
Security Proof of JAMBU under Nonce
Respecting and Nonce Misuse Cases

Geng Wang?, Haiyang Zhang and Fengmei Liu

Science and Technology on Information Assurance Laboratory, Beijing, 100072,
P.R. China

Abstract. JAMBU is an AEAD mode of operation which entered the
third round of CAESAR competition. However, it does not have a securi-
ty proof like other modes of operation do, and there was a cryptanalysis
result that has overthrown the security claim under nonce misuse case by
the designers. In this paper, we complement the shortage of the scheme
by giving security proofs of JAMBU both under nonce respecting case
and nonce misuse case. We prove that JAMBU under nonce respecting
case has a slightly lower security than the birthday bound of n bits, and
JAMBU under nonce misuse case has a tight security bound of n/2 bits.

Keywords: JAMBU, CAESAR Competition, Provable Security, Nonce-
Misuse Resistance

1 Introduction

Authenticated encryption, or usually known as authenticated encryption with
associated data (AE or AEAD for short), which was formalized in [3, 17], is
a cryptographic primitive that can protect confidentiality and integrity at the
same time. AEAD takes as input a public nonce IV , public associated data AD,
plaintext P , and a key K, outputs the ciphertext C and a tag T while encryption,
and while decryption, K, IV , AD, C and T are inputs, if the tag T is valid,
returns P , otherwise an error symbol ⊥.

In 2013, the international cryptologic research community announced a new
competition for authenticated encryption called CAESAR, and in August 2016,
15 candidates were elected into the third round, including JAMBU by Wu and
Huang [25]. JAMBU (originally AES-JAMBU) is a block-cipher mode of oper-
ation, which is a primary method for implementing authenticated encryption.
Among other AEAD schemes using modes of operation in CAESAR, JAMBU
is designed for lightweight applications. It is not as fast as the parallelizable
schemes such as OCB [20] and OTR [12], but it is inverse-free, using only X-
OR operations, and has a lower state size in the cost of a shorter nonce and
tag length [25]. JAMBU adopts an underlying block-cipher with 2n-bit block
length and k-bit key length, along with n-bit nonce, and outputs n-bit tag. It

? E-mail: cnpkw@126.com

2 Geng Wang, Haiyang Zhang and Fengmei Liu

has only 3n-bit state, which memory requirement is among the least of CAESAR
candidates.

Initial vector (IV), or usually called nonce to show its non-repeatedness, has
been important in symmetric key cryptography since the invention of CBC mode.
The importance of nonce has been discussed by earlier researchers, especially in
the terms of AEAD [4, 18]. Each nonce was supposed to be used only once, but
due to various reasons including incorrect implementation, resource limitation,
loss of stored nonce data, etc, it is possible that an encryption algorithm returns
two ciphertexts with a same nonce, which is often called nonce misuse. Most
earlier AEAD modes of operation were not designed to support nonce misuse.
For example, in GCM mode of operation which is widely adopted as a standard
[14], the security would be completely broken if nonce could be reused. But later,
especially as the CAESAR competition went on, the community and AEAD
designers were divided into two groups: some of them believe nonce should never
be reused, and others believe that nonce misuse is inevitable, so an AEAD scheme
should at least provide some security when the user repeats a nonce.

The idea of AE with nonce misuse security, has first been introduced with
the term deterministic AE [22] or misuse-resistance AE [21]. Researchers also
provided some modes of operation which support nonce misuse resistance, such
as [10, 23, 7]. However, such security notion requires that there is no information
leakage even when nonce is reused, which is sometimes too strong. So a weaker
notion of online AE has been studied, often called online nonce misuse resistance
AE [6, 1, 8]. An AE scheme is called online, if each output block is only related
to its previous input blocks. A perfectly secure online scheme should only leak
the common prefix of the message. In the CAESAR competition, there are also
some online nonce misuse resistance schemes, for example COLM [2] that has
entered the third round.

Although the necessity of nonce misuse security is still under controversy, it
is indeed useful for lightweight applications. For protecting confidentiality and
integrity in a resource restrained device such as IoT, RFID card, etc, it is not
always possible for storing and managing fresh nonce, and sometimes it requires
additional synchronous protocol which might be costly. But if the scheme is
nonce-misuse resistance, even only to a small degree, then any random number
could be used as a nonce, which will simplify the implementation a lot.

In the first version of JAMBU proposal [24], the designers claimed that JAM-
BU leaks only the common prefix of the message when nonce is reused. However,
JAMBU with nonce misuse had later been analyzed by Peyrin et al [16], and
they showed that there is an attack with O(2n/2) queries on JAMBU with nonce
misuse. The designers acknowledged their work. In their latest document [25],
the designers gave a proof on the authenticity of JAMBU, but there are still no
results on privacy. However, they believe that JAMBU can achieve some security
under nonce misuse, although not as they originally claimed. If JAMBU could
be proved to have an n/2-bit security under nonce misuse case, although not
full security, it could still bring great advantage since JAMBU is designed for
lightweight usage.

Security Proof of JAMBU under Nonce Respecting and Nonce Misuse Cases 3

Provable security is an important method in the research of both public
key and symmetric key cryptography. In symmetric key cryptography, provable
security is usually applied to modes of operation, which security is reduced to
the security of the underlying block cipher. The examples are security proofs
to OCB [19] and GCM [15]. Although not necessary, a security proof is often
considered a great advantage when evaluating a mode of operation. Most of the
CAESAR submissions which are modes of operation had given their security
proofs. However, the designers did not give their security proof on JAMBU,
and this devaluate their security claims compared to other schemes such as
CLOC/SILC [9], which shares the same lightweight feature with JAMBU. In this
paper, we shall give security proofs for JAMBU under both nonce respecting and
nonce misuse cases, so that the security of JAMBU could be further ensured.

The mainly method used for proving security for modes of operation, which
we shall also use in this paper, is called game-playing proof [5]. A game-playing
proof is used to estimate the maximal probability for the adversary to distinguish
a cryptographical algorithm and an ideal model (such as the random oracle
model). It is done by a construction of several interactive games GAME1 to
GAMEn, where GAMEn is the original algorithm and GAME1 is the ideal
model. Each two if them, say GAMEi and GAMEi+1 have only small differences,
and the maximal probability for the adversary to distinguish between GAMEi
and GAMEi + 1 can be calculated. Thus, the upper bound on distinguishing
probability is the sum of all these probabilities. By defining an event (usually
called a bad event), where the two games are indistinguishable unless the event
occurs, the distinguishing probability turns into calculating the probability of
the event.

Unlike nonce respecting security, there is no common way to define nonce
misuse security. In [8], the authors gave out various security notions, one is
called OAE1d, which a repeated nonce leaks not only the common prefix, but
the XOR between plaintext and ciphertext of the next block, which captured the
security notion of JAMBU to some degree. However, there was no formalization
and further analysis in their paper. So rather than adopting their notions, we
shall redefine the nonce misuse security for JAMBU ourselves.

In this paper, we prove that JAMBU indeed can be proven to have a nearly
n-bit security under nonce respecting case, which is close to its birthday bound,
and for nonce-misuse case, we define a JAMBU-like online oracle as its ideal
security model, and prove that there is a n/2-bit security under nonce misusing
case using this model.

The paper organized as follows. In section 2, we simply introduce the JAMBU
scheme. In section 3, we make preparations for the proof by introducing notations
and security models. In section 4, we prove the security of JAMBU under nonce
respecting case. In section 5, we prove the security of JAMBU under nonce
misuse case. And finally in section 6 we draw the conclusion.

4 Geng Wang, Haiyang Zhang and Fengmei Liu

2 The JAMBU AE Scheme

Before we go on to the security proof, we first introduce the structure of JAMBU.
As a block cipher mode of operation, JAMBU uses an underlying block-cipher
with k-bit key and 2n-bit block length, takes n-bit nonce IV , arbitrary length
of associated data AD and plaintext P as input, generates ciphertext C of the
same length as P , and n-bit authentication tag T . JAMBU has 3n-bit internal
states U , V and R, each of n-bit. In their submission, the designers denote the
states before a block-cipher call by U , V , R and after a block-cipher call by X,
Y , R, we adopt this notation in our discussion. We write EK as the underlying
block cipher.

A JAMBU encryption consists of five steps:
(1) Padding. AD and P are done with a 10∗ padding. For associated data, a

‘1’ bit is padded followed by the least number of ‘0’ bits to make the length of
padded associated data a multiple of n-bit. Then the same padding method is
applied to the plaintext.

(2) Initialization. For the n-bit nonce IV , the state U−1‖V−1 is set to 0n‖IV ,
and R−1 is set to 0n. Then, set X−1‖Y−1 ← EK(U−1‖V−1), U0‖V0 ← X−1‖Y−1⊕
5, R0 ← U0, ‖ denotes concatenation. Note that 5 is written as a binary string
02n−3101, so are other numbers below.

(3) Processing of the associated data. For the padded associated data (note
that if there is no associated data, padding made it into at least 1 block), it is
divided into h blocks AD[0], ..., AD[h− 1], and processed as follows:

For i = 0 to h− 1, update the states:
Xi‖Yi ← EK(Ui‖Vi), Ui+1 ← Xi ⊕ AD[i], Vi+1 ← Yi ⊕ Ri ⊕ 1, Ri+1 ←

Ri ⊕ Ui+1, AD[i] is the i-th AD block.
The initialization and processing of the associated data step is shown in figure

1.

Fig. 1: Initialization and AD processing

(4) Processing of the plaintext. For the padded plaintext, it is divided into p
blocks P [0], ..., P [p− 1], and processed as follows:

For i = 0 to p − 1 (note that we reset i to 0, and Uh‖Vh in (3) becomes
U0‖V0), update the states:

Xi‖Yi ← EK(Ui‖Vi), Ui+1 ← Xi ⊕ P [i], Vi+1 ← Yi ⊕Ri, Ri+1 ← Ri ⊕ Ui+1,
output C[i]← P [i]⊕ Vi+1, P [i] is the i-th plaintext block.

Security Proof of JAMBU under Nonce Respecting and Nonce Misuse Cases 5

For the last ciphertext block C[p−1], truncate it into the same length as the
last plaintext block before padding. For example, if plaintext length is a multiple
of n (in this case, a full padding block is added), then the last ciphertext block
is simply ignored.

The processing of the plaintext step is shown in figure 2.

Fig. 2: Plaintext processing

(5) Finalization and tag generation. It process as follows:
Xp‖Yp ← EK(Up‖Vp), Up+1 ← Xp, Vp+1 ← Yp⊕Rp⊕ 3, Rp+1 ← Rp⊕Up+1,

Xp+1‖Yp+1 ← EK(Up+1‖Vp+1), output T ← Xp+1 ⊕ Yp+1 ⊕Rp+1.
The finalization and tag generation step is shown in figure 3.

Fig. 3: Finalization and tag generation

In a JAMBU decryption, first do the padding, initialization and AD process-
ing step. Then, generate the state V1, use it to recover P [0], and use P [0] the
same way as the plaintext processing step to generate V2, then recover P [1], etc.
After generate a tag T ′, compare T ′ with T , if T ′ = T , output the plaintext,
otherwise output ⊥.

3 Preliminaries

3.1 Notations

We shall use ‖ as the operator for concatenation of two strings, for example,
0‖1 is the string 01. ε denotes an empty string. For a string s, we write s|i,j
to be the substring of s from the i-th bit to the j − 1-th bit, for example,

6 Geng Wang, Haiyang Zhang and Fengmei Liu

01100|2,4 = 10. If i = 0, we also write it as s|j , which is the first j bits of s. We
also let s[i] = s|ni,n(i+1) be the i-th block of s, n is the block size of JAMBU.

x
$←− X means that x is randomly chosen from a set X.
In the discussion below, we suppose that the padding procedure has been

done, and ignore the truncation on ciphertext. That means each input/output
can be divided into n-bit blocks, and we write H for IV ‖AD[0]‖..‖AD[h − 1],
where h is the number of AD blocks, and P for P [0]‖...‖P [p−1], p is the number
of plaintext blocks, CT for C[0]‖...‖C[p− 1]‖T .

3.2 Security Model

We first define a JAMBU-like online oracle for the ideal security, which will be
used later in the proof.

Definition 3.1. A JAMBU-like online oracle O : ({0, 1}n)+ × ({0, 1}n)+ →
({0, 1}n)+ is defined as: for the i-th query (Hi, Pi), which Hi is a n(hi + 1) bits
binary string (means header), and Pi a npi bits binary string (means plaintext),
O(Hi, Pi) returns:

(1) If there exists j < i such that Hj = Hi, Pj = Pi, returns O(Hj , Pj);
(2) If (1) is not satisfied, and there exists j < i and r ≥ 0 such that:

(a) Hj = Hi, Pj |nr = Pi|nr, t < pi and t < pj;
(b) There is no k < i (including k = j) such that Hk = Hi, Pk|n(r+1) =

Pi|n(r+1), r + 1 < pi and r + 1 < pk;
(c) There is no k < j such that Hk = Hi, Pk|nr = Pi|nr, r < pi and r < pk;

Then returns O(Hj , Pj)|n(r+1)‖x, which x
$←− {0, 1}n(pi−r);

(3) Otherwise, returns a random string of n(pi + 1) bits.

Condition (2) means that for (Hi, Pi), if among all previous queries with the
same header, (Hj , Pj) is the first one that Pj has the most common proper prefix
blocks with Pi of r blocks (each of n bits), then return the first n(r + 1) bits of
O(Hj , Pj) concatenates with a random string of n(pi − r) bit.

It is easy to see that, if a JAMBU-like online oracle has never been queried
twice with a same header, the condition (2) will never be triggered, and it per-
forms like a random oracle (despite the restriction on input and output length).
But when nonce could be reused, such oracle has the “onlineness” property, that
the first n(r + 1) bits output of O(H,P) is determined only by H and the first
nr bits of P . We prove this property below.

Theorem 3.1. Let (Ha, Pa) and (Hb, Pb) be two queries of a JAMBU-like online
oracle O. If Ha = Hb and there is some r ≥ 0, r < pa and r < pb, such that
Pa|nr = Pb|nr, then O(Ha, Pa)|n(r+1) = O(Hb, Pb)|n(r+1).

Proof. We only need to prove that O(Ha, Pa)[k] = O(Hb, Pb)[k] for all 0 ≤ k ≤ r.
We find the smallest c such that Hc = Ha = Hb, Pc|nk = Pa|nk = Pb|nk.

Since a and b all satisfy this condition, we have c ≤ a and c ≤ b. We prove that
O(Ha, Pa)[k] = O(Hc, Pc)[k] and O(Hb, Pb)[k] = O(Hc, Pc)[k].

Security Proof of JAMBU under Nonce Respecting and Nonce Misuse Cases 7

By Definition 3.1, we can see that for every query (Hi, Pi), O(Hi, Pi)[k] is
either chosen uniformly randomly or there is a j < i such that O(Hi, Pi)[k] =
O(Hj , Pj)[k]. In the latter case, Hj = Hi and Pj |nk = Pi|nk. So for (Ha, Pa),
we find a sequence (Ha0 , Pa0) = (Ha, Pa), (Ha1 , Pa1), ..., (Ham , Pam), such that
ai+1 < ai,O(Hai , Pai)[k] = O(Hai+1 , Pai+1)[k] for i = 0, ...,m−1, andO(Ham , Pam)[k]
is uniformly randomly chosen. We show that am = c. We already know that
Hai+1

= Hai and Pai+1
|nk = Pai |nk for i = 0, ...,m − 1, so we have Ham = Ha,

Pam |nk = Pa|nk. Then c ≤ am. If c < am, by condition 2 in Definition 3.1, the
first n(k + 1) bits of O(Ham , Pam) cannot be randomly chosen, which makes a
contradiction. Thus c = am.

So we haveO(Ha, Pa)[k] = O(Hc, Pc)[k]. Similarly, there is alsoO(Hb, Pb)[k] =
O(Hc, Pc)[k], so O(Ha, Pa)[k] = O(Hb, Pb)[k] for all 0 ≤ k ≤ r, which means that
O(Ha, Pa)|n(r+1) = O(Hb, Pb)|n(r+1). ut

We will now show that how we can use this online property.

Definition 3.2. Let f, g : ({0, 1}n)+×({0, 1}n)+ → {0, 1}n. We define Of,g(H,P) =
f(H, ε)‖f(H,P |n)‖f(H,P |2n)‖...‖f(H,P |p−n)‖g(H,P), p = |P |/n.

Theorem 3.2. If f, g are random oracles, then Of,g perfectly simulates a JAMBU-
like online oracle.

Proof. We discuss the output of Of,g when f, g are random oracles by the three
cases in Definition 3.1. When (Hi, Pi) is called, if there is a j < i with (Hj , Pj) =
(Hi, Pi), then f(Hi, Pi|nk) = f(Hj , Pj |nk) for k = 0, ..., pi − 1, pi = |Pi|/n and
g(Hi, Pi) = g(Hj , Pj). So the return value satisfies condition 1 in Definition 3.1.
If there are j and r satisfy condition 2, then f(Hi, Pi|nk) = f(Hj , Pj |nk) for
k = 0, ..., r, so that the first n(r + 1) bits of Of,g(Hi, Pi) and Of,g(Hj , Pj) are
the same. And since f(Hi, Pi|nk), k = r + 1, ..., pi − 1 and g(Hi, Pi) have not
been queried, they return a total n(pi−r) random bits. For condition 3, we have
f(Hi, Pi|nk), k = 0, ..., pi−1 and g(Hi, Pi) have not been queried, so they return
a total n(pi + 1) random bits. ut

4 The Security Analysis of JAMBU under Nonce
Respecting Case

4.1 Security Definition

Definition 4.1. Let EK = {EK |K ∈ K} be the block cipher used by JAMBU.
We define E [EK](IV ‖AD,P) = C‖T,EK ∈ EK be the encryption procedure of
JAMBU, and D[EK](IV ‖AD,C‖T) = P or ⊥, EK ∈ EK be the decryption pro-
cedure of JAMBU described in Section 2. Then, the advantage for an adversary
A in breaking JAMBU under nonce respecting case is defined as:

AdvRJAMBU [EK](A) = |Pr[K $←− K : AE[EK](.,.),D[EK](.,.) ⇒ 1]−Pr[A$(.,.),⊥(.,.) ⇒ 1]|

where $(H,P) is a random oracle with output length |P |+ n, and ⊥(H,CT)
is an oracle that always returns ⊥.

8 Geng Wang, Haiyang Zhang and Fengmei Liu

For the adversary A, we call E [EK] or $ oracle calls by E-oracle calls, and
D[EK] or ⊥ oracle calls by D-oracle calls.

In the nonce respecting case, we assume that the adversary never ask two
queries with a same nonce to E-oracle. Also, without loss of generalization, we
suppose that the adversary should not use the result from a query of E-oracle to
query D-oracle, and vice versa. Let the set of all adversaries be A, then we define
AdvRJAMBU [E] = maxA∈AAdv

R
JAMBU [E](A) by the maximal advantage over all

adversaries.
If we suppose that the adversary always choose a nonce randomly as long

as it has not been reused in the E-oracle queries, and call the set of all such
adversaries A$, we can define AdvR$

JAMBU [E] = maxA∈A$ AdvRJAMBU [E](A).

The differences between adversaries who choose nonce randomly and arbi-
trarily has already been discussed by Rogaway [18]. In this paper, we will also
see in our proofs that there are differences between the two models.

We also give out the PRNG version of security definition for JAMBU:

Definition 4.2. Let EK = {EK |K ∈ K} be the block cipher used by JAMBU.
We define G[EK](IV ‖AD,P) = P ⊕ C‖T,EK ∈ EK be a JAMBU-based pseu-
dorandom number generator, where IV,AD,P and C, T are inputs and outputs
of the JAMBU encryption scheme. Then, the advantage for an adversary A in
breaking the PRNG mode of JAMBU under the nonce respecting case is defined
as:

AdvRJAMBU(G)[EK](A) = |Pr[K $←− K : AG[EK](.,.) ⇒ 1]− Pr[A$(.,.) ⇒ 1]|

To distinguish the PRNG version from the encryption/decryption version,
we call G[e] or $ oracle calls in this definition by G-oracle calls.

In this definition, we only restrict the adversary A by never repeating the
same nonce.

Also, we define AdvRJAMBU(G)[E] = maxAAdv
R
JAMBU(G)[E](A) by the max-

imal advantage over all adversaries, and AdvR$
JAMBU(G)[E] by the maximal ad-

vantage over all adversaries which choose a nonce IV randomly providing non-
repeatedness.

We prove the relationship between the standard version and the PRNG ver-
sion of security definition.

Theorem 4.1. AdvRJAMBU ≤ AdvRJAMBU(G)+q/2
n and AdvR$

JAMBU ≤ AdvR$
JAMBU(G)+

q/2n, q is the number of queries.

Proof. To prove the result, we show that for any adversaryA thatAdvRJAMBU [EK](A) =

ε, we can construct an adversary A′ that AdvRJAMBU(G)[EK](A
′) ≥ ε−q/2n. This

is done by simulating the E-oracle and D-oracle calls using the G-oracle.
First, we give an alternative security definition of JAMBU(G):

AdvRJAMBU(G)′[EK](A) = |Pr[K $←− K : AG[EK](.,.) ⇒ 1]− Pr[AO(.,.) ⇒ 1]|

Security Proof of JAMBU under Nonce Respecting and Nonce Misuse Cases 9

where O is a JAMBU-based online oracle.

By Theorem 3.2, O can be perfectly simulated by Of,g, where f, g are ran-
dom oracles. For G[EK], by the definition of JAMBU scheme, we can see that
P [i] ⊕ C[i] is only related to H = IV ‖AD and P |ni = P [0]‖...‖P [i − 1], so for
JAMBU(G), we can also define s(H,P |ni) = P [i]⊕C[i] and t(H,P) = T (which
is the tag). So G(H,P) = s(H,P |0)‖s(H,P |n)‖...‖s(H,P |n(p−1))‖t(H,P), p =
|P |/n.

The adversary A′ is obtained by (G is G[EK] or O):

(1) Replace any E-oracle calls E(H,P) in A by the following EG(H,P):

Call G(H,P) and return G(H,P)⊕ (P‖0n).

(2) Replace any D-oracle calls D(H,CT) in A by the following DG(H,CT):

Let C = C[0]‖...‖C[p−1]‖T , each C[i] and T is an n-bit block. First set P ←
ε. For i = 0, 1, ..., p− 1, let P ← P‖(f(H,P)⊕C[i]) (or P ← P‖(s(H,P)⊕C[i])
respectively). Finally, let T ′ = g(H,P) (T ′ = t(H,P) respectively). If T ′ = T ,
return P , else return ⊥.

If A is called with E [EK],D[EK] and A′ is called with EG[EK], DG[EK], by
the definition of JAMBU scheme, EG(H,P) and DG(H,P) simulate E(H,P)

and D(H,P) perfectly. So Pr[K
$←− K : AG[EK](.,.) ⇒ 1] = Pr[K

$←− K :
AE[EK](.,.),D[EK](.,.) ⇒ 1].

If A is called with ⊥ and A′ is called with DO, then DO does not return ⊥
only when g(H,P) = T . Since g is a random oracle, for each query the probability
is only 1/2n, and the total probability is no more than q/2n.

If A is called with $, A′ is called with EO, and DO always returns ⊥, then
O acts the same as $. This is because when the encryption queries are nonce re-
specting and the decryption queries return nothing about O, O never returns two
queries with the same header H to the adversary A′. So EO(H,P) = O(H,P)⊕
(P‖0n) is also a uniformly random string, hence indistinguishable from $(H,P).
So |Pr[A$(.,.),⊥(.,.) ⇒ 1]−Pr[AO(.,.) ⇒ 1]| ≤ q/2n. But since O acts the same as
$ in this case, we also have Pr[AO(.,.) ⇒ 1] = Pr[A$(.,.) ⇒ 1] under the condition
that DO always returns ⊥. So |Pr[A$(.,.),⊥(.,.) ⇒ 1]− Pr[A$(.,.) ⇒ 1]| ≤ q/2n.

Now we have |Pr[K $←− K : AE[EK](.,.),D[EK](.,.) ⇒ 1] − Pr[A$(.,.),⊥(.,.) ⇒
1]| − q/2n ≤ |Pr[K $←− K : AG[EK](.,.) ⇒ 1] − Pr[A$(.,.) ⇒ 1]| ≤ |Pr[K $←− K :
AE[EK](.,.),D[EK](.,.) ⇒ 1]−Pr[A$(.,.),⊥(.,.) ⇒ 1]|+q/2n, that isAdvRJAMBU(G)[EK](A

′) ≥
ε− q/2n.

And that means the probability for A successfully attacks JAMBU is not
greater than AdvRJAMBU(G)(A

′) + q/2n. If A ∈ A is an adversary that can on-

ly choose nonce randomly, then A′ also can only choose nonce randomly. So
we have AdvRJAMBU (A) ≤ AdvRJAMBU(G) + q/2n for any adversary A ∈ A,

which is AdvRJAMBU ≤ AdvRJAMBU(G) + q/2n. We also have AdvR$
JAMBU ≤

AdvR$
JAMBU(G) + q/2n when we let the adversary A be taken from A$. ut

10 Geng Wang, Haiyang Zhang and Fengmei Liu

4.2 Security Proof

Now we discuss the PRNG security of JAMBU. First of all, we suppose that
the adversary made totally q queries. Let those queries be (H1, P1),...,(Hq, Pq),
|Hj | = n(hj+1), |Pj | = npj , and the total length of H: |H1|+...+|Hq| = n(h+q),
total length of P : |P1| + ... + |Pq| = np. That means totally h blocks of ADs,
totally p blocks of plaintexts.

Theorem 4.2. Let AdvRJAMBU(G)[Perm(2n)](A) be defined as:

AdvRJAMBU(G)[Perm(2n)](A) = |Pr[p $←− Perm(2n) : AG[p](.,.) ⇒ 1]−Pr[A$(.,.) ⇒ 1]|

where Perm(2n) is the set of all 2n-bit permutations, and G[p] is obtained by
replacing EK in G[EK] by p. Let AdvEK

(q) be the advantage for distinguishing

EK
$←− EK with p

$←− Perm(2n) making at most q queries. Then:

AdvRJAMBU(G)[EK] ≤ Adv
R
JAMBU(G)[Perm(2n)] +AdvEK(h+ p+ 3q).

Proof. We prove that the distinguishing probability between JAMBU(G)[EK],K
$←−

K and JAMBU(G)[p], p
$←− Perm(2n) is not greater than AdvEK(h + p + 3q).

Because the only black box in JAMBU(G)[EK] or JAMBU(G)[p] is EK or p, so
for an adversary A making oracle calls to JAMBU(G)[EK] or JAMBU(G)[p],
we can construct an adversary A′ returning the same result and making or-
acle calls only to EK or p. So, the probability for A to distinguish between
JAMBU(G)[EK] and JAMBU(G)[p] is exactly the same with the probabili-
ty for A′ to distinguish between EK and Perm(2n), while A′ making totally
h+ p+ 3q calls to EK or p, by the construction of mode JAMBU.

Since A′ cannot distinguish EK with p in h + p + 3q queries with proba-
bility less than AdvEK(h + p + 3q), then adversary A also cannot distinguish
JAMBU(G)[EK] with JAMBU(G)[p] at the same probability, which holds for
any adversary A. ut

Theorem 4.3. Let AdvRJAMBU(G)[Perm(2n)](A) be defined as:

AdvRJAMBU(G)[Rand(2n)](A) = |Pr[f $←− Rand(2n) : AG[f](.,.) ⇒ 1]−Pr[A$(.,.) ⇒ 1]|

where Rand(2n) is the set of all functions of 2n bit input and 2n bit output,
and G[f] is obtained by replacing EK in G[EK] by f . Then:

AdvRJAMBU(G)[Perm(2n)] ≤ Adv
R
JAMBU(G)[Rand(2n)] + (h+ p+ 3q)2/22n+1.

Proof. See the PRP-PRF transforming lemma[5]. ut

Now to the main part of the proof. We define a game which simulates

JAMBU(G)[f
$←− Rand(2n)] queries, called JAMBU-S, and then calculate the

advantage for an adversary to distinguish between it and a random oracle. Sup-
pose that JAMBU(G)[f] is queried q times, which inputs are (H1, P1), ..., (Hq, Pq).

Security Proof of JAMBU under Nonce Respecting and Nonce Misuse Cases 11

According to the JAMBU scheme, we divide each (Hj , Pj) into n-bit blocks,
where Hj = IVj‖ADj [0]‖...‖Adj [hj−1], Pj = Pj [0]‖...‖Pj [pj−1], hj = |Hj |/n−1
and pj = |Pj |/n. The game is defined as (here we use ⊥(.) for a function that is
undefined everywhere):

Game 1 JAMBU-S (and JAMBU-R by eliminating the shadowed part)

1: S ← ∅; π ← ⊥(.); bad← false.
2: for j = 1 to q do
3: U ← 0n; V ← IVj ; R← 0n;

4: if U‖V ∈ S then bad← true; X‖Y ← π(U‖V); else

5: S ← S ∪ {U‖V }; X‖Y ← π(U‖V)
$←− {0, 1}2n; // Initialization Stage

6: U ← X; V ← Y ⊕ 5; R← R⊕ U ;

7: if U‖V ∈ S then bad← true; X‖Y ← π(U‖V); else

8: S ← S ∪ {U‖V }; X‖Y ← π(U‖V)
$←− {0, 1}2n; // IV processing Stage

9: for i = 0 to hj − 1 do
10: U ← X ⊕ADj [i]; V ← Y ⊕R⊕ 1; R← R⊕ U ;

11: if U‖V ∈ S then bad← true; X‖Y ← π(U‖V); else

12: S ← S ∪ {U‖V }; X‖Y ← π(U‖V)
$←− {0, 1}2n; // AD processing Stage

13: end for
14: for i = 0 to pj − 1 do
15: U ← X ⊕ Pj [i]; V ← Y ⊕R⊕ 1; R← R⊕ U ; output V ;

16: if U‖V ∈ S then bad← true; X‖Y ← π(U‖V); else

17: S ← S ∪ {U‖V }; X‖Y ← π(U‖V)
$←− {0, 1}2n; // Plaintext processing

Stage
18: end for
19: U ← X; V ← Y ⊕ 3; R← R⊕ U ;

20: if U‖V ∈ S then bad← true; X‖Y ← π(U‖V); else

21: S ← S ∪ {U‖V }; X‖Y ← π(U‖V)
$←− {0, 1}2n; // Finalization Stage

22: output X ⊕ Y ⊕R;
23: end for

We divide the game into five stages: initialization stage; IV processing stage,
AD processing stage, plaintext processing stage, and finalization stage. Note that
for the convenience of further discussion, the stages we divided here is slightly
different from the JAMBU document as what we introduced in Section 2.

The states of JAMBU-S are U, V,R,X, Y . Since the states are dynamic, we
add a subscript t called time, and write them as Ut, Vt, Rt, Xt, Yt. t← 0 when the
game starts, and t← t+ 1 each time after X‖Y is updated. That is, when time

12 Geng Wang, Haiyang Zhang and Fengmei Liu

is set to t, first update update Ut−1‖Vt−1 into Ut‖Vt using Xt−1‖Yt−1 and Rt−1,
then update Rt−1 into Rt using Ut, and finally update Xt−1‖Yt−1 into Xt‖Yt
using Ut‖Vt. We also write St, badt be the value of S after Xt‖Yt is updated. It
is easy to see that t is at one of the five stages. We can also drop the t if there
is no confusion.

We also define a simplified version for simulator JAMBU-S, called JAMBU-
R, by eliminating the shadowed part of JAMBU-S. (Here R means the nonce
respecting case.)

We can see that JAMBU-S and JAMBU-R act differently only when bad =
true in JAMBU-S.

Theorem 4.4. In the JAMBU-S simulator, let Ut‖Vt be the current state. Then
if t is not at the initialization stage and badt−1 = false, Ut‖Vt is uniformly
random and independent with elements in St−1.

Proof. If t is not at the initialization stage, then one of the four cases holds,
depends on which stage t is at:

(1) Ut = Xt−1, Vt = Yt−1 ⊕ 5;
(2) Ut = Xt−1 ⊕ADj [i], Vt = Yt−1 ⊕Rt−1 ⊕ 1 for some i, j;
(3) Ut = Xt−1 ⊕ Pj [i], Vt = Yt−1 ⊕Rt−1 for some i, j;
(4) Ut = Xt−1, Vt = Yt−1 ⊕ 3.

Since bad = false, we have Xt−1‖Yt−1
$←− {0, 1}2n, so Xt−1‖Yt−1 is uniformly

random and independent with all previous states and outputs, including elements
in St−1. So for case (1) or case (4), Ut‖Vt = Xt−1‖Yt−1 ⊕ 5 or Xt−1‖Yt−1 ⊕ 3 is
uniformly random and independent with elements in St−1. For case (2) or case
(3), we have Ut‖Vt = (Xt−1‖Yt−1)⊕(ADj [i]‖Rt−1⊕1) or Ut‖Vt = (Xt−1‖Yt−1)⊕
(Pj [i]‖Rt−1). The adversary can only choose ADj [i] or Pj [i] according to the
previous outputs of JAMBU-S, which are independent withXt−1‖Yt−1, soADj [i]
or Pj [i] is also independent withXt−1‖Yt−1. Also,Xt−1‖Yt−1 is independent with
all previous states, including elements in St−1 and Rt−1. Then we have Ut‖Vt is
uniformly random and independent with elements in St−1. ut

Now for our main theorem:

Theorem 4.5. AdvR$
JAMBU(G)[Rand(2n)] ≤ (h+ p+ 3q)2/22n+1.

Proof. Compared to the construction of JAMBU, we can see that JAMBU-S acts

the same as JAMBU(G)[f
$←− Rand(2n)], and JAMBU-R always returns a ran-

dom string. So AdvJAMBU(G)[Rand(2n)](A) = |Pr[f $←− Rand(2n) : AG[f](.,.) ⇒
1]−Pr[A$(.,.) ⇒ 1]| is no more than the probability that JAMBU-S and JAMBU-
R act differently, that is bad = true in JAMBU-S.

Now we calculate the probability that bad ← true. If bad = false at time
t − 1, then the probability of bad = true at time t is that Ut‖Vt ∈ St−1. We
discuss the value Ut‖Vt in the following cases:

(1) t is not at the initialization stage. Then by Theorem 4.2, Ut‖Vt is an
uniformly random 2n-bit string and independent with elements in St−1. Then
Pr(Ut‖Vt ∈ St−1) = |St−1|/22n.

Security Proof of JAMBU under Nonce Respecting and Nonce Misuse Cases 13

(2) t is at the initialization stage, and Vt = IVj for some j. Then for each
s ∈ S, suppose that s = Us‖Vs. If s is also the initialization stage, since the
adversary never repeat a nonce, Pr(Ut‖Vt = Us‖Vs) = 0. Otherwise, Us‖Vs
is uniformly random. So Pr(Us = 0n) = 1/2n. Since we suppose that IVj is
chosen randomly, then Pr(Vs = IVj) = 1/2n. Also Us and Vs are independent,
so Pr(Ut‖Vt = Us‖Vs) = 1/2n. Then we have Pr(Ut‖Vt ∈ St) ≤ |St|/22n.

Also, we have that for each query (IVi‖ADi, Pi), the states are updated
hi+pi+3 times, the total states are updated h+p+3q times. So |S| ≤ h+p+3q.
Then the total probability Pr(bad = true) ≤ 1/22n + 2/22n + ...(h + p + 3q −
1)/22n ≤ (h+ p+ 3q)2/22n+1. ut

Here we have the conclusion:

Theorem 4.6. AdvR$
JAMBU(G)[EK] ≤ AdvEK(h + p + 3q) + (h + p + 3q)2/22n;

AdvR$
JAMBU [EK] ≤ AdvEK(h+ p+ 3q) + (h+ p+ 3q)2/22n + q/2n.

Proof. Add up all the probabilities. ut

Note that above we suppose that the adversary can only choose a nonce ran-
domly, which is usually not the case. So we need a further discussion on the dis-
tinguish probability where the adversary can choose a nonce according to the pre-
vious output of queries, which we defined the probability as AdvRJAMBU(G)[EK].
We have the following result:

Theorem 4.7. Let r1, ..., ry ∈ {1, 2, ..., x} be uniformly random variables, and
ci = |{rj |rj = i}| be the number of variables taken value i. M(x, y) = max1≤i≤x ci,
and EM(x, y) be the mathematical expectation of M(x, y), the maximal value a-
mong ci. Then, we have AdvRJAMBU [EK] ≤ AdvEK

(h+p+3q)+(h+p+3q)2/22n+

q/2n + 2−nΣ1≤i≤qEM(2n, Σ1≤j≤i−1(hj + pj + 3)).

Proof. Similarly, we compute the probability of bad = true. It is the same as in
the proof of Theorem 4.3 that when t is not at the initialization stage, Pr(Ut‖Vt ∈
St−1) = |St−1|/22n.

Now we suppose that t is at the initialization stage, and Vt = IVj for some j.
For any Us‖Vs ∈ St−1, if s is the initialization stage, then Us‖Vs 6= Ut‖Vt since
the adversary never repeats a nonce. Otherwise, the probability is Pr(Us =
0n)Pr(Vs = IVj) = Pr(Vs = IVj)/2

n. Since IVj is chosen by the adversary,
then the adversary can choose a value that |{s|s ∈ St−1 ∧ s|n,2n = IVj}| takes
the maximum value, which is what we defined as M(2n, |St−1|). So in the i-th
query, we have the probability EM(2n, Σ1≤j≤i−1(hj + pj + 3))/2n.

When we sum up all the probabilities, we have AdvRJAMBU [EK] ≤ AdvEK
(h+

p+3q)+(h+p+3q)2/22n+q/2n+2−nΣ1≤i≤qEM(2n, Σ1≤j≤i−1(hj+pj+3)). ut

The exact value for EM(x, y) is extremely hard to calculate. But it has
been proven in [11, 13], if y/x = c is a constant, then limx→∞EM(x, y) =
dlog x/ log log xe. So we suggest that EM(2n, Σ1≤j≤i(hj+pj+3)) = O(n/ log n)),
and thus AdvRJAMBU [EK] ≤ AdvEK

(h + p + 3q) + (h + p + 3q)2/22n + q/2n +

14 Geng Wang, Haiyang Zhang and Fengmei Liu

O(qn/(2n log n)), which is slightly lower than the birthday bound. Although the
effect is very small, but it should still be taken into account if there is a strict
demand on security.

5 The Security Analysis of JAMBU under Nonce Misuse
Case

The security notion of JAMBU under nonce misuse case is harder to define. If
two inputs (IV ‖AD,P) and (IV ‖AD,P ′) share the same header and the first
i plaintext blocks, according to the encryption scheme, their i+ 1-th ciphertext
block C[i + 1] and C ′[i + 1] have the relationship C[i + 1] ⊕ C ′[i + 1] = P [i +
1] ⊕ P ′[i + 1] and are insecure. This is because the first i + 1 blocks of PRNG
output is only related to the header IV ‖AD and the first i plaintext blocks. So
rather than the security of encryption/decryption mode of JAMBU, it is better
that we use JAMBU-based PRNG to define the security.

Definition 5.1. Let EK = {EK |K ∈ K} be the block cipher used by JAMBU,
and G[EK](IV ||AD,P) = P ⊕C‖T be the JAMBU-based PRNG. The advantage
for an adversary A in breaking the PRNG mod of JAMBU under nonce misuse
case is defined by:

AdvMJAMBU(G)[EK](A) = |Pr[K $←− K : AG[EK](.,.) ⇒ 1]− Pr[AO(.,.) ⇒ 1]|

Where O is a JAMBU-like online oracle.
Also, we define AdvMJAMBU(G)[EK] = maxAAdv

M
JAMBU(G)[EK](A) by the max-

imal advantage over all adversaries.

Theorem 5.1. AdvMJAMBU(G)[Rand(2n)] ≤ (h+ p+ 3q)2/2n+1.

The complete proof of this theorem is given in Appendix B.
Proof Sketch. We use the JAMBU-like online oracle defined in Section 3

for the ideal security of JAMBU-based PRNG under nonce misuse case. Like
the game JAMBU-R, we define a game JAMBU-M that perfectly simulates the
JAMBU-like online oracle, so the distinguishing probability turns into the prob-
ability that JAMBU-S and JAMBU-M act differently. The bad event defined in
Section 4 could be divided into two parts. One is that the current query part
which has been input into the game is a prefix of some previous query. We write
this event by bad′. In this case, JAMBU-S has the same states and outputs
of that previous query, which acts the same as a JAMBU-like online oracle or
JAMBU-M. The other case is that bad′ does not occur, so there is no previous
query which the current query part is its prefix, while the current call to f still
collides with some previous call. This is the real distinguishing probability, and
we call the event bad∗, bad∗ occurs when bad = ture and bad′ = false. We
show that this collision probability for two inputs of f , say Ut‖Vt = Us‖Vs is not
greater than 1/2n (instead of 1/22n in the nonce respecting case).

Security Proof of JAMBU under Nonce Respecting and Nonce Misuse Cases 15

We discuss the probability by three cases: (1) t or s is at initialization stage;
(2) t and s are the first block after a common prefix; (3) other case. For case (1),
like in nonce respecting case, it is easily shown that Pr(Ut‖Vt = Us‖Vs) ≤ 1/2n.
For case (2), either the current input blocks are different at s, t, or the stages
are different at s, t. Since t − 1 and s − 1 correspond to the same prefix, it
can be shown that Xt−1‖Yt−1 = Xs−1‖Ys−1. By the JAMBU scheme, if the
input blocks are different, Ut 6= Us, if the stages are different, Vt 6= Vs. For
case (3), we prove that Ut and Us are uniformly random and independent, so
Pr(Ut = Us) = 1/2n. Then, we have the total probability is no more than
1/2n + ...+ (h+ p+ 3q − 1)/2n ≤ (h+ p+ 3q)2/2n+1.

Theorem 5.2. AdvMJAMBU(G)[EK] ≤ AdvEK
(h+p+ 3q) + (h+p+ 3q)2/22n+1 +

(h+ p+ 3q)2/2n+1.

Proof. Like nonce respecting case, we haveAdvMJAMBU(G)[EK]−Adv
M
JAMBU(G)[Perm(2n)] ≤

AdvEK
(h+p+3q) and AdvMJAMBU(G)[Perm(2n)]−Adv

M
JAMBU(G)[Rand(2n)] ≤ (h+

p+3q)2/22n+1. We omit the details. Also we proved thatAdvMJAMBU(G)[Rand(2n)] ≤
(h+ p+ 3q)2/2n+1, add up the three inequations to get the result. ut

6 Conclusion

In this paper, we discussed the provable security of JAMBU in both nonce re-
specting and nonce misuse cases. Since the designers did not give the security
proof in their submission, we believe that our work is an important complement,
especially in the nonce misuse case, where the original security claim of designers
has been overthrown by other researchers.

Also our proofs themselves are quite technical, and shared some insights on
the potential users of JAMBU. In the nonce respecting case, we shown that when
the adversary can choose a nonce (which is a quite reasonable assumption), the
security cannot achieve the birthday bound, although very close. If the under-
lying cipher of JAMBU is a lightweight block cipher where the birthday bound
could be reached, this small effect on security must be taken into account by
users. In the nonce misuse case, we show that the security is n/2 bits, and since
there is an attack with O(2n/2) queries, this security bound is tight. Our proof
can be a guidance for application.

In their submission, the designers claimed that the confidentiality is the same
as the key length. However, by using provable security method, we can only prove
a security up to its birthday bound, which is n-bit. (There are some modes
of operation which have a security beyond the birthday bound, but JAMBU
is clearly not designed for a beyond-birthday-bound security.) This does not
necessarily mean that there exists an attack which is higher than n but lower
than the key length under the nonce respecting case. Also, we use a single security
claim to capture both confidentiality and integrity, which is different from the
security claim by the designers, since we use a different security model.

16 Geng Wang, Haiyang Zhang and Fengmei Liu

We hope that, by giving security proofs on JAMBU under both nonce re-
specting and nonce misuse case, we can help strengthening the competitiveness
of JAMBU, and bring the scheme further to practical use.

References

1. Andreeva E, Bogdanov A, Luykx A, et al. Parallelizable and authenticated online
ciphers. International Conference on the Theory and Application of Cryptology and
Information Security. Springer Berlin Heidelberg, 2013: 424-443.

2. Andreeva E, Bogdanov A, Datta N, et al. COLM v1. CAESAR competition pro-
posal, 2016.

3. Bellare M, Namprempre C. Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. International Conference on the
Theory and Application of Cryptology and Information Security. Springer Berlin
Heidelberg, 2000: 531-545.

4. Bellare, M., Rogaway, P.: Encode-Then-Encipher Encryption: How to Exploit
Nonces or Redundancy in Plaintexts for Efficient Cryptography. In: Okamoto, T.
(ed.) ASIACRYPT 2000. LNCS, vol. 1976. Springer, 2000: 317-330.

5. Bellare M, Rogaway P. Code-Based Game-Playing Proofs and the Security of Triple
Encryption. IACR Cryptology ePrint Archive, 2004, 2004: 331.

6. Fleischmann E, Forler C, Lucks S. McOE: a family of almost foolproof on-line au-
thenticated encryption schemes. Fast Software Encryption. Springer Berlin Heidel-
berg, 2012: 196-215.

7. Gueron S, Lindell Y. GCM-SIV: Full nonce misuse-resistant authenticated encryp-
tion at under one cycle per byte. Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2015: 109-119.

8. Hoang V T, Reyhanitabar R, Rogaway P, et al. Online authenticated-encryption and
its nonce-reuse misuse-resistance. Annual Cryptology Conference. Springer Berlin
Heidelberg, 2015: 493-517.

9. Iwata T, Minematsu K, Guo J, et al. CLOC: Authenticated encryption for short
input. International Workshop on Fast Software Encryption. Springer Berlin Hei-
delberg, 2014: 149-167.

10. Iwata T, Yasuda K. HBS: A single-key mode of operation for deterministic au-
thenticated encryption. Fast Software Encryption. Springer Berlin Heidelberg, 2009:
394-415.

11. Kimber A C. A note on Poisson maxima. Zeitschrift fr Wahrscheinlichkeitstheorie
und Verwandte Gebiete, 1983, 63(4): 551-552.

12. Minematsu K. AES-OTR v3. CAESAR competion proposal, 2016.

13. Mitzenmacher M. The power of two choices in randomized load balancing. IEEE
Transactions on Parallel and Distributed Systems, 2001, 12(10): 1094-1104.

14. McGrew D, Viega J. The Galois/counter mode of operation (GCM). Submission
to NIST. http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-
spec.pdf, 2004.

15. McGrew D A, Viega J. The security and performance of the Galois/Counter Mode
(GCM) of operation. International Conference on Cryptology in India. Springer
Berlin Heidelberg, 2004: 343-355.

16. Peyrin T, Sim S M, Wang L, et al. Cryptanalysis of JAMBU. International Work-
shop on Fast Software Encryption. Springer Berlin Heidelberg, 2015: 264-281.

Security Proof of JAMBU under Nonce Respecting and Nonce Misuse Cases 17

17. Rogaway P. Authenticated-encryption with associated-data. Proceedings of the 9th
ACM conference on Computer and communications security. ACM, 2002: 98-107.

18. Rogaway P. Nonce-based symmetric encryption. International Workshop on Fast
Software Encryption. Springer Berlin Heidelberg, 2004: 348-358.

19. Rogaway P. Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. International Conference on the Theory and Application
of Cryptology and Information Security. Springer Berlin Heidelberg, 2004: 16-31.

20. Rogaway P, Bellare M, Black J. OCB: A block-cipher mode of operation for efficient
authenticated encryption. ACM Transactions on Information and System Security
(TISSEC), 2003, 6(3): 365-403.

21. Rogaway P, Shrimpton T. A provable-security treatment of the key-wrap problem.
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer Berlin Heidelberg, 2006: 373-390.

22. Rogaway P, Shrimpton T. Deterministic Authenticated-Encryption. Advances in
Cryptology (EUROCRYPT). 2007, 6.

23. Reyhanitabar R, Vaudenay S, Vizár D. Misuse-resistant variants of the OMD
authenticated encryption mode. International Conference on Provable Security.
Springer International Publishing, 2014: 55-70.

24. Wu H, Huang T. JAMBU Lightweight Authenticated Encryption Mode and AES-
JAMBU. CAESAR competition proposal, 2014.

25. Wu H, Huang T. The JAMBU Lightweight Authentication Encryption Mode
(v2.1). CAESAR competition proposal, 2016.

A Proof of Theorem 5.1

First, we define another game called JAMBU-M to simulate the ideal security
under nonce misuse case:

We note that in JAMBU-M, π3(H, ε) is always undefined. For the simplicity
of further discussion, if (Hj , Pj) is one of the queries, we can let π3(Hj , ε) =
π2(Hj) if π2(Hj) has already been defined. So we always have that the i-th
output block S[i] = π3(H,P |ni)|n,2n ⊕Rt for some t.

For each time t, we write Trt for all input blocks up to the time of the
current query. That is, if t is at the initial or IV processing stage, Trt = IV ,
if t is at the AD processing stage, Trt = IV ‖AD|n(i+1) for some i, if t is at
the plaintext processing stage, Trt = (IV ‖AD,P |n(i+1)) for some i, if t is at
the finalization stage, Trt = (IV ‖AD,P). Then, the conditional statement of
π1, ..., π4 can be unified into: if πi(Trt) is defined, then Xt‖Yt = πi(Trt), else

Xt‖Yt = πi(Trt)
$←− {0, 1}2n, i = 1, ..., 5. We can also use the same notion Trt

for the game JAMBU-S. We say s, t are equal if Trs = Trt and s, t are at the
same stage.

Lemma A.1. If s, t are equal, then Us = Ut, Vs = Vt, Rs = Rt, Xs = Xt, Ys =
Yt for both JAMBU-S and JAMBU-M.

Proof. JAMBU-S or JAMBU-M can be equivalently written as JAMBU-Sπ or
JAMBU-Mπ1,π2,π3,π4 where π, π1, π2, π3, π4 are oracles, also JAMBU-S and JAMBU-
M are deterministic algorithms. So with the same input Trs = Trt and the same
stage, the states of JAMBU-S or JAMBU-M are always the same. ut

18 Geng Wang, Haiyang Zhang and Fengmei Liu

Game 2 JAMBU-M
1: π1, π2, π3, π4 ← ⊥(.); bad∗ ← false.
2: for j = 1 to q do
3: U ← 0n; V ← IVj ; R← 0n;
4: if π1(IVj) 6= ⊥ then X‖Y ← π1(IVj); else

5: X‖Y ← π1(IV)
$←− {0, 1}2n; // Initialization Stage

6: U ← X; V ← Y ⊕ 5; R← R⊕ U ;
7: if π2(IVj) 6= ⊥ then X‖Y ← π2(IVj); else

8: X‖Y ← π2(IV)
$←− {0, 1}2n; // IV processing Stage

9: for i = 0 to hj − 1 do
10: U ← X ⊕ADj [i]; V ← Y ⊕R⊕ 1; R← R⊕ U ;
11: if π2(IVj‖ADj |n(i+1)) 6= ⊥ then X‖Y ← π2(IVj‖ADj |n(i+1)); else

12: X‖Y ← π2(IVj‖ADj |n(i+1))
$←− {0, 1}2n; // AD processing Stage

13: end for
14: for i = 0 to pj − 1 do
15: U ← X ⊕ Pj [i]; V ← Y ⊕R; R← R⊕ U ; output V ;
16: if π3(IVj‖ADj , Pj |n(i+1)) 6= ⊥ then X‖Y ← π3(IVj‖ADj , Pj |n(i+1)); else

17: X‖Y ← π3(IVj‖ADj , Pj |n(i+1))
$←− {0, 1}2n; // Plaintext processing

Stage
18: end for
19: U ← X; V ← Y ⊕ 3; R← R⊕ U ;
20: if π4(IVj‖ADj , Pj) 6= ⊥ then bad← true; X‖Y ← π4(IVj‖ADj , Pj); else

21: X‖Y ← π4(IVj‖ADj , Pj)
$←− {0, 1}2n; // Finalization Stage

22: output X ⊕ Y ⊕R;
23: end for

Security Proof of JAMBU under Nonce Respecting and Nonce Misuse Cases 19

Now, we have a JAMBU-S game which simulates the JAMBU scheme, and
a JAMBU-M game which acts the same as JAMBU-like online oracle, what we
defined as perfect nonce misuse security. Then, what remains is to calculate the
advantage for distinguishing between the two games. To get the distinguishing
probability, we add an event bad∗ to the simulator JAMBU-S, without changing
its behaviour. The newly defined JAMBU-S’ is as follows:

We also write badt, bad
′
t, bad

∗
t as the value of bad, bad′, bad∗ at time t. It is

easy to see that bad′t = true only if there is no s < t such that s, t are equal.

Lemma A.2. (1) For any t, the state Xt is independent to all outputs in
JAMBU-M.

(2) Let Ys ⊕ Rs (or Xs ⊕ Ys ⊕ Rs) and Ys ⊕ Rs (or Xs ⊕ Ys ⊕ Rs) be two
output blocks. If s, t are not equal, the two output blocks are independent.

Proof. First, we show that for any t, Xt, Yt, Rt are pairwise independent. By
Lemma 5.1, we can suppose that there is no t′ < t that Trt′ = Trt. Then

Xt‖Yt
$←− {0, 1}2n, so Xt‖Yt is independent to all previous states and outputs,

including Rt. Also Xt‖Yt is uniformly random, so Xt and Yt are also independent.
(1) For each output block S, we have S = Ys ⊕Rs or S = Xs ⊕ Ys ⊕Rs for

some s, then Ys is uniformly random and independent to Xs, Rs and Xt, so Xt

and Ys ⊕Rs or Xs ⊕ Ys ⊕Rs are independent.
(2) If Trs 6= Trt or s, t are from different stages, Xs‖Ys and Xt‖Yt are

assigned independently, and independent to Rs or Rt. So Yt⊕Rt or Xt⊕Yt⊕Rt
is independent with Ys ⊕Rs or Xs ⊕ Ys ⊕Rs. ut

Theorem A.1. JAMBU-M perfectly simulates a JAMBU-like online oracle.

Proof. Since a JAMBU-like online oracle returns by three cases, we study the
states and outputs of JAMBU-M also by the three cases:

(1) (H,P) has been already queried. Then, in JAMBU-M, we have that
π1(IV), π2(IV ‖AD|ni), i = 0, ..., h, π3(IV ‖AD,P |ni), i = 1, ..., p, π4(IV ‖AD,P)
are defined. So each time X‖Y is assigned the same value as the last time (H,P)
was queried. By Lemma 5.1, the states of the two queries are always the same,
so the outputs are also the same.

(2) (H,P) has not been queried, but there exists a queried (Hj , Pj) =
(H,P ′) and r that satisfy condition 2 in Definition 3.1. Then, we have that
π1(IV), π2(IV ‖AD|ni), i = 0, ..., h, π3(IV ‖AD,P |ni), i = 1, ..., r are defined,
but π3(IV ‖AD,P |ni), i = r + 1, ..., p, π4(IV ‖AD,P) are not. By Lemma 5.1,
until the first r blocks of P have been input, the states of (H,P) and (H,P ′)
are still the same, which means that the first r + 1 output blocks are the same.

Since π3(IV ‖AD,P |ni), i = r + 1, ..., p, π4(IV ‖AD,P) are undefined, so for
each of the last p − r output blocks, say Yt ⊕ Rt or Xt ⊕ Yt ⊕ Rt, there is no
s < t that Trs = Trt and s, t are from the same stage. By Lemma A.2, the
output block at t is independent with all previous output blocks, so the last
n(p − r) output bits are indistinguishable from a random assignment. That is,
JAMBU-M acts the same as JAMBU-like online oracle in this case.

20 Geng Wang, Haiyang Zhang and Fengmei Liu

Game 3 JAMBU-S’
1: S ← ∅; π, π1, π2, π3, π4 ← ⊥(.); bad∗ ← false.
2: for j = 1 to q do
3: U ← 0n; V ← IVj ; R← 0n;
4: if U‖V ∈ S then X‖Y ← π(U‖V); bad← true; else

5: S ← S ∪ {U‖V }; X‖Y ← π(U‖V)
$←− {0, 1}2n; bad← false;

6: if π1(IVj) = ⊥ then π1(IVj)← X‖Y ; bad′ ← false; else bad′ ← true;
7: if bad = true and bad′ = false then bad∗ ← true; // Initialization Stage
8: U ← X; V ← Y ⊕ 5; R← R⊕ U ;
9: if U‖V ∈ S then X‖Y ← π(U‖V); bad← true; else

10: S ← S ∪ {U‖V }; X‖Y ← π(U‖V)
$←− {0, 1}2n; bad← false;

11: if π2(IVj) = ⊥ then π2(IVj)← X‖Y ; bad′ ← false; else bad′ ← true;
12: if bad = true and bad′ = false then bad∗ ← true; // IV processing Stage
13: for i = 0 to hj − 1 do
14: U ← X ⊕ADj [i]; V ← Y ⊕R⊕ 1; R← R⊕ U ;
15: if U‖V ∈ S then X‖Y ← π(U‖V); bad← true; else

16: S ← S ∪ {U‖V }; X‖Y ← π(U‖V)
$←− {0, 1}2n; bad← false;

17: if π2(IVj‖ADj |n(i+1)) = ⊥ then π2(IVj‖ADj |n(i+1)) ← X‖Y ; bad′ ←
false; else bad′ ← true;

18: if bad = true and bad′ = false then bad∗ ← true; // AD processing Stage
19: end for
20: for i = 0 to pj − 1 do
21: U ← X ⊕ Pj [i]; V ← Y ⊕R; R← R⊕ U ; output V ;
22: if U‖V ∈ S then X‖Y ← π(U‖V); bad← true; else

23: S ← S ∪ {U‖V }; X‖Y ← π(U‖V)
$←− {0, 1}2n; bad← false;

24: if π3(IVj‖ADj , Pj |n(i+1)) = ⊥ then π3(IVj‖ADj , Pj |n(i+1)) ← X‖Y ;
bad′ ← false; else bad′ ← true;

25: if bad = true and bad′ = false then bad∗ ← true; // Plaintext processing
Stage

26: end for
27: U ← X; V ← Y ⊕ 3; R← R⊕ U ;
28: if U‖V ∈ S then X‖Y ← π(U‖V); bad← true; else

29: S ← S ∪ {U‖V }; X‖Y ← π(U‖V)
$←− {0, 1}2n; bad← false;

30: if π4(IVj‖ADj , Pj) = ⊥ then π4(IVj‖ADj , Pj) ← X‖Y ; bad′ ← false; else
bad′ ← true;

31: if bad = true and bad′ = false then bad∗ ← true; // Finalization Stage
32: output X ⊕ Y ⊕R;
33: end for

Security Proof of JAMBU under Nonce Respecting and Nonce Misuse Cases 21

(3) There exists no P ′ such that (H,P ′) has already been queried. So (H,P |ni) 6∈
dom(π3), i = 0, ..., p and (H,P) 6∈ dom(π4). Like case (2), we also have the
n(p+ 1) bit outputs are indistinguishable from a random assignment, the same
as the output of a JAMBU-like online oracle. ut

In some cases, a JAMBU-like online oracle output block is not random.
By defining the bad∗ event, we excluded these cases, only focus on where the
JAMBU-like online oracle output block is random, but the output of real JAM-
BU scheme is not. In fact, we can prove the following:

Theorem A.2. An adversary can distinguish between JAMBU-S’ and JAMBU-
like online oracle only when bad∗ is set to true in JAMBU-S’.

Proof. Since JAMBU-like online oracle can be simulated by game JAMBU-M,
we only need to distinguish between the two games. So what we need to prove is
that when bad∗ is false, JAMBU-S’ acts the same as JAMBU-M simulator. We
prove it by induction.

At the beginning, π and π1, ..., π4 are everywhere undefined, so there are no
differences between JAMBU-S and JAMBU-M. We suppose that up onto time
t − 1, JAMBU-S still acts the same as JAMBU-S’(M), and we discuss the two
games at time t. There are two cases where bad∗ is false at time t, the first is
that badt = false and bad′t = false. In this case, Xt‖Yt is assigned to a random
2n-bit string both in JAMBU-S and JAMBU-M, where the two games act the
same.

The other case is that bad′t = true. Then πi(Trt) is already defined, which
i represents the current stage. So there must be some s < t that s, t are equal.
By Lemma A.1, the states at time t is assigned the same as states at time s for
both JAMBU-S and JAMBU-M, then the two game also act the same. ut

By Theorem A.2, we only need to calculate the probability for bad∗ set to
true at each step α. We prove that for each time t, if bad∗t−1 = false, then the
probability of bad∗t = true is not greater than |St−1|/2n.

If there exists s < t that s, t are equal, then bad′t = true, so bad∗t = false.
Otherwise, for any Us‖Vs ∈ St−1, we calculate the probability of Ut‖Vt = Us‖Vs.
We discuss the probability by four cases:

(1) t is at the initialization stage, so Ut‖Vt = 0n‖IVj for some j. If s is also at
the initialization stage, since bad′t = false, so π1(IV) is undefined before time
t, which means that there is no j′ < j that IVj = IVj′ . So Ut‖Vt 6= Us‖Vs.
Otherwise, one of the following holds: Us = Xs, Us = Xs⊕ADk[i] for some i, k,
Us = Xs ⊕ Pk[i] for some i, k. ADk[i] or Pk[i] could be chosen by the adversary,
so it can be written as a function of all previous outputs. By Lemma 5.1, Xs

is independent with all outputs, hence independent with ADk[i] or Pk[i]. We
also have that Xs is uniformly random, so Us is also uniformly random, and
Pr(Us = 0n) = 1/2n. Then Pr(Ut‖Vt = Us‖Vs) ≤ 1/2n.

(2) s − 1, t − 1 are equal, and s, t are at the same stage. We first show at
time t or s, JAMBU-S must be at the AD processing or plaintext processing
stage. If s, t are at the IV processing stage or finalization stage, Trt−1 = Trt

22 Geng Wang, Haiyang Zhang and Fengmei Liu

and Trs−1 = Trs, so Trt = Trs, which contradicts with bad′t = false. Then,
we have that Ut = Xt−1 ⊕ ADj [i] (or Xt−1 ⊕ Pj [i]) and Us = Xs−1 ⊕ ADk[i]
(or Xs−1 ⊕ Pk[i]) for some i, j, k. By Lemma 5.2, Xt−1 = Xs−1. But since
Trt 6= Trs, we have that ADj [i] 6= ADk[i] or Pj [i] 6= Pk[i]. Then Ut 6= Us, so
Pr(Ut‖Vt = Us‖Vs) = 0.

(3) s−1, t−1 are equal, and s, t are at different stages. By Lemma A.2, we have
Yt−1 = Ys−1, Rt−1 = Rs−1, and Vt = Yt−1 ⊕Rt−1 ⊕ at, Vs = Ys−1 ⊕Rs−1 ⊕ as,
at, as ∈ {0, 1, 3, 5} depend on the stage of t, s. Since s, t are at different stages,
at 6= as, so Vt 6= Vs and Pr(Ut‖Vt = Us‖Vs) = 0.

(4) s− 1, t− 1 are not equal. If s is at the initialization stage, then it is same
as case (1) that Pr(Ut‖Vt = Us‖Vs) ≤ 1/2n. If it is not, then one of the three
holds: Us = Xs−1, Us = Xs−1⊕ADk[i] for some i, k, Us = Xs−1⊕Pk[i] for some
i, k. We can write that Us = Xs−1 ⊕ Ins, which Ins = 0n or ADk[i] or Pk[i].
It is the same that Ut = Xt−1 ⊕ Int, which Int = 0n or ADj [l] or Pj [l]. Since
Trt−1 6= Trs−1, Xs−1 and Xt−1 are uniformly random and independent, and by
Lemma A.1, Xs−1 is independent with Ins, Xt−1 is independent with Int. So
we have Xt−1⊕ Int is uniformly random and independent with Xs−1⊕ Ins, and
Pr(Us = Ut) = 1/2n, so Pr(Ut‖Vt = Us‖Vs) ≤ 1/2n.

So in all three cases that bad′t+1 = false, Pr(Ut‖Vt ∈ St) ≤ |St|/2n, that is,
the probability for bad∗t = false and bad∗t+1 = true is not greater than |St|/2n.
Then, we have that the event of bad∗ set to true has a probability of not greater
than 1/2n + ...+ (h+ p+ 3q − 1)/2n ≤ (h+ p+ 3q)2/2n+1.

