
Structural Truncated Differential Attacks on
round-reduced AES

Lorenzo Grassi

IAIK, Graz University of Technology, Austria
lorenzo.grassi@iaik.tugraz.at

Abstract. At Eurocrypt 2017 the first secret-key distinguisher for 5-round AES
has been presented. Although it allows to distinguish a random permutation from
an AES like one, it seems (rather) hard to exploit such a distinguisher in order to
implement a key-recovery attack different than brute-force like.
In this paper, we propose new secret-key distinguishers for 4 and 5 rounds of AES that
exploit properties which are independent of the secret key and of the details of the
S-Box. While the 4-round distinguisher exploits in a different way the same property
presented at Eurocrypt 2017, the new proposed 5-round one is obtained by combining
our new 4-round distinguisher with a modified version of a truncated differential
distinguisher. As a result, while a “classical” truncated differential distinguisher
exploits the probability that a couple of texts satisfies or not a given differential trail
independently of the others couples, our distinguisher works with sets of 217 (related)
couples of texts. In particular, our new 5-round AES distinguisher exploits the fact
that the probability that at least one couple of texts of such a set satisfies a given
differential trail is lower for 5-round AES than for a random permutation in order to
distinguish the two cases. These probabilities exploited by the distinguishers have
been practically verified on a small-scale AES.
Even if such a 5-round distinguisher has higher complexity than the one present
in the literature, it allows to set up the first key-recovery attack on 6-round AES
that exploits directly a 5-round secret-key distinguisher. The goal of this paper is
indeed to present and explore new approaches, showing that even a distinguisher
like the one presented at Eurocrypt - believed to be hard to exploit - can be used to
set up a key-recovery attack. Finally we show how to exploit the proposed 4-round
distinguisher to set up new (practically verified) key-recovery attacks on 5-round AES
with a single secret S-Box.
Keywords: AES · Secret-Key Distinguisher · Key-Recovery Attack · Truncated
Differential · Secret S-Box · Subspace Trail Cryptanalysis
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Figure 1: New Differential Secret-Key Distinguishers up to 5 rounds of AES. Consider
N (plaintext, ciphertext) pairs (a). In a “classical" differential attack (b), one works
independently on each couple of two (plaintext, ciphertext) pairs and exploits the probability
that it satisfies a certain differential trail. In our attack (c), one divides the couples into
non-random sets, and exploits particular relationships (based on differential trails) that
hold among the couples that belong to the same set in order to set up a distinguisher.

1 Introduction
One of the weakest attacks that can be launched against a secret-key cipher is a secret-key
distinguisher. In this attack, there are two oracles: one that simulates the cipher for
which the cryptographic key has been chosen at random and one that simulates a truly
random permutation. The adversary can query both oracles and her task is to decide
which oracle is the cipher and which is the random permutation. The attack is considered
to be successful if the number of queries required to make a correct decision is below a
well defined level.

At Eurocrypt 2017, Grassi, Rechberger and Rønjom [GRR17a] presented the first
5-round secret-key distinguisher for AES which exploits a property which is independent
of the secret key (it isn’t a key-recovery attack) and of the details of the S-Box. This
distinguisher is based on a new structural property for up to 5 rounds of AES: by appropriate
choices of a number of input pairs it is possible to make sure that the number of times that
the difference of the resulting output pairs lie in a particular subspace is always a multiple
of 8. This distinguisher allows to distinguish an AES permutation from a random one with
a success probability greater than 99% using 232 chosen texts and a computational cost of
235.6 look-ups. On the other hand, no key-recovery attack that exploits this distinguisher
has been presented yet.

1.1 New Class of Secret-Key Distinguisher up to 5-round AES

In this paper, we present new secret-key distinguishers for 4- and 5-round AES which
exploit in a different way the property presented in [GRR17a]. Such distinguishers -
presented in detail in Sect. 5 and 7 - can be seen as a generalization of “classical" truncated
differential attacks, as introduced by Knudsen in [Knu95].

Differential attacks exploit the fact that couples of plaintexts with certain differences
yield other differences in the corresponding ciphertexts with a non-uniformity probability
distribution. Such a property can be used both to distinguish an AES permutation from
a random one, and to recover the secret key. A variant of this attack/distinguisher is
the truncated differential attack [Knu95], in which the attacker considers only part of
the difference between pairs of texts, i.e. a differential attack where only part of the
difference in the ciphertexts can be predicted. We emphasize that in these cases the
attacker focuses on the probability that single pairs of plaintexts with certain differences
yield other differences in the corresponding ciphertexts independently of the other pairs.

Our new distinguishers proposed in this paper are also differential in nature. Instead of
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Table 1: Secret-Key Distinguishers for AES. The complexity is measured in minimum
number of chosen plaintexts CP or/and chosen ciphertexts CC which are needed to
distinguish the AES permutation from a random one with probability higher than 95%.
Time complexity is measured in equivalent encryptions (E), memory accesses (M) or XOR
operations (XOR) - using the common approximation 20 M ≈ 1 Round of Encryption.
The distinguishers of this paper are in bold.

Property Rounds Data (CP/CC) Cost Ref.
Impossible Differential 4 216.25 222.3 M ≈ 216 E [BK01]
Diff. Structural 4 217 223.1 M ≈ 216.75 E Sect. 5

Integral 4 232 232 XOR [DKR97]
Diff. Structural 4 233 240 M ≈ 233.7 E [GRR17a]
Diff. Structural 5 232 235.6 M ≈ 229 E [GRR17a]

Prob. Diff. Struc. 5 251.2 277.3 M ≈ 270.7 E Sect. 7 - App. D

Prob. Diff. Struc.: Probabilistic Differential Structure

working on each couple1 of two (plaintext, ciphertext) pairs independently of the others as
in the previous case, in our case one works on the relations that hold among the couples. In
other words, given a couple of two (plaintext, ciphertext) pairs with a certain input/output
differences, one focuses on how it influences other couples of two (plaintext, ciphertext)
pairs to satisfy particular input/output differences.

Referring to Fig. 1, given n chosen (plaintext, ciphertext) pairs, in a “classical” attack
one works on each couple independently of the others - case (b). In our distinguish-
ers/attacks, one first divides the couples in (non-random) sets of N ≥ 2 couples - case (c).
These sets are defined such that particular relationships (that involve differential trails
and linear relationships) hold among the plaintexts of the couples that belong to the same
set. Thus, consider a pair of plaintexts that belong to the same coset2 of a particular
subspace C, such that the corresponding pair of ciphertexts belong to the same coset of
another particular subspaceM. Our 4-round secret-key distinguisher proposed in Sect. 5
exploits the fact that for an AES permutation other couples of (plaintext, ciphertext) pairs
have the same property with probability 1. All these couples make the sets just described
and depicted in Fig. 1. Another possibility is to consider the probability that a given
set contains at least one couple that satisfies a particular differential trail. Our proposed
5-round secret-key distinguisher exploits the fact that this probability is (a little) lower for
5-round AES than for a random permutation - independently of the key. All details are
given in Sect. 7.

1.2 New Key-Recovery Attacks on 5- and 6-round AES-128
Even if our 5-round secret-key distinguisher is worse than the one presented in [GRR17a],
it allows to set up the first 6 rounds key-recovery attack on AES that exploits directly a
5-round secret-key distinguisher (which exploits a property which is independent of the
secret key). In particular, we propose in Sect. 5.3 an attack on 5-round AES that exploits
the distinguisher on 4 rounds proposed in Sect. 5 (with the lowest computational cost
among the attacks currently present in the literature), while in Sect. 7.4 we propose the
first attack on 6 rounds of AES that exploits the distinguisher on 5 rounds presented
in Sect. 7. The idea of both these attacks is to choose plaintexts in the same coset of

1We use the term “pair" to denote a plaintext and its corresponding ciphertext. A “couple" denotes a
set of two such pairs.

2A pair of texts has a certain difference if and only if the texts belong to the same coset of a particular
subspace X .
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Table 2: Comparison of attacks on round-reduced AES-128. Data complexity is measured
in number of required chosen plaintexts/ciphertexts (CP/CC). Time complexity is measured
in round-reduced AES encryption equivalents (E) - the number in the brackets denotes
the precomputation cost (if not negligible). Memory complexity is measured in texts (16
bytes). RDist denotes the number of rounds of the secret-key distinguisher exploited to set
up the attack. Attacks presented in this paper are in bold.

Attack Rounds Data Computation Memory RDist Ref.
MitM 5 8 264 256 - [Der13, Sec. 7.5.1]

Imp. Polytopic 5 15 270 241 3 [Tie16]
Partial Sum 5 28 238 small 4 [Tun12]
Integral (EE) 5 211 245.7 small 4 [DR02]

Imp. Differential 5 231.5 233 (+ 238) 238 4 [BK01]
Integral (EB) 5 233 237.7 232 4 [DR02]
Diff. Struc. 5 233.6 233.3 234 4 Sect. 5.3 - App. C

MitM 6 28 2106.2 2106.2 - [DF13]
Partial Sum 6 232 242 240 4 [Tun12]
Integral 6 235 269.7 232 4 [DR02]

Prob. Diff. Struc. 6 272.8 2106 235.5 5 Sect. 7.4
Imp. Differential 6 291.5 2122 289 4 [CKK+02]

MitM: Meet-in-the-Middle, EE: Extension at End, EB: Extension at Beginning

a particular subspace D which is mapped after one round into a coset of C. Using the
distinguishers just introduced and the fact that the behavior for a wrongly guessed key
is (approximately) the same of a random permutation, it is possible to deduce the right key.

Generic Considerations. Before we go on, we would like to do some preliminary
considerations about our work, in particular about the fact that our distinguishers and key-
recovery attacks presented in this paper have higher complexities than the ones currently
present in the literature. Even if all the attacks on AES-like ciphers currently present in
the literature are constantly improved, they seem not be able to break full-AES - with
the only exception of the Biclique attack [BKR11], which can be considered as brute
force3. Thus, besides improving the known attacks present in the literature, we believe
that it is important and crucial to propose new idea and techniques. Even if they are
not initially competitive, they can provide new directions of research and can lead to
new competitive attacks. Only to provide an example, consider the impossible differential
attack on AES. When it was proposed in 2001 by Biham and Keller [BK01], it was an
attack on (“only”) 5 rounds of AES and it was not competitive with respect to others
attacks, as the integral one. It took approximately 6 years before that such attack was
extended and set up against 7-round AES-128 [ZWF07], becoming one of the few attacks
(together with Meet-in-the-Middle [DFJ13]) on such number of rounds. We believe that
similar considerations can be done for the attacks/distinguisher proposed in this paper. In
particular, the main contribution and merit of our paper is to show for the first time that
even a distinguisher of the type [GRR17a] - believed to be hard to exploit - can be used to
set up key-recovery attacks.

3The biclique attack on 10-round AES-128 requires 288 chosen texts and it has a computational cost of
approximately 2126.2 encryptions.
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Table 3: Comparison of attacks on round-reduced AES-128 with secret S-Box. Data
complexity is measured in number of required chosen plaintexts/ciphertexts (CP/CC).
Time complexity is measured in round-reduced AES encryption equivalents (E), memory
accesses (M) or XOR operations. Memory complexity is measured in texts (16 bytes). The
case in which the final MixColumns operation is omitted is denoted by “r.5 rounds” - r full
rounds + the final one. The symbol ? denotes an attack that can not work independently
on the S-Box and on the key. New attacks are in bold.

Attack Rounds Data Computation Memory Reference
I? 4.5 - 5 240 CC 238.7 E 240 [TKKL15]
I? 4.5 - 5 240 CP 254.7 E 240 [TKKL15, Sect. 3.5]

Diff. Struc. 4.5− 5 253.25 CP 259.25 M ≈ 252.6 E 216 Sect. 6.3
Diff. Struc. 4.5− 5 253.6 CP 255.6 M ≈ 248.96 E 240 Sect. 6.2

ImD 4.5− 5 276.37 CP 281.54 M ≈ 274.9 E 28 App. G.1
ImD 4.5 - 5 2102 CP 2107 M ≈ 2100.4 E 28 [GRR17b]
I 5 2128 CC 2129.6 XOR small [SLG+16]

I: Integral, ImD: Impossible Differential

1.3 Key-Recovery Attacks on AES-128 with a Single Secret S-Box

Recently, new key-recovery attacks on AES-128 with a single secret S-Box have been
presented in [TKKL15] and in [GRR17b]. In this setting, the AES S-Box is replaced by
a secret 8-bit one chosen uniformly at random from all the 8-bit permutation4, with the
goal to increase the security from 128-256 bits (i.e. the key size in AES) to 1812-1940.

In [TKKL15], the authors presented attacks up to 6-round AES with identical and
secret S-Box using techniques from integral cryptanalysis. For such attacks, the attacker
first determines the secret S-Box up to additive constants (that is, S-Box(x⊕ a)⊕ b for
unknown a and b), and then she uses this knowledge to derive the whitening key up to 28

variants. The strategy presented in [GRR17b] (and in [SLG+16]) is instead quite different.
Instead of finding the secret S-Box up to additive constants, authors exploits a particular
property of the MixColumns matrix (i.e. two equal elements for each row of the matrix)
in order to find directly the secret key up to 232 variants. Such a strategy is so generic
that can be applied to integral, truncated differential and impossible differential attack.

In this paper we exploit this second strategy, and in Sect. 6.2 we adapt the attack on
5-round AES proposed in Sect. 5.3 to the case of secret S-Box. The idea of the attack is
to choose a set of plaintexts that depends on some guessed bytes of the key. If the guessed
bytes are the right ones, then it is possible to guarantee that the number of ciphertexts that
belong to the same coset of a particular subspaceM is a multiple of 2 or 4 with probability
1, while this happens only with probability strictly less than 1 for wrong guessed keys.

Moreover, in Sect. 6.1 we generalize the strategy proposed in [GRR17b]. While attacks
proposed in [GRR17b] exploit the fact that two coefficients of each row of the MixColumns
matrix are equal, we show that the same attacks can also be mounted in the case in which
a XOR-sum of more than two coefficients of each row of the MixColumns matrix is equal
to zero. As main result, the strategy proposed in [GRR17b] works for a bigger class of
MixColumns matrices. We apply such strategy for our new 5-round attack presented in
this paper in Sect. 6.3, while in App. G.1 we improve the impossible differential attack on
5-round AES proposed in [GRR17b].

4For completeness, we mention that a randomly chosen S-Box is very likely to be highly resistant
against differential and linear, as shown in [TKKL15].
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2 Preliminary - Description of AES
The Advanced Encryption Standard [DR02] is a Substitution-Permutation network that
supports key size of 128, 192 and 256 bits. The 128-bit plaintext initializes the internal
state as a 4×4 matrix of bytes as values in the finite field F256, defined using the irreducible
polynomial x8 + x4 + x3 + x+ 1. Depending on the version of AES, Nr round are applied
to the state: Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14 for AES-256. An
AES round applies four operations to the state matrix:

• SubBytes (S-Box) - applying the same 8-bit to 8-bit invertible S-Box 16 times in
parallel on each byte of the state (provides non-linearity in the cipher);

• ShiftRows (SR) - cyclic shift of each row (i-th row is shifted by i bytes to the left);

• MixColumns (MC) - multiplication of each column by a constant 4× 4 invertible
matrix over the field GF (28) (together with the ShiftRows operation, it provides
diffusion in the cipher);

• AddRoundKey (ARK) - XORing the state with a 128-bit subkey.

One round of AES can be described as R(x) = K ⊕MC ◦ SR ◦ S-Box(x). In the first
round an additional AddRoundKey operation (using a whitening key) is applied, and in
the last round the MixColumns operation is omitted.

The Notation Used in the Paper

Let x denote a plaintext, a ciphertext, an intermediate state or a key. Then xi,j with
i, j ∈ {0, ..., 3} denotes the byte in the row i and in the column j. We denote by kr the
key of the r-th round, where k0 is the secret key. If only the key of the final round is used,
then we denote it by k to simplify the notation. Finally, we denote by R one round5 of
AES, while we denote r rounds of AES by Rr. As last thing, in the paper we often use the
term “partial collision” (or “collision”) when two texts belong to the same coset of a given
subspace X .

3 Subspace Trails
Let F denote a round function in a iterative block cipher and let V ⊕ a denote a coset
of a vector space V . Then if F (V ⊕ a) = V ⊕ a we say that V ⊕ a is an invariant
coset of the subspace V for the function F . This concept can be generalized to trails of
subspaces [GRR17b], which has been recently introduced at FSE 2017 as generalization of
the invariant subspace cryptanalysis.

Definition 1. Let (V1, V2, ..., Vr+1) denote a set of r + 1 subspaces with dim(Vi) ≤
dim(Vi+1). If for each i = 1, ..., r and for each ai ∈ V ⊥i , there exist (unique) ai+1 ∈ V ⊥i+1
such that F (Vi ⊕ ai) ⊆ Vi+1 ⊕ ai+1, then (V1, V2, ..., Vr+1) is subspace trail of length r
for the function F . If all the previous relations hold with equality, the trail is called a
constant-dimensional subspace trail.

This means that if F t denotes the application of t rounds with fixed keys, then
F t(V1 ⊕ a1) = Vt+1 ⊕ at+1. We refer to [GRR17b] for more details about the concept of
subspace trails. Our treatment here is however meant to be self-contained.

5Sometimes we use the notation Rk instead of R to highlight the round key k.
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3.1 Subspace Trails of AES
In this section, we recall the subspace trails of AES presented in [GRR17b], working with
vectors and vector spaces over F4×4

28 . For the following, we denote by {e0,0, ..., e3,3} the
unit vectors of F4×4

28 (e.g. ei,j has a single 1 in row i and column j). We recall that given a
subspace X , the cosets X ⊕a and X ⊕b (where a 6= b) are equivalent (that is X ⊕a ∼ X ⊕b)
if and only if a⊕ b ∈ X .

Definition 2. The column spaces Ci are defined as Ci = 〈e0,i, e1,i, e2,i, e3,i〉.

For instance, C0 corresponds to the symbolic matrix

C0 =
{

x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 ∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
≡


x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 .
Definition 3. The diagonal spaces Di and the inverse-diagonal spaces IDi are defined as
Di = SR−1(Ci) and IDi = SR(Ci).

For instance, D0 and ID0 correspond to symbolic matrices

D0 ≡


x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

 , ID0 ≡


x1 0 0 0
0 0 0 x2
0 0 x3 0
0 x4 0 0


for each x1, x2, x3, x4 ∈ F28 .

Definition 4. The i-th mixed spaces Mi are defined asMi = MC(IDi).

For instance,M0 corresponds to symbolic matrix

M0 ≡


0x02 · x1 x4 x3 0x03 · x2

x1 x4 0x03 · x3 0x02 · x2
x1 0x03 · x4 0x02 · x3 x2

0x03 · x1 0x02 · x4 x3 x2

 .
Definition 5. For I ⊆ {0, 1, 2, 3}, let CI , DI , IDI andMI defined as

CI =
⊕
i∈I
Ci, DI =

⊕
i∈I
Di, IDI =

⊕
i∈I
IDi, MI =

⊕
i∈I
Mi.

As shown in detail in [GRR17b]:

• for any coset DI ⊕ a there exists unique b ∈ C⊥I such that R(DI ⊕ a) = CI ⊕ b;

• for any coset CI ⊕ a there exists unique b ∈M⊥I such that R(CI ⊕ a) =MI ⊕ b.

Theorem 1. For each I and for each a ∈ D⊥I , there exists one and only one b ∈ M⊥I
(which depends on a and on the secret key k) such that

R2(DI ⊕ a) =MI ⊕ b. (1)

We refer to [GRR17b] for a complete proof of the Theorem. Observe that if X is a
generic subspace, X ⊕ a is a coset of X and x and y are two elements of the (same) coset
X ⊕ a, then x⊕ y ∈ X . It follows that:
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Lemma 1. For all x, y and for all I ⊆ {0, 1, 2, 3}:

Prob(R2(x)⊕R2(y) ∈MI |x⊕ y ∈ DI) = 1. (2)

We finally recall that for each I, J ⊆ {0, 1, 2, 3}:

MI ∩ DJ = {0} if and only if |I|+ |J | ≤ 4, (3)

as demonstrated in [GRR17b]. It follows that:

Proposition 1. Let I, J ⊆ {0, 1, 2, 3} such that |I|+ |J | ≤ 4. For all x, y with x 6= y:

Prob(R4(x)⊕R4(y) ∈MI |x⊕ y ∈ DJ) = 0. (4)

We remark that all these results can be re-described using a more “classical” - but
equivalent - truncated differential notation. To be more concrete, if two texts t1 and t2
are equal expect for the bytes in the i-th diagonal6 for each i ∈ I, then they belong in
the same coset of DI . A coset of DI corresponds to a set of 232·|I| texts with |I| active
diagonals. Again, two texts t1 and t2 belong in the same coset ofMI if the bytes of their
difference MC−1(t1 ⊕ t2) in the i-th anti-diagonal for each i /∈ I are equal to zero. Similar
considerations hold for the column space CI and the inverse-diagonal space IDI . Our
choice to use the subspace trail notation in order to present our new distinguishers and
key-recovery attacks is motivated by the fact that it allows to describe them in a more
formal way than using the “classical" notation.

We finally introduce some notations that we largely use in the following.

Definition 6. Given two different texts t1, t2 ∈ F4×4
28 , we say that t1 ≤ t2 if t1 = t2

or if there exists i, j ∈ {0, 1, 2, 3} such that (1) t1k,l = t2k,l for all k, l ∈ {0, 1, 2, 3} with
k+ 4 · l < i+ 4 · j and (2) t1i,j < t2i,j . Moreover, we say that t1 < t2 if t1 ≤ t2 (with respect
to the definition just given) and t1 6= t2.

Definition 7. Let X be one of the previous subspaces, that is CI , DI , IDI orMI . Let
x0, ..., xn ∈ F4×4

28 be a basis of X - i.e. X ≡ 〈x0, x1, ..., xn〉 where n = 4 · |I| - s.t. xi < xi+1
for each i = 0, ..., n− 1. Let t be an element of an arbitrary coset of X , that is t ∈ X ⊕ a
for arbitrary a ∈ X⊥. We say that t is “generated” by the generating variables (t0, ..., tn) -
for the following, t ≡ (t0, ..., tn) - if and only if

t ≡ (t0, ..., tn) iff t = a⊕
n⊕
i=0

ti · xi.

As an example, let X = M0 ≡ 〈MC(e0,0),MC(e3,1),MC(e2,2),MC(e1,3)〉, and let
p ∈M0 ⊕ a. Then p ≡ (p0, p1, p2, p3) if and only if

p ≡ p0 ·MC(e0,0)⊕ p1 ·MC(e1,3)⊕ p2 ·MC(e2,2)⊕ p3 ·MC(e3,1)⊕ a. (5)

Similarly, let X = C0 ≡ 〈e0,0, e1,0, e2,0, e3,0〉, and let p ∈ C0 ⊕ a. Then p ≡ (p0, p1, p2, p3) if
and only if p ≡ a⊕ p0 · e0,0 ⊕ p1 · e1,0 ⊕ p2 · e2,0 ⊕ p3 · e3,0.

3.2 Intersections of Subspaces and Useful Probabilities
Here we list some useful probabilities largely used in the following7. For our goal, we
focus on the mixed spaceM, but the same results can be easily generalized for the other
subspaces D, C and ID.

6The i-th diagonal of a 4× 4 matrix A is defined as the elements that lie on row r and column c such
that r − c = i mod 4. The i-th anti-diagonal of a 4× 4 matrix A is defined as the elements that lie on row
r and column c such that r + c = i mod 4.

7We mention that the following probabilities are “sufficiently good” approximations useful for the target
of the paper, that is the error of this approximations can be considered negligible for the target of this
paper. For a complete discussion, we refer to App. A.
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Let I, J ⊆ {0, 1, 2, 3}. We first recall that a random element x belongs to the subspace
MI with probability Prob(x ∈ MI) ' 2−32·(4−|I|). Moreover, as shown in details in
[GRR17b], given two random elements x 6= y in the same coset ofMI , they belong after
one round to the same coset ofMJ with probability:

Prob(R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) ' 2−4·|I|+|I|·|J|.

By definition, it’s simple to observe thatMI ∩MJ =MI∩J (whereMI ∩MJ = ∅ if
I ∩ J = ∅). Thus, the probability p|I| that a random text x belongs to the subspaceMI

for a certain I ⊆ {0, 1, 2, 3} with |I| = l fixed is well approximated by

p|I| ≡ Prob(∃I |I| = l s.t. x ∈MI) = (−1)|I| ·
3∑

i=4−|I|

(−1)i ·
(

4
i

)
· 2−32·i. (6)

Let x, y be two random elements with x 6= y. Assume there exists I ⊆ {0, 1, 2, 3} such
that x⊕ y ∈MI and x⊕ y /∈ML. The probability p|J|,|I| that there exists J ⊆ {0, 1, 2, 3}
- with |J | = l fixed - such that R(x)⊕R(y) ∈MJ is well approximated by

p|J|,|I| ≡ Prob(∃J |J | = l s.t. R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) =

= (−1)|J| ·
3∑

i=4−|J|

(−1)i ·
(

4
i

)
· 28·i·|I|·(|J|−4).

(7)

Assume that for each I ⊆ {0, 1, 2, 3} x ⊕ y /∈ MI . Then, the probability p̂|J|,3 that
∃J ⊆ {0, 1, 2, 3} with |J | = l fixed such that R(x)⊕R(y) ∈MJ is well approximated by

p̂|J|,3 ≡ Prob(∃J s.t. R(x)⊕R(y) ∈MJ |x⊕ y /∈MI ∀I) =
p|J| − p|J|,3 · p3

1− p3
. (8)

Finally, assume that for each I ⊆ {0, 1, 2, 3} x⊕ y /∈MI . Then, the probability that
∃J ⊆ {0, 1, 2, 3} with |J | = l fixed and with |I|+ |J | ≤ 4 such that R2(x)⊕R2(y) ∈MJ

is well approximated by

p̃|J|,3 ≡ Prob(∃J s.t. R2(x)⊕R2(y) ∈MJ |x⊕ y /∈MI) =
p|J|

1− p3
. (9)

Note that the inequality8 p̂|J|,3 < p|J| < p̃|J|,3 holds for each J .
A complete proof of the previous probabilities is provided in App. A. To give an

example, if |I| = |J | = 3 the previous probabilities are well approximated by

p3 = 2−30−3 · 2−63 + 2−94, p3,3 = 2−22 − 3 · 2−47 + 2−70

p̂3,3 = 2−30 − 2043 · 2−63 + 390661 · 2−94 + ...

where p3 and p̂3,3 are usually approximated by 2−30 and p3,3 by 2−22.

4 5-round Secret-Key Distinguisher proposed in [GRR17a]
The starting point of our secret-key distinguisher is the property proposed and exploited
in [GRR17a] to set up the first 5-round secret-key distinguisher of AES (independent of
the secret key). For this reason, in this section we recall the main idea of that paper, and
we refer to [GRR17a] for a complete discussion.

Consider a set of plaintexts in the same coset of the diagonal space DI , that is DI ⊕ a
for a certain a ∈ D⊥I , and the corresponding ciphertexts after 5 rounds. The 5-round AES

8Since p|J|,3 > p|J|, it follows that p̂|J|,3 ≡
p|J|−p|J|,3·p3

1−p3
<

p|J|−p|J|·p3
1−p3

= p|J|.
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distinguisher proposed in [GRR17a] exploits the fact that the number of different pairs
of ciphertexts that belong to the same coset of MJ for a fixed J is always a multiple
of 8 with probability 1 independently of the secret key, of the details of the S-Box and
of the MixColumns matrix. In more details, given a set of plaintexts/ciphertexts (pi, ci)
for i = 0, ..., 232·|I| − 1 (where all the plaintexts belong to the same coset of DI), the
number of different pairs9 of ciphertexts (ci, cj) that satisfy ci ⊕ cj ∈ MJ for a certain
fixed J ⊂ {0, 1, 2, 3} has the special property to be a multiple of 8 with prob. 1. Since for
a random permutation the same number doesn’t have any special property (e.g. it has
the same probability to be even or odd), this allows to distinguish 5-round AES from a
random permutation.

Since each coset of DI is mapped into a coset ofMI after 2 rounds with prob. 1 - see
Theorem 1 - and viceversa, in order to prove the result given in [GRR17a] it is sufficient
to show that given plaintexts in the same coset ofMI , then the number of collisions after
one round in the same coset of DJ is a multiple of 8 (see [GRR17a] for details).

Theorem 2. LetMI and DJ be the subspaces defined as before for certain fixed I and J
with 1 ≤ |I| ≤ 3 . Given an arbitrary coset of MI - that is MI ⊕ a for a fixed a ∈ M⊥I ,
consider all the 232·|I| plaintexts and the corresponding ciphertexts after 1 round, that
is (pi, ci) for i = 0, ..., 232·|I| − 1 where pi ∈ MI ⊕ a and ci = R(pi). The number n of
different pairs of ciphertexts (ci, cj) for i 6= j such that ci ⊕ cj ∈ DJ (i.e. ci and cj belong
to the same coset of DJ)

n := |{(pi, ci), (pj , cj) | ∀pi, pj ∈MI ⊕ a, pi < pj and ci ⊕ cj ∈ DJ}|. (10)

satisfies the property to be a multiple of 8 with prob. 1, i.e. ∃n′ ∈ N s.t. n = 8 · n′.

We refer to [GRR17a] for a detailed proof, and we limit here to recall and to highlight
the main concepts that are useful for the following.

Without loss of generality (w.l.o.g.), we focus on the case |I| = 1 and we assume
I = {0}. Given two texts p1 and p2 inM0⊕a, by definition there exist x1, y1, z1, w1 ∈ F28

and x2, y2, z2, w2 ∈ F28 such that pi ≡ (xi, yi, zi, wi) for i = 1, 2 - see (5). As first thing,
we recall that if 1 ≤ r ≤ 3 generating variables are equal, then the two texts can not belong
to the same coset of DJ for |J | ≤ r after one round - this is due to the branch number of
the MixColumns matrix (which is 5).

Case: Different Generating Variables. If the two elements p1 and p2 defined as
before have different generating variables (e.g. x1 6= x2, y1 6= y2, ...), then they can belong
to the same coset of DJ for a certain J with |J | ≥ 1 after one round. It is possible to prove
that p1 ≡ (x1, y1, z1, w1) and p2 ≡ (x2, y2, z2, w2) satisfy R(p1)⊕R(p2) ∈ DJ for |J | ≥ 1
if and only if others pairs of texts generated by different combinations of the previous
variables have the same property. A formal statement is given in Lemma 2.

Definition 8. Let X be a fixed coset of CI or MI for I ∈ {0, 1, 2, 3} with |I| = 1. Let
p and q be two different elements in X ⊕ a - a coset of X - with p ≡ (p0, p1, p2, p3) and
q ≡ (q0, q1, q2, q3), such that pi 6= qi for each i = 0, ..., 3. Moreover, let Rr(p) and Rr(q)
be the corresponding ciphertexts after r rounds.

We define the set SX⊕ap,q as the set of eight couples (p̂i, Rr(p̂i)) and (q̂i, Rr(q̂i)) where
p̂i, q̂i ∈ X ⊕ a for i = 1, ..., 8 are respectively generated by the following combinations of

9Two pairs (ci, cj) and (cj , ci) are considered equivalent.
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variables

1. (p0, p1, p2, p3) and (q0, q1, q2, q3); 2. (q0, p1, p2, p3) and (p0, q1, q2, q3);
3. (p0, q1, p2, p3) and (q0, p1, q2, q3); 4. (p0, p1, q2, p3) and (q0, q1, p2, q3);
5. (p0, p1, p2, q3) and (q0, q1, q2, p3); 6. (q0, q1, p2, p3) and (p0, p1, q2, q3);
7. (q0, p1, q2, p3) and (p0, q1, p2, q3); 8. (q0, p1, p2, q3) and (p0, q1, q2, p3).

Lemma 2. Let SMI⊕a
p,q be an arbitrary set defined as in Def. 8

SMI⊕a
p,q ≡ {[(p1

i , c
1
i ≡ R(p1

i )), (p2
i , c

2
i ≡ R(p2

i ))]i ∀i = 1, ..., 8}.

For each fixed J ⊆ {0, 1, 2, 3}, only on of the two following events can happen:
• c1

i ⊕ c2
i /∈ DJ for all i = 1, ..., 8;

• c1
i ⊕ c2

i ∈ DJ for all i = 1, ..., 8.
In other words, given a set SMI⊕a

p1,p2 , consider the eight couples of two (plaintext, ci-
phertext) pairs (p1

i , c
1
i ) and (p2

i , c
2
i ) for i = 1, ..., 8 in such set. Two ciphertexts c1 and c2

belong (or not) to the same coset of DJ for a certain J if and only if the ciphertexts of all
the other couples in the set SMI⊕a

p1,p2 have the same property.

Case: Equal Generating Variables. Similar definitions of the set SMI⊕a
p,q can be

given if one or two variables are equal. For the following, we focus on the case in which
two variables are equal (e.g. x1 = x2 and y1 = y2).
Definition 9. Let X be a fixed coset of CI orMI for I ∈ {0, 1, 2, 3} with |I| = 1. Let p
and q be two different elements in a coset of X , that is X ⊕ a, with p ≡ (p0, p1, p2, p3) and
q ≡ (q0, q1, q2, q3), s.t. pi = qi for i = 0, 1 and pi 6= qi for i = 2, 3 (the set ZX⊕ap,q is defined
in a similar way for the other cases). Moreover, let Rr(p) and Rr(q) be the corresponding
ciphertexts after r rounds.

We define the set ZX⊕ap,q as the set of 217 couples (p̂i, Rr(p̂i)) and (q̂i, Rr(q̂i)) where
p̂i, q̂i ∈ X ⊕ a for i = 1, ..., 217 are respectively generated by the following combinations of
variables

1. (z0, z1, p2, p3) and (z0, z1, q2, q3); 2. (z0, z1, q2, p3) and (z0, z1, p2, q3);

where z0 and z1 can take any possible value in F28 .
As before, it is possible to prove the following Lemma (see [GRR17a] for details).

Lemma 3. Let ZMI⊕a
p,q be an arbitrary set defined as in Def. 9

ZMI⊕a
p,q ≡ {[(p1

i , c
1
i ≡ R(p1

i )), (p2
i , c

2
i ≡ R(p2

i ))]i ∀i = 1, ..., 217}.

For each fixed J ⊆ {0, 1, 2, 3}, only on of the two following events can happen:
• c1

i ⊕ c2
i /∈ DJ for all i = 1, ..., 217;

• c1
i ⊕ c2

i ∈ DJ for all i = 1, ..., 217.
In other words, given a set ZMI⊕a

p1,p2 , consider the 217 couples of two (plaintext, ciphertext)
pairs (p1

i , c
1
i ) and (p2

i , c
2
i ) for i = 1, ..., 217. Two ciphertexts c1 and c2 belong (or not) to

the same coset of DJ for a certain J if and only if the ciphertexts of all the other couples
in the set ZMI⊕a

p1,p2 have the same property. It follows that for the case x1 = x2, y1 = y2,
z1 6= z2 and w1 6= w2 or analogous (i.e. two variables that generate p1 and p2 are equal),
the number of collisions must be a multiple of 217 (the cardinality of each set ZMI⊕a

p1,p2 is
217).

For completeness, in the case in which two plaintexts p1 and p2 have exactly one equal
generating variable, the set T - analogous of the sets S and Z - can be defined.
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Definition 10. Let X be a fixed coset of CI orMI for I ∈ {0, 1, 2, 3} with |I| = 1. Let
p and q be two different elements in a coset of X , that is X ⊕ a, with p ≡ (p0, p1, p2, p3)
and q ≡ (q0, q1, q2, q3), such that p0 = q0 and pj 6= qj for each j = 1, 2, 3 (the set T X⊕ap,q

is defined in a similar way for the other cases). Moreover, let Rr(p) and Rr(q) be the
corresponding ciphertexts after r rounds.

We define the set T X⊕ap,q as the set of 210 couples (p̂i, Rr(p̂i)) and (q̂i, Rr(q̂i)) where
p̂i, q̂i ∈ X ⊕ a for i = 1, ..., 1024 are respectively generated by the following combinations
of variables

1. (z0, p1, p2, p3) and (z0, q1, q2, q3); 2. (z0, q1, p2, p3) and (z0, p1, q2, q3);
3. (z0, p1, q2, p3) and (z0, q1, p2, q3); 4. (z0, p1, p2, q3) and (z0, q1, q2, p3).

where z0 can take any possible value in F28 .

We refer to App. D.2 for all the details about this case.

Finally, given texts in the same cosets of CI orMI for I ⊆ {0, 1, 2, 3}, the number of
couples of texts with n equal generating variable(s) for 0 ≤ n ≤ 3 is given by(

4
n

)
· 232·|I|−1 · (28·|I| − 1)4−n (11)

as proved in App. A.

Case |I| = 2 and |I| = 3. For the following, we mention that similar considerations
can be done for the cases |I| ≥ 2. W.l.o.g consider |I| = 2 and assume I = {0, 1}
(the other cases are analogous). Given two texts p1 and p2 in the same coset of MI ,
that is MI ⊕ a for a given a ∈ M⊥I , there exist x0, x1, y0, y1, z0, z1, w0, w1 ∈ F28 and
x′0, x

′
1, y
′
0, y
′
1, z
′
0, z
′
1, w

′
0, w

′
1 ∈ F28 such that:

p1 = a⊕MMC ·


x0 y0 0 0
x1 0 0 w0
0 0 z0 w1
0 y1 z1 0

 , p2 = a⊕MMC ·


x′0 y′0 0 0
x′1 0 0 w′0
0 0 z′0 w′1
0 y′1 z′1 0

 .
As for the case |I| = 1, the idea is to consider all the possible combinations of the variables
x ≡ (x0, x1), y ≡ (y0, y1), z ≡ (z0, z1), w ≡ (w0, w1) and x′ ≡ (x′0, x′1), y′ ≡ (y′0, y′1), z′ ≡
(z′0, z′1), w′ ≡ (w′0, w′1). In other words, the idea is to consider variables in F2

28 ≡ F28 × F28

and not in F28 . For |I| = 3, the idea is similar, working with variables in F3
28 . Note that

the definitions of SXp,q, ZXp,q and T Xp,q given before can be easily adapted to all these cases.

Why is it (rather) hard to set up key-recovery attacks that exploit such distinguisher?

Given this 5-round distinguisher, a natural question regards the possibility to exploit it in
order to set up a key-recovery attack on 6-round AES-128 which is better than a brute
force one. A possible way is the following. Consider 232 chosen plaintexts in the same coset
of a diagonal space Di, and the corresponding ciphertexts after 6 rounds. A possibility
is to guess the final key, decrypt the ciphertexts and check if the number of collisions in
the same coset ofMJ is a multiple of 8. If not, the guessed key is wrong. However, since
a coset of MJ is mapped into the full space, it seems hard to check this property one
round before without guessing the entire key. It follows that it is rather hard to set up
an attack different than a brute force one that exploits directly the 5-round distinguisher
proposed [GRR17a]. For comparison, note that such a problem doesn’t arise for the other
distinguishers up to 4-round AES (e.g. the impossible differential or the integral ones), for
which it is sufficient to guess only part of the secret key in order to verify if the required
property is satisfied or not.
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5 A New 4-round Secret-Key Distinguisher for AES
As first thing, we re-exploit the property proposed in [GRR17a] to set up a new 4-round
secret-key distinguisher for AES. Before we go into the details, we present the general idea.

As we have just seen, given 232 plaintexts in the same coset of MI for |I| = 1 and
the corresponding ciphertexts after 1 round, that is (pi, ci) for i = 0, ..., 232 − 1 where
pi ∈MI ⊕ a and ci = R(pi), then the number n of different pairs of ciphertexts (ci, cj) for
i 6= j such that ci ⊕ cj ∈ DJ defined as in (10) is always a multiple of 8. This is due to the
fact that if one pair of texts belong to the same coset of DJ after one round, then other
pairs of texts have the same property. Thus, consider a pair of plaintexts p1 and p2 such
that the corresponding texts after one round belong (or not) to the same coset of DJ . As
we have seen, there exist other pairs of plaintexts p̂1 and p̂2 whose ciphertexts after one
round have the same property. The pairs (p1, p2) and (p̂1, p̂2) are not independent in the
sense that the variables that generate the first pair of texts are the same that generate the
other pairs, but in a different combination. The idea is to exploit this property in order to
set up new distinguishers for round-reduced AES. That is, instead of limiting to count
the number of collisions and check that it is a multiple of 8, the idea is to check if these
relationships between the variables that generate the plaintexts (whose ciphertexts belong
or not the same coset of a given subspace) hold or not.

A New 4-round Secret-Key Distinguisher for AES. Given the subspace C0 ∩
D0,3 ≡ 〈e0,0, e1,0〉 ⊆ C0, consider two plaintexts p1 and p2 in the same coset of C0∩D0,3⊕a
generated by p1 ≡ (z1, w1) and p2 ≡ (z2, w2). For 4-round AES and for each fixed
J ⊆ {0, 1, 2, 3}, the following event holds with probability 1

R4(p1)⊕R4(p2) ∈MJ if and only if R4(p̂1)⊕R4(p̂2) ∈MJ

where p̂1, p̂2 ∈ D0,3 ∩ C0 ⊕ a are generated by p̂1 ≡ (z1, w2) and p̂2 ≡ (z2, w1). For a
random permutation, this happens with prob. 2−32·|J| (i.e strictly less than 1). It follows
that this probability can be used to set up a 4-round distinguisher.

Why this happens? Let p1 and p2 be two texts in the same coset of C0 ∩ D0,3 ⊕ a
for fixed a ∈ (C0 ∩ D0,3)⊥, generated by p1 ≡ (z1, w1) and p2 ≡ (z2, w2), that is pi ≡
a⊕ zi · e0,0⊕wi · e1,0. After one round, the two texts belong to the same coset ofM0∩C0,3
and they are equal to

R(p1) ≡ b⊕ x1 ·MC(e0,0)⊕ y1 ·MC(e1,3), R(p2) ≡ b⊕ x2 ·MC(e0,0)⊕ y2 ·MC(e1,3)

for a certain b ∈M⊥0 , where

xi = S-Box(zi ⊕ a0,0) yi = S-Box(wi ⊕ a1,0), for i = 1, 2. (12)

Due to Lemma 2, R2(p1) and R2(p2) belong in the same coset of DJ (i.e. R2(p1) ⊕
R2(p2) ∈ DJ) if and only if R(q̂1) and R(q̂2) belong in the same coset of DJ , where
q̂1, q̂2 ∈ C0,3 ∩M0 ⊕ b are generated by q̂1 ≡ (x1, y2) and q̂2 ≡ (x2, y1):

q̂1 ≡ b⊕ x1 ·MC(e0,0)⊕ y2 ·MC(e1,3) q̂2 ≡ b⊕ x1 ·MC(e0,0)⊕ y2 ·MC(e1,3).

Due to the relationships between x1, y1, x2, y2 and z1, w1, z2, w2 previously defined (12), it
follows that there exist two texts p̂1 = R−1(q̂1), p̂2 = R−1(q̂2) ∈ D0,1 ∩C0⊕ a generated by

p̂1 = R−1(q̂1) ≡ (z1, w2) and p̂2 = R−1(q̂2) ≡ (z2, w1) s.t. R2(p̂1)⊕R2(p̂2) ∈ DJ .

Finally, since Prob(R2(s) ⊕ R2(t) ∈ MJ | s ⊕ t ∈ DJ) = 1 - see (2), it is possible to set
up the distinguisher on 4 rounds. Thus, the basic idea of the distinguisher is to exploit
the fact that two texts p1 and p2 belong to the same coset of DJ (for J fixed) after two
rounds if and only if other two texts p̂1 and p̂2 in C0 ∩ D0,3 ⊕ a have the same property.
In particular, the idea is to exploit the fact that the relationships that hold between the
variables that generate p1 and p2 and the variables that generate p̂1 and p̂2 are known.
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5.1 A New 4-round Secret-Key Distinguisher for AES - Details
Given a coset of C0 ∩ D0,3 - that is C0 ∩ D0,3 ⊕ a for a fixed a, the idea is to construct all
the 215 · (216 − 1) ' 231 possible different couples of texts. For our goal, we eliminate all
the couples of texts for which one of the two variables that generate the two plaintexts is
equal. Then, one constructs all the possible sets10 SC0∩D0,1⊕a defined in a similar way of
Def. 8, that is

SC0∩D0,3⊕a ≡ {[(p1, c1), (p2, c2)]; [(p̂1, ĉ1), (p̂2, ĉ2)] | ∀p1, p2, p̂1, p̂2 ∈ C0 ∩ D0,3 ⊕ a
s.t. p1 ≡ (z1, w1) , p2 ≡ (z2, w2), p̂1 ≡ (z1, w2), p̂2 ≡ (z2, w1)},

(13)

where the ciphertexts are the 4-round encryption of the plaintexts, that is c = R4(p).
Let J fixed with |J | = 3. By previous observations on AES permutation - Lemma

2, it follows that for each set SC0∩D0,3⊕a ≡ {[(p1, c1), (p2, c2)]; [(p̂1, ĉ1), (p̂2, ĉ2)]} only one
of the two following events can happen: (1) c1 ⊕ c2 ∈ MJ and ĉ1 ⊕ ĉ2 ∈ MJ or (2)
c1 ⊕ c2 /∈ MJ and ĉ1 ⊕ ĉ2 /∈ MJ . On the other hand, for a random permutation the
event c1 ⊕ c2 ∈MJ and ĉ1 ⊕ ĉ2 /∈MJ (or viceversa) is also possible, and it occurs with
probability 2 · 2−32·(4−|J|) · (1 − 2−32·(4−|J|)), which is approximately equal to 2−31 for
the case |J | = 3 fixed (it is higher for the other cases |J | ≤ 2). The idea is to exploit
this fact to distinguish a random permutation from 4-round AES one. Moreover, since
this distinguisher is based on Theorem 1 which holds also in the reverse direction (see
[GRR17a] for details), an equivalent distinguisher can be set up for 4-round AES in the
decryption mode, using chosen ciphertexts instead of plaintexts.

Data and Computational Cost

Since a coset of C0∩D0,3 contains 216 plaintexts, it is possible to construct 215·(216−1) ' 231

different pairs, and 214 · (216 − 1) ' 230 different sets SC0∩D0,3⊕a as defined in (13). For
our goal, we consider only the sets SC0∩D0,3⊕a ≡ {[(p1, c1), (p2, c2)]; [(p̂1, ĉ1), (p̂2, ĉ2)]} such
that the two plaintexts have no common variables (i.e. if p1 ≡ (z1, w1) and p2 ≡ (z2, w2),
then z1 6= z2 and w1 6= w2). Since the probability that one of the two variables is equal is
2 · 2−8 = 2−7, the number of sets SC0∩D0,3⊕a with elements generated by different variables
is approximately (230 − 214) · (1− 2−7) = 230 − 223 − 214 + 27 ' 229.989.

In order to distinguish 4-round AES from a random permutation, for each one of these
sets, one has to check that c1⊕ c2 ∈MJ if and only if ĉ1⊕ ĉ2 ∈MJ . If this property is not
satisfied for at least one set, then it is possible to conclude that the analyzed permutation
is a random one.

What is the probability that c1 ⊕ c2 ∈ MJ and ĉ1 ⊕ ĉ2 /∈ MJ - or viceversa - for a
certain J ⊂ {0, 1, 2, 3} with |J | = 3? By simple computation and since there are 4 different
J with |J | = 3, this happens with an approximated probability of

2 · p3 · (1− 2−32) ' 2 · 4 · 2−32 · (1− 2−32) ' 2−29,

where p3 is defined as in (6). As a result, in order to distinguish a random permutation from
an AES one with probability higher than pr, it is sufficient that at least one set SC0∩D0,3⊕a

exists for which the previous property is not satisfied with probability higher than pr in
order to recognize the random permutation. It follows that one needs approximately n
different sets SC0∩D0,3⊕a such that pr ≥ 1− (1− 2−29)n, that is

n ≥ log(1− pr)
log(1− 2−29) ≈ −229 · log(1− pr).

10Note that
⋃
p,q
SC0∩D0,3⊕a
p,q ( C0 ∩ D0,3 ⊕ a, since z1 = z2 or w1 = w2 is not allowed.
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Data: 2 cosets of D0,3 ∩ C0 (e.g. D0,3 ∩ C0 ⊕ ai for a0, a1 ∈ (D0,3 ∩ C0)⊥) and
corresponding ciphertexts after 4 rounds

Result: 0 ≡ Random permutation or 1 ≡ 4-round AES - Prob. 95%
for each coset of D0,3 ∩ C0 do

for each I ⊆ {0, 1, 2, 3} with |I| = 3 do
let (pi, ci) for i = 0, ..., 216 − 1 be the 216 (plaintexts, ciphertexts) of
D0,3 ∩ C0 ⊕ ai;

re-order this set of elements w.r.t. the partial order � described in Def. 11
s.t. ck � ck+1 for each k; // � depends on I
i← 0;
while i < 216 − 1 do

j ← i;
while cj ⊕ cj+1 ∈MI do

j ← j + 1;
end
for each k from i to j do

for each l from k + 1 to j do
construct the corresponding set SD0,3∩C0⊕ai

pk,pl
as defined in Def. 8 -

Eq. (13);
for each couple of (plaintexts, ciphertexts)
{(p̂1, ĉ1), (p̂2, ĉ2)} ∈ SD0,3∩C0⊕ai

pk,pl
do

if ĉ1 ⊕ ĉ2 /∈MI then
return 0. // Random permutation

end
end

end
end
i← j + 1;

end
end

end
return 1. // 4-round AES permutation - Prob. 95%

Algorithm 1: Secret-Key Distinguisher for 4-round of AES.

For pr = 95%, one needs approximately n ≥ 231.996 different sets SC0∩D0,3⊕a, that is ap-
proximately 2 different cosets C0∩D0,3 for a total data cost of 216 ·2 = 217 chosen plaintexts.

Computational Cost. We limit here to report the computational costs of the
distinguisher, and we refer to App. B for all the details. In order to implement the
distinguisher, the idea is to re-order the ciphertexts using a particular partial order � as
defined in Def. 11 (recalled in the following - see also [GRR17a]), and to work in the way
described in Algorithm 1. Instead of constructing all the sets, the basic idea is to construct
only the sets S of the couples for which the two ciphertexts belong in the same coset of
MJ . This method allows to minimize the computational cost, which is well approximated
by 223.09 table look-ups, or approximately 216.75 four-round encryptions (assuming11 20
table look-ups ≈ 1 round of encryption).

11We highlight that even if this approximation is not formally correct - the size of the table of an S-Box
look-up is lower than the size of the table used for our proposed distinguisher, it allows to give a comparison
between our distinguishers and the others currently present in the literature. This approximation is largely
used in the literature.
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Definition 11. Let I ⊂ {0, 1, 2, 3} with |I| = 3 and let l ∈ {0, 1, 2, 3}\I. Let t1, t2 ∈ F4×4
28

with t1 6= t2. The text t1 is less or equal than the text t2 with respect to the partial order
� (i.e. t1 � t2) if and only if one of the two following conditions is satisfied (the indexes
are taken modulo 4):

• there exists j ∈ {0, 1, 2, 3} s.t. MC−1(t1)i,l−i = MC−1(t2)i,l−i for all i < j and
MC−1(t1)j,l−j < MC−1(t2)j,l−j ;

• MC−1(t1)i,l−i = MC−1(t2)i,l−i for all i = 0, ...., 3, and MC−1(t1) < MC−1(t2)
where < is defined in Def. 6.

Practical Verification

Using a C/C++ implementation12, we have practically verified the distinguisher just
described. In particular, we have verified the distinguisher both for “real” AES and a
small-scale variant of AES, as presented in [CMR05]. While for “real” AES each word is
composed of 8 bits, in the small-scale variant each word is composed of 4 bits (we refer to
[CMR05] for a complete description of this small-scale AES). We highlight that Theorem
2 holds exactly in the same way also for this small-scale variant of AES, since the previous
argumentation is independent of the fact that each word of AES is of 4 or 8 bits.

The distinguisher just presented works in the same way for real AES and small scale
AES, and it is able to distinguish AES from a random permutation using 217 chosen
plaintexts in the first case and 29 in the second one (i.e. 2 cosets of C0 ∩D0,3) as expected.
For real AES, while the theoretical computational cost is of 223 table look-ups, the practical
one is on average 222 in the case of a random permutation and 224 in the case of an AES
permutation. We emphasize that for a random permutation, it is sufficient to find one
set SCi⊕a that doesn’t satisfy the required properties in order to recognize the random
permutation. In the case of the AES permutation, the difference between the theoretical
and the practical cases (i.e. a factor 2) can be justified by the fact that the cost of the
merge sort algorithm is O(n · logn) and by the definition of the big O notation13.

For the small-scale AES, using 2 different initial cosets of C0 ∩ D0,3, the theoretical
computational cost is well approximated by 2 · 4 · 28 · (log 28 + 1) ' 214.2 table look-ups.
The practical cost is approximately 213.5 for the case of a random permutation and 215 for
the AES case.

5.2 Comparison with Other 4-round Secret-Key Distinguishers
Before we go on, we highlight the major differences with respect to the other 4-round AES
secret-key distinguishers present in the literature. Omitting the integral one (which exploits
a completely different property), we focus on the impossible and the truncated differential
distinguishers, polytopic cryptanalysis and on the distinguisher recently proposed in
[GRR17a] adapted - in a natural way - to the 4-round case.

The impossible differential distinguisher is based on Prop. 1, that is it exploits the
property thatMI ∩ DJ = {0} for |I|+ |J | ≤ 4. In our case, we consider plaintexts in the
same coset of C0 ∩ DI ⊆ DI with I = {0, 1} and looks for collisions inMJ with |J | = 3.
Since |I|+ |J | = 5, the property exploited by the impossible differential distinguisher can
not be applied.

The truncated differential distinguisher has instead some aspects in common with our
distinguisher. In this case, given pairs of plaintexts with certain difference on certain bytes
(i.e. that belong to the same coset of a subspace X ), one considers the probability that the
corresponding ciphertexts belong to the same coset of a subspace Y. For 2-round AES it

12The source codes of the distinguishers/attacks are available at https://github.com/Krypto-iaik/
Distinguisher_5RoundAES

13A similar difference among the theoretical and the practical cases was found also in [GRR17a].
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is possible to exploit truncated differential trails with probability 1, while for the 3-round
case there exist truncated differential trails with probability lower than 1 but higher than
for the random case (in both cases, X ≡ DI and Y ≡MJ ). To the best of our knowledge,
no truncated differential trails with probability higher than 0 (i.e. no impossible differential
trails) on 4 or more rounds AES exist in literature. Our proposed distinguisher works in
a similar way and exploits a similar property. However, instead of working with a single
couple of texts, in our distinguisher one considers set of 2 “non-independent” couples of
texts. In particular, while in a classical truncated differential distinguisher one focuses
on a single couple of two (plaintexts, ciphertexts) pairs independently of the others, one
considers sets S of 2 - or more generally N ≥ 2 - couples of two (plaintexts, ciphertexts)
pairs and one exploits the relationships that hold among the couples of texts that belong
to the same set S.

Polytopic cryptanalysis [Tie16] has been introduced by Tiessen at Eurocrypt 2016, and
it can be viewed as a generalization of standard differential cryptanalysis. Consider a set
of d ≥ 2 couples of plaintexts (p0, p0 ⊕ α1), (p0, p0 ⊕ α2), ...(p0, p0 ⊕ αd) with one plaintext
in common (namely p0), called d-poly. The idea of polytopic cryptanalysis is to exploit
the probability that the input set of differences α ≡ (α1, α2, ..., αd) is mapped into an
output set of differences β ≡ (β1, β2, ..., βd) after r rounds. If this probability14 - which
depends on the S-Box details - is different than the corresponding probability in the case
of a random permutation, it is possible to set up distinguishers or key-recovery attacks.
Impossible polytopic cryptanalysis focuses on the case in which the previous probability
is zero. In [Tie16], an impossible 8-polytopic is proposed for 2-round AES, which allows
to set up key-recovery attacks on 4- and 5-round AES. Our proposed distinguisher works
in a similar way, since also in our case we consider set of “non-independent” couples of
texts and we focus on the input/output differences. However, instead to work with a set of
couples of plaintexts with one plaintext in common, we consider set of couples of texts for
which particular relationships between the generating variables of the texts hold. Moreover,
instead to consider the probability that “generic” input differences α are mapped into
output differences β, the way in which the texts are divided in sets guarantees that a
particular relation holds on the ciphertexts of the same set with prob. 1 after 4-round
(that is, the two ciphertexts of all couples satisfy/don’t satisfy an output - truncated -
difference), independently of the S-Box details.

Finally, the distinguisher proposed in [GRR17a] can be adapted to the 4 rounds case,
e.g. considering plaintexts in the same coset of CJ , counting the number of collisions of the
ciphertexts in the same coset ofMI and checking if it is (or not) a multiple of 8. Since our
distinguisher exploits more information (i.e. the relationships that hold among the couples
in the same set S beside the fact that the previous number is a multiple of 8), its data and
computational costs are lower than [GRR17a], that is 217 chosen plaintexts/ciphertexts
instead of 233 and approximately 223 table look-ups instead of 240.

5.3 New Key-Recovery Attack on 5-round AES

The previous 4-round secret-key distinguisher can be used as starting point to set up a
new (practical verified) key-recovery attack on 5-round AES.

W.l.o.g. consider two plaintexts p1 and p2 in the same coset of D0, e.g. D0 ⊕ a
for a ∈ D⊥0 , such that pi = xi · e0,0 ⊕ yi · e1,1 ⊕ zi · e2,2 ⊕ wi · e3,3 ⊕ a or equivalently

14We mention that the probability of polytopic trails is usually much lower than the probability of trails
in differential cryptanalysis, that is simple polytopic cryptanalysis can not in general outperform standard
differential cryptanalysis - see Sect. 2 of [Tie16] for details.
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Data: 1 coset of D0 (e.g. D0 ⊕ a for a ∈ D⊥0 ) and corresponding ciphertexts after 5
rounds - more generally a coset of Di for i ∈ {0, 1, 2, 3}

Result: 4 bytes of the secret key - (k0,0, k1,1, k2,2, k3,3)
fix I ⊆ {0, 1, 2, 3} with |I| = 3 - e.g. I = {0, 1, 2};
let (pi, ci) for i = 0, ..., 232 − 1 be the 232 (plaintexts, ciphertexts) of D0 ⊕ a;
re-order - and stores five different times - this set of elements w.r.t. the partial order
� described in Def. 11 s.t. ci � ci+1 for each i; // � depends on I
do

find indexes j and h s.t. cj ⊕ ch ∈MI ; // look for h = j + 1 due to �
for each one of the 232 combinations of k̂ = (k0,0, k1,1, k2,2, k3,3) do

(partially) compute q1 = Rk̂(pj) and q2 = Rk̂(ph);
construct the set SR(D0⊕a)

p1,p2 as defined in Def. 8;// remember that the set

SR(D0⊕a)
p1,p2 ≡ SC0⊕a

q1,q2 depends on k̂
f lag ← 0;
for each couple of (plaintexts, ciphertexts) {(p̂1, ĉ1), (p̂2, ĉ2)} ∈ SR(D0⊕a)

q1,q2 do
if ĉ1 ⊕ ĉ2 /∈MI then

flag ← 1;
next combination of (k0,0, k1,1, k2,2, k3,3);

end
end
if flag = 0 then

identify (k0,0, k1,1, k2,2, k3,3) as candidate of the key;
end

end
while more than one candidate of the key is found - Repeat the procedure for
different indexes j, h (and I) // it is usually not necessary - only one
candidate is found;
return (k0,0, k1,1, k2,2, k3,3)

Algorithm 2: 5-round AES Key-Recovery Attack. The attack exploits the 4-round
distinguisher presented in Sect. 5. For sake of simplicity, in this pseudo-code we limit to
describe the attack of 4 bytes - 1 diagonal of the secret key. Exactly the same attack can
be used to recover the entire key.

pi ≡ (xi, yi, zi, wi). By Theorem 1, there exists b ∈ C⊥0 such that for i = 1, 2

R(pi) =


x̂i 0 0 0
ŷi 0 0 0
ẑi 0 0 0
ŵi 0 0 0

⊕ b ≡MMC ·


S-Box(xi ⊕ k0,0) 0 0 0
S-Box(yi ⊕ k1,1) 0 0 0
S-Box(zi ⊕ k2,2) 0 0 0
S-Box(wi ⊕ k3,3) 0 0 0

⊕ b,
i.e. R(pi) ≡ (x̂i, ŷi, ẑi, ŵi) ≡ x̂i · e0,0 ⊕ ŷi · e1,0 ⊕ ẑi · e2,0 ⊕ ŵi · e3,0 ⊕ b. As we are going
to show, it is possible to filter wrong guessed key of the first round by exploiting the
previous distinguisher. Given plaintexts in the same coset of D0, consider two (plaintexts,
ciphertexts) pairs (p1, c1) and (p2, c2) such that the two ciphertexts belong to the same
coset ofMJ for J with |J | = 3 after five-round, i.e. p1 ⊕ p2 ∈ D0 and c1 ⊕ c2 ∈MJ . The
idea of the attack is simply to guess 4 bytes of the first diagonal of the secret key k, that
is ki,i for each i ∈ {0, 1, 2, 3}, (partially) compute Rk(p1) and Rk(p2) and construct the
set SC0⊕b

R(p1),R(p2). As example, the couple (p̂1, ĉ1) and (p̂2, ĉ2) where p̂1 and p̂2 satisfy

R(p̂i) = x̂(i+1) mod 2 · e0,0 ⊕ ŷi · e1,0 ⊕ ẑi · e2,0 ⊕ ŵi · e3,0 ⊕ b, (14)

belongs to such set (analogous for the other cases/combinations). We emphasize that
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the way in which the couples are divided in the sets S depends on the guessed key.
Thus, due to the previous 4-round distinguisher - Lemma 2, for the right key the set15

SC0⊕b
R(p1),R(p2) ≡ S

R(D0⊕a)
R(p1),R(p2) ≡ {[(p

1
i , c

1
i ), (p2

i , c
2
i )]i=1,...,8} has the property that c1

i ⊕c2
i ∈MJ

if and only if c1
j ⊕ c2

j ∈ MJ for each i, j = 1, ..., 8 with prob. 1. In other words, for the
right key and for all J , the two ciphertexts of all the couples in the SC0⊕b belong or not
to the same coset ofMJ (it is not possible that only some of them - not all - have this
property). If this property is not satisfied, then one can simply deduce that the guessed
key is wrong (for a wrong guessed key, the behavior is similar to the one of a random
permutation). The attack - practical verified on a small-scale AES - requires 233.6 chosen
plaintexts and has a computational cost of 233.28 five-round encryptions. The pseudo-code
of the attack is given in Algorithm 2, while all the details - included the results of our
practical tests - can be found in App. C.

Details of the Attack: Why does this attack work? First of all, since the
cardinality of a coset of DI for |I| = 1 is 232 and since Prob(t ∈MJ ) = 2−32 for |J | = 3, the
average number of collisions for each coset of DI is approximately 4·2−32 ·231 ·(232−1) ' 233

(note that there are four J with |J | = 3), so it’s very likely that two (plaintexts, ciphertexts)
pairs (p1, c1) and (p2, c2) exist such that c1 ⊕ c2 ∈MJ .

Given a pair of ciphertext c1 and c2 that belong to the same coset ofMJ , consider the
corresponding plaintexts p1 and p2 and the set SC0⊕b

R(p1),R(p2) of 8 couples defined as in Def.
8. For a wrong key, the probability that the two ciphertexts of each one of the other 7
couples in that set belong to the same coset ofMJ for fixed J is (2−32)7 = 2−224. In other
words, the probability that a wrong key passes the test is 2−224. Indeed, remember that
(1) if the guessed key is wrong, then the couples are divided in sets S in a random way
and (2) for an AES permutation, given a set SC0⊕b

R(p1),R(p2) for which the two ciphertexts of
one couple belong to the same coset ofMJ , then the two ciphertexts of (all) the other 7
couples have the same property with prob. 1, while this is general not true for a random
permutation.

Since there are 232 − 1 wrong candidates for the diagonal of the key, the probability
that at least one of them passes the test is approximately 1− (1− 2−224)232−1 ' 2−192.
Thus, one pair of ciphertexts that belong to the same coset ofMJ and the corresponding
set SR(DI⊕a) are (largely) sufficient to discard all the wrong candidates for a diagonal of
the key. Moreover, in general only two couples of such set can be sufficient to discard all
the wrong candidates, that is it is not necessary to work with the entire set SC0⊕b

R(p1),R(p2).
Indeed, given two couples, the probability that at least one wrong key passes the test is
approximately 1−(1−2−32·2)232−1 ' 2−32 � 1, which means that all the wrong candidates
are discarded with high probability.

Our practical tests confirm these results.

Finally, we emphasize the impossibility to set up a 5-round distinguisher similar to the
one just presented in this section choosing plaintexts in the same coset of a diagonal space
DI instead of a column space CI . Indeed, given p1 and p2 as before in the same coset of
DI (instead of CI), since the key k is secret and the S-Box is non-linear, there is no way to
find p̂1 and p̂2 that satisfy (14) and to construct the set SC0⊕b

R(p1),R(p2) without guessing the
secret key.

15We abuse the notation SR(D0⊕a)
R(p1),R(p2) to denote the set SC0⊕b

R(p1),R(p2).
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6 Key-Recovery Attack on round-reduced AES-128 with a
single Secret S-Box

Recently, new key-recovery attacks on AES with a single secret S-Box have been presented
in [TKKL15] and in [GRR17b]. In the first paper, authors are able to set up attacks up to
6-round AES with identical and secret S-Box using techniques from integral cryptanalysis.
The attack procedure consists of two steps: in the first one, an attacker determines the
secret S-Box up to additive constants (that is, S-Box(x ⊕ a) ⊕ b for unknown a and b),
while in the second step, the attacker uses this knowledge to derive the whitening key up
to 28 variants. The strategy presented in [GRR17b] is instead quite different. Instead of
finding the secret S-Box up to additive constants, authors exploits a particular property of
the MixColumns matrix in order to find directly (i.e. without discovering any information
of the secret S-Box) the secret key up to 232 variants. Such a strategy is so generic that
can be applied to integral, truncated differential and impossible differential attacks. At
Crypto 2016, a similar strategy has been also exploited by Sun, Liu, Guo, Qu and Rijmen
[SLG+16] to present the first 5-round key-dependent distinguisher for AES. In this paper,
we focus on this second strategy, and we show that it can be adapted to the 5-round
AES attack proposed in Sect. 5.3. As a result, our proposed attacks have lower data
and computational costs of the ones presented in [GRR17b]. Besides that, we are able to
generalize such a strategy and to apply it to a bigger class of MixColumns matrices.

Figure 2: Strategy of the attacks on AES with a secret S-Box proposed in [GRR17b].
Starting with a subset of a coset of Di which depends on the guessed values of the secret
key, it is mapped after one round into a subset of a coset of DJ if the guessed values is
correct - case (1), or into a subset of a coset of Ci if the guessed values is wrong - case (2).
As a consequence, the subspace trails up to the 5-th round are different for the two cases,
and this allows to set up various key-recovery attacks.

6.1 A More Generic Strategy for Key-Recovery Attacks on AES-like
Ciphers with a Single Secret S-Box

The strategy proposed in [GRR17b] exploits the fact that two coefficients of each row of
the MixColumns matrix are equal. The basic idea is to choose a set of plaintexts which
depends by a guessed key. The attacker exploits the fact that when the guessed key is the
right one a certain property holds after r rounds (in other words, a differential trail over r
rounds is satisfied) with a different probability than in the case in which the guessed key
is the wrong one. We limit here to recall an example and we refer to [GRR17b] for more
details. Let MMC be the AES MixColumns matrix, where MMC

0,2 = MMC
0,3 (similar for the

other rows). Let p1 and p2 two texts such that p1
i,j = p2

i,j for each (i, j) 6= {(2, 2), (3, 3)}
and assume p1

2,2 ⊕ p1
3,3 = p2

2,2 ⊕ p2
3,3 (note that such pair of plaintexts belong to the same

coset of D0). Denote the secret key by k. If p1
2,2⊕p1

3,3 = p2
2,2⊕p2

3,3 = k2,2⊕k3,3, then after
one round the two texts belong to the same coset of C0 ∩D1,2,3 ⊆ D1,2,3 with probability 1
- case (1) of Fig. 2, otherwise they belong to the same coset of D1,2,3 only with probability
2−8 - case (2) of Fig. 2 (note that in both cases, the two texts belong to the same coset of
C0 after one round). Exploiting these different probabilities, it is possible to set up several
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differential trails on 2-, 3-, 4- and 5-round AES that have a different probabilities between
cases (1) and (2), as illustrated in Fig. 2. This allows to recover the key. As example, if
the guessed key is correct one then after 3 rounds the previous texts belong to the same
coset of M1,2,3 with probability 1, while this happens only with probability 2−8 for a
wrong guessed key. We emphasize that no information on the S-Box is recovered or used.

Beside to adapt such a strategy for the attack on 5-round AES proposed in Sect. 5.3, in
the following we present a way to generalize such a strategy for a large class of MixColumns
matrices. Instead of exploiting the fact that two elements of each row of the MixColumns
matrix MMC are equal, we show that it is possible to mount similar attacks also in the
case in which the XOR-sum of 2 or more elements of each row of MMC is equal to zero.
That is, it is possible to set up an attack also in the case in which for each row r (or for
some of them) of MMC there exists a set Jr ⊆ {0, 1, 2, 3} such that⊕

j∈Jr

MMC
r,j = 0 (15)

As an example, each row of the AES MixColumns matrix MMC satisfies this condition,
e.g.

MMC
0,0 ⊕MMC

0,1 ⊕MMC
0,2 = 0, MMC

0,i 6= MMC
0,j ∀i, j ∈ {0, 1, 2}.

As a special case, if two elements MMC
r,j and MMC

r,k of a row r are equal (that is MMC
r,j =

MMC
r,k for j 6= k), then the previous condition is obviously satisfied (vice-versa doesn’t

hold). It follows that the following strategy includes the one proposed in [GRR17b] as a
particular case.

To explain how to exploit property (15), we show how to adapt the attacks described
in [GRR17b] (just recalled) to this case. As we have already said, the idea of those attacks
is to choose a set of plaintexts Aδ which depends by a guessed key δ. When δ assumes the
“right” value (which depends on the secret key), then the set Aδ is mapped after one round
into a coset of DI for some I (where |I| ≤ 3) with probability 1, while for other values of
δ this happens only with probability strictly less than 1. Since the idea is to exploit the
same strategy, we limit here to define the set Aδ in the case in which a sum of elements of
each row of MMC is equal to zero.

Proposition 2. Let MMC be the AES MixColumns matrix such that

MMC
i,0 ⊕MMC

i,1 ⊕MMC
i,2 = 0 i = {0, 1}.

Let p1 and p2 be two texts, s.t. p1
i,j = p2

i,j for all (i, j) 6= {(0, 0), (1, 1), (2, 2)} and

p1
i,j ⊕ p1

k,l = p2
i,j ⊕ p2

k,l ∀(i, j), (k, l) ∈ {(0, 0), (1, 1), (2, 2)} and (i, j) 6= (k, l).

If p1
0,0 ⊕ p1

1,1 = p2
0,0 ⊕ p2

1,1 = k0,0 ⊕ k1,1 and p1
0,0 ⊕ p1

2,2 = p2
0,0 ⊕ p2

2,2 = k0,0 ⊕ k2,2, then
R(p1)⊕R(p2) ∈ C0 ∩ D2,3 with probability 1 (i.e. after one round, p1 and p2 belong to the
same coset of C0 ∩ D2,3). This happens with probability 2−16 in the other cases.

Proof. Note that the two plaintexts p1 and p2 belong to the same coset of D0. Since a
coset of diagonal space DI is always mapped after one round into a coset of a column
space CI , after one round they belong to the same coset of C0 with probability 1. To prove
the statement, it is sufficient to prove that [R(p1)⊕R(p2)]0,0 = [R(p1)⊕R(p2)]1,0 = 0.

By simple calculation

R(p1)0,0 =0x02 · S-Box(p1
0,0 ⊕ k0,0)⊕ 0x03 · S-Box(p1

1,1 ⊕ k1,1)⊕
⊕ S-Box(p1

2,2 ⊕ k2,2)⊕ S-Box(p1
3,3 ⊕ k3,3).

Since p1
0,0 ⊕ p1

1,1 = k0,0 ⊕ k1,1, it follows that S-Box(p1
0,0 ⊕ k0,0) = S-Box(p1

1,1 ⊕ k1,1)
and in a similar way S-Box(p1

0,0 ⊕ k0,0) = S-Box(p1
2,2 ⊕ k2,2). Since the sum of the
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first three elements is equal to zero, then R(p1)0,0 = S-Box(p1
3,3 ⊕ k3,3), and similarly

R(p2)0,0 = S-Box(p2
3,3 ⊕ k3,3). Since p1

3,3 = p2
3,3, it follows that R(p1)0,0 = R(p2)0,0. The

same argumentation holds also for R(p1)1,0 = R(p2)1,0.

This proposition can be easily generalized for a more generic MixColumns matrixMMC

for which the sum of three coefficients are equal to zero. Moreover, if the sum
⊕

j∈JM
MC
r,j

is equal to zero for more than a single row for the same J , the following Lemma follows
immediately.

Lemma 4. Assume there exist J ⊆ {0, 1, 2, 3} and r, w ∈ {0, 1, 2, 3} with r 6= w such that⊕
j∈J

MMC
r,j =

⊕
j∈J

MMC
w,j = 0.

Let p1 and p2 defined as before. It follows that if p1
j,j ⊕ p1

l,l = p2
j,j ⊕ p2

l,l = kj,j ⊕ kl,l for
each j, l ∈ J , then p1 ⊕ p2 ∈ Ck ∩ D{0,1,2,3}\{r,w} with probability 1, otherwise this happens
in general with probability 2−16.

To prove this lemma, it is sufficient to exploit the previous proposition and to observe
that if two plaintexts belong to the same coset of Ck∩D{0,1,2,3}\{r} and of Ck∩D{0,1,2,3}\{w},
then they belong to their intersections Ck ∩ D{0,1,2,3}\{r,w}.

What is the number of matrices that satisfy condition (15) with respect to the number of
matrices with two equal coefficients in each row? As we show in details in App. H.4, if we
limit to consider n×n circulant matrix with coefficients in F2m , this ratio is approximately
equal to

2n+1

n2 if the condition 2m+1 � n2 + 5 · n is fulfilled.

To give an example, for the AES case (that is m = 8 and n = 4), the number of circulant
matrices that satisfy property (15) is approximately double with respect to the number of
matrices with (at least) two equal coefficients (i.e. this ratio is well approximated by 2).

In the following, we show how to adapt the attack presented in the previous section in
the case of secret S-Box, by exploiting the fact that two coefficients of the MixColumns
matrix are equal or that the sum of three of them is equal to zero. Moreover, in App.
G.1, we show how to set up an impossible differential attack up to 5 rounds of AES that
exploits (15), which improves the impossible differential attack presented in [GRR17b].

6.2 Attack on 5-round AES with a single Secret S-Box - MixColumns
Matrix with Equal Coefficients

First of all, we show how to adapt the attack on 5-round AES described in the previous
section in the case of a single secret S-Box. The idea is choose a particular set of plaintexts
Aδ (which depends on a variable δ), such that only for a particular value of δ which
depends on the secret key the number of collisions among the ciphertexts in the same
coset ofMI with |I| = 3 after 5 rounds is a multiple of 2 (i.e. it is an even number) with
probability 1. Since for all the other values of δ this event happens only with probability
1/2, it is possible to discover the right key. Thus, for a fixed a ∈ D⊥1 (i.e. a0,1 = a1,2 = 0),
let Aδ be the set of plaintexts of the form:

Aδ ≡
{
a⊕


y0 x 0 0
0 y1 x⊕ δ 0
0 0 y2 0
0 0 0 y3

 ∣∣∣∣ ∀x, y0, ..., y3 ∈ F28

}
. (16)

Given a set Aδ, we claim that if δ = k0,1⊕k1,2 then the number of collisions after 5 rounds
in the same coset of MI for a fixed I ⊆ {0, 1, 2, 3} with |I| = 3 is a multiple of 2 with
probability 1.
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Proposition 3. Consider a set of plaintexts Aδ defined as in (16), and the corresponding
ciphertexts after 5 rounds. If δ = k0,1⊕k1,2, then the number of different pairs of ciphertexts
that belong to the same coset ofMI for a fixed I ⊆ {0, 1, 2, 3} with |I| = 3 is a multiple of
2.

Proof. Let δ = k0,1 ⊕ k1,2. After one round, there exists b such that the set Aδ is mapped
into

R(Aδ) ≡
{
b⊕


z0 w 0 0
z1 0x03 · w 0 0
z2 0 0 0
z3 0x02 · w 0 0

 ∣∣∣∣ ∀w, z0, ..., z3 ∈ F28

}
.

Consider two elements z, z′ ∈ R(Aδ) generated respectively by z ≡ (z0, z1, z2, z3, w)
and z′ ≡ (z′0, z′1, z′2, z′3, w), and consider separately the two cases z1 6= z′1 and z1 = z′1. The
idea is to show that in the first case (i.e. the set of all the different pairs of elements
for which the condition z1,1 6= z′1,1 holds) the number of collisions is a multiple of 2,
while in the second case (i.e. the set of all the different pairs of elements for which the
condition z1 = z′1,1 holds) the number of collisions is a multiple of 256. In particular,
consider two elements z, z′ ∈ R(Aδ) generated respectively by z ≡ (z0, z1, z2, z3, w) and
z′ ≡ (z′0, z′1, z′2, z′3, w) with z1 6= z′1. For a fixed I ∈ {0, 1, 2, 3} with |I| = 3, the idea is
to show that R4(z)⊕R4(z′) ∈ MI if and only if R4(v)⊕R4(v′) ∈ MI where the texts
v, v′ ∈ R(Aδ) are generated respectively by v ≡ (z0, z

′
1, z2, z3, w) and v′ ≡ (z′0, z1, z

′
2, z
′
3, w).

Similarly, consider the case z1 = z′1. For this case, the idea is to prove that z, z′ ∈ R(Aδ)
satisfy the condition R4(z)⊕R4(z′) ∈MI if and only if each pair of elements v, v′ ∈ R(Aδ)
generated respectively by v ≡ (z0, v1, z2, z3, w) and v′ ≡ (z′0, v1, z

′
2, z
′
3, w) for each v1 ∈ F28

have the same property, that is R4(v)⊕R4(v′) ∈MI . Since there are 28 = 256 different
values for v1, then the number of collisions must be a multiple of 256. It follows that
there exist n′, n′′ ∈ N such that the total number of collisions n can be written as
n = 2 · n′ + 256 · n′′ = 2 · (n′ + 128 · n′′). In other words, the total number of collisions is a
multiple of 2. The details of the proof can be found in App. H.

Consider now the case δ 6= k0,1 ⊕ k1,2. In this case, the previous proposition doesn’t
hold and the number of collisions is a multiple of 2 only with probability 1/2. Indeed, let
δ 6= k0,1 ⊕ k1,2. By simple computation, there exists constants b such that the set Aδ is
mapped after one round into

R(Aδ) ≡ b⊕


z0,0 0x02 · S-Box(x⊕ k0,1)⊕ 0x03 · S-Box(x⊕ δ ⊕ k1,1) 0 0
z1,1 S-Box(x⊕ k0,1)⊕ 0x02 · S-Box(x⊕ δ ⊕ k1,1) 0 0
z2,2 S-Box(x⊕ k0,1)⊕ S-Box(x⊕ δ ⊕ k1,1) 0 0
z3,3 0x03 · S-Box(x⊕ k0,1)⊕ S-Box(x⊕ δ ⊕ k1,1) 0 0


for each x and for each z0,0, ..., z3,3. Note that this is a subset (not a subspace) of a coset
of C0,1. Thus, assume that two elements z, z′ ∈ R(Aδ) belong to the same coset ofMI

after 4 rounds. Since the second column of R(Aδ) can take only a limited number of
values, working in the same way as before it is not possible to guarantee that other pairs
of elements - defined by a different combinations of the variables - have the same property
with prob. 1. It follows that in this case the number of collisions is a multiple of 2 only
with probability 1/2 (this result has been practically verified).

Note that each set contains 240 different texts, that is approximately 239 ·(240−1) ' 279

different pairs of ciphertexts. Since the probability that two ciphertexts belong to the same
coset ofMI for |I| = 3 is 2−32, the number of collisions is approximately 279 · 2−32 = 247.
We emphasize that for the right key this number is exactly a multiple of 2 with probability
1, while for wrong guessed keys this happens only with probability 1/2. Using these
considerations, it is possible to find the right key up to 232 variants.
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Data: 210 different sets Aδ defined as in (16) - 4 different sets for each δ - and
corresponding ciphertexts after 5 rounds

Result: k0,0 ⊕ k1,1
for each δ from 0 to 28 − 1 do

flag ← 0;
for each set Aδ do

let (pi, ci) for i = 0, ..., 240 − 1 be the 240 (plaintexts, ciphertexts) of Aδ;
for all j ∈ {0, 1, 2, 3} do

Let W [0, ..., 232 − 1] be an array initialized to zero;
for i from 0 to 240 − 1 do

x←
∑3
k=0 MC−1(ci)k,j−k · 256k; // MC−1(ci)k,j−k denotes the

byte of MC−1(ci) in row k and column j − k mod 4
W [x]←W [x] + 1; // W [x] denotes the value stored in the
x-th address of the array W

end
n← 0;
for i from 0 to 232 − 1 do

n← n+W [i] · (W [i]− 1)/2;
end
if (n mod 2) 6= 0 then

flag ← 1;
next δ;

end
end

end
if flag = 0 then

identify δ as candidate for k0,0 ⊕ k1,1;
end

end
return Candidates for k0,0 ⊕ k1,1. // Only one candidate with Prob. 95%

Algorithm 3: Key-Recovery Attack on 5 rounds of AES with a single secret S-Box. For
simplicity, the goal of the attack is to find one byte of the key - k0,0 ⊕ k1,1. The same
attack can be used to recover the entire key up to 232 variants.

Data and Computational Costs

To compute the data cost, we first analyze the case in which the goal is to discover only one
byte (in particular, the difference of two bytes) of the right key with probability greater
than 95%. A candidate value of δ can be claimed to be wrong if there exists at least a
set Aδ for which the number of collisions after five rounds is a odd number. Since there
are only 28 − 1 different possible values for δ, one needs that such a set Aδ exists with
probability higher than (0.95)1/255 = 99.98% (remember that since the tests for different δ
are independent, the total probability of success is higher than 0.9998256 = 0.95).

Since the probability that the number of collisions for a given set Aδ is odd is 50%,
4 different sets Aδ (note that one can count the number of collisions inMI for all the 4
different I with |I| = 3, for a total of 16 possible tests) are sufficient to deduce the right δ
with probability higher than 95%, since 2−16 ≤ 1− 0.9998 = 2−12.3. It follows that the
cost to find 1 byte of the key is of 4 (cosets) ·240 (number of texts in Aδ) ·28 (values of δ)
= 250 chosen plaintexts.

In order to find the entire key up to 232 possible variants, the idea is to repeat the
attack 12 times, i.e. 3 times for each column. By analogous calculation16, it follows that

16In this case, one needs that for each one of the 28 − 1 wrong possible values for δ, at least one set Aδ
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16 tests (that is 4 different sets Aδ - note that there are four different I with |I| = 3) are
sufficient to deduce the right δ with total probability higher than 95%. Thus, the data
cost of the attack is of 12 · 250 = 253.6 chosen plaintexts.

Computational Cost. We limit here to report the computational costs of the
distinguisher, and we refer to App. G.2 for all the details. In order to count the number
of collisions, one can use the same procedure of the attack described in Sect. 5, i.e. one
can re-oder the texts with respect to a particular partial order � as defined in Def. 11.
However, in this case we propose an alternative strategy, which exploits data structure - the
complete pseudo-code of such an algorithm is given in Algorithm 3. This method allows
to minimize the computational cost, which is well approximated by 255.6 table look-ups or
approximately 248.96 five-rounds encryptions (20 table look-ups ≈ 1 round of encryption).

Practical Verification

Using a C/C++ implementation17, we have practically verified the attack just described
on a small-scale variant of AES, as presented in [CMR05] - not on real AES due to the
large computational cost of the attack. We emphasize that Prop. 3 is independent of the
fact that each word is composed of 8 or 4 bits. Thus, our verification on the small-scale
variant of AES is strong evidence for it to hold for the real AES. The main differences
between this small-scale AES and the real AES regard the total computational cost.

For simplicity, we limit here to report the result for an attack on a single byte of the
key, e.g. k0,0 ⊕ k1,1. For small-scale AES, since there are only 24 − 1 possible candidates,
it is sufficient that for each wrong candidate of k0,0 ⊕ k1,1 a set Aδ for which the number
of collisions is odd exists with probability (0.95)2−4 = 99.659%. It follows that 9 tests
(that is 3 different sets Aδ) for each candidate of k0,0 ⊕ k1,1 are sufficient to find the right
value. Using the same procedure just presented based on data-structure, the theoretical
computational cost is well approximated by 4 · 3 · 24 · (220 + 2 · 216) ' 227.75 table look-ups.
For comparison, using the re-ordering algorithm, the theoretical computational cost is well
approximated by 4 · 3 · 24 · 220 · (log 220 + 1) ' 231.91 table look-ups.

Our tests confirm that 3 different sets Aδ are largely sufficient to find the key. The
average practical computational cost is of 226.3 table look-ups using a data-structure, and
230.5 table look-ups using a re-ordering algorithm. To explain the (small) difference with
the theoretical value, note that the theoretical value is computed in the worst case. As an
example, when a candidate of the key is found to be wrong, it is not necessary to complete
the verification for all the other sets Aδ or indexes I, but it is sufficient to discard it and
to test the next candidate.

6.3 Attack on 5 rounds of AES with a single Secret S-Box - Mix-
Columns Matrix with Zero-Sum of Coefficients

In this section, we show how to adapt the previous attack in order to exploits the property
that the sum of three coefficients of each row of the MixColumns matrix MMC is equal to
zero.

For a fixed a, consider a set of plaintexts A′′δ which depends on the guessed value of

for which the number of collision is odd exists with probability higher than (0.9998)1/12 = 99.99835%.
17The source codes of the attacks on AES with a secret S-Box are available at https://github.com/

Krypto-iaik/Attacks_AES_SecretSBox2
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the key δ of the form:

A
′′

δ ≡
{
a⊕


0 y 0 0
0 x y ⊕ δ1,2 0
0 0 x⊕ δ2,2 y ⊕ δ2,3
0 0 0 x⊕ δ3,3

 ∣∣∣∣ ∀x, y ∈ F28

}
(17)

where δ ≡ (δ1,2, δ2,2, δ2,3, δ3,3). Given a set A′′δ , we claim that the number of collisions
among the ciphertexts in the same coset of MI for a fixed I ⊆ {0, 1, 2, 3} with |I| = 3
after 5 rounds is a multiple of 2. More formally:

Proposition 4. Consider a set of plaintexts A′′δ defined as in (17), and the corresponding
ciphertexts after 5 rounds. If δi,i = k1,1 ⊕ ki,i and δj,j+1 = k0,1 ⊕ kj,j+1 for i = 2, 3 and
j = 1, 2 (the indexes are taken modulo 4), then the number of different pairs of ciphertexts
that belong to the same coset ofMI for a fixed I ⊆ {0, 1, 2, 3} with |I| = 3 is a multiple of
2.

Proof. Let δi,i = ki,i ⊕ k1,1 for i = 2, 3 and δj,j+1 = kj,j+1 ⊕ k0,1 for j = 1, 2. By simple
computation, there exists a constant b such that a set A′′δ is mapped after one round into

R(A
′′

δ ) ≡
{
b⊕


0x03 · z 0 0 0

0 0 0 0
0 0x02 · w 0 0

0x02 · z 0x03 · w 0 0

 ∣∣∣∣∀z, w ∈ F28

}
.

Consider a pair of texts t1, t2 ∈ R(A′′δ ) generated respectively by t1 = (z, w) and
t2 = (z′, w′). The idea is to consider the following two cases separately: (1) z = z′ and
w 6= w′ (or viceversa) and (2) z 6= z′ and w 6= w′, and to show that in the first case (1)
the number of collisions is a multiple of 256, while in the second case (2) the number of
collisions is a multiple of 2. In particular, consider a pair of texts t1, t2 ∈ R(A′′δ ) generated
respectively by t1 = (z, w) and t2 = (z′, w′) with z 6= z′ and w 6= w′. The idea is to show
that R4(t1) ⊕ R4(t2) ∈ MI if and only if R4(s1) ⊕ R4(s2) ∈ MI for |I| = 3, where the
texts s1, s2 ∈ R(A′′δ ) are generated respectively by s1 = (z, w′) and s2 = (z′, w). Similarly,
consider the case z 6= z′ and w = w′ (or viceversa). As before, the idea is to prove that
t1, t2 ∈ R(A′′δ ) satisfy the condition R4(t1)⊕R4(t2) ∈MI for |I| = 3 if and only if all the
pairs of texts s1, s2 ∈ R(A′′δ ) generated respectively by t1 = (z, s) and t2 = (z′, s) for all
s ∈ F28 have the same property. Thus, there exist n′, n′′ ∈ N such that the total number
of collisions n can be written as n = 2 · n′ + 256 · n′′ = 2 · (n′ + 128 · n′′), that is n is a
multiple of 2. The details of the proof can be found in App. H.

While for δi,i = ki,i⊕k1,1 for i = 2, 3 and δj,j+1 = kj,j+1⊕k0,1 for j = 1, 2 it is possible
to guarantee that the total number of collisions is a multiple of 2 with probability 1, no
analogous result holds for the other cases. That is, if δi,i 6= ki,i ⊕ k1,1 for i = 2, 3 or/and
δj,j+1 6= kj,j+1 ⊕ k0,1 for j = 1, 2, then the total number of collisions is a multiple of 2
with probability 50%.

Data and Computational Costs. Since the procedure of the attack is completely
equivalent to the one described in Sect. 6.2, we refer to that section for all the details and
we limit here to focus on the data and on the computational costs of this attack.

Note that each set A′′δ is composed of 216 or equivalently 215 · (216 − 1) = 231 pairs.
Since the probability that each pairs belong to the same coset ofMJ for |J | = 3 is 2−32,
the average number of collision among the ciphertexts for each set is 2−1, that is on average
there is at least one collision inMJ for |J | = 3 for only one half of the sets A′′δ .

With respect to the previous attack, note that in this case an attacker has to guess 4
bytes of the key instead of only 1. Thus, using the same calculation as before, in order to
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Data: 19 · 232 different sets A′′′δ defined as in (17) - 19 different sets for each
δ ≡ (δ2,2, δ3,3, δ1,2, δ2,3) - and corresponding ciphertexts after 5 rounds

Result: k2,2 ⊕ k1,1, k3,3 ⊕ k1,1, k0,1 ⊕ k1,2 and k0,1 ⊕ k2,3
for each δ do

flag ← 0;
for each set A′′′δ do

for each I ⊆ {0, 1, 2, 3} with |I| = 3 do
let (pi, ci) for i = 0, ..., 216 − 1 be the (plaintexts, ciphertexts) of A′′′δ ;
re-order this set of elements w.r.t. the partial order � described in Def.
11 s.t. ci � ci+1 for each i; // � depends on I
n← 0; // n denotes the number of collisions in MI

i← 0;
while i < 216 − 1 do

r ← 1;
j ← i;
while cj ⊕ cj+1 ∈MI do

r ← r + 1;
j ← j + 1;

end
i← j + 1;
n← n+ r · (r − 1)/2;

end
if (n mod 2) 6= 0 then

flag ← 1;
next δ;

end
end

end
if flag = 0 then

identify δ ≡ (δ2,2, δ3,3, δ1,2, δ2,3) as candidate for the four byte of the secret
key;

end
end
return Candidates for (k2,2 ⊕ k1,1, k3,3 ⊕ k1,1, k0,1 ⊕ k1,2, k0,1 ⊕ k2,3). // Only one
candidate with Prob. 95%

Algorithm 4: Key-Recovery Attack on 5 rounds of AES with a single secret S-Box. For
simplicity, the goal of the attack is to find four bytes of the key. Exactly the same attack
can be used to recover the entire key up to 232 variants.

discard all the wrong candidates of 4-bytes of the key with probability higher than 95%,
one needs that for each wrong candidate δ there exists at least one set A′′δ for which the
number of collision is odd exists with probability higher than (0.95)2−32 . It follows that
one has to do approximately 37 different tests for each candidate δ. However, since on
average there is (at least) one collision among the ciphertexts only for half of these sets,
the number of tests must be double. As a result, one needs to do approximately 2 · 37 = 74
tests, that is one has to use approximately 19 different sets A′′δ for each wrong candidate δ
(remember that there are four different subspacesMJ with |J | = 3). It follows that the
data cost to find 4 bytes of the key is well approximated by 19 · 232 · 216 = 252.248 chosen
plaintexts.

Using a similar procedure, one can find the entire key. In particular, one first repeats
the attack just presented on the third and on the fourth column. To find other four bytes
of the key, a set A′′δ with the previous property must exist with probability higher than
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(0.95)2−34 , that is approximately n ≥ 2 · 38 = 76 different tests (i.e. 19 different sets A′δ)
for each δ are sufficient in order to find the right key. As before, in order to find the
final four bytes of the key (one per column), the idea is to repeat the attack exploiting
the knowledge of one byte of the key for each column. Since in this case the attacker
has to guess only two bytes of difference of the key instead of four and using the same
computation as before18, approximately n ≥ 2 · 23 = 56 different tests (i.e. 12 different
sets A′′δ ) for each δ are sufficient to find the right key.

In conclusion, the total data cost is approximately of 2 · 252.248 + 12 · 216 · 216 = 253.25

chosen plaintexts, while the computational cost using a re-ordering algorithm is well
approximated by 2 · 4 · 19 · 232 · 216 · (log 216 + 1) ' 259.25 table look-ups, or approximately
252.6 five-round encryptions. For comparison, the computational cost using data-structure
as in Sect. 6.2 is approximately of 2 · 4 · 19 · 232 · (216 + 2 · 232) ' 272.25 table look-ups,
that is (much) worse than using a re-ordering algorithm (besides an higher memory cost).
Indeed, note that in this last case the size of the vector W - as defined in Sect. 6.2 - is
(much) larger than the size of the sets A′′δ (i.e. 232 versus 216).

Practical Verification

Using a C/C++ implementation19, we have practically verified the attack just described on
a small-scale variant of AES, as presented in [CMR05] - not on real AES due to the large
computational cost of the attack. As before, we emphasize that Prop. 4 is independent
of the fact that each word is composed of 8 or 4 bits and that our verification on the
small-scale variant of AES is strong evidence for it to hold for the real AES.

For simplicity, we limit here to report the result for the attack on a four bytes of the
key, e.g. k2,2⊕ k1,1, k3,3⊕ k1,1, k0,1⊕ k1,2 and k0,1⊕ k2,3. For small-scale AES, since there
are (24)4 = 216 candidates for the four bytes of the key, it is sufficient that a set A′′δ for
which the number of collisions is odd exists for each wrong candidate with probability
higher than (0.95)2−16 . Thus, 22 · 2 = 44 tests (i.e. 11 different sets Aδ) for each candidate
δ are sufficient to find the right value. Re-ordering the texts as described previously, the
theoretical computational cost is well approximated by 11 · 216 · 4 · 28 · (log 28 + 1) ' 232.6

table look-ups.
Our tests confirm that 2 different sets Aδ are largely sufficient to find the key. The

average practical computational cost is of 229.7 table look-ups. The difference is explained
by the fact that in general it is possible to discard wrong candidates without considering
all the corresponding 11 sets A′′δ - we found that 2 sets are usually sufficient.

7 A new 5-round Secret-Key Distinguisher for AES
Using the 4-round distinguisher of Sect. 5 as starting point, we propose a way to extend it
1 round at the end. As a result, we are able to set up a new probabilistic 5-round secret-key
distinguisher for AES which exploits a property which is independent of the secret key.
Even if such a distinguisher is worse than the deterministic one presented in [GRR17a], it
can be used to set up a key-recovery attack on 6-round AES (better than a brute-force
one) exploiting a distinguisher of the type [GRR17a] - believed to be hard to exploit. As a
result, this is the first key-recovery attack for 6-round AES set up by a 5-round secret-key
distinguisher for AES. For completeness, since the 4-round distinguisher works also in the
decryption direction, this new 5-round distinguisher and the 6-round attack work also in
the reverse direction using chosen ciphertexts instead of plaintexts.

18For each one of the 216 possible candidates of the key, one needs that at least a set A′′δ for which the
number of collisions is not a multiple of 2 exists with probability higher than (0.95)2−18 .

19The source codes of the attacks on AES with a secret S-Box are available at https://github.com/
Krypto-iaik/Attacks_AES_SecretSBox2

28

https://github.com/Krypto-iaik/Attacks_AES_SecretSBox2
https://github.com/Krypto-iaik/Attacks_AES_SecretSBox2


7.1 5-round Secret-Key Distinguisher
To set up the previous 4-round secret-key distinguisher for AES, one considers plaintexts
in the same coset of a column space CI for I ⊆ {0, 1, 2, 3}, construct all the couples and
divide them in sets SCI⊕a as defined in Def. 8. As we have just seen, for each of these sets
only one of the two following events can happen: (1) c1 ⊕ c2 ∈MJ or (2) c1 ⊕ c2 /∈MJ

for each couple (p1, c1) and (p2, c2) in SCI⊕a. A similar property holds also for the set
ZCI⊕a as defined in Def. 9. In order to set up our distinguisher for 5-round of AES, the
idea is to consider the number of sets ZCI⊕a that contains at least one couple for which
the two ciphertexts belong in the same coset ofMJ for J ⊆ {0, 1, 2, 3} with |J | = 3 (J is
not fixed). As we are going to show, the probability of the above event is (a little) lower
for 5-round AES than for a random permutation. As a result, given plaintexts in cosets of
CI and corresponding ciphertexts after 5 rounds, one can distinguish 5-round AES from
a random permutation exploiting the fact that the number of sets ZCI⊕a for which two
ciphertexts of at least one couple belong to the same coset ofMJ for |J | = 3 is lower for
5-round AES.

Before we give the details of such a distinguisher, we emphasize the similarity with
the 3-round distinguisher that exploits a truncated differential trail. In that case, the idea
is to count the number of pairs of texts that satisfies the truncated differential trail. In
particular, given pairs of plaintexts in the same coset of a diagonal space Di, one counts
the number of pairs for which the corresponding ciphertexts belong in the same coset of
a mixed spaceMJ for |J | = 3. Since the probability of this event is higher for an AES
permutation than for a random one20, one can distinguish the two cases simply counting
the number of pairs that satisfy the previous property. The idea of our disitinguisher is
similar. However, instead of working on single couples, one works with particular sets Z of
couples and counts the number of sets for which at least one couple satisfies the differential
trail. In App. D, we show that the same distinguisher can be set up using sets S or T
instead of Z.

Details of the new Distinguisher

In order to distinguish 5-round AES from a random permutation, the idea is to construct
all the sets ZCI⊕a and to count the number of sets for which two ciphertexts of at least one
couple belong to the same coset ofMJ for a certain J with |J | = 3. As we are going to
show, given a set ZCI⊕a for |I| = 1, the probability that at least one couple of ciphertexts
with the previous property exists is a little lower for an AES permutation (approximately
2−13 − 524 287 · 2−46 − 22 370 411 853 · 2−77 + ...) than for a random one (approximately
2−13 − 524 287 · 2−46 + 45 812 722 347 · 2−77 + ...). Exploiting this small difference, it is
possible to distinguish the two cases. In the following, we give all the details.

Our 5-round distinguisher is based on the following property of the previous 4-round
distinguisher. As we have just seen, given plaintexts in the same coset of CI and for a
fixed J ⊆ {0, 1, 2, 3}, each set ZCI⊕a as defined in Def. 9 has the following property after
4 rounds (by Lemma 3):

1. for each couple, the two ciphertexts belong to the same coset ofMJ ;

2. for each couple, the two ciphertexts don’t belong to the same coset ofMJ .

In other words, for a given set ZCI⊕a, it is not possible that the two ciphertexts of only
some - not all - couples belong to the same coset of MJ , while this can happen for a
random permutation.

20As recalled in Sect. 3.2, this probability is approximately equal to 2−22 for the AES case and 2−30

for the random case.
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What is the probability of the two previous events for an AES permutation? Given
a set ZCI⊕a, the probability that the two ciphertexts of each couple belong to the same
coset ofMJ is approximately 2−30. Indeed, let the event Eri defined as following.

Definition 12. Let J ⊆ {0, 1, 2, 3} fixed. Given a set ZCI⊕a, we define Eri as the event
that the i-th couple of ZCI⊕a for i = 1, 2, ..., 217 belong to the same coset ofMJ after r
rounds.

For the following, let Eri be the complementary event of Eri . It follows that

Prob(E4
1 ∧ E4

2 ∧ ... ∧ E4
217) = Prob(E4

1 ) · Prob(E4
2 ∧ ... ∧ E4

217 | E4
1 ) =

= Prob(E4
1 ) ≡ p3 = 2−30 − 3 · 2−63 + 2−94,

where p3 is defined as in (6). Indeed, note that Prob(E4
i | E4

1 ) = 1 for each i = 2, ..., 217

since if two ciphertexts of one couple belong (or not) to the same coset ofMJ , then the
ciphertexts of all the other couples have the same property.

Using these initial considerations as starting point, we analyze in details our proposed
5-round distinguisher. Given a set ZCI⊕a, what is the probability that two ciphertexts of at
least one couple in that set belong to the same coset ofMJ for a certain J ⊆ {0, 1, 2, 3}
with |J | = 3? To compute this probability, we consider separately the two cases in which
for all the couples the two ciphertexts belong or not to the same coset ofMK for a certain
K after 4 rounds. We finally obtain the desired probability using the law (or formula) of
total probability Prob(A) =

∑
i Prob(A |Bi) · Prob(Bi) which holds for each event A such

that
⋃
iBi is the sample space, i.e. the set of all the possible outcomes.

Given a set ZCI⊕a, assume first that the two plaintexts of each couple don’t belong to
the same coset ofMK for all21 K ⊆ {0, 1, 2, 3} with |K| = 3 after 4 rounds. In this case,
the probability that the two ciphertexts of at least one couple belong to the same coset of
MJ for |J | = 3 after 5 rounds is well approximated by

1−
(
1− p̂3,3

)217

= 1−
(

1− p3 · (1− p3,3)
1− p3

)217

= 2−13 − 526 327 · 2−46 + ...

where p̂3,3 is defined in (8). The other case is similar. Consider a set for which the two
plaintexts of each couple belong to the same coset ofMK for K ⊆ {0, 1, 2, 3} with |K| = 3
after 4 rounds.In this case, the probability that the two ciphertexts of at least one couple
belong to the same coset ofMJ for |J | = 3 after 5 rounds is well approximated by

1−
(
1− p3,3

)217

= 2−5 − 524 287 · 2−30 + 45 812 722 347 · 2−53 + ...

where p3,3 is defined in (7). Using the law of total probability and given a set ZCI⊕a for
|I| = 1, it follows that the probability that two ciphertexts of at least one couple belong to
the same coset ofMJ is well approximated by

pAES =
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

217 | E4
i )
]
·Prob(E4

i )+

+
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

217 | E4
i )
]
·Prob(E4

i ) =

=(1− p3) ·
[
1−

(
1− p3 · (1− p3,3)

1− p3

)217]
+p3 ·

[
1−

(
1− p3,3

)217
]
=

=2−13 − 524287 · 2−46 − 22 370 411 853 · 2−77︸ ︷︷ ︸
≈ 2.604 · 2−44

+...

(18)

21Note that MK̂ ⊆ MK for all K̂ ⊆ K. If two texts don’t belong to the same coset of MK for all
K ⊆ {0, 1, 2, 3} with |K| = 3, then they don’t belong to the same coset ofMK̂ for K̂ ⊆ {0, 1, 2, 3} with
|K̂| < 3. Viceversa, if they belong to the same coset ofMK̂ for K̂ with |K̂| < 3, then they belong to the
same coset ofMK for all K with |K| = 3 and K̂ ⊆ K.
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for a certain i ∈ {1, ..., 217}. Note that Prob(E5
i ∧ E5

j ) = Prob(E5
i ) × Prob(E5

j ) since the
events E5

i and E5
j are independent for i 6= j. For a random permutation, the same event

occurs with (approximately) probability

prand =1−
(
1− p3

)217

= 1−
[
1−

(
2−30 − 3 · 2−63 + 2−94)]217

=
=2−13 − 524 287 · 2−46 + 45 812 722 347 · 2−77︸ ︷︷ ︸

≈ 5.333 · 2−44

+... (19)

We emphasize again that while a “classical” truncated differential distinguisher counts
the number of pairs of texts that satisfy a particular differential trail, in our case we
consider the number of sets of texts for which at least one pair satisfies a particular
differential trail. This choice allows to have a difference between the probabilities that the
previous event occurs for a random permutation prand and for 5-round AES pAES .

7.2 Data and Computational Complexity
7.2.1 Data Complexity

Since the difference between the two probabilities is very small, what is the minimum
number of sets ZCI⊕a (or equivalently of cosets CI) to guarantee that the distinguisher
works with high probability?

First of all, given a single coset of a column space CI for |I| = 1, the number of different
couples with two generating variables is given by 6 · 216 · 215 · (28 − 1)2 ' 249.6 (see Eq.
(11)), while the number of sets ZCI⊕a that one can construct is well approximated by
3 · 215 · (28 − 1)2 ' 232.574.

As we have just said, the difference between the number of sets that satisfy the required
property for the AES case (i.e. nAES) and for the random case (i.e. nrand) is very small
compared to the total number nAES or nrand:

|nAES − nrand|
nAES

' |nAES − nrand|
nrand

� 1.

Thus, our goal is to derive a good approximation for the number of initial cosets of CI that
is sufficient to appreciate this difference with probability prob.

To solve this problem, note that given n sets ZCI⊕a of 217 couples defined as in Def. 9,
the distribution probability of our model is simply described by a binomial distribution.
By definition, a binomial distribution with parameters n and p is the discrete probability
distribution of the number of successes in a sequence of n independent yes/no experiments,
each of which yields success with probability p. In our case, given n sets ZCI⊕a, each of
them satisfies or not the above property/requirement with a certain probability. Thus,
this model can be described using a binomial distribution. We recall that for a random
variable Z that follows the binomial distribution, that is Z ∼ B(n, p), the mean µ and the
variance σ2 are respectively given by µ = n · p and σ2 = n · p · (1− p).

To derive concrete numbers for our distinguisher, we approximate the binomial dis-
tribution with a normal one. Moreover, we can simply consider the difference of the two
distributions, which is again a normal distribution. That is, given X ∼ N (µ1, σ

2
1) and

Y ∼ N (µ2, σ
2
2), then X − Y ∼ N (µ, σ2) = N(µ1 − µ2, σ

2
1 + σ2

2). Indeed, in order to
distinguish the two cases, note that it is sufficient to guarantee that the number of sets
that satisfy the required property in the random case is higher than for 5-round AES. As
a result, the mean µ and the variance σ2 of the difference between the AES distribution
and the random one are given by:

µ = n · |prand − pAES | σ2 = n ·
[
prand · (1− prand) + pAES · (1− pAES)

]
.
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Since the probability density of the normal distribution is f(x | µ, σ2) = 1
σ
√

2π e
− (x−µ)2

2σ2 , it
follows that

prob =
0∫

−∞

1
σ
√

2π
e−

(x−µ)2

2σ2 dx =
−µ/σ∫
−∞

1√
2π

e−
x2
2 dx = 1

2

[
1 + erf

(
−µ
σ
√

2

)]
,

where erf(x) is the error function, defined as the probability of a random variable with
normal distribution of mean 0 and variance 1/2 falling in the range [−x, x]. We emphasize
that the integral is computed in the range (−∞, 0] since we are interested in the case in
which the number of sets with the required property in the AES case is lower than in the
random case.

In order to have a probability of success higher than prob, n has to satisfy:

n >
2 · [prand · (1− prand) + pAES · (1− pAES)]

(prand − pAES)2 ·
[
erfinv

(
2 · prob− 1

)]2
.

where erfinv(x) is the inverse error function. For the case prand, pAES � 1, a good
approximation of n is given by22

n >
4 ·max(prand, pAES)

(prand − pAES)2 ·
[
erfinv

(
2 · prob− 1

)]2
. (20)

For a probability of success of approximately 95%, since |pAES − prand| ' 2−41.01 and
pAES ' prand ' 2−13, it follows that n must satisfy n > 271.243. Since a single coset of
CI for |I| = 1 contains approximately 232.574 different sets Z, one needs approximately
271.243 · 2−32.574 ' 238.669 different initial cosets of CI , that is approximately 238.669 · 232 '
270.67 chosen plaintexts.

Another possibility is to use an initial coset of CI with |I| = 2. In this case, using sets
T CI⊕a - as defined in Def. 10 - instead of sets ZCI⊕a, approximately 251.17 chosen plaintexts
in the same initial coset of CI with |I| = 2 are sufficient to set up the distinguisher, as
showed in details in App. D.2.

Before we go on, we emphasize that formula given in (20) is equivalent to the one
proposed by Matsui in [Mat94] for the linear cryptanalysis case, and so it has been rigorously
studied in the literature (e.g. in [BJV04], [Sel08]). Without going into the details, in linear
cryptanalysis one has to construct “good” linear equations relating plaintext, ciphertext
and key bits. In order to find the secret key, the idea is to exploit the fact that such
linear approximation holds with probability 1/2 for a wrong key, while they hold with
probability 1/2± ε for the right key. Exploiting this (usually small) difference between the
two probabilities, one can discover the secret key. Our case is completely equivalent, since
the probability pAES of the AES case is related to the probability prand of the random
case by pAES = prand ± ε, for a small difference ε.

7.2.2 Computational Complexity

Here we discuss the computational cost for the case of cosets of CI with |I| = 1. The
analysis is similar for the case |I| = 2, and the details are given in App. D.2. As for the
4-round distinguisher, a first possibility is to construct all the couples, to divide them in
sets ZCI⊕a for |I| = 1 defined above, and to count the number of sets that satisfy the
above property working on each set separately. Since just the cost to construct all the
couples given 238.67 cosets is approximately of 238.67 ·231 · (232−1) ' 2101.67 table look-ups,
we present a way to implement the distinguisher in a more efficient way, similar to the one
proposed for the 4-round distinguisher of Sect. 5 (details are given in App. B).

22Observe: prand · (1− prand) + pAES · (1− pAES) < prand + pAES < 2 ·max(prand, pAES).
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Data: 1 coset of CL for |L| ⊆ {0, 1, 2, 3} (e.g. CL ⊕ a with a ∈ C⊥L ) and
corresponding ciphertexts after 5 rounds

Result: Number of sets ZCL⊕a with at least one couple for which the two
ciphertexts in the same coset ofMJ for a certain J with |J | = 3

n← 0; // number of sets Z with the required property
for each j from 0 to 3 let J = {0, 1, 2, 3} \ j - |J | = 3 - do

let (pi, ci) for i = 0, ..., 232·|L| − 1 be the (plaintexts, ciphertexts) in CL ⊕ a;
re-order this set of elements w.r.t. the partial order � defined in Def. 11 s.t.
ci � ci+1 for each i; // � depends on J
i← 0;
while i < 232·|L| − 1 do

j ← i;
while cj ⊕ cj+1 ∈MJ do

j ← j + 1;
end
for each k from i to j do

for each l from k + 1 to j do
if pk ≡ (x0, x1, x2, x3) and pl ≡ (y0, y1, y2, y3) have only 2 common
generating variables, i.e. ∃H ⊆ {0, 1, 2, 3} with |H| = 2 s.t. xh = yh

for h ∈ H and xh 6= yh for h ∈ {0, 1, 2, 3} \H then
construct the set ZCL⊕a

pk,pl
as defined in Def. 9 - Eq. (13);

flag ← 0
for each I ⊆ {0, 1, 2, 3} with |I| = 3 and I > J w.r.t. Def. 13 do

for each couple of (plaintexts, ciphertexts)
{(p̂1, ĉ1), (p̂2, ĉ2)} ∈ ZCL⊕a

pk,pl
do

if ĉ1 ⊕ ĉ2 ∈MI then
flag ← 1;

end
end

end
for each couple of (plaintexts, ciphertexts)
{(p̂1, ĉ1), (p̂2, ĉ2)} ∈ ZCL⊕a

pk,pl
do

if (p̂1, p̂2) > (pk, pl) w.r.t. Def. 14 and ĉ1 ⊕ ĉ2 ∈MJ then
flag ← 1;

end
end
if flag = 0 then

n← n+ 1;
end

end
end

end
end

end
return n.

Algorithm 5: Given (plaintexts, ciphertexts) pairs in the same coset of CL, this algorithm
counts the number of sets ZCL⊕a for which two ciphertext of at least one couple belong
in the same coset ofMJ for |J | = 3.

Let J ⊆ {0, 1, 2, 3} with |J | = 3. As before, the idea is to re-order the ciphertexts
with respect to the partial order � defined in Def. 11. Given ordered ciphertexts and
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working only on consecutive ciphertexts, the idea is to look for collisions (i.e. c1 and c2

such that c1 ⊕ c2 ⊕MJ ) and to construct the corresponding set Z only for the ciphertexts
that collide. However, when a collision is found, a “problem” arises. For our scope, we
are interested in the number of sets ZCI⊕a for which there exists J such that at least one
couple of ciphertexts belong to the same coset ofMJ . Thus, consider the corresponding
set ZCI⊕a of the two previous ciphertexts. In the case in which the ciphertexts of all other
couples of ZCI⊕a don’t belong to the same coset ofMJ , then one can simply increment
the total number of sets for which the property is satisfied. On the other hand, if there is
another couple in the set ZCI⊕a for which the two ciphertexts belong to the same coset of
MJ , one must guarantee that the counter is not incremented two or more times for the
same set. How to do/implement this in an efficient way?

Definition 13. Let I, J ⊆ {0, 1, 2, 3} such that |I| = |J | = 3 and I 6= J . Let i ∈
{0, 1, 2, 3} \ I and j ∈ {0, 1, 2, 3} \ J . Then I < J if and only if i < j.

Definition 14. Let (t1, t2) and (s1, s2) be two pairs of texts - t1, t2, s1, s2 ∈ F4×4
28 - such

that s1 < s2 and t1 < t2, with respect to the partial order < defined in Def. 6. We say
that (t1, t2) < (s1, s2) if (1) t2 < s2 or (2) s2 = t2 and t1 < s1.

Working with “ordered” J ⊆ {0, 1, 2, 3} with |J | = 3 (see Algorithm 5 for details),
when two ciphertexts c1 and c2 are found such that c1 ⊕ c2 ∈ MJ , one constructs the
corresponding set ZCI⊕a of 217 couples. The idea is to increment the number of sets unless
one of the two following events occurs:

1. there exist J ′ ⊆ {0, 1, 2, 3} such that J ′ > J and a couple of ciphertexts ĉ1 and ĉ2 in
the set ZCI⊕a such that ĉ1 ⊕ ĉ2 ∈MJ′ ;

2. there exists a couple of ciphertexts ĉ1 and ĉ2 in the set ZCI⊕a (with ĉ1 < ĉ2) such
that (c1, c2) < (ĉ1, ĉ2) and ĉ1 ⊕ ĉ2 ∈MJ′ .

This strategy - presented in details in Algorithm 5 - guarantees to not count the same set
more than a single time.

What is the total computational cost? The idea is to store all the (plaintexts, cipher-
texts) pairs twice, once with the plaintexts ordered w.r.t to the partial order ≤ and the
other with the ciphertexts ordered w.r.t to the partial order � (see App. B for details).
First of all, the cost to re-order the ciphertexts and to look for collisions is approximately
of 4 · 238.67 · 232 · (1 + log 232) = 277.67 table look-ups. In order to compute the total
cost, we have to consider the average number of collisions, since for each collision one has
to construct the corresponding set ZCI⊕a. Since the probability that two texts belong
to the same coset of MJ for |J | = 3 is 2−30 and since the number of possible pairs is
approximately 238.67 · 263 ' 2101.67, it follows that the average number of collisions is
approximately 2101.67 · 2−30 = 271.67. On the other hands, since we are only interested
in the collisions pairs for which the plaintexts have exactly 2 equal generating variables
(which happens with prob.

(4
2
)
· 2−16 = 3 · 2−15), it follows that the number of collisions for

which one has to really construct the set Z is approximately 271.67 · 3 · 2−15 ' 258.255. For
each one of them, one needs 2 · 217 = 218 table look-ups to construct the corresponding set
ZCI⊕a for |I| = 1 and to check the required property on the ciphertexts (since this last step
involves only XOR-sum, its cost is negligible w.r.t. the total cost). As a result, the total
cost is well approximated by 277.67 + 218 · 258.255 = 278.13 table look-ups, or approximately
271.5 five-round encryptions.

7.3 Practical Verification on small-scale AES
In order to have a practical verification of the proposed distinguisher (and of the following
key-recovery attack), we have practically verified the probabilities pAES and prand given
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above23. In particular, we verified them using a small-scale AES, as proposed in [CMR05].
We emphasize that our verification on the small-scale variant of AES is strong evidence
for it to hold for the real AES, since the strategy used to theoretically compute such
probabilities is independent of the fact that each word of AES is of 4 or 8 bits.

To compare the practical values with the theoretical ones, we list the theoretical
probabilities pAES and prand for the small-scale case. First of all, for small scale AES
the probabilities p3 and p3,3 are respectively equal to p3 = 2−14 − 3 · 2−31 + 2−46 and
p3,3 = 2−10 − 3 · 2−23 + 2−34.

W.l.o.g. we used cosets of C0 to practically test the two probabilities. Using the
previous procedure and formula, the (approximately) probabilities that a set ZC0⊕a satisfy
the required property for 5-round AES and the random case are respectively

pAES = 2−5 − 2 047 · 2−22 − 221 773 · 2−37︸ ︷︷ ︸
≈ 3.384 · 2−21

+...

prand ∼= 2−5 − 2 047 · 2−22 + 698 027 · 2−37︸ ︷︷ ︸
≈ 10.651 · 2−21

+...

As a result, using formula (20) for prand ' pAES ' 2−5 and |prand − pAES | ' 2−17.19, it
follows that n ≥ 231.6 different sets ZC0⊕a are sufficient to set up the distinguisher with
probability higher than 95%.

Note that for small-scale AES, a single coset of C0 contains 216 (plaintexts, ciphertexts)
pairs, or approximately 215 · (216 − 1) ' 231 different couples. Since the number of couples
with two different generating variables is given by 6 · 28 · 27 · (24 − 1)2 ' 225.4 (also tested
by computer test), it is possible to construct 3 · 27 · (24 − 1)2 = 86400 ' 216.4 sets Z of 29

couples. As a result, it follows that 231.6 · 2−16.4 = 215.2 different initial cosets of C0 must
be used, for a cost of 247.2 chosen plaintexts.

For our tests, we used 216 different initial cosets of C0 (keys used to encrypt the
plaintexts in the AES case are randomly chosen and different for each coset - the key is
not fixed). For each coset we exploited Algorithm 5 to count the number of sets ZC0⊕a

that satisfy the required property (i.e. the number of sets for which two ciphertexts of
at least one couple are in the same coset ofMJ for certain J with |J | = 3). As a result,
for each initial coset C0 the (average) theoretical numbers of sets ZC0⊕a that satisfy the
required property for the random and the AES cases - given by nTX = 86 400 · pX - and the
(average) practical ones found in our experiments - denoted by nPX - are given are:

nTrand ' 2 658.27 nTAES ' 2 657.69
nPrand ' 2 658.21 nPAES ' 2 657.63

Note that the numbers of collisions found in our experiments are close to the theoretical
ones, and that the average number of sets for AES case is lower than for the random one,
as predicted.

For completeness, the probabilistic distributions of the number of collisions is given in
Fig. 3 for the AES case and in Fig. 4 for the random case. In both cases, the practical
distribution is obtained using 20 000 ≡ 214.3 initial cosets. It is possible to observe that
e.g. the theoretical variance matches the practical one in both cases.

7.4 Key-Recovery Attack on 6 rounds of AES-128
Using the previous distinguisher on 5-round AES (based on a property which is independent
of the secret key) as starting point, we propose the first key-recovery attack on 6 rounds of

23The source codes of the distinguishers/attacks are available at https://github.com/Krypto-iaik/
Distinguisher_5RoundAES
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Figure 4: Probabilistic Distribution of the Number of Sets Z that satisfy the required
property for the Random case - using 20 000 initial cosets.

AES that exploits a 5-round secret-key distinguisher. The strategy of the attack is similar
to the one exploited by linear and differential cryptanalysis.

For the distinguisher just presented, the idea is to consider plaintexts in cosets of CI
for I ⊆ {0, 1, 2, 3}, construct all the possible couples of two (plaintexts, ciphertexts) pairs
(discarding the ones with common generating variables), divide them into sets ZCI⊕a of
217 couples and count the number of sets for which at least one couple of ciphertexts
belong to the same coset ofMJ for |J | = 3. For the following, we limit to consider the
case |I| = 1. To set up the key-recovery attack, the idea is simply to start with cosets of
DI for I ∈ {0, 1, 2, 3}, and to repeat the previous procedure for each guessed combination
of the I-th diagonal of the secret key. We emphasize that these guessed 4-bytes of the key
influence the way in which the couples of texts are divided into the sets ZR(DI⊕a) := ZCI⊕b.
As a consequence, if the 4 guessed bytes are different from the right ones (i.e. they are
wrong), the couples are divided into set ZCI⊕a in a random way. As we are going to show,
for wrong guessed key the probability that a set ZCI⊕a satisfies the required property is
(approximately) equal to the probability of the random case prand, which is higher than
the probability of the correct guessed key pAES . As a result, the number of sets ZR(DI⊕a)

for which two ciphertexts of at least one couple belong to the same coset ofMJ for |J | = 3
is minimum for the right key. This allows to recover one diagonal of the secret key.

7.4.1 Data Complexity

As we are going to show, the behavior in the case of a wrong guessed key (for the following
denoted by “AES with a wrong key”) is similar to the one of a random permutation. The
main difference between “AES with a wrong key” and a random permutation is given by
the possibility in the first case to study the distribution of the couples after each round
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- note that for a random permutation it is meaningless to consider the distribution of
the texts after (e.g.) one round. In particular, a coset of a diagonal space DI is always
mapped into a coset of a column space CI after one round independently of the key. On
the other hand, we stress that the way in which the couples are distributed in the sets
ZR(DI⊕a) := ZCI⊕b depends on the guessed key.

Consider a key-recovery attack on 6-round AES

DI ⊕ a
R(·)−−−−−−−→

KeyGuess
5-round Secret-Key Distinguisher of Sect. 7︸ ︷︷ ︸⋃

q1,q2 Z
R(DI⊕a)
q1,q2 ⊆CI⊕b

R(·)−−−−→
prob. 1

MI⊕c
R(·)−−→DJ⊕a′

R2(·)−−−−→
prob. 1

MJ⊕c′
R(·)−−→MK⊕c′′

and focus on the middle round MI ⊕ c
R(·)−−→ DJ ⊕ a′ for |I| = 1 and |J | = 3. Assume

the guessed key is wrong, and consider one set ZR(DI⊕a)
R(p1),R(p2). For this set, the number of

couples that belong to the same coset ofMJ after four rounds can take any possible value
between 0 and 217 (that is, 0, 1, 2, ... or 217). Indeed, since the distribution of the couples
in the sets ZR(DI⊕a) has the same behavior of a random one, it is not possible guarantee
that the number of couples that belong to the same coset ofMJ after 4 rounds is only
0 or 217 (as for “AES with the right key”). Using same calculation of before and for a
wrong guessed key, the probability pWrongKey

AES that for a set ZR(DI⊕a) two texts of at least
one couple belong to the same coset ofMK for a certain |K| = 3 after 6 rounds is well
approximated by

pWrongKey
AES =

217∑
n=0

(
217

n

)
· pn3 · (1− p3)217−n ·

[
1−

(
1− p3,3

)n
·
(

1− p3 · (1− p3,3)
1− p3

)217−n]
,

which is well approximated by

pWrongKey
AES = 2−13 − 524 287 · 2−46 + 45 812 722 347 · 2−77 + ...

Note that this probability is similar - but not exactly equal - to the one of the random
case, while we remember that the probability for “AES with the right key” is pAES =
2−13 − 524 287 · 2−46 − 22 370 411 853 · 2−77 + ... where the difference between these two
probabilities is approximately |pWrongKey

AES − pAES | ' 2−41.011.
What is the data cost to find one diagonal of the key? Assume we want to discover the

I-th diagonal of the key with probability higher than 95%. Equivalently, this means that
one has to guarantee that the number of sets ZR(DI⊕a) ≡ ZCI⊕b that satisfy the previous
required property is the lowest one for the right key with probability higher than 95%.
To compute the data cost, the idea is to use the same analysis proposed for the 5-round
distinguisher in Sect. 7.2. In particular, since there are 232 candidates for each diagonal of
the keys, one has to guarantee that the number of sets ZR(DI⊕a) that satisfy the previous
required property is the lowest one for the right key with probability higher than (0.95)2−32

(note that the 232 tests - one for each candidate - are all independent). Using formula
(20), one needs approximately 273.343 different sets ZR(DI⊕a) for each candidate of the i-th
diagonal of the key. Since for each coset of DI it is possible to construct approximately
3 · 215 · (28 − 1)2 ≈ 232.574 different sets, one needs approximately 273.343 · 2−32.573 = 240.77

different initial cosets of DI to discover the I-th diagonal of the key with probability higher
than 95%, for a total cost of 240.77 · 232 = 272.77 chosen plaintexts. When one diagonal of
the key is found and due to the computational cost of this first step, we propose to find
the entire key (i.e. the other three diagonals) using a brute force attack.

7.4.2 Computational Cost

In order to implement the attack, the basic idea is to exploit Algorithm 5 for each possible
guessed key, that is to count the number of sets Z for which the two ciphertexts of at least
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Data: 240.77 cosets of D0 (e.g. D0 ⊕ ai for ai ∈ D⊥0 ) and corresponding ciphertexts
after 6 rounds

Result: 4 bytes of the secret key - (k0,0, k1,1, k2,2, k3,3)
Let N [0, ..., 232 − 1] be an array initialized to zero; // N [ϕ(k)] denotes the
number of sets Z that satisfy the required property for the key k -
ϕ(·) defined in (21)

/* 1st Step : for each guessed key, count the number of sets Z with
the required property */

for each coset D0 ⊕ ai do
re-order the coset D0 ⊕ ai w.r.t. to the partial order � as in Def. 11 for each
index J with |J | = 3; // the coset D0 ⊕ ai is stored 5 times, one
w.r.t. < and four w.r.t. � for each J

for each guessed key k̂ ≡ (k0,0, k1,1, k2,2, k3,3) do
working as in Algorithm 5, count the number n of sets ZRk̂(D0⊕ai) ≡ ZC0⊕bi

for which the two ciphertexts of at least one couple belong to the same coset
ofMJ for a certain J with |J | = 3; // remember that the set Z is
constructed only when a collision is found
N [ϕ(k̂)]← N [ϕ(k̂)] + n;

end
end
/* 2nd Step : look for the key with minimum number of sets Z */
min← N [0]; // minimum number of sets
δ ← (0x00, 0x00, 0x00, 0x00);
for each k̂ from 1 to 232 − 1 do

if N [ϕ(k̂)] < min then
min← N [ϕ(k̂)];
δ ← k̂ ≡ (k0,0, k1,1, k2,2, k3,3);

end
end
return δ - candidate of (k0,0, k1,1, k2,2, k3,3)

Algorithm 6: 6-round key-recovery attack on AES exploiting a 5-round secret-key
distinguisher. The goal of the attack is to find 4 bytes of the secret key. The remaining
bytes (the entire key) are found by brute force.

one couple belong to the same coset ofMJ for a certain J with |J | = 3 for each possible
guessed key. Since the number of collision is higher for a wrong key than for the right
one, it is possible to recover the right candidate of the key. An implementation of the
attack is described by the pseudo-code given in Algorithm 6, where the bijective function
ϕ(·) : F4

28 ≡ F28 × F28 × F28 × F28 → N is defined as

ϕ(k0, k1, k2, k3) = k0 + 256 · k1 + 2562 · k2 + 2563 · k3. (21)

The data cost of the attack is of 272.77 chosen plaintexts (distributed in 240.77 cosets of DI
with |I| = 1), while the computational cost is approximately of 2112.7 table look-ups or
approximately 2106 six-round encryptions, as we are going to show.

The algorithm is composed of two steps: (1) re-order the texts w.r.t. a partial order �
and (2) construct and count the sets Z that satisfy the required property, when a collision
is found. As for the other attacks of this paper, we remember that the way in which the
texts are divided in sets Z depends on the guessed key (as for the attack proposed in Sect.
5.3), while the fact that two ciphertexts belong to the same coset ofMJ is independently
of the guessed key. In the following, we analyze in details the cost of the two steps, and
we show that the total cost of this attack is well approximated by the cost to construct
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the sets Z when a collision is found for each guessed key.
First of all, in order to find the ciphertexts that belong to the same coset ofMJ (i.e.

the collisions) in an efficient way, the idea is to re-order them w.r.t a partial order � (as
defined in Def. 11) which is independent of the secret key. The cost of the re-ordering
step - which is independent of the guessed value of the key - is well approximated by
4 · 240.77 · 232 · log 232 ' 279.77 table look-ups.

Secondly, similarly to what done for the 5-round distinguisher - Algorithm 5, the set
Z is constructed only when a collision is found.Since each coset contains 232 texts and a
collision occurs with prob. 2−30, we expect on average 240.77 ·263 ·2−30 ' 273.77 collisions in
total. As before, since we are interested only in the collisions pairs for which the plaintexts
have exactly 2 equal generating variables (prob. 3 · 2−15), the number of collisions for
which one has to construct the set Z is approximately 273.77 · 3 · 2−15 ' 260.36 for each
guessed key. For each one of these 260.36 couples and for each one of the 232 possible
partial guessed key, the cost to construct the set Z is given by the following steps:

• given two ciphertexts that belong to the same coset ofMK , one partially computes one
round encryption of the corresponding plaintexts (if they have two equal generating
variables), for a total cost of 232 · 260.36 · 4 · 2 = 295.36 S-Box look-ups;

• given these one round encryptions, one constructs all the 217 couples given by a
different combinations of the generating variables, and computes one round decryption,
for a total cost of 217 · 295.36 = 2112.36 S-Box look-ups;

• using look-ups tables (similar to before, for each coset of DI one stores the (plaintexts,
ciphertexts) pairs five times, one w.r.t. ≤ and four w.r.t. � for each index J with
|J | = 3), one constructs the set Z, for a cost of 232 · 260.36 · 217 · 4 = 2111.36 table
look-ups.

The idea is to use the same strategy proposed in Sect. 7.2 in order to count the total
number of sets Z with the required property for each possible guessed key. Thus, the total
cost to find one diagonal of the key is well approximated by 2106 six-round encryptions
(assuming 20 S-Box/table look-ups ≈ 1 round encryption), while the remaining three
diagonals are found by brute force.

We emphasize that the implementation proposed in Algorithm 6 allows to minimize
the memory costs. Indeed, note that each coset of D0 is used a single time, and that the
user can work independently on each coset. Since all the (plaintexts, ciphertexts) pairs
are stored in 5 different ways (i.e. one time w.r.t. to < as defined in Def. 6 and for time
w.r.t. � as defined in Def. 11 for each index J with |J | = 3), the memory cost is of
5 · 2 · 232 · 16 = 239.32 bytes, or approximately 235.4 texts.

As last thing, in App. E we explain why it is not possible to set up the key-recovery
attack using cosets of DI with |I| = 2 instead of |I| = 1. Without going into the details,
this is due to the computational cost, since in such a case the attack requires only one
coset of DI with |I| = 2 (i.e. 264 chosen plaintexts), but the total computational cost is
approximately of 2165 table look-ups.
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A Proof - Probabilities of Sect. 3.2
In this section, we prove the probabilities given in Sect. 3.2.

Let I, J ⊆ {0, 1, 2, 3}. We recall that

MI ∩MJ =MI∩J . (22)

whereMI ∩MJ = ∅ if I ∩ J = ∅. Moreover, referring to [GRR17b], we recall that the
probability that a random text x belongs toMI is well approximated by Prob(x ∈MI) =
2−32·(4−|I|), while given two random texts x 6= y

Prob(R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) = 2−4·|I|+|I|·|J|.

Proposition 5. The probability p|I| that a random text x belongs to the subspaceMI for
a certain I ⊆ {0, 1, 2, 3} with |I| = l fixed is well approximated by

p|I| = Prob(∃I ⊆ {0, 1, 2, 3} |I| = l s.t. x ∈MI) = (−1)|I| ·
3∑

i=4−|I|

(−1)i ·
(

4
i

)
· 2−32·i.

Proof. By definition, given the events A1, ..., An in a probability space (Ω,F ,P) then:

Prob

( n⋃
i=1

Ai

)
=

n∑
k=1

(
(−1)k−1

∑
I⊂{1,...,n}
|I|=k

Prob(AI)
)
,

where the last sum runs over all subsets I of the indexes 1, ..., n which contain exactly k
elements24 and

AI :=
⋂
i∈I

Ai

denotes the intersection of all those Ai with index in I.
Due to (22), it follows that for |I| = 3:

Prob(∃I ⊆ {0, 1, 2, 3} |I| = 3 s.t. x ∈MI) =

=
∑

I⊆{0,1,2,3}, |I|=3

Prob(x ∈MI)−
∑

I⊆{0,1,2,3}, |I|=2

Prob(x ∈MI)+

+
∑

I⊆{0,1,2,3}, |I|=1

Prob(x ∈MI) = 4 · 2−32 − 6 · 2−64 + 4 · 2−96,

24For example for n = 2, it follows that Prob(A1 ∪ A2) = Prob(A1) + Prob(A2)− P(A1 ∩ A2), while
for n = 3 it follows that Prob(A1 ∪ A2 ∪ A3) = Prob(A1) + Prob(A2) + Prob(A3) − Prob(A1 ∩ A2) −
Prob(A1 ∩A3)− Prob(A2 ∩A3) + Prob(A1 ∩A2 ∩A3).
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while for |I| = 2

Prob(∃I ⊆ {0, 1, 2, 3} |I| = 2 s.t. x⊕ y ∈MI) =

=
∑

I⊆{0,1,2,3}, |I|=2

Prob(x⊕ y ∈MI)−
∑

I⊆{0,1,2,3}, |I|=1

Prob(x⊕ y ∈MI) =

= 6 · 2−64 − 4 · 2−96,

and finally for |I| = 1

Prob(∃I ⊆ {0, 1, 2, 3} |I| = 1 s.t. x⊕ y ∈MI) =

=
∑

I⊆{0,1,2,3}, |I|=1

Prob(x⊕ y ∈MI) = 4 · 2−96,

that is the thesis.

Proposition 6. Let x, y be two random elements. Assume that there exists I ⊆ {0, 1, 2, 3}
such that x⊕ y ∈ MI . The probability that ∃J ⊆ {0, 1, 2, 3} with |J | = l fixed such that
R(x)⊕R(y) ∈MJ is well approximated by

p|J|,|I| ≡ Prob(∃J |J | = l s.t. R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) =

= (−1)|J| ·
3∑

i=4−|J|

(−1)i ·
(

4
i

)
· 28·i·|I|·(|J|−4).

Proof. As before, for |J | = 3:

Prob(∃J |J | = 3 s.t. R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) =

=
∑

J⊆{0,1,2,3}, |J|=3

Prob(R(x)⊕R(y) ∈MJ |x⊕ y ∈MI)+

−
∑

J⊆{0,1,2,3}, |J|=2

Prob(R(x)⊕R(y) ∈MJ |x⊕ y ∈MI)+

+
∑

J⊆{0,1,2,3}, |J|=1

Prob(R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) =

=4 · 28·|I|·(|J|−4) − 6 · 216·|I|·(|J|−4) + 4 · 224·|I|·(|J|−4).

By simple computation, it is possible to obtain similar results for |J | = 2 and |J | = 1, that
is the thesis.

Proposition 7. Let x, y be two random elements such that x ⊕ y /∈ MI for each I ⊆
{0, 1, 2, 3}. Then, the probability that ∃J ⊆ {0, 1, 2, 3} for |J | = l fixed such that R(x)⊕
R(y) ∈MJ is well approximated by

p̂|J|,3 ≡ Prob(∃J s.t. R(x)⊕R(y) ∈MJ |x⊕ y /∈MI ∀I) =
p|J| − p|J|,3 · p3

1− p3
.

Proof. Let A and B be two events, and let A⊥ such that A ∪A⊥ is equal to the sample
space. By definition

Prob(B) = Prob(B |A) · Prob(A) + Prob(B |A⊥) · Prob(A⊥).

Thus

p|J| ≡ Prob(∃J s.t. R(x)⊕R(y) ∈MJ) =
= Prob(∃J s.t. R(x)⊕R(y) ∈MJ |x⊕ y /∈MI ∀I) · Prob(x⊕ y /∈MI ∀I)+
+Prob(∃J s.t. R(x)⊕R(y) ∈MJ | ∃I s.t. x⊕ y ∈MI) · Prob(∃I s.t. x⊕ y ∈MI).
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Note that25

Prob(∃I s.t. x⊕ y ∈MI) = Prob

(
x⊕ y ∈

⋃
∀I⊆{0,1,2,3}

MI

)
=

=Prob
(
x⊕ y ∈

⋃
I⊆{0,1,2,3}, |I|=3

MI

)
≡ p3.

It follows that
p|J| = p|J|,3 · p3 + p̂|J|,3 · (1− p3),

that is the thesis.

Proposition 8. Let x and y such that x ⊕ y /∈ MI for each I ⊆ {0, 1, 2, 3}. Then, the
probability that ∃J ⊆ {0, 1, 2, 3} with |J | = l fixed and |I|+|J | ≤ 4 such that R2(x)⊕R2(y) ∈
MJ is well approximated by

p̃|J|,3 ≡ Prob(∃J s.t. R2(x)⊕R2(y) ∈MJ |x⊕ y /∈MI) =
p|J|

1− p3
.

Proof. Remember that

Prob(∃J s.t. R2(x)⊕R2(y) ∈MJ | ∃I s.t. x⊕ y /∈MI) = 0.

Since

Prob(∃J s.t. R2(x)⊕R2(y) ∈MJ) =
= Prob(∃J s.t. R2(x)⊕R2(y) ∈MJ |x⊕ y /∈MI ∀I) · Prob(x⊕ y /∈MI ∀I)+
+Prob(∃J s.t. R2(x)⊕R2(y) ∈MJ | ∃I s.t. x⊕ y ∈MI) · Prob(∃I s.t. x⊕ y ∈MI)

and using the same argumentation as before, it follows that

p|J| = p̃|J|,3 · (1− p3),

that is the thesis.

As last thing, we show that given texts in the same cosets of CI orMI for I ⊆ {0, 1, 2, 3},
the number of couples of texts with n equal generating variable(s) for 0 ≤ n ≤ 3 is given
by (

4
n

)
· 232·|I|−1 · (28·|I| − 1)4−n.

W.l.o.g. consider for simplicity the case |I| = 1. First of all, note that there are
(4
n

)
different combinations of n variables. If n ≥ 1, the n variables that must be equal for
the two texts of the couple can take (28)n different values. For each one of the remaining
4 − n variables, the variables must be different for the two texts of each couple. Thus,
these 4− n variables can take exactly

[
(28)4−n · (28− 1)4−n]/2 different values. The result

follows immediately. In particular, for |I| = 1 there are:

• 263 · (28 − 1)4 couples for which the two texts have different generating variables;

• 233 · (28 − 1)3 couples for which the two texts have one equal generating variable;

• 3 · 232 · (28 − 1)2 couples for which the two texts have two equal generating variables;

• 233 · (28 − 1) couples for which the two texts have three equal generating variables.

The other cases are analogous. Note that the total number of all the possible couples is
231 · (232 − 1).

25If x⊕ y ∈MI for |I| < 3, then ∃J with |J | = 3 and I ⊆ J such that x⊕ y ∈MJ .
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A.1 Discussion about the Given Approximations
In Sect. 3.2, we list some useful probabilities largely used in the following. As we have
already said, all those probabilities are not the exact ones, but “good enough” approximations
useful for the target of the paper. Here we give some more details about this statement.

As first thing, consider the following simple example. Consider the probability that
a pair of texts t1 and t2 belongs in the same coset of MI . This probability is usually
approximated by Prob(x ∈ MI) = 2−32·(4−|I|). On the other hand, in order to set up a
(truncated) differential attack, one is interested to the case t1 6= t2 (equivalently, x 6= 0).
Thus, the “correct” probability is

Prob(x ∈MI |x 6= 0) = 232·|I| − 1
2128 − 1 = 2−32·(4−|I|) − 2−128 + 2−128−32·(4−|I|) + ...

Another interesting example regards the 4-round AES impossible differential trail.
Consider plaintexts in the same coset of DI , and the corresponding ciphertexts after
4-round. It is well known that

Prob(R4(x)⊕R4(y) ∈MJ |x⊕ y ∈ DI) = 0 ∀J s.t. |I|+ |J | ≤ 4.

On the other hand, we can compute this probability using the probabilities given in Sect.
3.2. Assume for simplicity I fixed with |I| = 1. By Theorem 1, each coset of DI is mapped
into a coset ofMI after 2-round. Thus, the probability that

Prob(R(x)⊕R(y) ∈MJ |x⊕ y ∈MI) = (−1)|J| ·
3∑

i=4−|J|

(−1)i ·
(

4
i

)
· 28·i·(|J|−4).

Thus

Prob(R4(x)⊕R4(y) ∈MJ |x⊕ y ∈ DI) =

=
∑
K

Prob(R4(x)⊕R4(y) ∈MJ |R3(x)⊕R3(y) ∈MK and x⊕ y ∈ DI)×

× Prob(R3(x)⊕R3(y) ∈MK |x⊕ y ∈ DI)+
+Prob(R4(x)⊕R4(y) ∈MJ |R3(x)⊕R3(y) /∈MK∀K and x⊕ y ∈ DI)×
× Prob(R3(x)⊕R3(y) /∈MK∀K |x⊕ y ∈ DI).

If one approximates the probability Prob(R4(x)⊕R4(y) ∈MJ |R3(x)⊕R3(y) ∈MK and x⊕
y ∈ DI) with Prob(R4(x)⊕R4(y) ∈MJ |R3(x)⊕R3(y) ∈MK), by simple computation
it follows that

Prob(R4(x)⊕R4(y) ∈MJ |x⊕ y ∈ DI) ≈ 2−28 + 2−30 + ...

which is obviously wrong. The error arises by the fact that the probability

Prob(R4(x)⊕R4(y) ∈MJ |R3(x)⊕R3(y) ∈MK and x⊕ y ∈ DI) =
= Prob(R4(x)⊕R4(y) ∈MJ |R3(x)⊕R3(y) ∈MK and R2(x)⊕R2(y) ∈ DI) = 0

for all |I|+ |J | ≤ 4. In other words, the assumption behind the probabilities given in Sect.
3.2 is that the elements x and y are uniform distributed, or (at least) very close to be
uniform distributed - as for the events considered in this paper to set up distinguishers and
key-recovery attacks on 5- and 6-round AES.
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B A New 4-round Secret-Key Distinguisher for AES - De-
tails

In this section, we give all the details of the 4-round Secret-Key Distinguisher for AES
presented in Sect. 5 about the computational cost. We refer to Sect. 5 for all the details
about the distinguisher.

Computational Complexity
Given 216 chosen plaintexts in the same coset of C0 ∩ D0,1 ⊕ a and the corresponding
ciphertexts, a first possibility is to construct all the possible pairs, to divide them in sets
SC0∩D0,1⊕a and to check for each set if the above property is satisfied (or not). First of
all, given a set SC0∩D0,1⊕a = {[(p1, c1), (p2, c2)]; [(p̂1, ĉ1), (p̂2, ĉ2)]}, the cost to check if the
above property is satisfied (or not) is equal to 1 XOR and 1 MixColumns operation26,
which is negligible with respect to the total cost. For this reason, we focus on the cost to
construct the sets SC0∩D0,1⊕a. Using the previous strategy, since the number of pairs is
approximately 231 for each coset, the cost is of approximately 2 · 231 = 232 table look-ups.

In order to reduce the computational cost, a possibility is to re-order the ciphertexts
with respect to a partial order � as defined in Def. 11 (see also [GRR17a]). Note that
� depends on an index J . Using a merge-sort algorithm, the cost to re-order n texts is
of O(n · logn) table look-ups. When the ciphertexts have been re-ordered, it is no more
necessary to construct all the possible pairs. Indeed, to verifier the property, it is sufficient
to work only on consecutive texts with respect to �.

In more details, first one stores all the plaintext/ciphertext pairs twice, (1) once in
which the plaintexts are ordered with respect to the partial order ≤ defined in Def. 6 and
(2) once in which the ciphertexts are ordered with respect to the partial order � defined in
Def. 11. Then, working on this second set, on focuses only on consecutive ciphertexts ci
and ci+1 for each i, and checks if ci ⊕ ci+1 ∈MJ or not. Assume that ci ⊕ ci+1 ∈MJ for
a certain J fixed previously. The idea is to take the corresponding plaintexts pi ≡ (x1, y1)
and pi+1 ≡ (x2, y2), to construct the corresponding set SC0∩D0,1⊕a

p1,p2 and to check if the
ciphertexts ĉ1 and ĉ2 of the corresponding plaintexts p̂1 ≡ (x1, y2) and p̂2 ≡ (x2, y1) satisfy
the condition ĉ1⊕ ĉ2 ∈MJ for the same J . If not, by previous observations one can simply
deduce that this is a random permutation. Note that if there are r consecutive ciphertexts
ci, ci+1, ..., ci+r−1 such that cj ⊕ cl ∈MJ for i ≤ j, l < r, then one has to repeat the above
procedure for all these

(
r
2
)

= r · (r − 1)/2 possible pairs27.
To optimize the computational cost, note that the plaintexts p̂1 and p̂2 are respectively

in positions x1 + 28 · y2 and x2 + 28 · y1 in the first set of plaintext/ciphertext pairs (i.e.
in the set where the plaintexts are ordered with respect to the partial order ≤). Thus, the
cost to get these two elements is only of 2 table look-ups. Moreover, we emphasize that it
is sufficient to work only on (consecutive) ciphertexts ci and cj such that ci ⊕ cj ∈ MJ .
Indeed, consider the case in which the two ciphertexts ci and cj don’t belong to the same
coset ofMJ , i.e. ci ⊕ cj /∈ MJ . If the corresponding ciphertexts ĉ1 and ĉ2 - defined as
before - don’t belong to the same coset ofMJ , then the property is (obviously) verified.
Instead if ĉ1 ⊕ ĉ2 ∈ MJ , then this case is surely analyzed. The pseudo-code of such
strategy can be found in Algorithm 1.

Using this procedure, the memory cost is well approximated by 4 · 217 · 16 = 223 bytes -
the same plaintext/ciphertext pairs in two different ways. The cost to order the ciphertexts
for each possible J with |J | = 3 and for each one of the two cosets is approximately of
2 · 4 · 216 · log 216 ' 223 table look-ups, while the cost to construct all the possible pairs of
consecutive ciphertexts is of 2 · 4 · 216 = 219 table look-ups. Since the probability that a

26Given x, y, then x⊕ y ∈MI if and only if MC−1(x⊕ y) ∈ IDI for each I.
27SinceMJ is a subspace, given a, b, c such that a⊕ b ∈MJ and b⊕ c ∈MJ , then b⊕ c ∈MJ .
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pair of ciphertexts belong to the same coset of DJ for |J | = 3 is 2−30 and since each coset
contains approximately 231 different pairs, then one has to do on average 2 ·4 ·2−30 ·231 = 24

table look-ups in the plaintext/ciphertext pairs ordered with respect to the plaintexts.
Thus, the total cost of this distinguisher is well approximated by 223 + 219 + 16 ' 223.09

table look-ups, or approximately 216.75 four-round encryptions (using the approximation
20 table look-ups ≈ 1 round of encryption).

C Details of the Key-Recovery Attack on 5-round AES of
Sect. 5.3

As we have seen in Sect. 3.1, a coset of a diagonal space is always mapped into a coset
of a column space. Thus, a natural question is if it is possible to extend the 4-round
distinguisher proposed in Sect. 5 to a 5-round one simply considering plaintexts in the
same coset of a diagonal space DI instead that in the same coset of a column space CI . As
we are going to show, a problem arises that doesn’t allow to implement the distinguisher,
but a new key-recovery attack on 5-round of AES can be set up.

W.l.o.g. consider a coset of a subspace C0 (analogous for others CI with |I| = 1). To set
up the distinguisher on 4-round AES described in Sect. 5, one constructs all the sets SC0⊕a,
and exploits the fact that for each given set only two events can happen in the AES case:
for all the couples the two ciphertexts belong or not to the same coset ofMJ . Remember
that given a couple of two pairs (p1, c1) and (p2, c2) in SC0⊕a with p1 ≡ (x1, y1, z1, w1)
and p2 ≡ (x2, y2, z2, w2), then the other seven couples are composed by the other possible
combinations of these variables.

Consider instead two plaintexts in the same coset of D0 (i.e. D0 ⊕ a for a ∈ D⊥0 ), that
is p1 and p2 such that pi ≡ (xi, yi, zi, wi) for i = 1, 2 or equivalently:

pi = xi · e0,0 ⊕ yi · e1,1 ⊕ zi · e2,2 ⊕ wi · e3,3 ⊕ a.

By Theorem 1, there exists b ∈ C⊥0 such that for i = 1, 2

R(pi) =


x̂i 0 0 0
ŷi 0 0 0
ẑi 0 0 0
ŵi 0 0 0

⊕ b ≡MMC ·


S-Box(xi ⊕ k0,0) 0 0 0
S-Box(yi ⊕ k1,1) 0 0 0
S-Box(zi ⊕ k2,2) 0 0 0
S-Box(wi ⊕ k3,3) 0 0 0

⊕ b,
i.e. R(pi) ≡ (x̂i, ŷi, ẑi, ŵi) ≡ x̂i · e0,0 ⊕ ŷi · e1,0 ⊕ ẑi · e2,0 ⊕ ŵi · e3,0 ⊕ b. In order to use the
previous distinguisher, one has to construct the set SC0⊕b

R(p1),R(p2) defined as before28. As an
example, the couple (p̂1, ĉ1) and (p̂2, ĉ2) such that p̂1 and p̂2 satisfy

R(p̂i) = x̂i+1 · e0,0 ⊕ ŷi · e1,0 ⊕ ẑi · e2,0 ⊕ ŵi · e3,0 ⊕ b,

where the index i + 1 is taken modulo 2, belongs to such set (analogous for the other
cases/combinations). However, a problem arises: since the key k is secret and the S-Box is
non-linear, there is no way to find such p̂1 and p̂2 and to construct the set SC0⊕b

R(p1),R(p2) if
the plaintexts are in a coset of a diagonal space DI instead of a column space CI . It follows
that it is not possible to extend the 4-round distinguisher of Sect. 5 simply considering
plaintexts in a coset of DI instead of CI .

On the other hand, this allows to set up a new key-recovery attack on 5 rounds of
AES. Given plaintexts in the same coset of DI , consider two (plaintexts, ciphertexts)
pairs (p1, c1) and (p2, c2) such that the two ciphertexts belong to the same coset ofMJ

for J with |J | = 3 after five-round. Fixed I ∈ {0, 1, 2, 3}, the idea of the attack is to

28We abuse the notation SR(D0⊕a)
R(p1),R(p2) to denote the set SC0⊕b

R(p1),R(p2).
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guess 4 bytes of the I-th diagonal of the secret key k, that is ki,i+I for each i = 0, 1, 2, 3,
(partially) compute Rk(p1) and Rk(p2) and construct the set SC0⊕b

R(p1),R(p2). Due to the
previous 4-round distinguisher, such set SC0⊕b

R(p1),R(p2) has the property that for all the
couples (p̂1, ĉ1) and (p̂2, ĉ2), the two ciphertexts belong to the same coset ofMJ for the
previous J . If this property is not satisfied, then one simply deduces that the key is wrong.
If more than one candidate of the key passes the test, one can simply repeat it with other
couples of plaintexts/ciphertexts until all the wrong candidates are discarded.

Data and Computational Costs. Each coset of DI with |I| = 1 is composed of 232

texts, thus on average 263 · 2−32 = 231 different pairs of ciphertexts belong to the same
coset ofMJ for a fixed J with |J | = 3. As we have just seen, it is sufficient to find one
collision in order to implement the attack and to find the key. In order to find it, the best
strategy is to re-ordered the ciphertexts with respect to the partial order � and then to
work on consecutive elements. For each initial coset of DI and for a fixed J , the cost to
re-order the ciphertexts with respect to the partial order � (forMJ with J fixed - |J | = 3)
and to find a collision is approximately of 232 · (log 232 + 1) = 237 table look-ups. When
such a collision is found, one has to guess 4 bytes of the key and to consider (at least) two
different couples in the set SC0⊕b

R(p1),R(p2). Since the cost to get two different couples in the
set SC0⊕b

R(p1),R(p2) is well approximated by 4 table look-ups (as for the 4-round distinguisher
described in Sect. 5, the idea is to store the (plaintexts, ciphertexts) pairs twice, once
w.r.t. the partial order ≤ and once w.r.t. the partial order �), the cost of this step is of
232 · 2 · 4 = 235 S-Box and of 232 · 4 = 234 table look-ups.

Thus, the cost to find one diagonal of the key is well approximated by 235 S-Box
look-ups and 237.17 table look-ups, that is approximately 230.95 five-round encryptions.
The idea is to repeat this operation for three different diagonals, and to find the last one
by brute force. As a result, the total computational cost is of 232 + 3 · 230.95 = 233.28

five-round encryptions, while the data cost is of 3 · 232 = 233.6 chosen plaintexts.
Only for completeness, we highlight that the same attack works also in the decryp-

tion/reverse direction, using chosen ciphertexts instead of plaintexts.

C.1 Practical Verification
Using a C/C++ implementation29, we have practically verified the attack just described
on the small-scale AES presented in [CMR05]. As we have already said, while in “real”
AES, each word is composed of 8 bits, in this variant each word is composed of 4 bits. We
refer to [CMR05] for a complete description of this small-scale AES, and we limit ourselves
to describe the results of our 5-round key-recovery in this case. Since the attack and the
distinguisher are independent of the fact that each word of AES is composed of 4 or 8 bits,
our verification on the small scale variant of AES is strong evidence for it to hold for the
real AES.

Practical Results. We verified the key-recovery attack on small-scale AES. For the
following, we limit to report the result for a single diagonal of the key. First of all, a single
coset of a diagonal space Di is largely sufficient to find one diagonal of the key. More
in details, given two (plaintexts, ciphertexts) pairs (p1, c1) and (p2, c2), then other two
different couples in the set SC0⊕b

R(p1),R(p2) are sufficient to discard all the wrong candidates of
the diagonal of the key, as predicted.

About the computational cost, using the same argumentation of before, the theoretical
cost for the small-scale AES case is well approximated by 4 · 216 · (log 216 + 1) + 216 · 4 = 221

29The source codes of the distinguishers/attacks are available at https://github.com/Krypto-iaik/
Distinguisher_5RoundAES
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table look-ups and 216 · 4 · 3 = 219.6 S-Box look-ups, for a total of 219.6 + 221 = 221.5 table
look-ups (assuming that the cost of 1 S-Box look-up is approximately equal to the cost of
1 table look-up). The average practical computational cost is of 221.5 table look-ups, that
is approximately the same of the theoretical one.

D Details of the 5-round AES Distinguisher of Sect. 7
In this section, we list the probabilities of the 5-round secret-key distinguisher proposed in
Sect. 7 for the cases of sets S and T , and the details about the computational cost for
the case of sets Z. Since the way in which these probabilities are computed is the same
given in Sect. 7, we refer to that section for all the details and we limit here to report the
corresponding probabilities and the results of our practical implementations.

D.1 Case: S set
By definition Def. 8, a set S is composed of 8 (plaintexts, ciphertexts) couples such that
the generating variables of the two plaintexts of each couple are all different. Given a set
S, what is the probability that two ciphertexts of at least one couple belong to the same
coset ofMJ?

Using the same calculation given in Sect. 7, it follows that this probability in the AES
case is well approximated by

pAES =
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

8 | E4
i )
]
·Prob(E4

i )+

+
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

8 | E4
i )
]
·Prob(E4

i ) =

=(1− p3) ·
[
1−

(
1− p3 · (1− p3,3)

1− p3

)8]
+p3 ·

[
1−

(
1− p3,3

)8]
=

=2−27 − 31 · 2−60 − 3 641 245 · 2−91︸ ︷︷ ︸
≈ 3.475 · 2−71

+ 20 628 528 753 · 2−124︸ ︷︷ ︸
≈ 2.4 · 2−91

+...

for a certain i ∈ {1, ..., 8}. For a random permutation, the same event occurs with
(approximately) probability

prand =1−
(
1− p8

3
)
= 1−

[
1−

(
2−30 − 3 · 2−63 + 2−94)]8=

=2−27 − 31 · 2−60 + 155 · 2−91 + ...

Note that |pAES − prand| ' 2−69.204 and pAES ' prand ' 2−27. Using (20), it follows that
n must satisfy n > 2113.84 for a prob. of success higher than 95%.

What is the data complexity? We remember that a single coset of CI for |I| = 1 contains
approximately 231 · (28 − 1)4 · 2−3 ' 259.978 different sets S of eight couples, while a single
coset of CI for |I| = 2 contains approximately 263 · (216 − 1)4 · 2−3 ' 2124 different sets S.
Thus, using a single coset of CI for |I| = 1, one needs approximately 2113.84 · 2−60 ' 253.84

different initial cosets of CI , that is approximately 285.84 chosen plaintexts. Using instead
an initial coset of CI with |I| = 2, it is possible to construct approximately 2124 different
sets S of eight couples, which is more than one needs to set up the distinguisher. It follows
that 259 chosen plaintexts in the same coset of CI with |I| = 2 are sufficient to implement
the distinguisher.

What is the computational cost? The cost to re-order the set is 4 · 253.84 · 232 · log 232 '
292.84 table look-ups for the case of coset CI with |I| = 1 and 4 · 259 · log 259 ' 266.88 for the
case |I| = 2. The number of collisions is approximately 2−30 ·253.84 ·263 ' 286.84 for the case
|I| = 1 and 2−30 · 2117 ' 287 for the case |I| = 2. Since the cost to construct the set S is of
2 · 8 = 24 table look-ups, the total cost is well approximated by 286.84 · 24 + 292.84 = 293.16
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table look-ups, that is approximately 286.52 five-round encryptions for the case |I| = 1. In
a similar way, the cost for the case |I| = 2 is given by 287 · 24 + 266.88 = 291 table look-ups,
that is approximately 284.36 five-round encryptions

D.1.1 Key-Recovery Attack on 6-round AES

For completeness, we also give the probability pWrongKey
AES that - when the guessed key is

wrong - for a set SR(DI⊕a) two texts of at least one couple belong to the same coset of
MK for a certain |K| = 3 after six rounds is approximately equal to

pWrongKey
AES =

8∑
n=0

(
8
n

)
· pn3 · (1− p3)8−n ·

[
1−

(
1− p3,3

)n
·
(

1− p3 · (1− p3,3)
1− p3

)8−n]
,

which is well approximated by

pWrongKey
AES = 2−27 − 31 · 2−60 − 3 989 · 2−91 + ...

Note that this probability is similar but not equal to the one of the random case (which is
prand = 2−27−31 ·2−60 +155 ·2−91 + ...), while we remember that the probability for “AES
with the right key” is pAES = 2−27 − 31 · 2−60 − 3 641 245 · 2−91 + ..., where the difference
between these two probabilities is approximately |pWrongKey

AES − pAES | ' 2−69.2053.
We refer to Sect. 7.4 for all the details about the attack on 6-round AES.

D.2 Case: T set
As first thing, we recall the definition of set T .
Definition 10. Let X be a fixed coset of CI orMI for I ∈ {0, 1, 2, 3} with |I| = 1. Let
p and q be two different elements in a coset of X , that is X ⊕ a, with p ≡ (p0, p1, p2, p3)
and q ≡ (q0, q1, q2, q3), such that p0 = q0 and pj 6= qj for each j = 1, 2, 3 (the set T X⊕ap,q

is defined in a similar way for the other cases). Moreover, let Rr(p) and Rr(q) be the
corresponding ciphertexts after r rounds.

We define the set T X⊕ap,q as the set of 1024 couples (p̂i, Rr(p̂i)) and (q̂i, Rr(q̂i)) where
p̂i, q̂i ∈ X ⊕ a for i = 1, ..., 1024 respectively generated by the following combinations of
variables

1. (z0, p1, p2, p3) and (z0, q1, q2, q3); 2. (z0, q1, p2, p3) and (z0, p1, q2, q3);
3. (z0, p1, q2, p3) and (z0, q1, p2, q3); 4. (z0, p1, p2, q3) and (z0, q1, q2, p3).

where z0 can take any possible value in F28 .
As for the cases of the sets S and Z, the following Lemma holds.

Lemma 5. Let TMI⊕a
p,q be an arbitrary set defined as in Def. 10

TMI⊕a
p,q ≡ {[(p1

i , c
1
i ≡ R(p1

i )), (p2
i , c

2
i ≡ R(p2

i ))]i ∀i = 1, ..., 1024}.

For each fixed J ⊆ {0, 1, 2, 3}, only on of the two following events can happen:

• c1
i ⊕ c2

i /∈ DJ for all i = 1, ..., 1024;

• c1
i ⊕ c2

i ∈ DJ for all i = 1, ..., 1024.

In other words, given a set TMI⊕a
p1,p2 , consider the 1024 couples of two (plaintext,

ciphertext) pairs (p1
i , c

1
i ) and (p2

i , c
2
i ) for i = 1, ..., 1024. If two ciphertexts c1 and c2 belong

(or not) to the same coset of DJ for a certain J , then the ciphertexts of all the other
couples in the set SMI⊕a

p1,p2 have the same property.
Thus, given a set T , what is the probability that two ciphertexts of at least one couple

belong to the same coset ofMJ?
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D.2.1 Case: |I| = 1

We start considering the case of cosets CI with |I| = 1. Note that in this case one can
construct 223 · (28 − 1)3 ' 246.983 sets T , each one of 4 · 28 = 210 couples (note that the
number of couples with one equal generating variable is 4 · 28 · 223 · (28 − 1)3 ' 256.983 -
see (11)).

Using the same calculation given in Sect. 7, it follows that this probability in the AES
case is well approximated by to:

pAES =
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

1024 | E4
i )
]
·Prob(E4

i )+

+
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

1024 | E4
i )
]
·Prob(E4

i ) =

=(1− p3) ·
[
1−

(
1− p3 · (1− p3,3)

1− p3

)1024]
+p3 ·

[
1−

(
1− p3,3

)1024]
=

=2−20 − 4095 · 2−53 − 529 370 445 · 2−84︸ ︷︷ ︸
≈ 3.945· 2−57

+ 374 996 306 937 593 · 2−117︸ ︷︷ ︸
≈ 2.665 · 2−70

+...

For a random permutation, the same event occurs with (approximately) probability

prand =1−
(
1− p3

)1024= 1−
[
1−

(
2−30 − 3 · 2−63 + 2−94)]1024=

=2−20 − 4095 · 2−53 + 2 794 155 · 2−84︸ ︷︷ ︸
≈ 2.665 · 2−64

+...

Since |pAES − prand| ' 2−55.013 and pAES ' prand ' 2−20, it follows that n must
satisfy n > 292.246 for a probability of success of approximately 95%,. Since a single
coset of CI for |I| = 1 contains approximately 246.983 different sets T , it follows that
292.246 · 2−46.983 ' 245.263 initial cosets of CI for |I| = 1 are sufficient, for a total data cost
of 232 · 245.263 ' 277.263 chosen plaintexts.

About the computational cost, the cost to re-order them is 4·245.263 ·232 ·log 232 ' 284.263

table look-ups. The number of collisions is approximately 2−30 · 263 · 245.263 ' 278.263.
Among them, the pairs for which the two plaintexts have one common variable are
278.263 ·2−6 = 272.623. Since the cost to construct the set T is of 2 ·210 = 211 table look-ups,
the total cost is well approximated by 272.623 · 211 + 284.263 = 284.98 table look-ups, that is
approximately 278.33 five-round encryptions.

D.2.2 Case: |I| = 2

Consider now the case of cosets CI with |I| = 2. Note that in this case one can construct
247 · (216 − 1)3 ' 295 sets T of 4 · (28)2 = 218 couples (note that the number of couples
with one equal generating variable is 4 · 216 · 247 · (216 − 1)3 ' 2113).

Using the same calculation given in Sect. 7, it follows that this probability in the AES
case is well approximated by

pAES =
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

218 | E4
i )
]
·Prob(E4

i )+

+
[
1− Prob(E5

1 ∧ E5
2 ∧ ... ∧ E5

218 | E4
i )
]
·Prob(E4

i ) =

=(1− p3) ·
[
1−

(
1− p3 · (1− p3,3)

1− p3

)218]
+p3 ·

[
1−

(
1− p3,3

)218]
=

=2−12 − 1048575 · 2−45 + 46 884 625 075 · 2−76︸ ︷︷ ︸
≈ 2.73 · 2−42

+...

(23)

For a random permutation, the same event occurs with (approximately) probability

prand =1−
(
1− p3

)218

= 1−
[
1−

(
2−30 − 3 · 2−63 + 2−94)]218

=
=2−12 − 1048575 · 2−45 + 183 251 413 675 · 2−76︸ ︷︷ ︸

≈ 10.667 · 2−42

+... (24)
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Since |pAES − prand| ' 2−39.011 and pAES ' prand ' 2−12, it follows that n must satisfy
n > 268.243 for a probability of success of approximately 95%,. Since a single coset of CI
for |I| = 2 contains approximately 295 different sets T , less than a single coset is sufficient
to implement the distinguisher. In particular, a set of the form

{
a⊕


x0 y1 0 0
z0 x1 0 0
w0 z1 0 0
y0 w1 0 0

 ∣∣∣∣∀x0, x1, y0, y1, z0, z1 ∈ F2
28 , ∀w0, w1 ∈ {0x00, 0x01, 0x02}

}

for a certain constant a is sufficient (note that this is a subset of the coset C0,1⊕a). Indeed,
for such a set it is possible to construct approximately 3 · [(216)2 ·9 ·(216−1)2 ·(9−1)] ·2−3 '
268.75 different sets Z (remember that we are working with variables in F2

28), for a total of
(28)6 · 32 ' 251.17 chosen plaintexts.

The cost to re-order it is 4 · 251.17 · log 251.17 ' 258.85 table look-ups. The number of
collisions is approximately 2−30 · 2102.34 ' 272.34. Among them, the number of pairs for
which the two plaintexts have one common variable is approximately 272.34 · 2−14 ' 258.34

(the probability that two variables in F2
28 are equal is 4 · 2−16 = 2−14). Since the cost to

construct the set T is of 2 · 218 = 219 table look-ups, the total cost is well approximated
by 258.34 · 219 + 258.85 = 277.34 table look-ups, that is approximately 270.7 five-round
encryptions.

D.3 Practical Verification on small-scale AES
In order to have a practical verification of the proposed distinguisher30 (and of the following
key-recovery attack), we have practically verified the probabilities pAES and prand given
above. In particular, we verified them using a small-scale AES, proposed in [CMR05]. We
emphasize that our verification on the small-scale variant of AES is strong evidence for it
to hold for the real AES, since the strategy used to theoretically compute such probabilities
is independent of the fact that each word of AES is of 4 or 8 bits.

Thus, in order to compare the practical values with the theoretical ones, we compute
the theoretical probabilities pAES and prand for the small-scale case. First of all, for small
scale AES the probabilities p3 and p3,3 are respectively equal to p3 = 2−14− 3 · 2−31 + 2−46

and p3,3 = 2−10 − 3 · 2−23 + 2−34.
For the following, we limit to consider cosets of CI for |I| = 1.

D.3.1 Case: Set S

W.l.o.g. we used cosets of C0 to practically test the two probabilities. Using the previous
procedure and formula, the (approximately) probabilities that a set SC0⊕a satisfy the
required property for 5-round AES and the random case are respectively

pAES = 2−11 − 31 · 2−28 − 12 445 · 2−43︸ ︷︷ ︸
≈ 3.05 · 2−31

+ 4 848 753 · 2−60︸ ︷︷ ︸
≈ 37 · 2−43

+...

prand = 2−11 − 31 · 2−28 + 155 · 2−43 + ...

As a result, using formula (20) for prand ' pAES ' 2−11 and |prand − pAES | ' 2−29.379, it
follows that n ≥ 250.194 different sets SC0⊕a are sufficient to set up the distinguisher with
probability higher than 95%.

Since we work with small-scale AES, a single coset of C0 contains 216 (plaintexts,
ciphertexts) pairs, or approximately 215 · (216 − 1) ' 231 different couples. Since the
number of couples with different generating variables is given by 216 · (24 − 1)4 (also tested

30The source codes of the distinguishers/attacks are available at https://github.com/Krypto-iaik/
Distinguisher_5RoundAES
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by computer test), it is possible to construct 8−1 ·216 · (24−1)4 = 207 360 000 ' 227.628 sets
S such that all the generating variables of the couples of each of these sets are different.
As a result, it follows that 250.194 · 2−27.628 = 222.566 different initial cosets of C0 must be
used, for a cost of 238.566 chosen plaintexts.

For our tests, we used 223 different initial cosets of C0 (keys used to encrypt the
plaintexts in the AES case are randomly chosen and different for each coset - the key is
not fixed). For each coset we exploited Algorithm 5 to count the number of sets SC0⊕a

that satisfy the required property (i.e. the number of sets for which two ciphertexts of
at least one couple are in the same coset ofMJ for certain J with |J | = 3). As a result,
for each initial coset C0 the (average) theoretical numbers of sets ZC0⊕a that satisfy the
required property for the random and the AES cases - given by nTX = 207 360 000 · pX -
and the (average) practical ones found in our experiments - denoted by nPX - are given are:

nTrand ' 101 226.057 nTAES ' 101 225.76
nPrand ' 101 226.105 nPAES ' 101 225.68

Note that these two numbers are close to the theoretical ones, and that the average number
of sets for AES case is lower than for the random one, as predicted.

D.3.2 Case: Set T

W.l.o.g. we used cosets of C0 to practically test the two probabilities. Using the previous
procedure and formula, (approximately) the probabilities that a set SC0⊕a satisfy the
required property for 5-round AES and the random case are respectively

pAES = 2−8 − 255 · 2−25 − 102 605 · 2−40 + ...

prand = 2−8 − 255 · 2−25 + 10 795 · 2−40 + ...

As a result, using formula (20) for prand ' pAES ' 2−8 and |prand − pAES | ' 2−23.21, it
follows that n ≥ 240.64 different sets T C0⊕a are sufficient to set up the distinguisher with
probability higher than 95%.

Since we work with small-scale AES, a single coset of C0 contains 4 · 24 · 211 · (24− 1)3 '
229.71 couples for which the two plaintexts have only one different generating variable (also
tested by computer test). Thus, it is possible to construct 211 ·(24−1)3 = 6 912 000 ' 223.721

sets T such that all the generating variables of the couples of each of these sets are different.
As a result, it follows that 240.64 · 2−23.721 = 216.92 different initial cosets of C0 must be
used, for a cost of 238.566 chosen plaintexts.

For our tests, we used 217 different initial cosets of C0 (keys used to encrypt the
plaintexts in the AES case are randomly chosen and different for each coset - the key is
not fixed). For each coset we exploited Algorithm 5 to count the number of sets T C0⊕a

that satisfy the required property (i.e. the number of sets for which two ciphertexts of
at least one couple are in the same coset ofMJ for certain J with |J | = 3). As a result,
for each initial coset C0 the (average) theoretical numbers of sets T C0⊕a that satisfy the
required property for the random and the AES cases - given by nTX = 6 912 000 · pX - and
the (average) practical ones found in our experiments - denoted by nPX - are given are:

nTrand ' 26 497.54 nTAES ' 26 496.83
nPrand ' 26 497.57 nPAES ' 26 496.91

Note that these two numbers are close to the theoretical ones, and that the average number
of sets for AES case is lower than for the random one, as predicted.
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E Key-Recovery Attack on 6-round AES of Sect. 7.4 -
Chosen Plaintexts in Cosets of DI with |I| = 2

Referring to the key-recovery attack on 6-round AES of Sect. 7.4, here we explain why it
is not possible to use cosets of DI with |I| = 2 for a key-recovery attack - for the following
we use set S which allows to minimize the data complexity (however, it is completely
analogous for the set T ). In this case and using the same strategy of before, since 264

different combinations of 8 bytes of the key (i.e. 2 diagonals) must be tested, one has to use
the 5-round distinguisher with a probability higher (0.95)2−64 . This requires approximately
2118.9 sets for each guessed combination of the key, that is a single coset of DI with |I| = 2
for a total cost of 264 chosen plaintexts (each coset of DI with |I| = 2 has approximately
2127 different sets). On the other hand, using the previous argumentation, the total cost
of the attack is approximately of 2166 table look-ups, which is worse than a brute-force
attack. Indeed, the cost of the re-order process is of 4 · 264 · (log 264 + 1) = 272 table
look-ups, while the cost to construct the set S when a collision is found is approximately of
264 ·297 ·16 = 2165 table look-ups (note the average number of collisions is 264 ·263 ·2−30 ≈ 297

and that one has to repeat the procedure 264 times, i.e. the number of guessed key). It
follows that it is not possible to use cosets of DI with |I| = 2 for this attack. Since we
don’t exclude the possibility of a different and better implementation of the attack just
described (with the goal to minimize the computational and the data costs), we leave its
research as an open problem for future work.

F A 6-round Secret-Key Distinguisher for AES

In Sect. 7 we have proposed a probabilistic 5-round distinguisher for AES obtained
extending (at the end) the deterministic 4-round distinguisher of Sect. 5. Here we
propose a probabilistic 6-round distinguisher for AES obtained extending at the end the
probabilistic 5-round distinguisher for AES, or equivalently extending at the end the
4-round distinguisher by two rounds. However, as we are going to show, this 6-round
secret-key distinguisher for AES (which exploits a property which is independent of the
secret key) can not be used in practice, since it requires more than the full codebook to
distinguish a 6-round AES from a random permutation with non-negligible property.

To explain how this 6-round distinguisher works, we briefly recall the 4-round and the
5-round ones. In order to set up the 4-round secret-key distinguisher for AES, the idea is
to consider cosets of a column space CI for I ⊆ {0, 1, 2, 3}, to construct all the couples and
to divide them in sets SCI⊕a as defined in Def. 8. As we have already seen, in the case of
4-round AES only two events can happen for each set SCI⊕a: for all the couples, the two
ciphertexts belong or not to the same coset ofMJ .

The idea of the 5-round distinguisher is to consider the probability that a set ZCI⊕a
contains at least one couple for which the two ciphertexts belong to the same coset ofMJ

with |J | = 3. Referring to Sect. 7, it is possible to prove that this probability is lower
for 5-round AES than for a random permutation. As for the 5-round distinguisher, in
order to set up our distinguisher for 6-round AES, the idea is to count the number of sets
ZCI⊕a with |I| = 3 for which two ciphertexts of at least one couple belong to the same
coset ofMJ for a certain J ⊆ {0, 1, 2, 3} with |J | = 3. As we are going to prove, also in
this case the probability of the above event is lower for 6-round AES than for a random
permutation. On the other hand, this difference is so small (much smaller than for the
5-rounds case) that this distinguisher can not be used in practice, since it requires more
than the full codebook to work.
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F.1 Details and Data Cost
As for 5-round distinguisher, in order to set up the 6-round distinguisher the idea is to
exploit the property of the 4-round secret-key distinguisher proposed in Sect. 5. Consider
plaintexts in the same coset of CI with |I| = 3, construct all the couples of two (plaintexts,
ciphertexts) pairs (skipping the ones with common generating variables) and divide them
in sets ZCI⊕a. For an AES permutation and for a fixed J ⊆ {0, 1, 2, 3} with |J | = 3, only
two event can occur after four rounds:

1. for all the couples, the two ciphertexts belong to the same coset ofMJ - probability
p3 ' 2−30;

2. for all the couples, the two ciphertexts don’t belong to the same coset of MJ -
probability 1− p3 ' 1− 2−30.

For a random permutation instead, it is possible that the two ciphertexts of only some -
not all - couples belong to the same coset ofMJ .

Before we go on, we remember the following facts. By the impossible-differential trail
(see Prop. 1), for all J,K ⊆ {0, 1, 2, 3} with |J |+ |K| ≤ 4 (e.g. |J | = 3 and |K| = 1) the
following probability holds

Prob(R2(x)⊕R2(y) ∈MK |x⊕ y ∈MJ) = 0,

while in general two texts belong to the same coset ofMK for |K| = 1 with probability
Prob(x ⊕ y ∈ MK) = 2−94. The idea is to use these considerations and the same
argumentation of the 5-round distinguisher of Sect. 7 in order to set up a 6-round
distinguisher for AES which is independent of the secret key. The idea is to show that
given a set ZCI⊕a for |I| = 3, the probability that two ciphertexts of at least one couple
belong to the same coset ofMK for |K| = 1 after 6 rounds is lower for an AES permutation
than for a random one.

Let’s start with the AES permutation, and remember that for the following we consider
only cosets of CI with |I| = 3. First of all, note that each coset of CI ⊕ a with |I| = 3
contains approximately 3 · 247 · (224 − 1)2 ' 296.585 sets Z, and that each set Z contains
(2 ·224)2 = 249 couples. Given a set ZCI⊕a, consider the case in which the two texts of each
couple belong to the same coset ofMJ for |J | = 3 after 4 rounds. By Prop. 1, it follows
immediately that in this case the two ciphertexts of all the couples can not can belong
to the same coset ofMK for |K| = 1 after 6 rounds. In other words, the probability of
this case is 0. Consider now the other case, in which for each couple, the two texts don’t
belong to the same coset of MJ for |J | = 3 after 4 rounds. By simple calculation, the
probability that two ciphertexts of at least one couple belong to the same coset ofMJ for
|J | = 1 after 6 rounds is given by 1− (1− p̃1,3)249 ' 2−45. Thus, given a set ZCI⊕a and
using analogous calculation of Sect. 7 (i.e. for the 5-round distinguisher), it follows that
the probability that the two ciphertexts of at least one couple belong to the same coset of
MJ for |J | = 1 is well approximated by

pAES =
[
1− Prob(E6

1 ∧ E6
2 ∧ ... ∧ E6

249 | E4
i )
]
·Prob(E4

i )+

+
[
1− Prob(E6

1 ∧ E6
2 ∧ ... ∧ E6

249 | E4
i )
]
·Prob(E4

i ) =

=
[
1− Prob(E6

1 ∧ E6
2 ∧ ... ∧ E6

249 | E4
i )
]
·Prob(E4

i ) =

=(1− p3) ·
[
1−

(
1− p̃1,3

)249]
=

=2−45 − 2−91 − 2−121 + 3 · 2−139 + ...

(25)

for a certain i = 1, ..., 249. Instead, by simple computation, for a random permutation the
same event occurs with (approximately) probability

prand = 1− (1− p1)249
= 1− (1− 2−94)249

= 2−45 − 2−91 + 3 · 2−139 + ... (26)
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As for the 5-round distinguisher, the idea is to exploit this small difference (|pAES−prand| '
2−121) in order to distinguish the random permutation from an AES one.

Using formula (20), it follows that to distinguish the two cases with probability
higher than 95%, one needs more than 2199.22 different sets. On the other hands, the
maximum number of available sets using initial cosets of CI with |I| = 3 is approximately
232 · 296.584 ' 2128.585. Since similar results occur using different values of |I|, |J | and |K|
with |J |+ |K| ≤ 4 and using sets S and T , it follows that the distinguisher requires more
than the full codebook to work. As a result, the problem to set up a distinguisher for 6
rounds of AES which exploits a property which is independent of the secret key is still open
for future research.

Only for completeness, note that this distinguisher on 6 rounds has something in
common with the 4-round distinguisher based on impossible differential trails (we refer e.g.
to [BK01] for details), in the same way in which the 5-round distinguisher just presented in
Sect. 7 has something in common with the 3-round distinguisher based on the truncated
differential cryptanalysis. For an impossible differential trail, the idea is to exploit the
given two plaintexts in the same coset of DI , then they belong to different cosets ofMJ

after four rounds for each I, J ∈ {0, 1, 2, 3} with |I|+ |J | ≤ 4 - see Prop. 1. Here we use
the same technique but working on sets and not on single pairs of texts to set up our
6-round distinguisher.

G Key-Recovery Attack on AES with a single secret S-Box
G.1 Impossible Differential Attack on 5-round AES with a single Secret

S-Box
In this section, we show how to set up an impossible differential attack on 5-round AES
that exploits the fact that a sum of coefficients of the MixColumns matrix is equal to zero
(e.g. (15)), and improves the one presented in [GRR17b].

For a fixed a ∈ D⊥0 (i.e. ai,i = 0 for i = 1, 2, 3), consider a set of plaintexts of the form:

Vδ ≡
{
a⊕


x 0 0 0
0 x⊕ δ1,1 0 0
0 0 x⊕ δ2,2 0
0 0 0 0

 ∣∣∀x ∈ F28
}

(27)

and let δ ≡ (δ1,1, δ2,2). Since

MMC
r,1 ⊕MMC

r,2 ⊕MMC
r,3 = 0 for r = 0, 1,

it follows by Prop. 2 that the set Vδ is mapped into a coset of C0 ∩D2,3 with probability 1
after one round if δ1,1 = k1,1 ⊕ k0,0 and δ2,2 = k2,2 ⊕ k0,0. In the other cases, that is if
δ1,1 6= k1,1 ⊕ k0,0 and/or δ2,2 6= k2,2 ⊕ k0,0 the set Vδ is mapped into a coset of C0 with
probability 1, and into a coset of C0 ∩DI ⊆ DI for a certain I with |I| = 2 with probability
6 · 2−16 = 3 · 2−15.

Since Prob(R4(x) ⊕ R4(y) ∈ MJ |x ⊕ y ∈ DI) = 0 for |I|+ |J | ≤ 4 - see Prop. 1, if
δ1,1 = k1,1 ⊕ k0,0 and δ2,2 = k2,2 ⊕ k0,0, it follows that given two plaintexts in the same
coset of Vδ, then the corresponding ciphertexts after five rounds can not belong to the
same coset ofMJ for |J | = 2:

Prob(R5(x)⊕R5(y) ∈MJ |x, y ∈ Vδ and δi,i = ki,i ⊕ k0,0 for i = 1, 2) = 0.

In the other cases - if δ1,1 6= k1,1 ⊕ k0,0 and/or δ2,2 6= k2,2 ⊕ k0,0, given two plaintexts in
the same coset of Vδ, then the corresponding ciphertexts after 5-round belong to the same
coset ofMJ for |J | = 2 with prob. 6 · 2−64 = 3 · 2−63. The idea is to exploit this difference
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Figure 5: 5-Round secret-key distinguisher for AES with a single secret S-Box with data
complexity 276.4 based on a 4-round Impossible Subspace Trail. The choice of the plaintexts
(i.e. p0,0 ⊕ pi,i = k0,0 ⊕ ki,i for i = 1, 2) guarantees that after one round there are only two
bytes with non-zero difference instead of four, that is the plaintexts belong to the same
coset of C0 ∩ D2,3. Thus, the probability the two ciphertexts belong to the same coset of
MK for |K| = 2 is zero. White box denotes denotes a byte with a zero-difference, while a
black box denotes a byte with non-zero difference.

in the probabilities to recover the secret key.

Data and Computational Costs. The data and the computational costs analysis
are similar to the ones proposed in [GRR17b]. Consider the attack on 2 bytes of the secret
key. In order to discard a wrong candidate δ of the key, it is sufficient that at least one
set Vδ for which a pair of ciphertexts belong to the same coset ofMJ with |J | = 2 exists
(note that this can never happen for the right value of δ - the secret key). Since there are
216 − 1 wrong candidates, in order to have a total probability of success of 95%, such a set
must exist for each δ with probability higher than (0.95)2−16 ' 99.999922%.

Given a set Vδ, it is possible to construct approximately 27 · (28 − 1) = 215 different
pairs of ciphertexts. Since each pair can belong to the same coset ofMJ with a probability
of 3 · 2−63, given n different pairs, the probability that at least one of them belong to
the same coset of MJ is 1 − (1 − 3 · 2−63)n. By simple computation, the condition
1− (1− 3 · 2−63)n > 0.99999922 is satisfied for n > 265.23. Since each set Vδ is composed
of 215 pairs and since one has to repeat the attack for each possible value of δ, the attacker
needs approximately 265.23 · 2−7 · 216 = 274.23 chosen plaintexts to find two bytes of the
secret key (note that each set Vδ contains 28 texts, so 2−15 · 28 = 2−7).

The idea is to repeat this attack 4 times in order to find 8 bytes of the key (i.e. 2
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Data: 274.4 different sets Vδ defined as in (27) - 258.4 for each δ ≡ (δ1,1, δ2,2) - and
corresponding ciphertexts after 5 rounds

Result: k0,0 ⊕ k1,1 and k0,0 ⊕ k2,2
for each δ1,1 from 0 to 28 − 1 and each δ2,2 from 0 to 28 − 1 do

flag ← 0;
for each set Vδ do

for each I ⊆ {0, 1, 2, 3} with |I| = 2 do
let (pi, ci) for i = 0, ..., 28 − 1 be the 28 (plaintexts, ciphertexts) of Vδ;
re-order this set of elements w.r.t. the partial order � defined in
analogous way of Def. 11 s.t. ci � ci+1 ∀i; // � depends on I
for i from 0 to 28 − 2 do

if ci ⊕ ci+1 ∈MI then
flag ← 1;
next δ;

end
end

end
end
if flag = 0 then

identify δ1,1 as candidate for k0,0 ⊕ k1,1 and δ2,2 as candidate for k0,0 ⊕ k2,2;
end

end
return Candidates for k0,0 ⊕ k1,1 and k0,0 ⊕ k2,2. // Only one candidate with
Prob. 95%

Algorithm 7: Impossible Differential Attack on 5 rounds of AES with a single secret
S-Box. For simplicity, the goal of the attack is to find two bytes of the key - k0,0 ⊕ k1,1
and k0,0⊕ k2,2. The same attack on the other diagonals can be used to recover the entire
key up to 232 variants.

for column). In this case, for each candidate δ of the key at least one set Vδ with the
previous property must exist with probability higher (0.95)2−18 ' 99.99998%. Using the
same calculation as before, one needs approximately n > 265.37 pairs of ciphertexts for
each δ, that is approximately 250.37 different sets Vδ.

Finally, in order to find the final 4 bytes of the key (remember that we are to find it
up to 232 variants), the idea is to repeat again the previous attack. However, note that
in this case the attacker must guess only one byte of the key for each diagonal instead of
two (since two of three differences are already known). Thus, for each wrong δ, at least
one set for which two ciphertexts belong to the same coset of MJ with |J | = 2 must
exist with probability higher (0.95)2−10 ' 99.995%. Using the same calculation as before,
one needs approximately n > 264.73 pairs of ciphertexts for each δ, that is approximately
257.73 different sets Vδ. It follows that the total data complexity is approximately of
4 · 258.37 · 216 + 4 · 257.73 · 28 = 276.374 chosen plaintexts.

As for the impossible differential attack on 5-round AES with a single secret S-Box
presented in [GRR17b], the computational cost is well approximated by the re-ordering
algorithm, which can be approximated by 4 · 4 · 258.37 · 216 · (log 28 + 1) = 281.54 table
look-ups, or approximately 274.9 five-round encryptions.
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G.2 Computational Cost of Key-Recovery Attacks on 5-round AES of
Sect. 6.2

In this section, we give all the details of the 5-round key-recovery attacks for AES presented
in Sect. 6.2 about computational costs. We refer to those sections for all the details about
the attacks.

G.2.1 Attack of Sect. 6.2 - Computational Cost

In order to count the number of collisions, one can use the same procedure of the attack
described in Sect. 5, i.e. one can re-oder the texts with respect to a particular partial order
� as defined in 11. Here we propose an alternative strategy, which exploits data structure.

Assume I ⊆ {0, 1, 2, 3} is fixed with |I| = 1, and that the final MixColumns operation
is not omitted. The goal is to count the number of pairs of ciphertexts (c1, c2) such that
c1 ⊕ c2 ∈MI , or equivalently

MC−1(c1)i,j−i = MC−1(c2)i,j−i ∀i = 0, 1, 2, 3 (28)

where j = {0, 1, 2, 3} \ I, and the index is computed modulo 4. To do this, consider an
array W of 232 elements completely initialized to zero. The element of W in position x for
0 ≤ x ≤ 232 − 1 - denoted by W [x] - represents the number of ciphertexts c that satisfy
the following equivalence (in the integer field N):

x = c0,0−j + 256 ·MC−1(c)1,1−j +MC−1(c)2,2−j · 2562 +MC−1(c)3,3−j · 2563.

It’s simple to observe that if two ciphertexts c1 and c2 satisfy (28), then they increment
the same element x of the array W . It follows that given r ≥ 0 texts that increment the
same element x of the array W , then it is possible to construct

(
r
2
)

= r·(r−1)
2 different

pairs of texts that satisfy (28). The complete pseudo-code of such an algorithm is given in
Algorithm 3.

What is the total computational cost of this procedure? Given a set of 240 (plaintexts,
ciphertexts) pairs, one has first to fill the array W using the strategy just described, and
then to compute the number of total of pairs of ciphertexts that satisfy the property, for a
cost of 240 + 2 · 232 = 240.01 table look-ups - these operations require 232 table look-ups
(for the W case) or 240 table look-ups (for the Aδ case). Since one has to repeat this
procedure 16 times for each candidate of δ, and 12 times in order to find the key up to 232

variants, the total cost of this attack is well approximated by 12 · 28 · 16 · 240.01 ' 255.6

table look-ups or approximately 248.96 five-rounds encryptions.
For comparison, the computational cost using the re-ordering algorithm is well approx-

imated by 12 · 28 · 240 · (log 240 + 1) · 16 ' 260.9 table look-ups, that is approximately 254.25

five-round encryptions.

G.3 Attack on 5-round AES with single secret S-Box - MixColumns
Matrix with Zero-Sum of Coefficients

In this section, we show how to adapt the attack just presented in order to exploit
e.g. condition (15), i.e.the fact that a sum of elements that lie on the same row of the
MixColumns matrix are equal to zero.

Similar to before, the idea is to consider a set of plaintexts A′δ which depends on the
guessed value of the key of the form:

A′δ ≡
{
a⊕


0 y0 0 0
0 x y1 0
0 0 x⊕ δ2,2 y2
y3 0 0 x⊕ δ3,3

 ∣∣∣∣∀x, y0, ..., y3 ∈ F28

}
(29)
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where δ = (δ2,2, δ3,3) and a ∈ D⊥0 (i.e. ai,i = 0 for i = 1, 2, 3) is a constant. Given a set
A′δ, we claim that if δi,i = k1,1 ⊕ ki,i for i = 2, 3 then the number of collisions among the
ciphertexts after 5 rounds in the same coset ofMI for a fixed I ⊆ {0, 1, 2, 3} with |I| = 3
is a multiple of 4. More formally:

Proposition 9. Consider a set of plaintexts A′δ defined as in (29), and the corresponding
ciphertexts after 5 rounds. If δi,i = k1,1 ⊕ ki,i for i = 2, 3, then the number of different
pairs of ciphertexts that belong to the same coset of MI for a fixed I ⊆ {0, 1, 2, 3} with
|I| = 3 is a multiple of 4.

Proof. Let δ2,2 = k1,1 ⊕ k2,2 and δ3,3 = k1,1 ⊕ k3,3. By simple computation, there exists b
such that the set A′δ is mapped after one round in

R(A′δ) ≡
{
b⊕


0x03 · w z0 0 0

0 z1 0 0
0 z2 0 0

0x02 · w z3 0 0

 ∣∣∣∣∀w, z0, ..., z3 ∈ F28

}
.

Consider two elements z, z′ ∈ R(A′δ) generated respectively by z ≡ (z0, z1, z2, z3, w)
and z′ ≡ (z′0, z′1, z′2, z′3, w). The idea is to consider separately the cases (1) z2 6= z′2 and
z3 6= z′3, (2) z2 = z′2 and z3 = z′3 and (3) z2 = z′2 and z3 6= z′3 (or viceversa), and to
show that in the first case the number of collisions is a multiple of 4, while in the second
case it is a multiple of 216 and in the third case it is a multiple of 29. It follows that
there exist n′, n′′ , n′′′ ∈ N such that the total number of collisions n can be written as
n = 4 ·n′+ 216 ·n′′ + 29 ·n′′′ = 4 · (n′+ 214 ·n′′ + 27 ·n′′′). In other words, the total number
of collisions is a multiple of 4.

The details of the proof can be found in App. H.

Note that the previous result doesn’t hold for the cases δ2,2 6= k1,1 ⊕ k2,2 and/or
δ3,3 6= k1,1 ⊕ k3,3. In these cases, the number of collisions for δi,i 6= k1,1 ⊕ ki,i is a multiple
of 4 only with probability 1/4 = 25%.

Since the procedure of the attack is completely equivalent to the one just described in
App. 6.2, we limit here to give the details of the data and of the computational costs of
the attack.

Working in the same way just described for the attack of App. 6.2, an attacker can
recover the secret key up to 232 variants. Note that in this case for each set A′δ, the
attacker has to test 216 different keys, i.e. she has to test 2 bytes of the key (instead of
1 as before). Due to similar argumentation as before, for each possible wrong candidate
of the key δ, at least one set A′δ must exist for which the number of collisions is not a
multiple of 4 with a probability higher than (0.95)2−16 ' 99.999922%. Since given n sets
A′δ the probability that a set with the required property exists is 1 − 2−2n, one needs
approximately n ≥ 11 different tests (i.e. 3 different sets A′δ - remember that there are 4
different subspaceMI with |I| = 3) for each δ in order to find the right key.

The idea is to use the same procedure to find the rest of the key. In particular, one
repeats the same procedure for each one of the four columns in order to recover 8 bytes of
the key (2 for each column). It follows that a set A′δ must exist for each wrong guessed
δ with probability higher than (0.95)2−18 ' 99.99998%, that is one needs approximately
n ≥ 12 different tests (i.e. 3 different sets A′δ) for each δ in order to find the right key. To
find the final 4 bytes of the key, the attacker repeats the previous procedure, noting that
in this case one has to guess only one byte of difference of the key instead of two, since the
other one is already known. Thus, for each one of the 4 · 28 possible candidates of the key,
one needs that at least a set A′δ for which the number of collisions is not a multiple of
4 exists with probability higher than (0.95)2−10 ' 99.995%, that is approximately n ≥ 8
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Data: 3 · 216 different sets A′δ defined as in (29) - 3 different sets for each
δ ≡ (δ2,2, δ3,3) - and corresponding ciphertexts after 5 rounds

Result: k2,2 ⊕ k1,1 and k3,3 ⊕ k1,1
for each δ2,2 from 0 to 28 − 1 and each δ3,3 from 0 to 28 − 1 do

flag ← 0;
for each set A′δ do

let (pi, ci) for i = 0, ..., 240 − 1 be the 240 (plaintexts, ciphertexts) of A′δ;
for all j ∈ {0, 1, 2, 3} do

Let W [0, ..., 232 − 1] be an array initialized to zero;
for i from 0 to 240 − 1 do

x←
∑3
k=0 MC−1(ci)k,j−k · 256k; // MC−1(ci)k,j−k denotes the

byte of MC−1(ci) in row k and column j − k mod 4
W [x]←W [x] + 1; // W [x] denotes the value stored in the
x-th address of the array W

end
n← 0;
for i from 0 to 232 − 1 do

n← n+W [i] · (W [i]− 1)/2;
end
if (n mod 4) 6= 0 then

flag ← 1;
next δ;

end
end

end
if flag = 0 then

identify δ2,2 as candidate for k2,2 ⊕ k1,1 and δ3,3 as candidate for k3,3 ⊕ k1,1;
end

end
return Candidates for k2,2 ⊕ k1,1 and k3,3 ⊕ k1,1. // Only one candidate with
Prob. 95%

Algorithm 8: Key-Recovery Attack on 5 rounds of AES with a single secret S-Box. For
simplicity, the goal of the attack is to find two bytes of the key - k2,2⊕k1,1 and k3,3⊕k1,1.
The same attack can be used to recover the entire key up to 232 variants.

different tests (i.e. 2 different sets A′δ) for each δ are sufficient in order to find the right
key.

In conclusion, the data cost of the attack is well approximated by 4 (columns) ·3
(cosets) ·240 (number of texts in A′δ) ·216 (candidates of the key) +4 · 2 · 240 · 28 = 259.6

chosen plaintexts. Using the same strategy proposed in Sect. 6.2 and described in details
in Algorithm 8, the computational cost using data-structure is well approximated by
4 · 4 · 3 · (240 + 2 · 232) · 216 ' 261.6 table look-ups, that is approximately 254.96 five-round
encryptions. For comparison, the computational cost using a re-ordering algorithm is well
approximated by 4 ·4 ·3 ·240 · (log 240 + 1) ·216 ' 266.9 table look-ups, that is approximately
260.26 five-round encryptions.

Practical Verification

Using a C/C++ implementation31, we have practically verified the attack just described
on a small-scale variant of AES, as presented in [CMR05] - not on real AES due to the

31The source codes of the attacks on AES with a secret S-Box are available at https://github.com/
Krypto-iaik/Attacks_AES_SecretSBox2
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large computational cost of the attack. We emphasize that Prop. 9 is independent of the
fact that each word is composed of 8 or 4 bits. Thus, our verification on small-scale variant
of AES is strong evidence for it to hold for the real AES.

For simplicity, we limit here to report the result for the attack on two bytes of the
key, e.g. k1,1 ⊕ k2,2 and k1,1 ⊕ k3,3. For small-scale AES, since there are only (24)2 = 28

possible candidates, it is sufficient that a set Aδ for which the number of collisions is
odd exists for each wrong candidate of (k1,1 ⊕ k2,2, k1,1 ⊕ k3,3) with probability higher
than (0.95)2−8 = 99.98%. It follows that 7 tests (that is 2 different sets Aδ) for each
candidate of (k1,1 ⊕ k2,2, k1,1 ⊕ k3,3) are sufficient to find the right value. Re-ordering
the texts as described previously, the theoretical computational cost is well approximated
by 4 · 2 · 28 · 220 · (log 220 + 1) ' 235.32 table look-ups, while using data-structure is well
approximated by 4 · 2 · 28 · (220 + 2 · 216) ' 231.17 table look-ups.

Our tests confirm that 2 different sets Aδ are largely sufficient to find the key. The
average practical computational cost is of 233.6 table look-ups using the re-ordering
algorithm and 230 table look-ups using data-structure. As before, the difference with the
theoretical value is justified by the fact that the this last one is computed in the worst
case.

H Proof of Sect. 6.2 - 6.3 and App. G.3
H.1 Proof of Sect. 6.2
For a fixed a, consider a set of plaintexts Aδ of the form (16):

Aδ ≡
{
a⊕


y0 x 0 0
0 y1 x⊕ δ 0
0 0 y2 0
0 0 0 y3

 ∣∣∣∣∀x, y0, ..., y3 ∈ F28

}
.

Proposition 10. Consider a set of plaintexts Aδ defined as in (16), and the corresponding
ciphertexts after 5 rounds. If δ = k0,1⊕k1,2, then the number of different pairs of ciphertexts
that belong to the same coset ofMI for a fixed I ⊆ {0, 1, 2, 3} with |I| = 3 is a multiple of
2.

Proof. Let δ = k0,1 ⊕ k1,2. By simple computation, there exists b such that the set Aδ is
mapped after one round into

R(Aδ) ≡
{
b⊕


z0 w 0 0
z1 0x03 · w 0 0
z2 0 0 0
z3 0x02 · w 0 0

 ∣∣∣∣ ∀w, z0, ..., z3 ∈ F28

}
.

Consider two elements z, z′ ∈ R(Aδ) generated respectively by z ≡ (z0, z1, z2, z3, w)
and z′ ≡ (z′0, z′1, z′2, z′3, w). In the following, we consider separately the two cases z1 6= z′1
and z1 = z′1. We show that in the first case (i.e. the set of all different pairs of elements
with z1,1 6= z′1,1) the number of collisions is a multiple of 2, while in the second case (i.e.
the set of all different pairs of elements with z1 = z′1,1) the number of collisions is a multiple
of 256. It follows that there exist n′, n′′ ∈ N such that the total number of collisions n can
be written as n = 2 · n′ + 256 · n′′ = 2 · (n′ + 128 · n′′). In other words, the total number of
collisions is a multiple of 2.

Case: z1 6= z′1. Consider two elements z, z′ ∈ R(Aδ) generated respectively by
z ≡ (z0, z1, z2, z3, w) and z′ ≡ (z′0, z′1, z′2, z′3, w) with z1 6= z′1. For a fixed I ∈ {0, 1, 2, 3} with

61



|I| = 3, the idea is to show that R4(z)⊕R4(z′) ∈MI if and only if R4(v)⊕R4(v′) ∈MI

where the texts v, v′ ∈ R(Aδ) are generated respectively by v ≡ (z0, z
′
1, z2, z3, w) and

v′ ≡ (z′0, z1, z
′
2, z
′
3, w). This follows by Theorem 2 of [GRR17a] - recalled in Sect. 4, and

implies that the number of collision must be a multiple of 2 for this case.
For more details, let v and v′ defined as before. The idea is to prove (1) that R2(z)⊕

R2(z′) = R2(v)⊕R2(v′) and (2) that z, z′ ∈ R(Aδ) can exist such that R4(z)⊕R4(z′) ∈MI .
First of all, note that if R2(z) ⊕ R2(z′) = R2(v) ⊕ R2(v′) and if R4(z) ⊕ R4(z′) ∈

MI , then also R4(v) ⊕ R4(v′) ∈ MI . Indeed, if R4(z) ⊕ R4(z′) ∈ MI (i.e. R4(z)
and R4(z′) belong to the same coset of MI), then R2(z) ⊕ R2(z′) ∈ DI by Theorem.
1. By R2(z) ⊕ R2(z′) = R2(v) ⊕ R2(v′), it follow that R2(v) ⊕ R2(v′) ∈ DI and so
R4(v)⊕R4(v′) ∈MI .

Secondly, one has to prove [R2(z)⊕R2(z′)]i,j = [R2(v)⊕R2(v′)]i,j for each i, j. For
simplicity, we limit to prove that [R2(z)⊕R2(z′)]0,0 = [R2(v)⊕R2(v′)]0,0, i.e. we focus
on the byte in position (0,0) - the proof for the other bytes is analogous. By simple
computation, there exist constants ci, di and ei for i = 0, ..., 3 - which depend only on the
secret key and by the constant b which defines R(Aδ) - such that :

[R2(z)⊕R2(z′)]0,0 =
= 0x02 · S-Box

(
0x02 · S-Box(z0 ⊕ d0)⊕ 0x03 · S-Box(0x03 · w ⊕ e0)⊕ c0

)
⊕

⊕ 0x02 · S-Box
(
0x02 · S-Box(z′0 ⊕ d0)⊕ 0x03 · S-Box(0x03 · w′ ⊕ e0)⊕ c0

)
⊕

⊕ 0x03 · S-Box
(
S-Box(z3 ⊕ d3)⊕ 0x02 · S-Box(w ⊕ e1)⊕ c1

)
⊕

⊕ 0x03 · S-Box
(
S-Box(z′3 ⊕ d3)⊕ 0x02 · S-Box(w′ ⊕ e1)⊕ c1

)
⊕

⊕ S-Box
(
0x02 · S-Box(z2 ⊕ d2)⊕ 0x03 · S-Box(0x02 · w ⊕ e2)⊕ c2

)
⊕

⊕ S-Box
(
0x02 · S-Box(z′2 ⊕ d2)⊕ 0x03 · S-Box(0x02 · w′ ⊕ e2)⊕ c2

)
⊕

⊕ S-Box
(
S-Box(z1 ⊕ d1)⊕ c3)

)
⊕S-Box

(
S-Box(z′1 ⊕ d1)⊕ c3)

)
=

= [R2(v)⊕R2(v′)]0,0.

More generally, there exist some constants A,B,C ∈ F28 such that each byte of [R2(z)⊕
R2(z′)]i,j = [R2(w)⊕R2(w′)]i,j for i, j = 0, ..., 3 can be written as:

[R2(z)⊕R2(z′)]i,j = [R2(v)⊕R2(v′)]i,j = F (z0, z
′
0, z2, z

′
2, z3, z

′
3, w, w

′)⊕
⊕A · S-Box

(
B · S-Box(z1 ⊕ k1,0)⊕ C)

)
⊕A · S-Box

(
B · S-Box(z′1 ⊕ k1,0)⊕ C)

)
.

(30)

Thirdly, consider z, z′ ∈ R(Aδ) generated respectively by z ≡ (z0, z1, z2, z3, w) and
z′ ≡ (z′0, z′1, z′2, z′3, w). The two texts satisfy R2(z) ⊕ R2(z′) ∈ DI for |I| = 3 if four
(particular) bytes (one per column) of R2(z)⊕R2(z′) are equal to zero (remember that
the bytes of R2(z) ⊕ R2(z′) don’t depend on z1, z

′
1). Since the two elements depend on

10− 2 = 8 variables and only 4 conditions must be satisfied, such elements z, z′ can exist.
A similar argumentation holds also for the case in which z1 = z′1. As a result, it follows
that the number of collisions for the case z1 6= z′1 is a multiple of 2.

Case: z1 = z′1. As second case, we consider two elements z, z′ ∈ R(Aδ) generated
respectively by z ≡ (z0, z1, z2, z3, w) and z′ ≡ (z′0, z′1, z′2, z′3, w) with z1 = z′1.

First of all, note that if z1,1 = z′1,1, then z ⊕ z′ ∈ D0,2,3. By Prop. 4, note that
R4(z) ⊕ R4(z′) /∈ MI for all I ∈ {0, 1, 2, 3} with |I| = 1. However, for the case |I| = 3
the idea is to prove that if z, z′ ∈ R(Aδ) satisfy the condition R2(z)⊕R2(z′) ∈ DI , then
each pair of elements v, v′ ∈ R(Aδ) generated respectively by v ≡ (z0, v1, z2, z3, w) and
v′ ≡ (z′0, v1, z

′
2, z
′
3, w) for each v1 ∈ F28 have the same property, that is R2(v)⊕R2(v′) ∈ DI .

Since there are 28 = 256 different values for v1, then the number of collisions must be a
multiple of 256.
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This follows immediately by the fact that each byte of R2(z)⊕R2(z′) doesn’t depend
on z1 = z′1. Indeed, if z1 = z′1, then each byte of R2(z)⊕R2(z′) doesn’t depend on z1 = z′1,
i.e. by (30) it can be re-written as

[R2(z)⊕R2(z′)]i,j = F (z0, z
′
0, z2, z

′
2, z3, z

′
3, w, w

′)

for a particular function F (·). For each pair of elements v, v′ ∈ R(Aδ) generated respectively
by v ≡ (z0, v1, z2, z3, w) and v′ ≡ (z′0, v1, z

′
2, z
′
3, w) follows immediately that R2(v) ⊕

R2(v′) = R2(z) ⊕ R2(z′) for all v1. That is, R2(v) ⊕ R2(v′) ∈ DI if and only if R2(z) ⊕
R2(z′) ∈ DI for all v1.

H.2 Proof of App. G.3
For a fixed a, consider a set of plaintexts A′δ of the form (29)

A′δ ≡
{
a⊕


0 y0 0 0
0 x y1 0
0 0 x⊕ δ2,2 y2
y3 0 0 x⊕ δ3,3

 ∣∣∣∣∀x, y0, ..., y3 ∈ F28

}

where δ = (δ2,2, δ3,3).

Proposition 11. Consider a set of plaintexts A′ defined as in (29), and the corresponding
ciphertexts after 5 rounds. If δi,i = k1,1 ⊕ ki,i for i = 2, 3, then the number of different
pairs of ciphertexts that belong to the same coset of MI for a fixed I ⊆ {0, 1, 2, 3} with
|I| = 3 is a multiple of 4.

Proof. Let δ2,2 = k1,1 ⊕ k2,2 and δ3,3 = k1,1 ⊕ k3,3. By simple computation, there exists b
such that the set A′δ is mapped after one round into

R(A′δ) ≡
{
b⊕


0x03 · w z0 0 0

0 z1 0 0
0 z2 0 0

0x02 · w z3 0 0

 ∣∣∣∣∀w, z0, ..., z3 ∈ F28

}
.

Consider two elements z, z′ ∈ R(A′δ) generated respectively by z ≡ (z0, z1, z2, z3, w)
and z′ ≡ (z′0, z′1, z′2, z′3, w). In the following, we consider separately the cases (1) z2 6= z′2
and z3 6= z′3, (2) z2 = z′2 and z3 = z′3 and (3) z2 = z′2 and z3 6= z′3 (or viceversa). We
show that in the first case the number of collisions is a multiple of 4, in the second
case it is a multiple of 216 and in the third case it is a multiple of 29. It follows that
there exist n′, n′′ , n′′′ ∈ N such that the total number of collisions n can be written as
n = 4 · n′ + 216 · n′′ + 210 · n′′′ = 4 · (n′ + 214 · n′′ + 28 · n′′′). In other words, the total
number of collisions is a multiple of 4.

Case: z2 6= z′2 and z3 6= z′3. Consider two elements z, z′ ∈ R(Aδ) generated respec-
tively by z ≡ (z0, z1, z2, z3, w) and z′ ≡ (z′0, z′1, z′2, z′3, w) with z2 6= z′2 and z3 6= z′3. For a
fixed I ∈ {0, 1, 2, 3} with |I| = 3, the idea is to show that R4(z) ⊕ R4(z′) ∈ MI if and
only if R4(v)⊕R4(v′) ∈MI where the texts v, v′ ∈ R(Aδ) are generated respectively by
the following combinations:

• v ≡ (z0, z1, z
′
2, z3, w) and v′ ≡ (z′0, z′1, z2, z

′
3, w);

• v ≡ (z0, z1, z2, z
′
3, w) and v′ ≡ (z′0, z′1, z′2, z3, w);

• v ≡ (z0, z1, z
′
2, z
′
3, w) and v′ ≡ (z′0, z′1, z2, z3, w).
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This follows by Theorem 2 of [GRR17a] - recalled in Sect. 4, and implies that the number
of collision must a multiple of 4 for this case.

For more details, Let v and v′ defined as before. As before, it is sufficient to prove
that (1) R2(z)⊕R2(z′) = R2(v)⊕R2(v′) and (2) that z, z′ ∈ R(Aδ) can exist such that
R4(z)⊕R4(z′) ∈MI . Since the proof of these two facts is equivalent to that given in App.
H.1, we refer to that section for more details and we limit here to highlight the major
differences.

By simple computation, the first point is due to the fact that there exist some constants
A,B,C,D,E, F ∈ F28 such that each byte of [R2(z)⊕R2(z′)]i,j = [R2(v)⊕R2(v′)]i,j for
i, j = 0, ..., 3 can be written as:

[R2(z)⊕R2(z′)]i,j = [R2(v)⊕R2(v′)]i,j = F (z0, z
′
0, z1, z

′
1, w, w

′)⊕
⊕A · S-Box

(
B · S-Box(z2 ⊕ k2,1)⊕ C)

)
⊕A · S-Box

(
B · S-Box(z′2 ⊕ k2,1)⊕ C)

)
⊕

⊕D · S-Box
(
E · S-Box(z3 ⊕ k3,1)⊕ F )

)
⊕D · S-Box

(
E · S-Box(z′3 ⊕ k3,1)⊕ F )

)
.

(31)

As an example, the first byte of [R2(z)⊕R2(z′)]0,0 (analogous for the others):

[R2(z)⊕R2(z′)]0,0 =
=0x02 · S-Box

(
0x03 · S-Box(z1 ⊕ d1)⊕ 0x02 · S-Box(0x02 · w ⊕ e0)⊕ c0

)
⊕

⊕0x02 · S-Box
(
0x03 · S-Box(z′1 ⊕ d1)⊕ 0x02 · S-Box(0x02 · w′ ⊕ e0)⊕ c0

)
⊕

⊕0x03 · S-Box
(
0x03 · S-Box(z0 ⊕ d0)⊕ 0x02 · S-Box(0x02 · w ⊕ e1)⊕ c1

)
⊕

⊕0x03 · S-Box
(
0x03 · S-Box(z′0 ⊕ d0)⊕ 0x02 · S-Box(0x02 · w′ ⊕ e1)⊕ c1

)
⊕

⊕S-Box
(
0x02 · S-Box(z2 ⊕ d2)⊕ c2

)
⊕S-Box

(
0x02 · S-Box(z′2 ⊕ d2)⊕ c2

)
⊕

⊕S-Box
(
0x02 · S-Box(z3 ⊕ d3)⊕ c3

)
⊕S-Box

(
0x02 · S-Box(z′3 ⊕ d3)⊕ c3

)
=

=[R2(v)⊕R2(v′)]0,0 =

where the constants ci, di and ei depend only on the secret key and by the constant b
which defines R(A′δ).

Secondly, consider z, z′ ∈ R(Aδ) generated respectively by z ≡ (z0, z1, z2, z3, w) and
z′ ≡ (z′0, z′1, z′2, z′3, w). The two elements satisfy R2(z) ⊕ R2(z′) ∈ DI for |I| = 3 if four
(particular) bytes (one per column) of R2(z)⊕R2(z′) are equal to zero (remember that
the bytes of R2(z) ⊕ R2(z′) don’t depend on zi, z′i for i = 2, 3). Since the two elements
depend on 10− 4 = 6 variables and only 4 conditions must be satisfied, such elements z, z′
can exist. A similar argumentation holds also for the other cases.

Case: z2 = z′2 and z3 = z′3. As second case, we consider two elements in z, z′ ∈ R(Aδ)
generated respectively by z ≡ (z0, z1, z2, z3, w) and z′ ≡ (z′0, z′1, z′2, z′3, w) with z2 = z′2 and
z3 = z′3.

In this case, the idea is to prove that if z, z′ ∈ R(Aδ) satisfy the condition R2(z) ⊕
R2(z′) ∈ DI , then each pair of texts v, v′ ∈ R(Aδ) generated respectively by v ≡
(z0, z1, v2, v3, w) and v′ ≡ (z′0, z′1, v2, v3, w) for all v2, v3 ∈ F28 have the same property,
that is R2(v)⊕R2(v′) ∈ DI . Since there are 28 · 28 = 216 different values for v2, v3, then
the number of collisions must be a multiple of 216.

As for the proof given in App. H.1, this follows by the fact that each byte of R2(z)⊕
R2(z′) doesn’t depend on z2 = z′2 and z3 = z′3. Indeed, if for z2 = z′2 and z3 = z′3 and by
(31), each byte of R2(z)⊕R2(z′) depends on the following variables

[R2(z)⊕R2(z′)]i,j = F (z0, z
′
0, z1, z

′
1, w, w

′)

for a particular function F (·). For each pair of elements v, v′ ∈ R(Aδ) generated re-
spectively by v ≡ (z0, z1, v2, v3, w) and v′ ≡ (z′0, z′1, v2, v3, w) follows immediately that
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R2(v) ⊕ R2(v′) = R2(z) ⊕ R2(z′) for all v1. That is, R2(v) ⊕ R2(v′) ∈ DI if and only if
R2(z)⊕R2(z′) ∈ DI for all v1.

Case: z2 6= z′2 and z3 = z′3. As final case, we consider two elements z, z′ ∈ R(Aδ)
generated respectively by z ≡ (z0, z1, z2, z3, w) and z′ ≡ (z′0, z′1, z′2, z′3, w) with z2 6= z′2 and
z3 = z′3 - analogous for z2 = z′2 and z3 6= z′3.

Using similar argumentations as before, in this case the idea is to prove that if
z, z′ ∈ R(Aδ) satisfy the condition R2(z) ⊕ R2(z′) ∈ DI , then each pair of elements
v, v′ ∈ R(Aδ) generated respectively by

• v ≡ (z0, z1, z2, v3, w) and v′ ≡ (z′0, z′1, z′2, v3, w);

• v ≡ (z0, z1, z
′
2, v3, w) and v′ ≡ (z′0, z′1, z2, v3, w);

for all v3 ∈ F28 have the same property. Since there are 28 different values for v3, then the
number of collisions must be a multiple of 2 · 28 = 512.

H.3 Proof of Sect. 6.3
For a fixed a, consider a set of plaintexts A′′δ of the form (17):

A
′′

δ ≡
{
a⊕


0 y 0 0
0 x y ⊕ δ1,2 0
0 0 x⊕ δ2,2 w ⊕ δ2,3
0 0 0 x⊕ δ3,3

 ∣∣∣∣∀x, y ∈ F28

}

where δ ≡ (δ1,2, δ2,2, δ2,3, δ3,3).

Proposition 12. Consider a set of plaintexts A′′δ defined as in (17), and the corresponding
ciphertexts after 5 rounds. If δi,i = k1,1 ⊕ ki,i and δj,j+1 = k0,1 ⊕ kj,j+1 for i = 2, 3 and
j = 1, 2 (where the indexes are taken modulo 4), then the number of different pairs of
ciphertexts that belong to the same coset ofMI for a fixed I ⊆ {0, 1, 2, 3} with |I| = 3 is a
multiple of 2.

Proof. Let δi,i = ki,i ⊕ k1,1 for i = 2, 3 and δj,j+1 = kj,j+1 ⊕ k0,1 for j = 1, 2. By simple
computation, there exists a constant b such that A′′δ is mapped into

R(A
′′

δ ) ≡
{
b⊕


0x03 · z 0 0 0

0 0 0 0
0 0x02 · w 0 0

0x02 · z 0x03 · w 0 0

 ∣∣∣∣∀z, w ∈ F28

}
.

Consider a pair of texts t1, t2 ∈ R(A′′δ ) generated respectively by t1 = (z, w) and
t2 = (z′, w′). We consider the following two cases separately: (1) z = z′ and w 6= w′

(or viceversa) and (2) z 6= z′ and w 6= w′. We show that in the first case (1) the
number of collisions is a multiple of 256, while in the second case (2) the number of
collisions is a multiple of 2. Thus, there exist n′, n′′ ∈ N such that the total number of col-
lisions n can be written as n = 2 ·n′+256 ·n′′ = 2 ·(n′+128 ·n′′), that is n is a multiple of 2.

Case: z 6= z′ and w 6= w′. Consider a pair of texts t1, t2 ∈ R(A′′δ ) generated respec-
tively by t1 = (z, w) and t2 = (z′, w′) with z 6= z′ and w 6= w′.

Similar to the previous proofs, the idea is to show that R4(t1)⊕R4(t2) ∈MI if and
only if R4(s1)⊕ R4(s2) ∈ MI for |I| = 3, where the texts s1, s2 ∈ R(A′′δ ) are generated
respectively by s1 = (z, w′) and s2 = (z′, w). Since each coset ofMI is mapped two round
before into a coset of DI (i.e. for each a ∈ M⊥I there exists unique b ∈ D⊥I such that
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R−2(MI ⊕ a) = DI ⊕ b), it is sufficient to prove that R2(t1)⊕R2(t2) ∈ DI for |I| = 3 if
and only if R2(s1)⊕R2(s2) ∈ DI in order to guarantee that R4(s1)⊕R4(s2) ∈MI . To do
this, we show that each byte of R2(t1)⊕R2(t2) is equal to each byte of R2(s1)⊕R2(s2),
that is:

[R2(t1)⊕R2(t2)]i,j = [R2(s1)⊕R2(s2)]i,j
for i, j = 0, ..., 3. By simple computation, there exist constants c, d - that depend only on
the secret key and on b which defined R(A′′δ ) - such that:

R2(A
′′

δ ) ≡ c⊕MMC ×


S-Box(z0) 0 0 0

0 0 0 0
0 0 0 S-Box(w1)
0 S-Box(z1) S-Box(w0) 0


where

z0 = 0x03 · z ⊕ d0,0, z1 = 0x02 · z ⊕ d3,0,

w0 = 0x03 · w ⊕ d3,1 w1 = 0x02 · w ⊕ d2,1

for all z, w ∈ F28 . It follows that each byte of [R2(t1)⊕R2(t2)]i,j = [R2(s1)⊕R2(s2)]i,j
for i, j = 0, ..., 3 can be re-written as:

[R2(t1)⊕R2(t2)]i,j =
=A0 · S-Box(B0 · S-Box(z0)⊕ C0)⊕A0 · S-Box(B0 · S-Box(z′0)⊕ C0)⊕
⊕A1 · S-Box(B1 · S-Box(z1)⊕ C1)⊕A1 · S-Box(B1 · S-Box(z′1)⊕ C1)⊕
⊕A2 · S-Box(B2 · S-Box(w0)⊕ C2)⊕A2 · S-Box(B2 · S-Box(w′0)⊕ C2)⊕
⊕A3 · S-Box(B3 · S-Box(w1)⊕ C3)⊕A3 · S-Box(B3 · S-Box(w′1)⊕ C3) =
=[R2(s1)⊕R2(s2)]i,j

(32)

for some constants Ai, Bi, Ci that depend only on the secret key and on c, d which define
R2(A′′δ ), that is the thesis.

Case: z 6= z′ and w = w′. Consider a pair of texts t1, t2 ∈ R(A′′δ ) generated respec-
tively by t1 = (z, w) and t2 = (z′, w′), with the condition z 6= z′ and w = w′ (or viceversa).
By definition of DJ , the two elements belong to the same coset of D0,3 (or more generally
of DJ for |J | = 2). By Prop. 1, it follows that the two texts can not belong to the same
coset ofMI for |I| ≤ 2, but no restriction holds for the caseMI for |I| = 3.

Using similar argumentations of before, the idea is to prove that if t1, t2 ∈ R(A′′δ ) satisfy
the condition R4(t1)⊕R4(t2) ∈MI for |I| = 3, then all the pairs of texts s1, s2 ∈ R(A′′δ )
generated respectively by t1 = (z, s) and t2 = (z′, s) for all s ∈ F28 have the same
property. To do this, it is sufficient to show that [R2(t1)⊕R2(t2)]i,j = [R2(s1)⊕R2(s2)]i,j
for i, j = 0, ..., 3. By previous considerations - see (32), it follows that if w = w′ then
[R2(t1) ⊕ R2(t2)]i,j depends only on z and z′, that is it is independent of w,w′. This
implies the thesis, that is the number of collisions for this case must be a multiple of
256.

H.4 Final Considerations of App. 6.1 - Details
As last thing, one may ask what is the probability that a random matrix MMC satisfies
one of the two following requirements:

• for each row, at least two elements are equal;

• for each row, the XOR-sum of at least two elements is equal to zero.
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Since designers usually choose an MDS (Maximal Distance Separable) circulant32 matrices,
we limit to consider such kind of n× n matrix with elements in GF (2m) for our analysis.
In particular, since the elements of the rows of a circulant matrix are identical, we focus
on a single generic row.

We emphasize that our goal is only to give a (rough) estimation of this ratio, and not to
give the exact number. Thus, we simply consider the number of all the matrices with two
identical elements for each row and for which the sum of some elements is zero, without
worrying about the condition that the matrix is invertible and about the MDS property.

First of all, note that if n > 2m, then at least two elements must be equal. Thus, for
the following we limit to consider the case n ≤ 2m. By simple computation, the number of
circulant matrices with (at least) two identical elements is given by

(2m)n − 2m!
(2m − n)!

that is the total number of matrices minus the number of matrices with all different
elements. Note that

(2m)n − 2m!
(2m − n)! = 2m·(n−1)

n+1∑
i=1

i− 2m·(n−2) ·
n+1∑
i=1

n+1∑
j=1, j 6=i

i · j + ... ≈ 2m·(n−1) · n
2

2

where the approximation33 holds if 2m+1 � n2 + 5 · n.
Note that a similar result can be obtained in a different way. In particular, the number

of n sets of elements in {0, 1, ..., 2m − 1} for which two elements is well approximated by

(2m)n−1 ×
(
n

2

)
= 2m·(n−1) × n · (n− 1)

2 .

To give some concrete numbers, in the AES case (that is, n = 4 and m = 8), the first
number is equal to (2m)n − 2m!

(2m−n)! = 99 943 936 ' 226.575 while the second one is equal to
2m·(n−1) × n·(n−1)

2 = 100 663 296 ' 226.585.
In a similar way, the number of n sets of elements in {0, 1, ..., 2m − 1} for which the

sum of two or more elements is equal to zero is well approximated by34

(2m)n−1 ×
n∑
i=2

(
n

i

)
= 2m·(n−1) ×

(
2n − n− 1

)
.

It follows that the ratio between the number of matrices for which the sum of some
elements is equal to zero with respect to the ones for which (at least) two elements are
equal is well approximated by

2n+1 − 2 · n− 2
n2 − n

≈ 2n+1

n2 .

Note that this ratio increases with n and it is independent of m. In order to give
an example, for the AES case (that is n = 4 and m = 8 - note that the condition
2m+1 = 512� 36 = n2 + 5 · n is satisfied) this ratio is approximately equal to 11/6 ≈ 2.

32A circulant matrix is a matrix where each row vector is rotated one element to the right relative to
the preceding row vector matrices.

33By computation:
n+1∑
i=1

i =
(n+ 1) · (n+ 2)

2
and

n+1∑
i=1

n+1∑
j=1, j 6=i

i · j =
(n+ 1)2 · (n+ 2)2

4
−

(n+ 1) · (n+ 2) · (2n+ 3)
6

.

Thus 2m·(n−1) · n
2

2 � 2m·(n−2) · 3n4+14n3

6 if 2m+1 � n2 + 5 · n.
34Remember that

∑n

i=0

(
n
i

)
= 2n.
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For completeness, a rough approximation of the same ratio for generic matrix is given
by
( 2n+1

n2

)n under the same assumption of the previous case. This rough result can be
simply obtained by assuming that the n rows are independent. For the AES case, this
ration is approximately equal to 24 = 16.
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