e belongs to a directed path from v to u and e is non-linear}.

Example 4. In Fig. 2, “x+ (13)” is a Gchild of “r0 (6)” with distance 1. “r0 (8)”
is a Gchild of “key+ (2)” with distance 4.1

For each node a = “x (i)′′, we define CTGchild of a to be the set of ciphertext
words which are Gchildren of a. Thus if a fault is injected in node a, the fault
will be propagated to the ciphertext words that are in the set CTGchild of a.

To analyze the fault propagation that is useful and therefore, relates to a
key, we have to focus on nodes affected by the fault, which are at zero Gdistance
from the key word nodes. We say a node a is related to a key word node b of a
round key if b is not a Gparent of a and at least one of the Gchildrean, say ch, of
a is a Gchild of b with Gdistance(b, ch) = 0. And we say a is related to a round
key key if it is related to at least one key word node of key.

To decide if a node a is vulnerable for DFA, we first need to output a set of
nodes which are suitable for DFA. For a given node a which is to be examined,
the possible parameters that can be specified includes:

– minAffectedCT: |CTGchild| ≥ minAffectedCT, i.e. the number of nodes in
CTGchild is bigger or equal than minAffectedCT;

– minDist: |{ch : ch ∈ CTGchild, and Gdistance(a, ch) ≥ minDist}| ≥ minA

ffectedCT, i.e. the number of nodes in CTGchild with Gdistance at least
minDist from a is at least minAffectedCT;

1 We would like to point out that there are two directed paths from “key1+ (2)” to
“r0 (8)”, showing that in general MOF graphs are not directed trees.
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– maxDist: Gdistance(a, ch) ≤ maxDist ∀ch ∈Gchild, i.e. the Gdistance be-
tween any Gchild and a should be at most maxDist;

– maxKey: the number of round keys that are related to node a is at most
maxKey;

– minKeyWords: there exists at least one round key such that the number of
its corresponding key word nodes related to a is at least minKeyWords.

The selection of values for each of the above parameters is referred to as
an output criteria. ATLAS takes an MOF graph G and an output criteria as
input, then iterates through all the nodes in G and outputs the nodes of G that
satisfy the output criteria. Recall, we assume that the information available to
the attacker is the fault model, the correct and faulty ciphertext.

In general, minAffectedCT tells us how many words of the ciphertext are
faulted after the fault injection. This value should be at least 1 so that the ci-
phertext values can be used. minDist reflects on how many non-linear operations
are involved between the faulted node and the ciphertext. For the differential
fault attack, the minDist should be at least 1 so that there are non-linear oper-
ations involved and hence some information can be drawn. maxDist is an upper
bound on how many non-linear operations are involved in our calculations. If
there are too many non-linear instructions, the fault propagation may be too
scattered, resulting into too many possibilities to consider. For a similar reason,
the value of maxKey should not be too big, otherwise some nodes in the output
will be associated with too many non-linear instructions. For the obvious reason,
minKeyWords should be set to be at least 1.

We note that the values of aforementioned parameters are closely related
to each other and are highly dependent on the actual assembly program being
analyzed. For example, if the program makes use of a high number of non-linear
instructions right before storing the ciphertext, maxDist should be set higher
so that there are actually key words related to the faulted node. Accordingly,
minKeyWords should be set to a small value. Or, if the user would like to have all
the ciphertext words being affected, i.e. setting minAffectedCT=to the number
of ciphertext words, the other conditions should be loosened. For example, for
the MOF graph GFex,full in Fig. 2, with an output criteria (minAffectedCT,
minDist, maxDist, maxKey, minKeyWords) = (2, 1, 1, 1, 1) we cannot get any
output from ATLAS.

We suggest to use relatively loose output criteria as a preliminary test to see
what are the possibilities, then tighten the criteria to find possible vulnerable
nodes.

For the MOF graph in Fig. 2, with an output criteria (minAffectedCT,
minDist, maxDist, maxKey, minKeyWords)= (1, 1, 1, 1, 1), we get two nodes
“r0 (6)” and “r1 (7)”. For illustration purpose, we will focus on node “r0 (6)”
in the following.

4.3 Subgraph Construction

For a full cipher assembly implementation, the corresponding MOF graph in-
volves plenty of nodes and edges. It is not easy to see the fault propagation
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properties from the full MOF graph. Thus we would like to construct a sub-
graph which shows the fault propagation clearly.

Given an MOF graph GF,full for an assembly program F and node a in
GF,full, we construct a graph Ga which is a subgraph of GF,full = (V,E), i.e.
Ga = (Va, Ea) is a pair such that Va ⊆ V and Ea ⊆ E.

Sometimes, knowing how the faulted node relates to previous instructions will
also help with the fault analysis. Keeping this in mind, we define a parameter
called depth for the construction of the graph Ga.

We define KNGchild to be the set of key word nodes that are related to a.

Then Va =
(⋃depth

i=0 Ui

)⋃(⋃4
j=1 Vj

)
, where

−U0 = {b : b is an input node of an instruction f for which a is an input node}
− For 1 ≤ i ≤ depth, Ui = {b : b is an input node for an instruction f such that v
is an output node of f for some v ∈ Ui−1}
− V1 = {b : b is a child of a}
− V2 = {k : k is a round key that is related to a}
− V3 = {b : b is a key word node for a key k ∈ B}
− V4 = {b : b is a child of a node v ∈ KNGchild and b is a parent of a child of a}.

Let V ′ = (Va\(V2 ∪ V3)) ∪ KNGchild. Then Ea = E1 ∪ E2, where E1 = {e :
both the head the tail of e are inV ′} and E2 = {(k, b) : k ∈ V2, b ∈ V3}.

In Fig. 3 (a) and (b) we present the subgraphs constructed from node “r0 (6)”
of the MOF graph GFex,full (Fig. 2) with depths equal to 0 and 1 respectively.
For this case, we have
− U0 = {“r0 (6)”, “r1 (7)”}
− U1 = {“r1 (5)”, “0xF0 (7)”, “r0 (4)”, “0x0F (6)”}
− V1 = {“r0 (8)”, “r0 (11)”, “x+ (13)”}
− V2 = {“key2+ (9)”}
− V3 = {“r2 (9)”, “r3 (10)”}
− V4 = {“r0 (11)”}

From the two figures, we can see that with depth= 1, we do get extra useful
information: the two edges with label “andi (7)” show that the first four bits of
“r0 (6)” are 0.

4.4 Equation Construction

Having the subgraph, constructed from a potentially vulnerable node, we would
like to construct equations out of the subgraph to connect different input/output
nodes, which can be easily analyzed by algebraic methods.

Given any subgraph Ga = (Va, Ea) ⊆ GF,full, where GF,full is the MOF
graph of an assembly program F , we take all the instructions in F that are
related to at least one edge e ∈ Ea. Next, we order these instructions accord-
ing to their sequence numbers. The equations are then constructed according
to the input/output nodes, and the edges associated with the corresponding
instructions.

In Tab. 4 we show some representations of equations for different mnemon-
ics. Here, the symbol “|” represents concatenation. For example, take f =
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r0 (6)

r0 (8)

or (8)

r1 (7)

or (8)

r0 (11)

eor (11)

x+ (13)

st (13)

r2 (9)

eor (11)

key2+ (9)

ld (9)

r3 (10)

ld (10)

r0 (6)

r0 (8)

or (8)

r0 (4)

andi (6)

0x0F (6)

andi (6)

r1 (5)

r1 (7)

andi (7)

0xF0 (7)

andi (7)

or (8)

r0 (11)

eor (11)

x+ (13)

st (13)

r2 (9)

eor (11)

key2+ (9)

ld (9)

r3 (10)

ld (10)

(a) (b)

Fig. 3: Subgraph constructed from node “r0 (6)” of MOF graph in Fig. 2 with depth
(a) 0 and (b) 1.

Table 4: Construction of equations from assembly instructions.

Instruction Equation

ADD r2 r3 carry | r2 = r2 + r3

ADC r2 r3 carry | r2 = r2 + r3 + carry

EOR r2 r3 r2 = r2 ⊕ r3

AND r2 r3 r2 = r2 ∧ r3

OR r2 r3 r2 = r2 ∨ r3

MUL r2 r3 r1 | r0 = r2 × r3

LD/MOV/ST r2 r3 r2 = r3

ROL r2 carry | r2 = r2 | carry
LSL r2 carry | r2 = r2 | 0
LPM r2 Z r2 = TableLookUp(ZH | ZL)

MUL r2 r3, it calculates the product of values in registers r2 and r3, then the
high byte of the product is stored in r1 and the low byte of the product is stored
in r0. Hence the product in the equation is represented as a concatenation of r1
and r0.

In case the equation is related to an instruction that loads a round key,
ATLAS is designed to indicate which key word node is involved in the equation
(see Remark 1).

Now let us look at the assembly program Fex for our sample cipher from
Tab. 1. Following the definition in Sec. 4.1, the MOF graph GFex,full for this
sample cipher was constructed (see Fig. 2). Then, we applied the output criteria
described in Sec. 4.2 to GFex,full and obtained two vulnerable nodes “r0 (6)”
and “r1 (7)”. The subgraphs with depths 0 and 1, constructed from “r0 (6)”,
are shown in Fig. 3. As we pointed out in Sec. 4.3, the subgraph with depth 1
gives some additional useful information, compared to the one with depth 0.
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The equations obtained by using ATLAS from the subgraph with depth 1,
constructed from “r0 (6)” (Fig. 3 (b)), are as follows:

“r0 (6)” = “r0 (4)” ∧ “0x0F (6)” (1)

“r1 (7)” = “r1 (5)” ∧ “0xF0 (7)” (2)

“r0 (8)” = “r0 (6)” ∨ “r1 (7)” (3)

“r2 (9)” = key2[0] (4)

“r0 (11)” = “r0 (8)”⊕ “r2 (9)” (5)

“x (13)” = “r0 (11)” (6)

Eq. (1) shows “r0 (6)” = 0000b4b5b6b7 for some bj ∈ {0, 1} (j = 4, 5, 6, 7).
Equation (3) shows that if we skip instruction 8, the result of Eq. (1) will be
used instead of the result of Eq. (3) in instruction 11, which corresponds to
Eq. (5). Together with the information from Eqs. (4) and (6), the instruction
skip attack on instruction 8 would result in the first four bits of key2[0] to
appear as the first four bits of the faulted ciphertext.

Remark 1. The index [0] in the right hand of Eq. (4) indicates that the node
“r2 (9)” is the first key word node of key2, i.e. the value in “r2 (9)” is the first
byte of the second round key.

5 Case Study

In this section, we will describe a fault attack on PRESENT that was automat-
ically generated by ATLAS. We would like to point out that while all the fault
attacks proposed on this cipher so far exploit the differential characteristics of
the Sbox (e.g. [13, 8, 10, 16, 17]), our tool was able to find the vulnerable spots
in the program that are implementation dependent, easily exploitable, and yet
not trivial to find in the assembly code by a manual inspection.

5.1 PRESENT Cipher

For the case study, we have chosen a lightweight cipher PRESENT [7]. It is a
symmetric block cipher, designed as a substitution-permutation network (SPN).
Block length is 64 bits and key length can be either 128 bits or 80 bits (denoted
as PRESENT-128 and PRESENT-80, respectively). A round function consists of
three operations: xor of the state with the round key, followed by a substitution
by 4-bit SBox, and finally, a bitwise permutation. After 31 rounds, there is one
more addRoundKey, used for post-whitening. The encryption process is depicted
in Fig. 4. Because of its lightweight character, PRESENT-80 is usually used,
therefore we focus on this variant in this section.

As a target, we chose a speed-optimized assembly implementation for 8-
bit AVR from Verstegen and Papagiannopoulos, publicly available on GitHub2.

2 https://github.com/kostaspap88/PRESENT_speed_implementation
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Plaintext

Ciphertext

31x
addRoundKey

sBoxLayer

pLayer

addRoundKey

Fig. 4: High-level algorithmic overview of
PRESENT cipher.

# Instruction

0 LDI ZH 0x06

1 MOV ZL r0

2 LPM r21 Z

3 ANDI r21 0xC0

4 LDI ZH 0x07

5 MOV ZL r1

6 LPM r2 Z

7 ANDI r23 0x30

8 OR r21 r23

Table 5: Assembly code of a table
look-up for PRESENT implementa-
tion.

However, we did not use the key schedule for our analysis, since we were targeting
the main encryption routine.

5.2 Fault Analysis

We have only used the last three rounds of the cipher, since the output criteria
we selected for the attack would exclude all the earlier nodes in case the full
cipher was used. This code was 499 instructions long. The running time for
the assembly analysis was 36 ms: 8 ms reading the assembly source file, 8 ms
constructing the MOF graph, 4 ms finding the vulnerable nodes and 16 ms
outputting the subgraphs and fault difference equations for all the nodes that
satisfy the output criteria (testing was done on a standard Intel Haswell family
CORE i7 processor with 8 GB RAM).

In order to get the vulnerable nodes from the cipher implementation, we
have chosen our output criteria to be (minAffectedCT, minDist, maxDist,

minKey, minKeyWords)= (1, 1, 1, 1, 1). With this output criteria, ATLAS out-
puts 16 vulnerable nodes, out of the total 512 nodes. We will explain the fault
attack procedure on one of these nodes: “r23 (374)”. Subgraph for “r23 (374)”
with depth 1 is stated in Fig. 6 in Appendix A.

Equations generated for the subgraph with depth 1 from “r23 (374)” are as
follows:

“r22 (366)” = “r22 (357)” ∨ “r23 (365)” (7)

“r23 (374)” = “r23 (373)” ∧ “0x03 (72)” (8)

“r22 (375)” = “r22 (366)” ∨ “r23 (374)” (9)

“r1 (476)” = key4[1] (10)

“r1 (484)” = “r1 (476)”⊕ “r22 (375)” (11)

“x (492)” = “r1 (484)”. (12)

Eq. (8) shows “r23 (374)” = 000000b6b7 for some b6, b7 ∈ {0, 1}. Together with
the other equations we get

“x (492)” = key4[1]⊕ (“r22 (366)” ∨ 000000b6b7) (13)
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Consider a bit flip fault injection with fault mask ∆ = 11111100 in “r23 (374)”
right before the execution of instruction 375, which corresponds to Eq. (9), then
Eq. (13) becomes:

“x’ (492)” = key4[1]⊕ (“r22 (366)” ∨ 111111b6b7) (14)

where “x’ (492)” denotes the faulted output. Let δ = δ0δ1δ2δ3δ4δ5δ6δ7 = “x’ (492)”
⊕ “x (492)” and let “r22 (366)” = a0a1a2a3a4a5a6a7. Since both ⊕ and ∨ are
bitwise operations, together with equations (13) and (14) we have

δ0δ1δ2δ3δ4δ5 = (a0a1a2a3a4a5 ∨ 000000)⊕ (a0a1a2a3a4a5 ∨ 111111)

= a0a1a2a3a4a5 ⊕ 111111 =⇒ a0a1a2a3a4a5 = δ0δ1δ2δ3δ4δ5 ⊕ 1111111.

Since the value of δ is known and the value of “x (492)” is also known, together
with Eq. (13), we have

the first 6 bits of key4[1] = first 6 bits of “x (492)”⊕ δ0δ1δ2δ3δ4δ5 ⊕ 1111111,

which gives the first 6 bits of the second byte of round key for round 4.
With a subgraph constructed from “r22 (366)” with depth 3, a similar fault

analysis helps us to recover the last 2 bits of key4[1]. The subgraph is stated
in Fig. 7 in Appendix A. The same analysis can be carried out for the remaining
14 nodes to get all the bits of the round key for round 4.

To understand the found vulnerability, we examined the assembly code and
provide an explanation below on why the cipher structure contains the ex-
ploitable operations output by ATLAS. This implementation combines the pLayer
with the sBoxLayer in the form of 5 look-up tables. We will explain how this
procedure works on a simple example. Tab. 5 contains the code for two table
look-ups, which results into one nibble output. First, a table index is loaded into
higher byte of register Z (instructions 0 and 4) – this decides which table will
be used. Then, the intermediate state is loaded into lower byte of register Z –
it contains two nibbles of data, therefore, we expect to get 2 bits of data back
after the Sbox and the bit permutation are applied. To clear the remaining 6
bits, ANDI instruction is used (instructions 3 and 7). Finally, we combine the
values of these two look-ups into a nibble with an OR instruction. The attack
exploits the properties of this combined layer as well as merging of the bits of
the intermediate results together into a single register.

6 Discussion

To test our ATLAS tool, we analyzed two more lightweight ciphers: SIMON and
SPECK [6]. For this purpose, we used an assembly implementation for 8-bit AVR
from Luo Peng, available from GitHub3. More specifically, we tested SIMON
64/128 and SPECK 64/128, both high-throughput implementations. Results are

3 https://github.com/openluopworld/simon_speck_on_avr/tree/master/AVR
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shown in Fig. 5, which plots numbers of vulnerable nodes for various parameters.
Obviously, because of the structure of these ciphers, where only half of the state
is directly related to the round key, the number of vulnerable nodes is lower
compared to PRESENT. However, these results show that ATLAS is capable of
finding the vulnerable spots automatically in different implementations, without
additional knowledge of the internal cipher structure.
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Fig. 5: Comparison of different output criteria on different ciphers. Plot
(a) shows varying the maxDist parameter, while the other parameters are
(minAffectedCT, minDist, minKey, minKeyWords) = (1, 1, 1, 1). Plot (b) varies the
minAffectedCT parameter, while the other parameters are (maxDist, minDist,

minKey, minKeyWords) = (5, 1, 1, 1).

7 Conclusion

We have proposed a methodology capable of finding spots vulnerable to DFA
in software implementations of encryption algorithms. Following our approach,
we have created the ATLAS tool, which takes the assembly implementation and
user-specified output criteria as an input, and outputs subgraphs for vulnera-
ble nodes in the code, together with equations that can be directly used for
differential fault attack on the cipher implementation.

We have presented a detailed overview of a fault attack on PRESENT-80,
exploiting implementation weaknesses found by ATLAS. Our results show that
by using our tool, it is possible to find fault injection vulnerabilities that are
not visible from observing the cipher structure and are hard to find from an
assembly code that is normally hundreds to thousands lines long. To further
prove its capabilities, we tested another two cipher implementations, SPECK
64/128 and SIMON 64/128.

For the future work, we would like to extend ATLAS to be able to analyze
the differential properties of non-linear operations in the cipher and solve the
generated equations. There is also a potential to extend the analysis technique
from DFA to algebraic fault analysis. Additionally, we would like to focus on
protected implementations (e.g. [5]) to find loopholes and propose additional
countermeasures automatically.
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A Subgraphs for Fault Analysis of PRESENT

In the following graphs, we highlight the nodes (in gray) which give information
about the bits of the faulted nodes (in green).
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Fig. 6: Subgraph with depth 3 generated from the assembly implementation of
PRESENT, corresponding to vulnerable node “r23 (374)”.
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Fig. 7: Subgraph with depth 3 generated from the assembly implementation of
PRESENT, corresponding to vulnerable node “r22 (366)”.
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B Class Diagram of ATLAS

equation

parser

graph

renderer

data

analyzer

«Class»
graph::SubgraphConstructor

~subNodes: List<Node>
~subEdges: List<Edge>

«Class»
graph::Node

-nodeLabel: Operand
-outputEdges: List<Edge>
-inputEdges: List<Edge>
-parents: List<Node>
-children: List<Child>
-ctChildren: List<Child>
-keyBytesMap: List<Map<Integer,Node> >

«Class»
renderer::GraphRenderer

+GV_COLORS: String[]

+writeGV(String, List<Node>, List<Edge>, boolean, Node): void
+execDot(String, String): void

-- creates a GraphViz file
-- executes GraphViz and creates a pdf file

«Class»
graph::GraphConstructor

+constructGraph(): void

«Class»
graph::Edge

-instruction: Instruction
-head: Node
-tail: Node

«Class»
graph::Child

-node: Node
-distance: List<Edge>

-isLinear(Edge): boolean

«Class»
parser::AsmFileReader

-terminating: boolean

+readFile(String): void

-- reads a text file with instructions and creates List of Instruction(s)

«Class»
data::DataProvider

{singleton}

-instance: DataProvider
-instructions: List<Instruction>
-operands: List<Operand>
-nodes: List<Node>
-terminatingNodes: List<Node>
-zeroDistanceKeyNodes: List<Node>
-keyNodes: List<Node>
-edges: List<Edge>
-multiEdges: List<MultiEdge>
-multiNodes: List<Node>

«Class»
analyzer::Operand

-name: String
-lastInstruction: int

«Class»
graph::MultiEdge

-edge: Edge
-oldEdges: List<Edge>

«Class»
analyzer::MnemonicsRecognizer
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+isLinear(Instruction): boolean
+isLdMvSt(Instruction): boolean
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analyzer::Mnemonics

+LD: Mnemonics
+LDI: Mnemonics
+ST: Mnemonics
+EOR: Mnemonics
...

«Class»
analyzer::Instruction

-inputOperands: List<Operand>
-outputOperands: List<Operand>
-inputNodes: List<Node>
-outputNodes: List<Node>
-mnemonics: Mnemonics
-sequenceNum: int
-blockName: String
-terminating: boolean

«Class»
analyzer::FaultAnalyzer

+analyzePropagation(): void
+isRelatedToKey(Node, Node): boolean
+keyLinkedBytes(Node, Node): Map<Integer, Node>
+analyzeFaultedNodes(): void
+isOutputCriteriaMet(Node, int, int, int, int, int): boolean

«Class»
equation::Expression

-operands: List<String>
-operations: List<String>

+formulateExpression(): String

«Class»
equation::EquationGenerator

+generateEquation(Instruction, Node): Equation
+generateDfaEquations(List<Node>, List<Edge>, Node): List<Equation>
+writeLatexEquations(List<Equation>): String

«Class»
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Fig. 8: Class diagram of ATLAS. Some details were omitted, such as getters/setters
and helper methods. Colors represent different packages.


