
Coppersmith’s lattices and “focus groups”: an
attack on small-exponent RSA

Stephen D. Miller∗, Bhargav Narayanan,
{miller,narayanan}@math.rutgers.edu

and Ramarathnam Venkatesan
venkie@microsoft.com

August 30, 2017

Abstract

We present a principled technique for reducing the matrix size in
some applications of Coppersmith’s lattice method for finding roots
of modular polynomial equations. It relies on an analysis of the ac-
tual performance of Coppersmith’s attack for smaller parameter sizes,
which can be thought of as “focus group” testing. When applied to the
small-exponent RSA problem, it reduces lattice dimensions and conse-
quently running times (sometimes by factors of two or more). We also
argue that existing metrics (such as enabling condition bounds) are
not as important as often thought for measuring the true performance
of attacks based on Coppersmith’s method. Finally, experiments are
given to indicate that certain lattice reductive algorithms (such as
Nguyen-Stehlé’s L2) may be particularly well-suited for Coppersmith’s
method.

1 Introduction

Ever since Shamir’s devastating attack on the Knapsack cryptosystem [S],
lattice reduction algorithms such as [LLL] have had surprising success against

∗Supported by NSF grant CNS-1526333.

1

cryptosystems that a priori have nothing to do with lattices. A fundamental
example is the RSA cryptosystem [RSA], whose public key consists of an
integer n = pq (where p and q are large secret primes of comparable size)
and an encryption exponent e. In situations where some extra information
about the public key is known (e.g., certain bits of p or q), it is sometimes
possible to use lattice reduction techniques of Coppersmith [C] to discover
the factorization of n.

One notable such situation is when the secret decryption exponent d is
small,

d = O(nδ) , δ < 1
2
, (1.1)

(see Section 2 for more background on RSA). Wiener [Wi] showed that contin-
ued fractions expose d when δ < 1/4, essentially instantaneously. Continued
fraction approximations can be thought of as the simplest example of lat-
tice reduction, namely for 2-dimensional lattices. Boneh-Durfee [BD] apply
Coppersmith’s technique with higher dimensional lattices to give an attack
for

δ < 1 − 2−1/2 ≈ .292 . (1.2)

More precisely, they prove that LLL’s output on a particular lattice must
produce enough information to factor n (subject to an algebraic independence
condition). It is an important open problem to improve the bound (1.2),
which still stands as the current record despite many attempts to improve it.

Since the LLL algorithm has a widespread reputation for outperform-
ing its provable guarantees, one might surmise that the bound (1.2) is more
modest than actual experiments would indicate. Surprisingly, the opposite
is true: all successful experiments in the literature work only for δ relatively
far below the theoretical upper bound of 1−2−1/2 ≈ .292 [BD,BM,Wo]. The
reason for this is that (1.2) is an asymptotic estimate that requires very large
lattices. The difficulty of finding short vectors in lattices of dimension > 500
already serves as the hard underlying problem behind other cryptosystems.
Unfortunately, the Boneh-Durfee bound does not exceed δ = .278 for lat-
tices of dimension ≤ 500. Indeed, δ = .278 is close to the limit of known
experiments.

Thus implementing lattice-based attacks can itself face impractically dif-
ficult problems. It is therefore natural to ask the following questions.

Questions: Can one practically solve small-exponent RSA instances for
δ significantly larger than the experiments reported in [BD,BM,Wo]?

2

Is there a barrier from algebraic independence that creeps in before the
theoretical upper bound is reached? If so, how does one estimate the true
range of validity of the attack?

How can Coppersmith’s method be modified to reduce the size of the
matrices involved?

The main contribution of this paper is to introduce a method to cut
down the matrix size, which pushes back the choke point that lattice reduc-
tion algorithms face in large dimensions. All the computations here (unless
otherwise noted) were performed in Mathematica1 v.11 on a Surface Book
laptop, and in particular did not use specialized lattice reduction packages
such as [NTL]. Our main experimental finding is that it takes about an hour
to factor RSA moduli n ≤ 210,000 when δ ≤ .277. Though the scope of this
paper is limited to small-exponent RSA, our methods appear to be appli-
cable to other lattice problems (in particular, applications of Coppersmith’s
method).

We would like to thank Dan Boneh, Henry Cohn, Nadia Heninger, Jeff
Hoffstein, Antoine Joux, Daniel Lichtblau, Alexander May, Oded Regev,
Adi Shamir, Noah Stephens-Davidowitz, and David Wong for their helpful
discussions.

2 An overview of Coppersmith’s method and

Boneh-Durfee’s attack on RSA

As before, let p and q be secret large prime numbers of comparable size, and
n = pq the public RSA modulus. Let e be the public encryption exponent
and d be the secret decryption exponent, which satisfy ed ≡ 1 (modφ(n)),
where φ(n) = (p − 1)(q − 1) = n − p − q + 1. In this case d’s relation to e
can be restated as the existence of an integer k such that

e d = 1 + k φ(n) , where d, k ≈ nδ , (2.1)

in which we have made the natural – and trivially verifiable – assumption
that the public exponent e has comparable size to n. After dividing both

1Mathematica’s LatticeReduce command uses a variant of the L2 algorithm of Nguyen
and Stehlé [NS].

3

sides by kφ(n) and using the fact that n− φ(n) = O(
√
n), this implies∣∣∣∣ en − k

d

∣∣∣∣ ≤ ∣∣∣∣ en − e

φ(n)

∣∣∣∣ +

∣∣∣∣ e

φ(n)
− k

d

∣∣∣∣
= O

(e

n3/2

)
+

1

|dφ(n)|
= O(n−1/2) .

(2.2)

Wiener [Wi] observed that if δ < 1
4
, the fraction k

d
approximates e

n
by much

better than d−2 � n−2δ, which is an unusually good approximation of a real
number by a rational number of denominator d. Hence k

d
occurs among the

continued fraction approximants to e
n
, and can be efficiently computed.

Following [BD], consider the bivariate polynomial

f(x, y) = x(n− y) + 1 , (2.3)

which according to (2.1) satisfies

f(x0, y0) ≡ 0 (mod e) , (2.4)

where

x0 = k = O(eδ) and y0 = n− φ(n) = O(
√
e) . (2.5)

Coppersmith’s method is used to promote the polynomial congruence relation
(2.4) into a system of two integer polynomial equalities, which can then be
solved using classical methods. To illustrate this in terms of the Boneh-
Durfee attack, let

gi,`,m(x, y) = xi f(x, y)` em−`

and hj,`,m(x, y) = yj f(x, y)` em−` ,
(2.6)

for
0 ≤ ` ≤ m, 0 ≤ i ≤ m− ` , and 1 ≤ j ≤ t . (2.7)

They satisfy

gi,`,m(x0, y0) = hi,`,m(x0, y0) ≡ 0 (mod em) (2.8)

and span a sublattice Λ of R[x, y], the latter of which is endowed with the
sum-of-squares norm ‖ · ‖ on polynomial coefficients. A short vector in this

4

sublattice is a polynomial with small coefficients, and so its value at a partic-
ular point such as (x0, y0) will itself be relatively small. By (2.8), that value
is also a multiple of em; thus if it is small enough, it must actually vanish.

To make this more precise in our setting, let X and Y be bounds for |x0|
and |y0|, respectively (such as provided in (2.5)). Howgrave-Graham [H-G]
observed that if a polynomial h(x, y) ∈ Λ satisfies

‖h(xX, yY)‖ <
em
√
wh

, (2.9)

where wh is the number of nonzero monomials in h(·, ·), then an application
of Cauchy-Schwartz shows |h(x0, y0)| < em. In particular, (x0, y0) is a root
of h(·, ·) over Z since h(x0, y0) ≡ 0 (mod em). Boneh-Durfee prove that this
norm condition is met for the shortest vector outputted by LLL provided

|Λ| ≤ em(w−1)(w2w)(1−w)/2 , w = dim(Λ) , (2.10)

where |Λ| denotes the covolume of Λ. For δ < 7
6
−
√
7
3
≈ .284 this condition

is met for sufficiently large values of m and e. We shall refer to this as
the Boneh-Durfee “.284” attack, in order to distinguish it from their more
refined analysis (using a carefully selected sublattice) that extends the range
to δ < 1− 2−1/2 ≈ .292. See also [BM,HM,KSI] for other attacks obtaining
exponents of this size, or close to it.

Under the enabling condition (2.10), the two shortest vectors outputted
by LLL are polynomials which vanish at (x0, y0). Boneh-Durfee point out
that in practice these polynomials are algebraically independent, and thus
their common roots can be extracted using resultants. However, a rigorous
proof of algebraic independence has only recently been announced by Bauer
and Joux, who previously established algebraic independence in some related
contexts [BJ]. In principle (as does happen in related examples) the shortest
vectors may all result in polynomials which are trivial multiples of each other,
and hence not give enough equations to reveal the two unknowns x0 and y0.

It is worth mentioning other lattice attacks that use different polynomials
than (2.3) and which also consistently beat Wiener’s δ < 1/4 bound. Bauer’s
thesis [B, Chapter 4] discusses a three-variable analog based on using a short
continued fraction approximation of e/n, stopping roughly at the point at
which it is theoretically expected to differ from that of e/φ(n). Two addi-
tional integer parameters are then substituted to account for the remaining
part of the continued fraction approximation. A lattice is again formed as

5

above using congruences modulo powers of e. Her analysis of the enabling
condition shows that when δ < .34, the lattice has short vectors that pro-
duce polynomials that vanish at the desired roots. Alternatively, one can
instead apply the lattice method of [JM] to this partial continued fraction
approach (as we have attempted in earlier experiments) – its analogous en-
abling condition holds for δ < 1/3. Both ranges extend much further than
Boneh-Durfee’s δ < 1−2−1/2 ≈ .292 range, and both can be further improved
using the “focus group” methodology in Section 4 below.

Despite the promising increase in this range for δ, neither of these ap-
proaches gets above .292 in practice. The results of our limited experimental
trials indicate that the actual performance of either of these algorithms seems
roughly comparable to that of Boneh-Durfee’s. In particular, the experiments
show that algebraic independence fails at a much earlier point, well before
the enabling condition is reached. That calls into question the direct rele-
vance of the enabling condition itself, and demonstrates the importance of a
better understanding of the actual performance of these attacks.

Figure 1: Logarithms of lengths of lattice basis vectors in the Boneh-Durfee
.284 attack with n ≈ 26,000 and δ ≈ .284, before and after lattice reduction.

We conclude this section with a remark that the lattices produced in the
Boneh-Durfee attack appear to be far from random, as is evidenced by their
vector lengths. (This appears to be in contrast with the lattices produced
in other applications of Coppersmith’s method.) Figure 1 shows the loga-
rithms of the vector lengths in the original and reduced lattice bases for an
instance of the Boneh-Durfee .284 attack with n ≈ 26,000 and δ ≈ .284. At
this logarithmic scale one can see clumps of basis vectors of roughly the same

6

length, yet the overall lengths do differ significantly in each plot. The plot
the left indicates that the input basis has several different regimes, owing to
the structure of (2.6). The plot on the right shows that the output basis also
has vectors in clumps of similar logarithmic length, in particular with a large
separation between the shortest vector (which represents a constant polyno-
mial) and the others. Not surprisingly, the attack failed in this particular
instance.

3 Some potential misconceptions about why

Coppersmith’s method works

Key to all theoretical analyses of Coppersmith’s method is the “enabling
condition” bound on the lattice determinant (e.g., (2.10)), since it prov-
ably guarantees short vectors. However, we have mentioned above that the
theoretical guarantees typically do not kick in (at least in the example of
small-exponent RSA) until the key sizes are much larger than found in prac-
tice. Since such theoretical analysis may in practice be describing irrelevant
regimes, it is worthwhile to investigate what actually makes Coppersmith’s
method successful. For example, is there inhomogeneity in the geometry of
the lattice that effectively reduces its dimension?

In this section, we examine a few superficial aspects of Coppersmith’s
method which, despite perhaps wide belief to the contrary, do not necessar-
ily help the method work.

3.1 Are shortest vectors really key to Coppersmith?

The condition (2.9) points to the importance of short vectors in the lattice
Λ, since those polynomials are small on the congruence solution (x0, y0) (and
hence actual solutions over Z if the value is small enough). Not surprisingly,
implementations of Coppersmith’s method nearly always discard all but the
shortest vectors in the output of a lattice reduction algorithm (such as LLL).
However, will shortly see that this sometimes throws the solution (x0, y0)
away with it.

Common practice notwithstanding, there are several arguments that can
be made for deemphasizing the role of the shortest vector:

7

• Algebraic independence. In the multivariate setting one further
requires additional, algebraically independent polynomials in order to
extract the common root. In many settings (such as in the example
below) the second-shortest polynomial is an obvious multiple of the
shortest one. For example, there may be many small-monomial multi-
ples of the shortest polynomial among the first few vectors of the lattice
reduction output. In order to get algebraic independence, some type
of mixing must occur to get a genuinely new relation, and such entan-
glement is often impossible without liberalizing the norm criterion.

From the theoretical point of view, it is not hard to come up with
an “attack” that beats the Boneh-Durfee .292 bound if one blindly
assumes algebraic independence. (Indeed, as we discussed near the
end of Section 2, Bauer’s thesis [B] shows the range δ < .34 may be
asymptotically achieved if one only cares about producing polynomials
which vanish at the desired root.) Hence reporting a range in which
the enabling condition holds is only an upper bound on the range of
validity of an attack: it only measures at what point the ability to find
short vectors ceases. Algebraic independence may break down before
this point. See [BJ] for some techniques which guarantee algebraic
independence.

• Many vectors have similar length. On a typical lattice, LLL typ-
ically outputs several vectors of roughly comparable length, at least
at the logarithmic scale. Thus the distinction of shortest may not be
particularly significant. It also follows that one should attempt to un-
derstand the geometry of the input and output lattices to see if the
outputs have drastically different length scales (see Figure 1 and the
concluding remarks of Section 2).

• Length in itself is not the right metric. The length condition
(2.9) is quadratic in the polynomial coefficients, but the actual value
of interest (the polynomial evaluated at a particular point) is instead
linear: it is the value of a linear functional on Λ. Of course bounding
the norm bounds the value of a linear functional, but there may be
some loss. One might imagine leveraging some known geometry from
aspects of x0 and y0 (such as their sign) that is known in advance.

• An example where long vectors help. Here is an example where

8

longer vectors afford more algebraic independence than shorter ones.2

Consider the 1000 bit RSA modulus n = pq and key given by

p = 327534248375076317083641611376534056264358811260976111454
743469579874653650577266211366585026890270802159105074832
0984215116927258714434174724054953133 ,

q = 327462704072360233831723075103626846066746692190298143145
154087005180715732984190358817594057449905589163120424047
4172883400239374471379393571624577657 ,

and

d = 300147077152565471186517713474704374146330287118250537992
7435326735028048350149451 = nδ, δ ≈ .2707.

We applied the BKZ reduction from [NTL] with block size 3 to the
lattice from Boneh-Durfee’s “.292” attack with the (m, t) = (5, 2). Of
the 25 output vectors, only one of them (the fifth longest!) produces a
polynomial which vanishes at (x0, y0). Interestingly and perhaps coun-
terintuitively, applying BKZ with larger block size (such as 5) failed to
produce any vectors vanishing at (x0, y0).

Several lessons can be drawn from this example. For instance, it is a mis-
take to discard the longer vectors, since they often have much more useful
information than the shortest vectors. Also, the quality of the reduced basis
depends greatly on the actual reduction algorithm used. At the philosophical
level, this shows Coppersmith’s level is not purely about vector length – it
can work even when short vectors are not helpful.

3.2 How important is minimizing |Λ|?
In order to leverage provable guarantees that a lattice reduction algorithm
will find a sufficiently short vector, lattices in variants of Coppersmith’s at-
tack are often modified in order to keep the covolume |Λ| small. While this
allows for rigorous analysis, there are geometric reasons why it may not be
algorithmically helpful:

• If Λ does not behave like a random lattice, it may have vectors at
several length scales that do not interact much with each other.

2A similar feature was observed in A. Bauer’s Ph.D. thesis [B].

9

• For example, suppose one appends a very long vector to a basis per-
pendicular to it. This would magnify the covolume without affecting
the performance of LLL at all. Thus covolume by itself is a red herring.

• The ultimate goal in Coppersmith’s method is not to reduce the co-
volume, but to increase the likelihood of finding a short vector. It’s
more important to identify sublattices having short vectors, which is
not well-measured by the covolume.

• As we have noted in our discussion of Bauer’s thesis [B] near the end of
Section 2, attacks with very different enabling condition bounds may
perform similarly in practice, since algebraic dependence kicks in before
the enabling condition is reached. Thus |Λ| itself may not actually enter
into a meaningful bound anyhow.

An approach to identifying sublattices having small vectors is given in the
next section.

4 “Focus group” attacks

We discussed above how applying lattice reduction to a sublattice may in-
crease the chances of finding short vectors, while of course simultaneously
decreasing its run time. In this section we describe a principled, evidence-
based approach to selecting a sublattice in certain lattice reduction problems,
such as applications of Coppersmith’s method. Its main idea is to deform to
a simpler problem in which one can directly determine which basis vectors
contribute nontrivially to the shortest vectors. This methodology is applied
in Section 5 to small-exponent RSA.

This “focus group” attack consists of three main steps:

1. Set small parameters. Find a regime which keeps the lattice di-
mension constant, but reduces the size of the coordinates of the basis
vectors. This ensures that the lattice entries are small, which makes it
faster (or even possible) to execute lattice reduction on large matrices.
For example, in the case of small-exponent RSA we set δ in (1.1) to be
slightly larger than 1

4
(which is the point at which Wiener’s continued

fraction attack ceases to work).

10

Figure 2: A representation of the change of basis matrix for the lattice
reduction step in Boneh-Durfee’s .284 attack (see the text for more details).
The matrix has a number of columns with many zero entries (marked white).

2. Check the output to see which parts of the original basis were
actually used. Figure 2 shows the change of basis matrix for the
lattice reduction in Boneh-Durfee’s .284 attack for a 6,000-bit RSA
modulus n, δ = .251, and (m, t) = (4, 2) (see (2.7)). The columns are
indexed by the input basis vectors and the rows are indexed by the
output basis vectors. Each entry in the matrix is plotted as orange
(negative), blue (positive), or white (zero).

The long white vertical streaks emanating from the top of the figure
reveal that certain input basis vectors are not used in forming the
shortest vectors in the lattice output. Those basis elements from (2.6)-
(2.7) can be graphically represented as in Figure 3, where the figure on
the left represents the x-shifts and the figure on the right represents
the y-shifts. Here the unfilled white circles indicate unused vectors and
filled black circles indicate useful vectors. Boneh Durfee’s .292 attack
refines their .284 attack by discarding some y-shifts from (2.7), but not
the same ones as here. In fact, the figure indicates that most of the
y-shifts are not used. It is more striking that some of the smaller x-

11

Figure 3: A representation of which polynomials in (2.6)-(2.7) are actually
used (black circles) in forming the shortest vector in the lattice reduction
step for a particular instance of the Boneh-Durfee attack. The unfilled, white
circles represent discarded basis vectors (see the text for more details).

shifts are not used, confirming the utility of a similar device in [BM,
§4]. Similar patterns arise for larger parameter sizes and were used
to formulate the attack in Section 5. Indeed, examples of patterns
yield useful descriptions in terms of parameters, which are then used
to extrapolate good guesses for what families of sublattices to look at
in more challenging situations.

3. Remove unused basis elements. This has advantages for run time,
storage, and quality of results, since lattice reduction on smaller lattices
improves dramatically.

5 The “focus group” attack on small-exponent

RSA

We now specialize the methodology of Section 4 to small-exponent RSA.
Trials of the Boneh-Durfee .284 attack [BD] with small parameters suggest
only a particular sublattice will be used, which we shall describe below.

12

Previous work has selected sublattices using other methods. For example,
Boneh-Durfee suggest in their .292 attack to remove certain hj,`,m which
contribute large factors to the determinant. Later work by Blömer and May
[BM] suggests removing some of the gi,`,m as well (see also [HM,KSI]).

Our approach is guided by which vectors are likely to contribute to a
nontrivial solution. We introduce two integer parameters σ and τ (in addition
to m and t), and exclude from (2.7) all indices with i+ ` ≤ σ and `−2j ≤ τ .
That is, the polynomials in (2.6) are taken for indices

0 ≤ ` ≤ m, max(−1, σ− `) < i ≤ m− `, and 1 ≤ j ≤ min(t, 1 + `−τ
2

) (5.1)

instead of (2.7). We choose X = d2eδe and Y = d2e1/2e as rough integral
upper bounds for x0 and y0, respectively (cf. (2.5)).

We used Mathematica v.11 on a Microsoft Surface Book with an i7-6600
CPU equipped with 16GB RAM. We did not seriously attempt to opti-
mize the lattice reduction computations, relying instead on Mathematica’s
LatticeReduce command (which is an implementation of [NS]). In order to
keep a comparison with the experiments in [BD, BM, Wo] we restricted our
attention to computations that took roughly an hour or less. Our results
are presented in Table 1, and include a comparison with an implementation
of Boneh-Durfee’s .292 attack using Mathematica on the same machine.3 It
would be interesting to perform a similar comparison with the algorithm
of [BM], whose sublattice is more similar to the one selected by the “focus
group” attack. The attack in [BM] satisfies the enabling condition for the
same δ < 1 −

√
1/2 ≈ .292 range as Boneh-Durfee’s attack [BD]. We have

not rigorously analyzed at what point our enabling condition breaks down,
as it is likely moot: algebraic independence may be lost before that point
anyhow (see the comments at the end of Section 2).

The size of d in the last entry in Table 1 is 220 bits longer than achieved
in [BD] for a 10,000-bit RSA modulus n. However, this is mostly explained by
algorithmic improvements in lattice reduction: Mathematica’s LatticeReduce
command uses the L2 algorithm [NS], which typically outperformed the BKZ
implementation from [NTL] in our tests. Indeed, it is for this reason that our
exponents are significantly higher than those reported in earlier experiments

3Note that the Boneh-Durfee .292 attack already selects a sublattice, so the performance
gain against the .284 attack is even greater. The dimensions of the comparable Boneh-
Durfee .292 attack lattices are slightly higher than ours: this is because their attack failed
for smaller lattice sizes.

13

bits of n bits of d δ m t σ τ Matrix size Running Time Comparable BD times
4000 1092 .273 6 2 2 0 28×42 1 minute 2 minutes (34 dimensional)
6000 1662 .277 8 3 2 -1 54×72 32 minutes 123 minutes (57 dimensional)
10000 2600 .260 3 1 1 0 8×14 1.58 seconds 3.21 seconds (11 dimensional)
10000 2650 .265 4 1 1 0 14×20 11 seconds 19 seconds (17 dimensional)
10000 2770 .277 8 3 2 -1 54×72 61 minutes 101 minutes (57 dimensional)

Table 1: Results of trials of the “focus group” attack on small-exponent
RSA. The last column also lists the run time of an implementation of the
Boneh-Durfee .292 attack for the same δ and similar lattice size (but on the
same machine using the same lattice reduction algorithm). For comparison
to earlier works, times refer to the lattice reduction step only.

(e.g., [BD, BM, Wo]). It is interesting to speculate whether certain features
of [NS] are particularly helpful to the lattices produced by Coppersmith’s
method, and if so, how to leverage them further (see also the example and
comments at the end of Section 3.1).

6 Conclusions

We have considered the small-exponent RSA problem and attacks on it using
Coppersmith’s method, which relies finding short vectors in a lattice. Using
theoretical and experiment observations, we proposed a principled technique
to restrict lattice reduction to carefully-selection portions of the lattice, based
on the behaviour of simpler examples. This is illustrated by our “focus group”
attack, which specifically takes into account which parts of the lattice are
likely to be used. When applied to the small-exponent RSA problem, it
points to a geometric structure of the lattice in Boneh-Durfee’s attack [BD]
that can be leveraged to halve the running time of the lattice reduction step.

Several interesting questions remain for future investigations. For ex-
ample, the use of the L2 [NS] lattice reduction algorithm instead of [LLL]
accounted for a several hundred bit improvement in some experiments. Is
is possible that special features of the lattices generated by Coppersmith’s
method can be exploited by new, specially designed lattice reduction algo-
rithms? After all, Figure 1 suggests these lattices strongly differ from random
lattices, which opens the door to such a possibility. Is it possible to specif-
ically understand from initial principles which parts of the lattice are not
used, and perhaps redesign Coppersmith’s method to include more useful
vectors from the outset?

14

References

[B] Aurélie Bauer, Vers une généralisation rigoureuse des méthodes de Coppersmith pour
la recherche de petites racines de polynômes, Ph.D. thesis, 2008.

[BJ] Aurélie Bauer and Antoine Joux, A Rigorous Variation of Coppersmith’s Algorithm:
Boneh-Durfee’s Attack Revisited ,in Advances in cryptology–EUROCRYPT 2007, pp.
361–378, Lecture Notes in Comput. Sci., 4515, Springer, Berlin, 2007.

[BD] Dan Boneh and Glenn Durfee, Cryptanalysis of RSA with Private Key Less Than
N0.292, IEEE Transactions on Information Theory 46, pp. 1339–1349 (July 2000).

[BM] Johannes Blömer and Alexander May, Low Secret Exponent RSA Revisited, in Cryp-
tography and Lattice Conference (CaLC 2001, Lecture Notes in Computer Science,
2146, pp. 4–19, Springer-Verlag, 2001.

[C] Don Coppersmith, Finding a Small Root of a Bivariate Integer Equation; Factor-
ing with high bits known, in Advances in Cryptology–Eurocrypt 96, Lecture Notes in
Computer Science, 1070, pp. 178–189. Springer-Verlag, 1996.

[H-G] Nick Howgrave-Graham, Finding Small Roots of Univariate Modular Equations Re-
visited, in Proceedings of the 6th IMA International Conference on Cryptography and
Coding, pp. 131–142, Springer Verlag, 1997.

[HM] Mathias Herrmann and Alexander May, Maximizing small root bounds by lineariza-
tion and applications to small secret exponent RSA, in Proc. of PKC2010, Springer
Lecture Notes in Computer Science 6056, pp. 53–69, 2010.

[JM] Ellen Jochemsz and Alexander May, A strategy for finding roots of multivariate poly-
nomials with new applications in attacking RSA variants, in Advances in Cryptology
ASIACRYPT 2006, Lecture Notes in Computer Science, 4284, Springer, Berlin, Hei-
delberg, pp .267–282.

[KSI] Noburo Kunihiro, Naoyuki Shinohara, and Tetsya Izu, A unified framework for
small secret exponent attack on RSA, in Proc. of SAC2011, Springer Lecture Notes
in Computer Science, 7118, pp. 260–277, 2011.

[LLL] Arjen K. Lenstra, Jr., Hendrik W. Lenstra, and Laszlo Lovasz, Factoring polyno-
mials with rational coefficients, Mathematische Annalen, 261, pp. 513–534, (1982).

[NTL] Victor Shoup, NTL: A Library for doing Number Theory, http://www.shoup.net/
ntl/.

[NS] Phong Q. Nguyen and Damien Stehlé, An LLL algorithm with quadratic complexity,
SIAM J. Comput, 39, pp. 874–903 (2009).

[RSA] Ronald Rivest, Adi Shamir, and Leonard Adleman, A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems, Communications of the ACM, 21, pp. 120–
126, 1978.

[S] Adi Shamir, A polynomial time algorithm for breaking the basic Merkle-Hellman cryp-
tosystem, in 23rd annual Symposium on Foundations of Computer Science (Chicago,
Ill., 1982), pp. 145–152, IEEE, New York, 1982.

15

http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

[Wi] M. Wiener, Cryptanalysis of short RSA secret exponents, IEEE Transactions on In-
formation Theory, 36, pp. 553–558 (1990).

[Wo] David Wong, https://github.com/mimoo/RSA-and-LLL-attacks

16

https://github.com/mimoo/RSA-and-LLL-attacks

	Introduction
	An overview of Coppersmith's method and Boneh-Durfee's attack on RSA
	Some potential misconceptions about why Coppersmith's method works
	 Are shortest vectors really key to Coppersmith?
	How important is minimizing ||?

	``Focus group'' attacks
	The ``focus group'' attack on small-exponent RSA
	Conclusions

