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We give a security proof of the ‘Round Robin Differential Phase Shift’ (RRDPS) Quantum Key
Distribution scheme, and we give a tight bound on the required amount of privacy amplification.
Our proof consists of the following steps. We construct an EPR variant of the scheme. We show
that the RRDPS protocol is equivalent to RRDPS with basis permutation and phase flips performed
by Alice and Bob; this causes a symmetrisation of Eve’s state. We identify Eve’s optimal way of
coupling an ancilla to an EPR qudit pair under the constraint that the bit error rate between Alice
and Bob should not exceed a value β. As a function of β we derive, for non-asymptotic key size,
the trace distance between the real state and a state in which no leakage exists. We invoke post-
selection in order to go from qudit-wise attacks to general attacks. For asymptotic key size we
obtain a bound on the trace distance based on the von Neumann entropy.
Our asymptotic result for the privacy amplification is sharper than existing bounds. At low qudit
dimension, even our non-asymptotic result is sharper than existing asymptotic bounds.

1 Introduction

1.1 Quantum Key Distribution and the RRDPS scheme

Quantum-physical information processing is different from classical information processing in sev-
eral remarkable ways. Performing a measurement on an unknown quantum state typically destroys
information; It is impossible to clone an unknown state by unitary evolution [1]; Quantum en-
tanglement is a form of correlation between subsystems that does not exist in classical physics.
Numerous ways have been devised to exploit these quantum properties for security purposes [2].
By far the most popular and well studied type of protocol is Quantum Key Distribution (QKD).
QKD was first proposed in a famous paper by Bennett and Brassard in 1984 [3]. Given that Alice
and Bob have a way to authenticate classical messages to each other (typically a short key), and
that there is a quantum channel from Alice to Bob, QKD allows them to create a random key
of arbitrary length about which Eve knows practically nothing. BB84 works with two conjugate
bases in a two-dimensional Hilbert space. Many QKD variants have since been described in the
literature [4–9], using e.g. different sets of qubit states, EPR pairs, qudits instead of qubits, or
continuous variables. Furthermore, various proof techniques have been developed [10–13].
In 2014, Sasaki, Yamamoto and Koashi introduced Round-Robin Differential Phase-Shift (RRDPS)
[14], a QKD scheme based on d-dimenional qudits. It has the advantage that it is very noise resilient
while being easy to implement using photon pulse trains and interference measurements. One of
the interesting aspects of RRDPS is that it is possible to omit the monitoring of signal disturbance.
Even at high disturbance, Eve can obtain little information IAE about Alice’s secret bit. The value
of IAE determines how much privacy amplification is needed. As a result of this, the maximum
possible QKD rate (the number of actual key bits conveyed per quantum state) is 1−h(β)− IAE,
where h is the binary entropy function and β the bit error rate.

1.2 Prior work on the security of RRDPS

The security of RRDPS has been discussed in a number of papers [14–17]. The original RRDPS
paper gives an asymptotic upper bound for the privacy amplification,

IAE ≤ h(
1

d− 1
) (1)



(Eq. 5 in [14] with photon number set to 1). The security analysis in [14] is based on the Shor-
Preskill proof technique [11] and an estimate of the phase error. It is not known how tight the
bound (1) is. Ref. [15] follows [14] and does a more accurate computation of phase error rate,
tightening the 1/(d − 1) in (1) to 1/d. In [16] Sasaki and Koashi add noise-dependence to their
analysis and claim a bound

IAE ≤ h(
2β

d− 2
) for β ≤ 1

2
· d− 2

d− 1
(2)

and IAE ≤ h( 1
d−1 ) for β ∈ [ 12 ·

d−2
d−1 ,

1
2 ]. (See Section 5). The analysis in [17] considers only intercept-

resend attacks, and hence puts a lower bound on Eve’s potential knowledge, IAE ≥ 1−h( 1
2 + 1

d ) =
O(1/d2).1

1.3 Contributions and outline

In this paper we give a security proof of RRDPS. We give a bound on the required amount of
privacy amplification. We use a proof technique inspired by [11], [13] and [10]. We consider the
case where Alice and Bob do monitor the channel (i.e. they are able to tune the amount of privacy
amplification (PA) as a function of the observed bit error rate) as well as the saturated regime
where the leakage does not depend on the amount of noise.

– We show that the RRDPS protocol is equivalent to a protocol that contains an additional ran-
domisation step by Alice and Bob. The randomisation consists of phase flips and a permutation
of the basis states. We construct an EPR variant of RRDPS-with-randomisation; it is equivalent
to RRDPS if Alice creates the EPR pair and immediately does her measurement. The effect of
the randomisation is that Alice and Bob’s entangled state after Eve’s attack on the EPR pair
is symmetrised and can be described using just three real degrees of freedom.

– We identify Eve’s optimal way of coupling an ancilla to an EPR qudit pair under the constraint
that the bit error rate between Alice and Bob does not exceed some value β.

– We consider an attack where Eve applies the above coupling to each EPR qudit-pair individ-
ually. We compute an upper bound on the statistical distance (after PA) of the full QKD key
from uniformity, conditioned on Eve’s ancilla states. From this we derive how much privacy
amplification is needed. The result does not depend on the way in which Eve uses her ancillas,
i.e. she may apply a postponed coherent measurement on the whole system of ancillas.

– We go from qudit-wise attacks to general attacks by using the post-selection technique. This
inflicts a penalty (d4 − 1) log(n+ 1) on the amount of privacy amplification.

– We compute the von Neumann mutual information between one ancilla state and Alice’s secret
bit. This provides a bound on the PA in the asymptotic (long key) regime [12]. Our result is
sharper than [14].

– We provide a number of additional results by way of supplementary information. (i) We show
that Eve’s ancilla coupling can be written as a unitary operation on the Bob-Eve system. This
means that the attack can be executed even if Eve has no access to Alice’s qudit; this is important
especially in the reduction from the EPR version to the original RRDPS. (ii) We compute the
min-entropy of one secret bit given the corresponding ancilla. (iii) We compute the accessible
information (mutual Shannon entropy) of one secret bit given the corresponding ancilla. These
results give some insight into simple attacks that Eve can launch against individual qudits.

In Section 2 we introduce notation and post-selection. In Section 3 we briefly summarise the
RRDPS scheme, and discuss the attacker model. Section 4 states the main result: the amount
of privacy amplification needed for RRDPS to be secure, (i) at finite key length and (ii) asymp-
totically. Section 5 compares our results to previous bounds. The remainder of the paper builds
towards the proof of the main results. In Section 6 we show that the randomisation step does
not modify RRDPS, and we introduce the EPR version of the protocol. In Section 7 we impose

1 Ref. [17] gives a min-entropy of − log( 1
2

+ 1
d

), which translates to Shannon entropy h( 1
2

+ 1
d

).
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the constraint that Eve’s actions must not cause a bit error rate higher than β, and determine
which mixed states of the Alice-Bob system are still allowed. There are only two scalar degrees of
freedom left, which we denote as µ and V . In Section 8 we do the purification of the Alice-Bob
mixed state, thus obtaining an expression for the state of Eve’s ancilla. Although the ancilla space
has dimension d2, we show that only a four-dimensional subspace is relevant for the analysis. In
Section 9 we prove the non-asymptotic main result by deriving an upper bound on the statisti-
cal distance between the distribution of the QKD key and the uniform distribution, conditioned
on Eve’s ancillas. In Section 10 we prove the asymptotic result by computing Eve’s knowledge
in terms of von Neumann entropy. The appendix provides supplementary information about the
leakage in terms of min-entropy loss and accessible information.

2 Preliminaries

2.1 Notation and terminology

Classical Random Variables (RVs) are denoted with capital letters, and their realisations with
lowercase letters. The probability that a RV X takes value x is written as Pr[X = x]. The
expectation with respect to RV X is denoted as Exf(x) =

∑
x∈X Pr[X = x]f(x). The constrained

sum
∑
t,t′:t 6=t′ is abbreviated as

∑
[tt′] and Eu,v:u6=v as E[uv]. The Shannon entropy of X is written

as H(X). Sets are denoted in calligraphic font. The notation ‘log’ stands for the logarithm with
base 2. The min-entropy of X ∈ X is Hmin(X) = − log maxx∈X Pr[X = x], and the conditional
min-entropy is Hmin(X|Y ) = − log Ey maxx∈X Pr[X = x|Y = y]. The notation h stands for the
binary entropy function h(p) = p log 1

p+(1−p) log 1
1−p . Bitwise XOR of binary strings is written as

‘⊕’. The Kronecker delta is denoted as δab. For quantum states we use Dirac notation. The notation
‘tr’ stands for trace. The Hermitian conjugate of an operator A is written as A†. When A is a
complicated expression, we sometimes write (A+ h.c.) instead of A+A†. The complex conjugate
of z is denoted as z∗. We use the Positive Operator Valued Measure (POVM) formalism. A POVM
M consists of positive semidefinite operators,M = (Mx)x∈X , Mx ≥ 0, and satisfies the condition∑
xMx = 1. The trace norm of A is ‖A‖1 = tr

√
A†A. The trace distance between matrices ρ

and σ is denoted as D(ρ, σ) = 1
2 ‖ρ− σ‖1; it is a generalisation of the statistical distance and

represents the maximum possible advantage one can have in distinguishing ρ from σ. The von
Neumann entropy of a mixed state ρ is denoted as S(ρ) and equals −tr ρ log ρ.
Consider a bipartite system ‘XE’ where X is a uniform classical random variable and Eve’s part ‘E’
depends on X. The combined quantum-classical state is ρXE = Ex|x〉〈x| ⊗ ρE(x). The individual
parts are in state ρX = Ex|x〉〈x| and ρE = ExρE(x) respectively. The statistical distance between
X and a uniform variable given ρ(X) is a measure of the security of X given ρ. This distance is
given by [18]

D(X|ρE(X))
def
= D

(
ρXE, ρX ⊗ ρE

)
= 1

2‖ρ
XE − ρX ⊗ ρE‖1 (3)

i.e. the distance between the true quantum-classical state and a state in which Eve’s part is
decoupled from X. If the distance is ε, then it is said that X is ε-secure. Statements like (3) that
are stated in terms of statistical distance have the advantage of being universally composable [18].
The term Privacy Amplification is abbreviated as PA.

2.2 Post-selection

In a collective attack Eve acts on individual qudits. This is not the most general attack. For
protocols that obey permutation symmetry, a post-selection argument [19] can be used to show
that ε-security against collective attacks implies ε′-security against general attacks, with ε′ =
ε(n + 1)d

4−1, where d is the dimension of the qudit space. Hence, by paying a price in terms of
privacy amplification, e.g. changing the usual privacy amplification term 2 log 1

ε to 2 log 1
ε + 2(d4−

1) log(n+ 1), one can ‘buy’ security against general attacks.
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3 The RRDPS scheme

We briefly review the RRDPS scheme [14]. For proof-technical reasons we explicitly include a
channel monitoring procedure (step 4); our proof technique needs this step in the non-saturated
regime. Step 4 can be omitted if Alice and Bob decide to perform privacy amplification as if Eve
causes 50% noise in every qudit.

3.1 The RRDPS protocol

The dimension of the qudit space is d. The basis states2 are denoted as |t〉, with time indices
t ∈ {0, . . . , d− 1}. Whenever we use notation “t1 + t2” it should be understood that the addition
of time indices is modulo d. The number of qudits is denoted as n. We introduce a system parameter
L denoting a list length and system parameters β̃ ∈ [0, 12 ], η � 1 related to the tolerated noise
level. The RRDPS scheme consists of the following steps.

1. Alice generates a random bitstring a ∈ {0, 1}d. She prepares the single-photon state

|µa〉
def
=

1√
d

d−1∑
t=0

(−1)at |t〉 (4)

and sends it to Bob.
2. Bob chooses a random integer r ∈ {1, . . . , d − 1}. Bob performs a POVM measurement M(r)

described by a set of 2d operators (M
(r)
ks )k∈{0,...,d−1},s∈{0,1},

M
(r)
ks =

1

2
|Ψ (r)
ks 〉〈Ψ

(r)
ks | |Ψ (r)

ks 〉 =
|k〉+ (−1)s|k + r〉√

2
. (5)

The result of the measurementM(r) on |µa〉 is an integer k ∈ {0, . . . , d− 1} and a bit s which
equals ak ⊕ ak+r if there is no noise/interference.3

3. Bob announces k and r over a public but authenticated channel. Alice computes s′ = ak⊕ak+r.
Alice and Bob now have a shared secret bit s.

Steps 1–3 are repeated N times.

4. Alice selects a random subset L ⊂ [N ], with |L| = L. For the rounds indicated by L, Alice and
Bob publicly compare their values of s′ and s. They continue the protocol only if the number
of occurrences s 6= s′ is smaller than β̃L.

5. Finally, on the remaining n = N − L bits Alice and Bob carry out the standard procedures of
information reconciliation and Privacy Amplification. After PA the size of the key is ` bits.

If step 4 is not performed, Alice and Bob have to assume that Eve learns as much as when causing
bit error rate 1

2 . This mode of operation (without monitoring) was proposed in the original RRDPS
paper [14].
If Eve causes bit error probability exceeding β (with β > β̃), her probability of passing step 4 is
exponentially small. Applying the Hoeffding inequality yields an upper bound on the probability

of exp[−2L(β − β̃)2]. Let η � 1 be a security parameter. By setting β̃ ≤ β −
√

1
2L ln 1

η , we can

make sure that an Eve who causes bit error probability exceeding β fails the test except with
probability η.
In order for L to be statistically representative, L needs to be at least of order log ` [20]. We will
assume L > log `.

2 The physical implementation [14] is a pulse train: a photon is split into d coherent pieces which are released at
different, equally spaced, points in time.

3 The phase (−1)ak⊕ak+r is the phase of the field oscillation in the (k + r)’th pulse relative to the k’th. The
measurement M(r) is an interference measurement where one path is delayed by r time units.
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The security of RRDPS is intuitively understood as follows. A measurement in a d-dimensional
space cannot extract more than log d bits of information. The state |µa〉, however, contains d− 1
pieces of information, which is a lot more than log d. Eve can learn only a fraction of the string a
embedded in the qudit. Furthermore, what information she has is of limited use, because she
cannot force Bob to select specific phases. (i) She cannot force Bob to choose a specific r value.

(ii) Even if she feeds Bob a state of the form |Ψ (r)
`u 〉, where r accidentally equals Bob’s r, then

there is a 50% probability that Bob’s measurement M(r) yields k 6= ` with random s.

3.2 Attacker model

There is a quantum channel from Alice to Bob. There is an authenticated but non-confidential
classical channel between Alice and Bob. We allow Eve to attack individual qudit positions in
any way allowed by the laws of quantum physics, e.g. using unbounded quantum memory, en-
tanglement, lossless operations, arbitrary POVMs, arbitrary unitary operators etc. All bit errors
observed by Alice and Bob are assumed to be caused by Eve. Eve cannot influence the random
choices of Alice and Bob, nor the state of their (measurement) devices. There are no side channels.
This is the standard attacker model for quantum-cryptographic schemes.
We will first analyze attacks in which Eve couples an ancilla to each EPR pair individually. Then
we invoke the post-selection method [19] to cover general attacks.
We will see that the leakage becomes constant when β reaches a saturation point. If Alice and
Bob are willing to tolerate such a noise level, then channel monitoring is no longer necessary for
determining the leakage; they just assume that the maximum possible leakage occurs. (Monitoring
is still necessary to determine which error-correcting code should be applied.)

4 Main results

4.1 Non-asymptotic result

Our first result is a non-asymptotic bound on the secrecy of the QKD key z.

Theorem 1 Let r = (r1, . . . , rn) be the values of the parameter r in n rounds of RRDPS, and
similarly k = (k1, . . . , kn). Let z ∈ {0, 1}` be the QKD key derived from the n rounds. Let u be the
(public) random seed used in the privacy amplification. Let β ∈ [0, 12 ]. Consider a collective attack
such that Eve’s probability of causing a bit flip, averaged per qudit, does not exceed β. At given r,k
let ρZUE(r,k) denote the quantum-classical state of the variables Z,U and Eve’s subsystem ‘E’,
which consists of all n ancillas. The security of Z given R, K, U and Eve’s quantum information
can be expressed as

1
2

∥∥ρZUE(r,k)− ρZ(r,k)⊗ ρUE(r,k)
∥∥
1
< 1

2

√
2`−n(1−2 log T ) (6)

where T is given by

β ≤ β∗ : T = 2β +
√

1− 2β
[√

1− 2β
d− 1

d− 2
+

√
2β√
d− 2

]
(7)

β ≥ β∗ : T = 2β∗ +
√

1− 2β∗

[√
1− 2β∗

d− 1

d− 2
+

√
2β∗√
d− 2

]
(8)

and β∗ is a saturation value that depends on d as

β∗ =
xd/2

1 + xd
, (9)

where xd is the solution on (0, 1) of the equation

(1− x

d− 2
)

1
2 + (1 +

1

d− 2
)(1− x

d− 2
)−

1
2 +

1√
d− 2

(
√
x− 1√

x
)− 2 = 0. (10)
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The proof is given in Section 9, after several sections that prepare the ground. Theorem 1 holds
for attacks in which Eve couples an ancilla to each individual EPR pair (though she may later
act in any way whatsoever on the whole set of n ancillas). As explained in Section 2.2, by a post-
selection argument security against qudit-wise attacks implies security against general attacks,
but with a less favourable security parameter. In the case of general attacks, we have to multiply
the right hand side of (6) by (n + 1)d

4−1. Hence, in order to obtain ε-security we have to set
` = n(1− 2 log T )− (d4 − 1) log(n+ 1)− 2 log 1

ε + 2.

Let Alice and Bob use an error-correcting code with codeword size n and syndrome size σ. The
information reconciliation leaks σ bits of information. (Or consumes σ bits of key material, de-
pending on the information reconciliation procedure). It holds that σ > nh(β̃). Asymptotically
β̃ → β and σ → nh(β). The QKD key generation rate is (` − σ)/N , where N = n + L (see
Section 3.1), with L the number of qubits spent on channel monitoring (if monitoring is performed
at all).

rate =
n

n+ L
(1− 2 log T )− σ

n+ L
− (d4 − 1)

log(n+ 1)

n+ L
− 2

n+ L
log

1

ε
+

2

n+ L
(11)

≥ (1− L

n
)(1− 2 log T )− σ

n
− (d4 − 1)

log(n+ 1)

n
− 2

n
log

1

ε
. (12)

The achieved security level is max{ε, η}, where η is the probability that the number of bit errors
is smaller than β̃L when Eve causes bit error probability larger than β (see Section 3.1).4 It is
advantageous to set η = ε.

4.2 Asymptotic result

For asymptotically large n, it has been shown [21], using the properties of smooth Rényi entropies,

that ‖ρZUE−ρZ⊗ρUE‖1 ≤
√

2`−n(1−IAE), where IAE is the single-qudit von Neumann information

leakage, IAE
def
= S(E)−S(E|S′). Here ‘E’ stands for Eve’s ancilla state and S′ is Alice’s secret bit.

Our second result is a computation of the von Neumann leakage IAE for RRDPS.

Theorem 2 The information leakage about the secret bit S’ given R, K and Eve’s quantum state,
in terms of von Neumann entropy, is given by:

β ≤ β0 : IAE = (1− 2β)h(
1

d− 2
· 2β

1− 2β
) (13)

β ≥ β0 : IAE = (1− 2β0)h(
1

d− 2
· 2β0

1− 2β0
). (14)

Here β0 is a saturation value (different from β∗) given by

β0 =
1

2

[
1 +

1

(d− 2)(1− yd)

]−1
(15)

where yd is the unique positive root of the polynomial yd−1 + y − 1.

The proof is given in Section 10. The formulation of our main results in terms of statistical distance
ensures that the results are Universally Composable. In Section 10 we will see that Theorem 2 is
sharper than (2) and hence allows for a higher QKD key generation rate.

4 If this rare event occurs, we have no other bound than 1
2
‖ρZUE − ρZ ⊗ ρUE‖1 ≤ 1.
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Fig. 1 Saturated PA per qudit as a function of d. Comparison of [14] and our results (Theorem 1 and Theorem 2).
Our non-asymptotic result is shown for several values of n.
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Fig. 2 Amount of Privacy Amplification per qudit as a function of β, for d = 10. Comparison of our Theorem 1
(n = 107) and Theorem 2 versus the PA of [16], which equals h( 2β

d−2
) below saturation and h( 1

d−1
) above saturation.

5 Comparison with previous analyses

5.1 Phase error

Sasaki and Koashi [16] provided an upper bound on the PA equal to h(eph), where eph is the
phase error rate. They derived a relation between the phase error rate and the bit error rate,
eph ≤ infλ≥0[λβ+ max{Ω−(ν, λ), Ω+(ν, λ)}], where ν is the photon number and Ω± are functions
which for ν = 1 reduce to Ω−(1, λ) = 0 and Ω+(1, λ) = 1

d−1 − λ
d−2

2(d−1) . At ν = 1 the optimal λ is
2
d−2 , yielding eph ≤ 2β

d−2 and thus an upper bound of h( 2β
d−2 ) on the PA.

5.2 Comparison

We first compare our asymptotic result (Theorem 2) to the asymptotic h( 2β
d−2 ) of [16]. For all

β ∈ [0, β0] and d > 2 it holds that

(1− 2β)h( 2β
(d−2)(1−2β) ) ≤ h( 2β

d−2 ). (16)

This is verified as follows. Let p0 = 2β, p1 = 1− 2β, x0 = 0, x1 = 2β
(d−2)(1−2β) . The left hand side

of (16) can be expressed as p0h(x0) + p1h(x1), and the right hand side as h(p0x0 + p1x1). Because
h is concave we have Eh(· · ·) ≤ h(E · · ·).
Thus our von Neumann result is sharper than [16]. It is difficult to pinpoint what causes the
difference in tightness.
Note too that our saturation occurs at lower β than in [16], especially for small d.
Our Theorem 1 is non-asymptotic; we cannot compare it to previous results since the previous
results are for the asymptotic regime.
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Figs. 1 and 2 show plots of the PA per qudit. In Fig. 1 the post-selection ‘price’ proportional
to d4 logn

n is clearly visible; for large d the cost is prohibitive. Interestingly, at small d our non-
asymptotic result for the saturated PA is sharper than the asymptotic h( 1

d−1 ) [14,16].

6 Symmetrised EPR version of the protocol

6.1 RRDPS is equivalent to RRDPS with random permutations

We show that inserting a symmetrisation step into RRDPS does not affect the protocol. More
specifically, the following protocol is equivalent to RRDPS steps 1 to 3. (For brevity we do not ex-
plicitly write down the channel monitoring, information reconciliation and privacy amplification.)

S1 Alice picks a random a ∈ {0, 1}d and a random permutation π.
She prepares |µa〉 = 1√

d

∑
t(−1)at |t〉.

S2 Alice performs the permutation π on the state |µa〉. She sends the result to Bob. After pausing
for a while, she sends π to Bob.

S3 Eve does something with the state, without knowing π. Then she sends the result to Bob.
S4 Bob receives a state and stores it until he receives π. Bob applies π−1 to the state.
S5 Bob picks a random r ∈ {1, . . . , d − 1} and does the M(r) POVM. The result is an index

k ∈ {0, . . . , d− 1} and a bit s = ak ⊕ ak+r. He computes ` = k + r mod d. He announces k, `.
S6 Alice computes s′ = ak ⊕ a`.

The equivalence is shown as follows. After step S2, the state is 1√
d

∑
t(−1)at |π(t)〉

= 1√
d

∑
τ (−1)aπ−1τ |τ〉 = |µπ−1(a)〉. Hence Alice’s process {state preparation followed by π} can be

replaced by {acting with π−1 on a followed by state preparation}. Similarly, Bob’s process {apply
π−1 to state; pick random r; do M(r); send k, `} has exactly the same effect as {pick random r;
doM(r); apply π to k, l; send π(k), π(`)}. Next, Bob’s computation of π(k), π(`) can be moved to
Alice. Then, Alice’s actions {pick random a; send π−1(a) to state preparation; send a to step S6}
can be replaced by {pick random a′; send a′ to state preparation; send π(a) to step S6}. Finally,
in step S6 we use π(a)π(k) = ak and π(a)π(`) = a`.
Remark. In step S3 it is crucial that Eve does not know π at the moment of her manipulation of
the state. This will allow us to derive a symmetrised form of the density matrix in Section 6.3.

6.2 RRDPS is equivalent to RRDPS with random phase flips

Analogous with Section 6.1, it can be seen that adding an extra phase-flipping step to RRDPS
does not affect RRDPS. Consider the following protocol.

F1 Alice picks a random a ∈ {0, 1}d and a random c ∈ {0, 1}d. She prepares |µa〉 = 1√
d

∑
t(−1)at |t〉.

F2 Alice performs the phase flips on the state |µa〉, according to the rule |t〉 → (−1)ct |t〉 for basis
states. She sends the result to Bob. After pausing for a while, she sends c to Bob.

F3 Eve does something with the state, without knowing c. Then she sends the result to Bob.
F4 Bob receives a state and stores it until he receives c. Bob applies phase flips c to the state.
F5 Bob picks a random r ∈ {1, . . . , d − 1} and does the M(r) POVM. The result is an index

k ∈ {0, . . . , d− 1} and a bit s = ak ⊕ ak+r. He computes ` = k + r mod d. He announces k, `.
F6 Alice computes s′ = ak ⊕ a`.

The equivalence to RRDPS is seen as follows. After step F2 the state is |µa⊕c〉. Hence Alice’s
process {pick random a; prepare state; flip with c} is equivalent to {pick random a; flip with c;
prepare state}. Similarly, Bob’s process {flip with c; pick random r; do M(r)} is equivalent to
{pick random r; do M(r); change s to s ⊕ ck ⊕ c` }. This holds because in the first case Bob
obtains s = (a⊕ c)k ⊕ (a⊕ c)` = (ak ⊕ a`)⊕ ck ⊕ c`. Furthermore, Alice’s steps {pick random a;
send a to computation of s′ and flipped a to state preparation} are equivalent to {pick random
a′; send flipped a to computation of s′ and a′ to state preparation}. The final effect of these

8



transformations of the ‘F’ protocol is that (i) there is no physical phase flipping at all, (ii) Bob
needs no quantum memory, and (iii) Alice and Bob both obtain a secret bit (ak ⊕ a`) ⊕ ck ⊕ c`;
though not equal to ak ⊕ a`, it is statistically the same.

6.3 EPR version

We introduce a protocol based on EPR pairs that is equivalent to the combined ‘S’ and ‘F’
protocols, and hence also equivalent to RRDPS.

E1 A maximally entangled two-qudit state is prepared.

|α0〉
def
=

1√
d

d−1∑
t=0

|tt〉. (17)

One qudit (‘A’) is intended for Alice, and one (‘B’) for Bob.
E2 Eve does something with the EPR pair. Then Alice and Bob each receive their own qudit.
E3 Alice and Bob pick a random permutation π. They both apply π to their own qudit. Then they

forget π.
E4 Alice and Bob pick a random string c ∈ {0, 1}d. They both apply phase flips |t〉 → (−1)ct |t〉

to their own qudit. Then they forget c.
E5 Alice performs a POVM Q = (Qz)z∈{0,1}d on her own qudit, where

Qz =
d

2d
|µz〉〈µz|. (18)

This results in a measured string a ∈ {0, 1}d.
E6 Bob picks a random integer r ∈ {1, . . . , d − 1} and performs the POVM measurement M(r)

on his qudit. The result of the measurement is an integer k ∈ {0, . . . , d − 1} and a bit s. Bob
computes ` = k + r mod d. Bob announces k, `.

E7 Alice computes s′ = ak ⊕ a`.

The equivalence to the protocol in Section 6.1 is seen as follows. First, let Alice be the origin of
the EPR pair, and let her perform Q as soon as she has created the EPR pair. This process is
equivalent to preparing a qudit state |µa〉 with random a. The only difference is that the EPR
protocol allows Eve to couple her ancilla to the AB system instead of only the B system. Hence
the EPR version overestimates Eve’s power. Security of the EPR version implies security of the
original RRDPS.5 Furthermore, the permutations and phase flips in steps E3,E4 cancel out exactly
like in protocols ‘S’ and ‘F’.

Remark: The protocol equivalences is Sections 6.1–6.3 can be nicely visualised using diagrammatic
techniques [22]. We do not show the protocol diagrams in this paper.

Lemma 1 The hermitian matrices Qz as defined in (18) form a POVM, i.e.
∑
z∈{0,1}d Qz = 1.

Proof:∑
z |µz〉〈µz| =

∑
z

1
d

∑d−1
t,t′=0(−1)zt′+zt |t〉〈t′| = 1

d

∑d−1
t,t′=0 |t〉〈t′|

∑
z(−1)zt′+zt .

Using
∑
z(−1)zt′+zt = 2dδtt′ we get

∑
z |µz〉〈µz| =

2d

d

∑
t |t〉〈t| =

2d

d 1. �
Alice and Bob’s measurements can be carried out in the opposite order. It is not important
whether Q is practical or not; it is a theoretical construct which allows us to build an EPR version
of RRDPS.

5 In Appendix A it will turn out that Eve’s optimal attack is achieved by acting on Bob’s qudit only; hence the
EPR version is fully equivalent to original RRDPS.
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6.4 Effect of the random transforms: state symmetrisation

Let ρAB = |α0〉〈α0| denote the pure EPR state of Alice and Bob, and let ρ̂AB be the mixed state
of the AB system after Eve’s manipulation in step E2. We write

ρ̂AB =
∑

t,t′,τ,τ ′∈{0,...,d−1}

ρ̂tt
′

ττ ′ |t, t′〉〈τ, τ ′|, (19)

with ρ̂ττ
′

tt′ = (ρ̂tt
′

ττ ′)
∗ and

∑
tt′ ρ̂

tt′

tt′ = 1. The effect of step E3 is that the AB state gets averaged
over all permutations, i.e. we get the following mapping

ρ̂AB 7→ ρ̃AB def
=

1

d!

∑
π

∑
t,t′,τ,τ ′

ρ̂
π(t),π(t′)
π(τ),π(τ ′)|t, t

′〉〈τ, τ ′| (20)

def
=

∑
t,t′,τ,τ ′

ρ̃tt
′

ττ ′ |t, t′〉〈τ, τ ′|. (21)

Here the parameters ρ̃tt
′

ττ ′ are invariant under simultaneous permutation of the four indices, i.e.

ρ̃
π(t),π(t′)
π(τ),π(τ ′) = ρ̃tt

′

ττ ′ for all π,t,t′,τ ,τ ′. The consequence is that ρ̃AB contains only a few degrees of

freedom, namely the constants ρ̃ssss, ρ̃
ss
st , ρ̃

ss
ts , ρ̃sstt , ρ̃stst, ρ̃

st
ts, ρ̃

ss
tu, ρ̃stsu, ρ̃tsus, ρ̃

st
us, ρ̃

st
uv, where s, t, u, v are

mutually distinct.
Next, the random phase flips reduce the degrees of freedom even further. Let Fc be the phase flip
operator.

ρ̄AB def
= Ec∈{0,1}dFcρ̃

ABF †c (22)

= Ec
∑
tt′ττ ′

ρ̃tt
′

ττ ′(−1)ct+ct′+cτ+cτ′ |t, t′〉〈τ, τ ′| (23)

=
∑
tt′ττ ′

|t, t′〉〈τ, τ ′|ρ̃tt
′

ττ ′Ec(−1)ct+ct′+cτ+cτ′ (24)

def
=
∑
tt′ττ ′

|t, t′〉〈τ, τ ′|ρ̄tt
′

ττ ′ . (25)

From (24) we see that any time index that occurs an odd number of times will be wiped out,
i.e. Ec(−1)ct = 0. The only surviving degrees of freedom are the four constants ρ̄••••, ρ̄

••
◦◦, ρ̄

•◦
•◦, ρ̄

•◦
◦•,

where • and ◦ denote distinct arbitrary indices. Note that these constants are real-valued. We can
now write

ρ̄AB = ρ̄••••
∑
t

|tt〉〈tt|+ ρ̄••◦◦
∑
[tτ ]

|tt〉〈ττ |+ ρ̄•◦•◦
∑
[tt′]

|tt′〉〈tt′|+ ρ̄•◦◦•
∑
[tt′]

|tt′〉〈t′t|. (26)

Furthermore, the requirement tr ρ̄AB = 1 imposes the constraint dρ̄•••• + d(d− 1)ρ̄•◦•◦ = 1, reducing
the number of degrees of freedom to three.

7 Imposing the noise constraint

The channel monitoring restricts the ways in which Eve can alter the AB state. We will determine
the most general allowed ρ̄AB that is compatible with bit error rate β. (We will later see that it is
optimal for Eve to cause the same bit error rate in all rounds. This is due to the concavity of the
leakage as a function of the error rate.) We introduce the notation Paks|r = Pr[A = a,K = k, S =
s|R = r].

Lemma 2 Let Alice and Bob’s bipartite state be ρ̄AB, and let them perform the measurements Q
and M(r) respectively. At given r, the joint probability of the outcomes a, k, s is given by

Paks|r =
1

2d2d
+

1

2 · 2d
(ρ̄••◦◦ + ρ̄•◦◦•)(−1)s+ak+ak+r . (27)

10



Proof: Paks|r = tr (Qa ⊗M (r)
ks )ρ̄AB

= tr ( 1
2d

∑
``′(−1)a`+a`′ |`〉〈`′| ⊗ 1

2
|k〉+(−1)s|k+r〉√

2

〈k|+(−1)s〈k+r|√
2

)
∑
tt′ττ ′ ρ̄

tt′

ττ ′ |t〉〈τ | ⊗ |t′〉〈τ ′|
= 1

2d4

∑
tt′ττ ′ ρ̄

tt′

ττ ′(−1)at+aτ [δt′k + (−1)sδt′,k+r][δτ ′k + (−1)sδτ ′,k+r]

= 1
2d4

∑
tτ (−1)at+aτ [ρ̄tkτk + ρ̄t,k+rτ,k+r + (−1)sρ̄tkτ,k+r + (−1)sρ̄t,k+rτk ]. We use ρ̄t`τ` = δt`δτ`ρ̄

••
•• +δτt(1 −

δt`)ρ̄
•◦
•◦ for the first two terms, setting ` = k and ` = k + r. Since k + r 6= k we write ρ̄tkτ,k+r =

δtkδτ,k+rρ̄
••
◦◦ + δt,k+rδτkρ̄

•◦
◦•, and similarly for ρ̄t,k+rτk . Finally we use ρ̄•••• + (d − 1)ρ̄•◦•◦ = 1/d. (See

end of Section 6.4.) �
We now impose the constraint that a bit error occurs with probability β,

Pr[S = AK ⊕AK+R] = 1− β. (28)

Here the random variables are A, R, K, and S.

Theorem 3 The constraint (28) can only be satisfied by a density function of the form

ρ̄AB = (1− 2β − V )|α0〉〈α0|+ V
1

d

∑
tt′

|tt′〉〈t′t|+ (2β − µ)
1
d2

+ µ
1

d

∑
t

|tt〉〈tt| (29)

with µ, V ∈ R. Written componentwise,

ρ̄tt
′

ττ ′ =
1− 2β − V

d
δt′tδτ ′τ +

V

d
δτt′δτ ′t +

2β − µ
d2

δτtδτ ′t′ +
µ

d
δt′tδτtδτ ′t. (30)

Proof: We write Pr[S = AK ⊕AK+R] =
∑
akrs

1
d−1Paks|rδs,ak⊕ak+r and use Lemma 2. This yields

Pr[S = AK ⊕ AK+R] = 1
2 + d

2 (ρ̄••◦◦ + ρ̄•◦◦•). The constraint (28) can only be satisfied by setting

ρ̄••◦◦+ρ̄
•◦
◦• = 1−2β

d . We choose ρ̄••◦◦, ρ̄
•◦
•◦ as the two independent degrees of freedom and re-parametrise

them as ρ̄••◦◦ = (1 − 2β − V )/d and ρ̄•◦•◦ = (2β − µ)/d2, where µ, V ∈ R are the new independent
degrees of freedom. Substitution into (26) yields (29). �
Theorem 3 shows that (at fixed β) there are still two degrees of freedom, µ and V , in Eve’s
manipulation of the EPR pair. This differs from standard qubit-wise QKD, where the bit error
probability completely fixes Eve’s ancilla state.

8 Purification

According to the attacker model we have to assume that Eve has the purification of the state ρ̄AB.
The purification contains all information about s that exists outside the AB system.

8.1 The purified state and its properties

We introduce the following notation,

|αj〉
def
=

1√
d

∑
t

ei
2π
d jt|tt〉, j ∈ {0, . . . , d− 1} (31)

|D±tt′〉
def
=
|tt′〉 ± |t′t〉√

2
t < t′. (32)

Lemma 3 The ρ̄AB given in (29) has the following orthonormal eigensystem,

|α0〉 with eigenvalue λ0
def
=

2β − µ
d2

+
µ+ V

d
+ 1− 2β − V

|αj〉 j ∈ {1, . . . , d− 1} with eigenvalue λ1
def
=

2β − µ
d2

+
µ+ V

d
. (33)

|D±tt′〉 (t < t′) with eigenvalue λ±
def
=

2β − µ
d2

± V

d

11



Proof: The term proportional to 1 in (29) yields a contribution (2β − µ)/d2 to each eigenvalue.

First we look at |αj〉. We have 〈α0|αj〉 = δj0. Furthermore 〈t′t|αj〉 = δt′te
i 2πd jt/

√
d, which gives

(
∑
tt′ |tt′〉〈t′t|)|αj〉 = |αj〉. Similarly we have (

∑
t |tt〉〈tt|)|αj〉 = |αj〉. Next we look at |D±tt′〉. We

have 〈α0|D±tt′〉 = 0 and 〈uu|D±tt′〉 = 0. Hence the (1 − 2β − V )-term and the µ-term in (29)

yield zero when acting on |D±tt′〉. Furthermore
∑
uu′ |uu′〉〈u′u|D

+
tt′〉 =

∑
uu′ |uu′〉

δutδu′t′+δut′δu′t√
2

= |D+
tt′〉. Similarly,

∑
uu′ |uu′〉〈u′u|D

−
tt′〉 =

∑
uu′ |uu′〉

δutδu′t′−δut′δu′t√
2

sgn(u− u′) = −|D−tt′〉. �

In diagonalised form the ρ̄AB is given by

ρ̄AB = λ0|α0〉〈α0|+ λ1

d−1∑
j=1

|αj〉〈αj |+ λ+
∑

tt′:t<t′

|D+
tt′〉〈D

+
tt′ |+ λ−

∑
tt′:t<t′

|D−tt′〉〈D
−
tt′ |. (34)

The purification is

|ΨABE〉 =
√
λ0|α0〉 ⊗ |E0〉+

√
λ1

d−1∑
j=1

|αj〉 ⊗ |Ej〉

+
√
λ+

∑
tt′:t<t′

|D+
tt′〉 ⊗ |E

+
tt′〉+

√
λ−

∑
tt′:t<t′

|D−tt′〉 ⊗ |E
−
tt′〉. (35)

where we have introduced orthonormal basis states |Ej〉, |E±tt′〉 in Eve’s Hilbert space. In Ap-
pendix A we give more details on Eve’s unitary operation.

8.2 Eve’s state

Eve waits for Alice and Bob to perform their measurements and reveal k and r.

Lemma 4 After Alice has measured a ∈ {0, 1}d and Bob has measured k ∈ {0, . . . , d − 1}, s ∈
{0, 1}, Eve’s state is given by

σrkas = trAB

[
|ΨABE〉〈ΨABE|

Qa ⊗M (r)
ks ⊗ 1

Paks|r

]
. (36)

Proof: The POVM elements Qa and M
(r)
ks are proportional to projection operators. Hence the

tripartite ABE pure state after the measurement is proportional to (Qa ⊗M (r)
ks ⊗ 1)|ΨABE〉. It

is easily verified that the normalisation in (36) is correct: taking the trace in E-space yields

trABtrE|ΨABE〉〈ΨABE|Qa ⊗M (r)
ks ⊗ 1 = trAB ρ̄

ABQa ⊗M (r)
ks = Paks|r. �

Lemma 5 It holds that

d

2d

∑
a0···ad−1

without ak,ak+r

|µa〉〈µa| =
1

4
1 +

1

4
(−1)ak+ak+r

(
|k〉〈k + r|+ |k + r〉〈k|

)
(37)

= M
(r)
k,ak⊕ak+r +

1

4

∑
t: t6=k,k+r

|t〉〈t|. (38)

Proof: We have |µa〉〈µa| = 1
d1 + 1

d

∑
[tτ ] |t〉〈τ |(−1)at+aτ . Summation of the 1

d1 term is trivial and

yields 2d−2 · 1d1. In the summation of the factor (−1)at+aτ in the second term, any summation∑
at

(−1)at yields zero. The only nonzero contribution arises when t = k, τ = k+r or t = k+r, τ =

k; the a-summation then yields a factor 2d−2. �

Lemma 6 It holds that

Ea:ak⊕ak+r=s′ |µa〉〈µa| =
1
d

+ (−1)s
′ |k〉〈k + r|+ |k + r〉〈k|

d
. (39)

12



Proof: We have Ea:ak⊕ak+r=s′ |µa〉〈µa| = 2−(d−1)
∑
ak

∑
ak+r

δak⊕ak+r,s′ ·∑
awithout ak,ak+r

|µa〉〈µa|. For the rightmost summation we use Lemma 5. Performing the
∑
ak

and
∑
ak+r

summations yields (39). �

Eve’s task is to guess Alice’s bit s′ = ak ⊕ ak+r from the mixed state σrkas , where Eve does not
know a and s. We define

σrks′ = Es,a:ak⊕ak+r=s′ [σ
rk
as ]. (40)

This represents Eve’s ancilla state given some value of Alice’s bit s′. Next we introduce notations
that are useful for understanding the structure of σrks′ . We define, for t, t′ ∈ {0, . . . , d − 1}, non-
normalised vectors |wtt′〉 in Eve’s Hilbert space as

|wtt′〉
def
= 〈tt′|ΨABE〉. (41)

Furthermore we define angles α and ϕ as

cos 2α
def
=
〈wkk|wk+r,k+r〉
〈wkk|wkk〉

, cos 2ϕ
def
=
〈wk,k+r|wk+r,k〉
〈wk,k+r|wk,k+r〉

(42)

and vectors |A〉, |B〉, |C〉, |D〉

|wkk〉√
〈wkk|wkk〉

= cosα|A〉+ sinα|B〉 (43)

|wk+r,k+r〉√
〈wk+r,k+r|wk+r,k+r〉

= cosα|A〉 − sinα|B〉 (44)

|wk,k+r〉√
〈wk,k+r|wk,k+r〉

= cosϕ|C〉+ sinϕ|D〉 (45)

|wk+r,k〉√
〈wk+r,k|wk+r,k〉

= cosϕ|C〉 − sinϕ|D〉. (46)

The |A〉, |B〉, |C〉, |D〉 are mutually orthogonal, and also orthogonal to any vector |wtt′〉 (t′ 6= t)
with {t, t′} 6= {k, k + r}.

Theorem 4 The eigenvalues of σrks′ are given by

ξ0
def
=

d

2
· λ+ + λ−

2
(47)

ξ1
def
= d

2 (λ1 + λ−) = β − d
2 (d2 − 1)(λ+ + λ−) (48)

ξ2
def
= d

2 (λ1 + 2
λ0 − λ1

d
+ λ+) = 1− β − d

2 (d2 − 1)(λ+ + λ−) (49)

and the diagonal representation of σrks′ is

σrks′ = ξ0
∑

t∈{0,...,d−1}
t 6=k,t 6=k+r

( |wtk〉〈wtk|
〈wtk|wtk〉

+
|wt,k+r〉〈wt,k+r|
〈wt,k+r|wt,k+r〉

)

+ξ2
[
√
ξ2 − d

2λ+|A〉+ (−1)s
′
√

d
2λ+|C〉][· · ·]

†

ξ2

+ξ1
[
√
ξ1 − d

2λ−|B〉 − (−1)s
′
√

d
2λ−|D〉][· · ·]

†

ξ1
(50)
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Proof: We have

σrks′ = trAB|ΨABE〉〈ΨABE|Ea:ak⊕ak+r=s′Qa ⊗ Es|s′
M

(r)
ks

Paks|r
⊗ 1

= d2d trAB|ΨABE〉〈ΨABE|[Ea:ak⊕ak+r=s′Qa]⊗ [
∑
s

M
(r)
ks ]⊗ 1. (51)

We use Lemma 6 to evaluate the Ea factor. We use
∑
sM

(r)
ks = 1

2 |k〉〈k| +
1
2 |k + r〉〈k + r|. This

allows us to write everything in terms of |wtt′〉 states. For t = t′ we have

|wtt〉 =
√
λ0/d|E0〉+

√
λ1/d

d−1∑
j=1

(ei
2π
d )jt|Ej〉 (52)

〈wtt|wtt〉 = λ1 +
λ0 − λ1

d
, (53)

and for t 6= t′ we have

|wtt′〉 =
√
λ+/2|E+

(tt′)〉+ sgn(t′ − t)
√
λ−/2|E−(tt′)〉 (54)

〈wtt′ |wtt′〉 = (λ+ + λ−)/2. (55)

The following properties hold (t 6= t′)

〈wtt|wtt′〉 = 0 , 〈wtt|wt′t〉 = 0 (56)

〈wtt|wt′t′〉 =
λ0 − λ1

d
, 〈wtt′ |wt′t〉 =

λ+ − λ−
2

. (57)

We get

cos 2α = 1− dλ1
λ0 + (d− 1)λ1

, cos 2ϕ = 1− 2λ−
λ+ + λ−

(58)

After some tedious algebra the result (50) follows. �
Note that the σrk0 and σrk1 have the same set of eigenvalues: 2(d− 2) times ξ0, and once ξ1 and ξ2.

Corollary 1 It holds that

σrk0 + σrk1
2

=
∑

t∈{0,...,d−1}
t 6=k,t 6=k+r

ξ0 ·
( |wtk〉〈wtk|
〈wtk|wtk〉

+
|wt,k+r〉〈wt,k+r|
〈wt,k+r|wt,k+r〉

)
+(ξ2 − d

2λ+)|A〉〈A|+ d
2λ+|C〉〈C|+ (ξ1 − d

2λ−)|B〉〈B|+ d
2λ−|D〉〈D|.

Proof: Follows directly from Theorem 4 by discarding the terms in (50) that contain (−1)s
′

(the
AC and BD crossterms). �

Corollary 2 The difference between σrk0 and σrk1 can be written as

σrk0 − σrk1
2

=
1

2

√
dλ+

√
dλ− + 2(1− β)− d2

2
(λ+ + λ−)

(
|A〉〈C|+ |C〉〈A|

)
−1

2

√
dλ−

√
dλ+ + 2β − d2

2
(λ+ + λ−)

(
|B〉〈D|+ |D〉〈B|

)
. (59)

Proof: Using Theorem 4, we see everything except the AC and BD crossterms cancel from (50). �
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9 Statistical distance; proof of Theorem 1

Now that we have described Eve’s most general allowed state, and how it is connected to Alice’s
secret bit s′, it is finally time to prove Theorem 1.
Let ri be the ‘r’-value in round i and similarly ki, s

′
i. We use the notation r = (r1, . . . , rn),

k = (k1, . . . , kn). Let x = (s′1, . . . , s
′
n). Let z ∈ {0, 1}` be the QKD key obtained by applying

privacy amplification to x, i.e. z = Ext(x, u), where Ext is a universal hash function (UHF) and
u ∈ U is public randomness. We write Eu[· · ·] = 1

|U|
∑
u(· · ·) and Ex[· · ·] = 2−n

∑
x∈{0,1}n(· · ·). At

given (r,k) the quantum-classical state describing Z, U , and Eve’s system ‘E’ is given by

ρZUE(r,k) =
∑
z

Eu|zu〉〈zu| ⊗ Exδz,Ext(u,x)

n⊗
i=1

σrikixi . (60)

The state of the ‘Z’ and ‘UE’ subsystems is

ρZ(r,k) = tr UEρ
ZUE(r,k) = 2−`

∑
z

|z〉〈z| (61)

ρUE(r,k) = tr Zρ
ZUE(r,k) = Eu|u〉〈u| ⊗ ωav(r,k) (62)

ωav(r,k)
def
=

n⊗
i=1

σriki0 + σriki1

2
. (63)

Note that ωav does not depend on u. For notational brevity we stop explicitly mentioning the r,k
dependence from this point on. From (60)–(62) we get

ρZUE − ρZ ⊗ ρUE = 2−`
∑
z

Eu|zu〉〈zu| ⊗
{

2`Exδz,Ext(u,x)

n⊗
i=1

σrikixi − ωav

}
(64)

def
= 2−`

∑
z

Eu|zu〉〈zu| ⊗∆zu (65)

Because of the zu block structure we have

‖ρZUE − ρZ ⊗ ρUE‖1 = 2−`
∑
z

Eu‖∆zu‖1. (66)

Lemma 7 It holds that

2−`
∑
z

Eu‖∆zu‖1 ≤ tr

√
2−`

∑
z

Eu∆2
zu. (67)

Proof: 2−`
∑
z Eu‖∆zu‖1 = 2−`

∑
z Eutr

√
∆2
zu = tr 2−`

∑
z Eu

√
∆2
zu. We apply Jensen’s inequality

for operator-concave functions. �

Lemma 8 It holds that

2−`
∑
z

Eu∆
2
zu =

2` − 1

2n

n⊗
i=1

(σriki0 )2 + (σriki1 )2

2
. (68)

Proof: From the definition of ∆zu and ωav we get

2−`
∑
z

Eu∆
2
zu =

2`

22n

∑
xyz

Euδz,Ext(x,u)δz,Ext(y,u)

n⊗
i=1

σrikixi σrikiyi + ω2
av

−ωav
1

2n

∑
xz

Euδz,Ext(x,u)

n⊗
i=1

σrikixi −
( 1

2n

∑
xz

Euδz,Ext(x,u)

n⊗
i=1

σrikixi

)
ωav. (69)

We split the
∑
xy sum into a sum with y = x and a sum with y 6= x. Then we use

∑
z δz,Ext(x,u) = 1

and
∑
z Euδz,Ext(x,u)δz,Ext(y,u) = 2−` for y 6= x. The latter is the defining property of UHFs. Then

we rewrite
∑
xy: y 6=x as

∑
xy −

∑
xy δxy. Finally, after applying 2−n

∑
x

⊗
i σ

riki
xi = ωav, most of

the terms cancel and (68) is what remains. �
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Lemma 9 It holds that

(σrk0 )2 + (σrk1 )2

2
=

∑
t∈{0,...,d−1}
t 6=k,t 6=`

ξ20

( |wtk〉〈wtk|
〈wtk|wtk〉

+
|wt`〉〈wt`|
〈wt`|wt`〉

)
+ ξ1(ξ1 − d

2λ−)|B〉〈B|

+ξ1
d
2λ−|D〉〈D|+ ξ2(ξ2 − d

2λ+)|A〉〈A|+ ξ2
d
2λ+|C〉〈C|

with ξ0, ξ1, ξ2 as defined in Theorem 4.

Proof: Follows directly from Theorem 4. �

Lemma 10 The statistical distance between the real and decoupled state can be bounded as

1
2‖ρ

ZUE − ρZ ⊗ ρUE‖1 < 1
2

√
2`−nTn (70)

T
def
= 2(d− 2)ξ0 +

√
ξ2(ξ2 − d

2λ+) +
√
ξ2
d
2λ+ +

√
ξ1(ξ1 − d

2λ−) +
√
ξ1
d
2λ−. (71)

Proof:

Substitution of Lemma 8 into Lemma 7 gives ‖ρZUE−ρZ⊗ρUE‖1 ≤
√

2`−1
2n

∏n
i=1 tr

√
(σ
riki
0 )2+(σ

riki
1 )2

2 .

The trace does not depend on the actual value of ri and ki. We define T = tr
√

(σrk0 )2 + (σrk1 )2/
√

2
for arbitrary r, k. From Lemma 9 we obtain (71). Finally we use 2` − 1 < 2`. �
Remark. We are able to derive a tight bound because the expression tr

√
σ2
0 + σ2

1 is easy to compute
without applying any inequalities.
Since Eve is still free to choose the parameters µ and V (or, equivalently, λ+ and λ−) she can
choose them such that the trace distance is maximized.

Theorem 5 Eve’s choice that maximizes ‖ρZUE − ρZ ⊗ ρUE‖1 is given by

β ≤ β∗ : T = 2β +
√

1− 2β
[√

1− 2β
d− 1

d− 2
+

√
2β√
d− 2

]
(72)

at λ− = 0, λ+ =
4β

d(d− 2)
(73)

β ≥ β∗ : T = 2β∗ +
√

1− 2β∗

[√
1− 2β∗

d− 1

d− 2
+

√
2β∗√
d− 2

]
(74)

at λ− =
4β∗(β − β∗)

d(d− 2)(1− 2β∗)
, λ+ =

4β∗(1− β − β∗)
d(d− 2)(1− 2β∗)

. (75)

Here β∗ is a saturation value that depends on d as follows,

β∗ =
xd/2

1 + xd
, (76)

where xd is the solution on (0, 1) of the equation

(1− x

d− 2
)

1
2 +

d− 1

d− 2
(1− x

d− 2
)−

1
2 +

1√
d− 2

(
√
x− 1√

x
)− 2 = 0. (77)

Proof: We start from (71). At β = 1
2 the expression for T is symmetric in λ+ and λ−. Hence the

overall maximum achievable at any β lies at λ+ = λ− = q
d(d−2) for some as yet unknown q. We

have

T
β=

1
2

max = ζ(q, d)
def
= q +

√
1− q

(√
1− d− 1

d− 2
q +

√
q

√
d− 2

)
. (78)

On the other hand, we note that substitution of (73) into (71) yields (72), which is precisely of
the form ζ(q, d) if we identify 2β ≡ q. Hence, at some β < 1

2 it is already possible to achieve

T = T
β=1/2
max , i.e. we have saturation. We note that substitution of (75) into (71) yields (74). The
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saturation value β∗ is found by solving ∂ζ(2β, d)/∂β = 0; after some simplification, this equation
can be rewritten as (77) by setting x = 2β/(1− 2β).6 �

The upper bound on the amount of information that Eve has about S′ is 2 log T . This is a concave
function of β (see Fig. 3). Hence there is no advantage for Eve to cause different error rates in
different rounds. For Eve it is optimal to cause error rate β in every round.

This concludes the proof of Theorem 1.

The optimal λ+,λ− are plotted in Fig. 5 (Appendix B). The expression 2 log T is plotted in Fig. 3.

0.0 0.1 0.2 0.3 0.4 0.5
0.0
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2 log T

d = 5

d = 10

d = 15

Fig. 3 Leakage 2 log T as a function of the bit error rate for d = 5, d = 10 and d = 15. (This does not include the
post-selection term). A dot indicates the saturation point β∗.

Lemma 11 The large-d asymptotics of the saturation value β∗ is given by

β∗ =
1

4
− 1

8
√
d− 2

−O(
1

(d− 2)3/2
), (79)

which yields

T = 1 +
1

2
√
d− 2

−O(
1

d− 2
) (80)

‖ρZUE − ρZ ⊗ ρUE‖1 ≤ 2
− 1

2n[1−
1√

d−2 ln 2
+O( 1

d−2 )−
`
n ]
. (81)

Proof: We set xd = 1 − 1/
√
d− 2 + a/(d − 2), where a is supposedly of order 1, and substitute

this into (77). This yields a = 1
2 + O(1/

√
d− 2), which is indeed of order 1. Substitution of xd

into (76) gives (79), and substitution of β∗ into (74) gives (80). Finally, substitution of (80) into
Lemma 10 yields (81). �

10 Von Neumann entropy; Proof of Theorem 2

Using smooth Rényi entropies, it was shown in [12] that, in the large n limit, the von Neumann
leakage per qubit is the relevant quantity for determining the required amount of PA.7 We denote

6 After some rewriting it can be seen that (77) is equivalent to a complicated 6th order polynomial equation. We
have not yet been able to prove that the solution on (0, 1) is unique. Our numerical solutions however indicate that
this is the case.

7 By applying Jensen’s inequality once more to Lemma 7, we can move the trace into the square root and get an
expression which is equivalent to Lemma 4.4 in [21]. After this point the proof structure from [21] can be followed.
Thus the von Neumann leakage is also an asymptotic case of our statistical distance result Theorem 1.
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the leakage from Alice to Eve, in terms of von Neumann entropy, as IAE. It is given by

IAE = S(σRKS′ |RK)− S(σRKS′ |RKS′)
= Erk[S(σrkS′ )− S(σrkS′ |S′)]

= Erk

[
S(
σrk0 + σrk1

2
)− S(σrk0 ) + S(σrk1 )

2

]
= S

(σrk0 + σrk1
2

)
− S(σrk0 ) + S(σrk1 )

2
r, k arbitrary. (82)

In the last line we used that the eigenvalues of σrks′ and σrk0 +σrk1 do not actually depend on r and
k. Again λ+ and λ− can be optimized to Eve’s advantage.

Theorem 6 Eve’s choice that maximizes the von Neumann leakage is given by

β ≤ β0 : IAE = (1− 2β)h(
1

d− 2
· 2β

1− 2β
) (83)

at λ− = 0, λ+ =
4β

d(d− 2)
(84)

β ≥ β0 : IAE = (1− 2β0)h(
1

d− 2
· 2β0

1− 2β0
) (85)

at λ− =
4β0(β − β0)

d(d− 2)(1− 2β0)
, λ+ =

4β0(1− β − β0)

d(d− 2)(1− 2β0)
. (86)

Here β0 is a saturation value that depends on d as follows,

β0 =
1

2

[
1 +

1

(d− 2)(1− yd)

]−1
(87)

where yd is the unique positive root of the polynomial yd−1 + y − 1.

Proof: We start from (82). We note that the eigenvalue set of (σrk0 + σrk1 )/2 largely coincides with

that of σrk0 and σrk1 (Theorem 4 and Corollary 1). What remains of (82) comes entirely from the
|A〉, |B〉, |C〉, |D〉 subspace,

IAE = ξ1 log ξ1 + ξ2 log ξ2 − (ξ2 − d
2λ+) log(ξ2 − d

2λ+)− d
2λ+ log(d2λ+)

−(ξ1 − d
2λ−) log(ξ1 − d

2λ−)− d
2λ− log(d2λ−)

= ξ1h(
d

2
· λ−
ξ1

) + ξ2h(
d

2
· λ+
ξ2

). (88)

We note that (88) is invariant under the transformation (β → 1 − β;λ+ ↔ λ−). At β = 1/2 we
must hence have λ+ = λ− = λ.

I
β=

1
2

AE = g(d, λ)
def
= [1− d(d− 2)λ] · h

( dλ

1− d(d− 2)λ

)
. (89)

At β = 1
2 , the largest leakage that Eve can cause is maxλ g(d, λ) = g(d, λ∗).

8 Next we note that
substitution of (86) into (88) yields (85); this has the same form as g(d, λ) (89) if we make the
identification λd(d − 2) = 2β0. Moreover, by setting β0 = 1

2λ∗d(d − 2), Eve achieves the overall
maximum leakage g(d, λ∗) already at a value of β smaller than 1

2 . Since the maximum leakage
cannot decrease with β, this implies that the maximum leakage saturates at β = β0 and stays

8 ∂2g(d,λ)

∂λ2 = − d
λ

[1−d(d−2)λ]−1[1−d(d−1)λ]−1, hence g is a concave function of λ on the interval λ ∈ [0, 1
d(d−1)

],

which interval coincides with the region allowed by the constraints on µ, V . The function g has a single maximum
at some point λ∗.
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constant at Imax
AE (β) = g(d, λ∗) on the interval β ∈ [β0,

1
2 ]. The value g(d, λ∗) precisely equals (85).

Next we determine the value of β0. Demanding ∂g(d, λ)/∂λ = 0 at λ = λ∗ yields

log
[1− d(d− 1)λ∗]

d−1

[1− d(d− 2)λ∗]d−2λ∗d
= 0. (90)

This is equivalent to the polynomial equation yd−1 + y − 1 = 0 with y ∈ [0, 1] if we make the

identification y = 1 − λ∗d
1−λ∗d(d−2) = 1−λ∗d(d−1)

1−λ∗d(d−2) . (It is readily seen that λ∗ ∈ [0, 1
d(d−1) ] implies

y ∈ [0, 1].) This precisely matches (87), because of the optimal choice β0 = 1
2λ∗d(d − 2). By

Descartes’ rule of signs, the function yd−1 + y − 1 has exactly one positive root.

When β is decreased below β0, the location (λ−, λ+) of the maximum of the stationary point
of IAE leaves the ‘allowed’ triangular region; this happens at a corner of the triangle, λ− = 0,
λ+ = 4β

d(d−2) . For β < β0 this corner yields the highest achievable leakage. Substitution of (84)

into (88) yields (83). �
This concludes the proof of theorem 2.

Note that the leakage IAE is a concave function of β. Hence it is optimal for Eve to cause error
rate β in every round.

Remark. From y > 0 and (87) it follows that β0 <
1
2 ·

d−2
d−1 .

Fig. 4 shows the von Neumann leakage for three values of d. The optimal λ+,λ− are plotted in
Fig. 5 (Appendix B).
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Fig. 4 Leakage IAE in terms of von Neumann entropy (Theorem 2) as a function of the bit error rate, for d = 5,
d = 10 and d = 15 . A dot indicates the saturation point β0.

Lemma 12 The large-d asymptotics of the IAE is given by

β ≤ β0 : IAE =
2β

d− 2
log

(d− 2)(1− 2β)e

2β
+O(d−2) (91)

β ≥ β0 : IAE =
log d

d
+O(

log log d

d
). (92)

Proof: The result for β < β0 follows by doing a series expansion of (83) in the small parameter

1/(d − 2). For β > β0 we study the equation yd−1 = 1 − y. Let us try a solution of the form

y = 1− ln[(d−1)/α]
d−1 for some unknown α. This yields α · {(1− ln[(d−1)/α]

d−1 )d−1 d−1α } = ln d−1
α . Using

the fact that limn→∞(1−x/n)n = e−x we see that the expression {· · ·} is close to 1 if it holds that
ln d−1

α � d− 1, and that the equation is then satisfied by α = O(ln d), which is indeed consistent

with ln d−1
α � d − 1. Substituting α = O(ln d) into the expression for y and then into (87) gives

1− 2β0 = 1
ln d +O( ln ln d

[ln d]2 ). Substituting this result for 1− 2β0 into (85) finally yields (92). �
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11 Discussion

We remark on the optimal attack. The ρ̄AB mixed state allowed by the noise constraint has two
degrees of freedom, µ and V . While this is more than the zero degrees of freedom in the case of
qubit-based QKD [12], it is still a small number, given the dimension d2 of the Hilbert space.
Eve’s attack has an interesting structure. Eve entangles her ancilla with Bob’s qudit. Bob’s mea-
surement affects Eve’s state. When Bob reveals r, k, Eve knows which 4-dimensional subspace is
relevant. However, the basis state |k〉 in Bob’s qudit is coupled to |Aak〉 in Eve’s space (see ap-
pendix A), which is spanned by d− 1 different basis vectors |E+

(kt′)〉 (Eq. 96 with λ1 = 0, λ− = 0),

each carrying different phase information ak ⊕ at′ . Only one out of d − 1 carries the information
she needs, and she cannot select which one to read out. Eve’s problem is aggravated by the fact
that the |Aat 〉 vectors are not orthogonal (except at β = 1

2 ). Note that this entanglement-based
attack is far more powerful than the intercept-resend attack studied in [17].
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A Details of Eve’s unitary operation

In Theorem 7 below we show that Eve does not have to touch Alice’s qudit. Hence the attacks that we are describing
here can also be carried out in the original (non-EPR) protocol, where Eve gets access only to the qudit state sent
to Bob.

Theorem 7 The operation that maps the pure EPR state to |ΨABE〉 (35) can be represented as a unitary operation
on Bob’s subsystem and Eve’s ancilla.

Proof: Let Eve’s ancilla have initial state |E0〉. The transition from the pure EPR state to (35) can be written as
the following mapping,

U

(
|t〉B ⊗ |E0〉E

)
= |Ωt〉, (93)

where |Ωt〉 is a state in the BE system defined as

|Ωt〉
def
=
√
λ0|t〉|E0〉+

√
λ1|t〉

d−1∑
j=1

ei
2π
d
jt|Ej〉+

√
dλ+

2

∑
t′:t′ 6=t

|t′〉|E+
(tt′)〉+

√
dλ−

2

∑
t′:t′ 6=t

|t′〉|E−
(tt′)〉sgn(t′− t). (94)

The notation (tt′) indicates ordering of t and t′ such that the smallest index occurs first. It holds that 〈Ωt|Ωτ 〉 = δtτ .
Eqs. (93,94) show that the attack can be represented as an operation that does not touch Alice’s subsystem. Next
we have to prove that the mapping is unitary. The fact that 〈Ωt|Ωτ 〉 = δtτ shows that orthogonality in Bob’s space
is correctly preserved. In order to demonstrate full preservation of orthogonality we have to define the action of the
operator U on states of the form |t〉B ⊗ |ε〉E, where |ε〉 is one of Eve’s basis vectors orthogonal to |E0〉, in such a
way that the resulting states are mutually orthogonal and orthogonal to all |Ωt〉, t ∈ {0, . . . , d− 1}. The dimension
of the BE space is d3 and allows us to make such a choice of d(d2 − 1) vectors. �

Theorem 8 Let Alice send the state |µa〉 to Bob. Let Eve apply the unitary operation U (specified in the proof of
Theorem 7) to this state and her ancilla. The result can be written as

U

(
|µa〉 ⊗ |E0〉

)
=

1
√
d

d−1∑
t=0

(−1)at |t〉 ⊗ |Aat 〉, (95)

|Aat 〉
def
=
√
λ0|E0〉+

√
λ1

d−1∑
j=1

ei
2π
d
jt|Ej〉+

√
d

2

∑
t′:t′ 6=t

(−1)at+at′
[√

λ+|E+
(tt′)〉+

√
λ−sgn(t′ − t)|E−

(tt′)〉
]
. (96)

The states |Aat 〉 are normalised and satisfy ∀tτ :τ 6=t 〈Aaτ |Aat 〉 = (1− 2β).
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Proof: We start from U(|µa〉|E0〉) = (1/
√
d)
∑
t(−1)at |Ωt〉 and we substitute (94). Re-labeling of summation

variables yields (95,96). The norm 〈Aat |Aat 〉 equals λ0 + (d − 1)λ1 +
d(d−1)

2
λ+ +

d(d−1)
2

λ−, which equals 1 since

this is also equal to the trace of ρ̃AB. For τ 6= t the inner product 〈Aaτ |Aat 〉 yields

λ0 + λ1

d−1∑
j=1

ei
2π
d
j(t−τ) +

d

2

∑
t′ 6=t

∑
τ ′ 6=τ

(−1)at+at′+aτ+aτ′ δt′τ δτ ′t[λ+ + λ−sgn(t′ − t)sgn(τ ′ − τ)]. (97)

We use
∑d−1
j=1 e

i 2π
d
j(t−τ) = dδτt− 1 = −1. Furthermore the Kronecker deltas in (97) set the phase (−1)··· to 1 and

sgn(t′ − t)sgn(τ ′ − τ) = sgn(τ − t)sgn(t− τ) = −1. Finally we use λ0 − λ1 = 1− 2β − V and λ+ − λ− = 2V/d. �
Theorem 8 reveals an intuitive picture. In the noiseless case (β = 0) it holds that ∀t |Aat 〉 = |E0〉, i.e. Eve does
nothing, resulting in the factorised state |µa〉|E0〉. In the case of extreme noise (β = 1

2
) we have 〈Aat |Aaτ 〉 = δtτ ,

which corresponds to a maximally entangled state between Bob and Eve.

Corollary 3 The pure state (95) in Bob and Eve’s space gives rise to the following mixed state ρBa in Bob’s
subsystem,

ρBa = (1− 2β)|µa〉〈µa|+ 2β
1

d
. (98)

Proof: Follows directly from (95) by tracing out Eve’s space and using the inner product 〈Aaτ |Aat 〉 = (1 − 2β) for
τ 6= t. �
From Bob’s point of view, what he receives is a mixture of the |µa〉 state and the fully mixed state. The interpolation
between these two is linear in β. Note that the parameters µ, V are not visible in ρBa .

B Min-entropy and accessible entropy

By way of supplementary information we present a number of results about simple attacks on individual qudits. This
teaches us which kind of qubit-wise measurement is informative for Eve. Furthermore, it quantifies the gap between
what is provable for general attacks and what is provable for more restricted attacks. We compute leakage in terms
of min-entropy loss and in terms of accessible (Shannon) information. Since min-entropy is a very conservative
measure we will see that the min-entropy loss exceeds the leakage found in Theorems 1 and 2. The main interest
is in Eve’s measurement. It is possible to give a composable security proof based on the min-entropy result and
post-selection, but this yields a lower rate than Theorem 1.
The accessible information is the relevant quantity when Eve’s quantum memory is short-lived, forcing her to
perform a measurement on her ancillas before she has observed Alice and Bob’s usage of the QKD key. As expected,
the accessible information turns out to be smaller than the leakage of Theorems 1 and 2.

B.1 (Min-)entropy of a classical variable given a quantum state

The notation M(ρ) stands for the classical RV resulting when M is applied to mixed state ρ. Consider a bipartite
system ‘AB’ where the ‘A’ part is classical, i.e. the state is of the form ρAB = Ex∈X |x〉〈x|⊗ ρx with the |x〉 forming
an orthonormal basis. The min-entropy of the classical RV X given part ‘B’ of the system is [23]

Hmin(X|ρX) = − log max
M

Ex∈X tr [Mxρx]. (99)

Here M = (Mx)x∈X denotes a POVM. Let Λ
def
=
∑
x ρxMx. If a POVM can be found that satisfies the condition9

[24]
∀x∈X : Λ− ρx ≥ 0, (100)

then there can be no better POVM for guessing X (but equally good POVMs may exist). For states that also
depend on a classical RV Y ∈ Y, the min-entropy of X given the quantum state and Y is

Hmin(X|Y, ρX(Y )) = − log Ey∈Y max
M

Ex∈X tr [Mxρx(y)]. (101)

A simpler expression is obtained when X is a binary variable. Let X ∈ {0, 1}.
Then

X ∼ (p0, p1) :

Hmin (X|Y, ρX(Y )) = − log

(
1

2
+

1

2
Eytr

∥∥∥∥p0ρ0(y)− p1ρ1(y)

∥∥∥∥
1

)
. (102)

9 Ref. [24] specifies a second condition, namely Λ† = Λ. However, the hermiticity of Λ already follows from the
condition (100).
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This generalizes in a straightforward manner for states that depend on multiple classical RVs. The Shannon entropy
of a classical variable given a measurement on a quantum state is given by

H(X|ρX) = min
M

H(X|M(ρX)). (103)

The ‘accessible information’ is defined as the mutual information H(X)−H(X|ρX). In contrast to the min-entropy
case, there is no simple test analogous to (100) which tells you whether a local minimum in (103) is a global
minimum.

B.2 Min-entropy

Eve’s ability to distinguish between the cases s′ = 0 and s′ = 1 depends on the distance between σrk0 and σrk1 (see

Section B.1). Eq. (102) with p0 = 1
2

, p1 = 1
2

tells us that the relevant quantity is ‖σrk0 − σrk1 ‖1. For notational
convenience we define the value βsat,

βsat
def
=

1

4
·
d− 2

d− 1
. (104)

Again we optimize λ+ and λ−.

Lemma 13 For all r, k the choice for λ+ and λ− that maximizes the trace distance 1
2

∥∥σrk0 − σrk1 ∥∥1 is

λ+ = 4β
d(d−2)

λ− = 0 for β < βsat (105)

λ+ = 4βsat
d(d−2)

− 2(β−βsat)
d2

λ− =
2(β−βsat)

d2
for β ≥ βsat. (106)

which gives

1

2

∥∥∥σrk0 − σrk1 ∥∥∥
1

=


1√
d−1

√
β

βsat

√
2βsat − β for β < βsat

1√
d−1

for β ≥ βsat.
(107)

Proof: From Corollary 2 it is easy to see that

1

2

∥∥∥σrk0 − σrk1 ∥∥∥
1

=
√
dλ−

√
dλ+ + 2β −

d2

2
(λ+ + λ−)

+
√
dλ+

√
dλ− + 2(1− β)−

d2

2
(λ+ + λ−). (108)

In Appendix C we derive the λ+, λ− that maximize (108) while keeping all eigenvalues non-negative. �

Remark. The optimal choice for λ+,λ− has the same form for all three optimizations that we have performed. The
only difference is the saturation value. Although (106) is shown in a simplified form one can manipulate it to the
same form as (75) and (86) with βsat instead of β∗ or β0.

Fig. 5 shows the optimal λ+ and λ− together with the constraints on the λ parameters for all three optimizations.
The lower dots in the figure correspond to β = 1

2
. For all three information measures the optimum moves towards

the top corner of the triangle for decreasing β. For β values below the saturation point the optimum is the top
corner, with λ− = 0 and λ1 = 0.

Knowing the optimal values for λ+ and λ−, we compute the min-entropy leakage.

Theorem 9 The min-entropy of the bit S′ given R,K and the state σRK
S′ is

β < βsat : Hmin(S′|RKσRKS′ ) = − log

(
1

2
+

1

2
√
d− 1

√
β

βsat

√
2βsat − β

)
(109)

β ≥ βsat : Hmin(S′|RKσRKS′ ) = − log

(
1

2
+

1

2
√
d− 1

)
. (110)

Proof: Eq. (102) with X uniform, X → S′, Y → (R,K) becomes

Hmin(S′|RKσRKs′ ) = − log

(
1

2
+

1

2
Erk

∥∥∥∥1

2
σrk0 −

1

2
σrk1

∥∥∥∥
1

)
= − log

(
1

2
+

1

4

∥∥∥σrk0 − σrk1 ∥∥∥
1

)
(r, k arbitrary). (111)

In the last step we omitted the expectation over r and k since the trace distance does not depend on r, k. Substitution
of (107) into (111) gives the end result. �
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Fig. 5 Optimal choice of λ+ and λ− at d = 10 for statistical distance (left line), min-entropy (middle line) and
von Neumann entropy (right line). The dashed triangle represents the region for which the eigenvalues λ+, λ− and
λ1 are non-negative. The black dots indicate the optimum at β = 1

2
(dots inside the triangle) and β ≤ β∗, βsat, β0

(upper corner of the triangle). Not shown in this plot is the λ0 ≥ 0 constraint which cuts off the upper left corner
of the triangle for β > 2βsat.

Corollary 4 Eve’s optimal POVM T rk = (T rk0 , T rk1 ) for maximising the min-entropy leakage is given by

T rk0 =
1

2

(
1 + |A〉〈C|+ |C〉〈A| − |B〉〈D| − |D〉〈B|

)
; T rk1 = 1− T rk0 . (112)

Proof: The trace distance in Lemma 13 is the sum of the positive eigenvalues of σrk0 −σrk1 . In the space spanned by
|A〉, |B〉, |C〉, |D〉, the optimal T0 consists of the projection onto the space spanned by the eigenvectors corresponding

to the positive eigenvalues. These eigenvectors are |v1〉 =
|A〉+|C〉√

2
and |v2〉 =

|D〉−|B〉√
2

. The matrix that projects

onto them is |v1〉〈v1|+ |v2〉〈v2| = 1
2
|A〉〈A|+ 1

2
|B〉〈B|+ 1

2
|C〉〈C|+ 1

2
|D〉〈D| +|A〉〈C|+ |C〉〈A| − |B〉〈D| − |D〉〈B|.

In order to satisfy the constraint T0 + T1 = 1 and symmetry, half the identity matrix in the remaining d2 − 4
dimensions has to be added to T0. We mention, without showing it, that (112) satisfies the test (100). �

As expected, the min-entropy loss decreases as the dimension of the Hilbert space grows. We see that the entropy
loss saturates at β = βsat; hence RRDPS is secure up to arbitrarily high noise levels. Fig. 6 shows the min-entropy
leakage as a function of β.
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Fig. 6 Min-entropy leakage as a function of the bit error rate for d = 5, d = 10 and d = 15. A dot indicates the
saturation point βsat.

B.3 Accessible Shannon information

Lemma 14 Let X ∈ X be a uniformly distributed random variable. Let Y ∈ Y be a random variable. Let ρxy be a
quantum state coupled to the classical x, y. The Shannon entropy of X given a state ρXY that has to be measured
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(for unknown X and Y ) is given by

H(X|ρXY ) = min
POVM M=(Mm)m∈X

Ex∈XH

(
{trMmEy|xρxy}m∈X

)
. (113)

Proof: We have H(X|ρXY ) = minM H(X|Z), where Z is the outcome of the POVM measurementM. Z is a classical
random variable that depends on X and Y . We can write H(X|Z) = H(X)− H(Z) + H(Z|X). Since X is uniform,
and Z is an estimator for X, the Z is uniform as well. Thus we have H(X)− H(Z) = 0, which yields H(X|ρXY ) =
minM H(Z|X) = minM ExH(Z|X = x). The probability Pr[z|x] is given by Pr[z|x] = Ey|xPr[z|xy] = Ey|xtrMzρxy .
�

Corollary 5 It holds that

H(S′|RKσRKAS ) = Erk min
Grk=(Grk0 ,Grk1 )

Es′h(trGrkm σrks′ ), m ∈ {0, 1} arbitrary. (114)

Proof: Application of Lemma 14 yields

H(S′|RKσRKAS ) = Erk min
Grk=(Grk0 ,Grk1 )

Es′H({trGrkm Eas|s′σ
rk
as}m∈{0,1})

= Erk min
Grk=(Grk0 ,Grk1 )

Es′H({trGrkm σrks′ }m∈{0,1}) (115)

where in the last step we used the definition of σrk
s′ . Finally, the Shannon entropy of a binary variable is given by

the binary entropy function h, where h(1− p) = h(p). �
From Corollary 5 we see that the POVM T rk associated with the min-entropy also optimizes the Shannon entropy:
maximizing the guessing probability trGrk

s′ σ
rk
s′ minimizes the Shannon entropy.

Theorem 10 The Shannon entropy of Alice’s bit S′ given the state σRKAS , R and K is:

β < βsat : H(S′|RKσRKAS ) = h

(
1

2
+

1

2
√
d− 1

√
β

βsat

√
2βsat − β

)
. (116)

β ≥ βsat : H(S′|RKσRKAS ) = h

(
1

2
+

1

2
√
d− 1

)
. (117)

Proof: The min-entropy result (109,110) can be written as Hmin(S′|RKσRK
S′ ) = − log trT rk

s′ σ
rk
s′ , so we already have

an expression for trT rk
s′ σ

rk
s′ . Substitution of T rk for Grk in (114) yields the result. �

Since the optimal POVM for min- and Shannon entropy are the same, saturation occurs at the same point (β = βsat).
Fig 7 shows the Shannon entropy leakage (mutual information) IAE = 1− H(S′|RKσRKAS ) as a function of β.
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Fig. 7 Accessible Shannon entropy as a function of β for d = 5, d = 10 and d = 15. A dot indicates the saturation
point βsat.

C Optimization for the min-entropy

Here we prove that (105,106) maximizes (108). We first show that (108) is concave and obtain the optimum for
β ≥ βsat. Then we take into account the constraints on the eigenvalues and derive the optimum for β < βsat.
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Unconstrained optimization. For notational convenience we define

w1 =

√
dλ+ + 2β −

d2

2
(λ+ + λ−) (118)

w2 =

√
dλ− + 2(1− β)−

d2

2
(λ+ + λ−). (119)

This allows us to formulate everything in terms of λ+ and λ−. Eq. (108) becomes

1

2

∥∥∥σrk0 − σrk1 ∥∥∥
1

=
√
dλ−w1 +

√
dλ+w2. (120)

Next we compute the derivatives,

∂

∂λ+

∥∥∥σrk0 − σrk1 ∥∥∥
1

= −
d2

2

√
λ+

w2
+

w2√
λ+

+ (d−
d2

2
)

√
λ−

w1
. (121)

∂

∂λ−

∥∥∥σrk0 − σrk1 ∥∥∥
1

= −
d2

2

√
λ−

w1
+

w1√
λ−

+ (d−
d2

2
)

√
λ+

w2
. (122)

Setting both these derivatives to zero yields a stationary point of the function. Setting w1

√
λ+

∂
∂λ+

∥∥σrk0 − σrk1 ∥∥1
−w2

√
λ−

∂
∂λ−

∥∥σrk0 − σrk1 ∥∥1 to zero gives λ+w2
1 − λ−w2

2 = 0, which describes a hyperbola

( 1
2
d2 − d)(λ2− − λ2+) + 2βλ+ − 2(1− β)λ− = 0. (123)

Next, the equations
√
λ+w1w2

∂
∂λ+

∥∥σrk0 − σrk1 ∥∥1 = 0 and√
λ−w1w2

∂
∂λ−

∥∥σrk0 − σrk1 ∥∥1 = 0 can both easily be written in the form
w2
w1

= expression. Equating these two expressions gives us another hyperbola,(
d2λ+ +

d2

2
λ− − dλ− − 2(1− β)

)(
d2λ− +

d2

2
λ+ − dλ+ − 2β

)
− λ−λ+(d−

d2

2
) = 0. (124)

The stationary point lies at the crossing of these two hyperbolas. There are four crossing points,

λ+ = 0 ; λ− =
4(1− β)

d(d− 2)
(125)

λ+ =
4β

d(d− 2)
; λ− = 0 (126)

λ+ =
1

2d(d− 1)
+

1− 2β

d2
; λ− =

1

2d(d− 1)
−

1− 2β

d2
(127)

λ+ =
2 + d(1− 2β)

2d2
; λ− =

2− d(1− 2β)

2d2
. (128)

In the steps above, we have multiplied our derivatives by λ+, λ−, w1 and w2; this has introduced spurious zeros
that now need to be removed. From (121,122) it is easily seen that λ+ = 0 and λ− = 0 are never stationary points
since the derivatives diverge near these values. Furthermore, we find that substitution of (128) into the derivatives
does not yield two zeros. Expression (127) is the only stationary point. As the function value lies higher there than
in other points, we conclude that

∥∥σrk0 − σrk1 ∥∥1 is concave.
Constrained optimization. The optimization problem is constrained by the fact that the λ eigenvalues are non-
negative. For β ≥ βsat the stationary point satisfies the constraints and hence is the optimal choice for β ≥ βsat.
For β < βsat the stationary point has λ− < 0, i.e. it lies outside the allowed region. Because of the concavity the
highest function value which satisfies the constraints occurs at λ0 = 0, λ1 = 0, λ+ = 0 or λ− = 0. It is easily seen

that λ0 ≥ 0 implies λ+ ≤ 1
d−1
− 2β

d
and λ1 ≥ 0 implies λ+ ≤ 4β

d(d−2)
− d

d−2
λ− and λ− ≤ 4β

d2
− d−2

d
λ+. In the

range β < βsat it holds that 4β
d(d−2)

< 1
d−1
− 2β

d
; hence the λ0-constraint is irrelevant in this region. We get λ1 = 0

when λ+ = 4β
d(d−2)

− d
d−2

λ−. Substitution gives 1
2

∣∣∣∣σrk0 − σrk1 ∣∣∣∣1 =
√

2
d−2

√
2(1− β) + d(1− 2β + d (1− 2β(d− 1)λ−)) (d2λ− − 4β) which has its maximum at λ− = 0 for non-negative

values of λ−. So either λ− = 0 or λ+ = 0. This leaves two options for the maximum at low β,

λ+ = 0 ; λ− =
4β

d2
⇒

1

2

∥∥∥σrk0 − σrk1 ∥∥∥
1

= 0. (129)

λ− = 0 ; λ+ =
4β

d(d− 2)
⇒

1

2

∥∥∥σrk0 − σrk1 ∥∥∥
1

= 2
√

2

√
β(d− 2)− 2β2(d− 1)

d− 2
. (130)

Clearly (130) is the larger of the two and therefore the optimal choice. �
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