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ABSTRACT
We try to propose two fully homomorphic encryption (FHE)
sche- mes, one for symmetric (aka. secret-key) settings and
another under asymmetric (aka. public-key) scenario. The
presented schemes are noiseless in the sense that there is no
“noise” factor contained in the ciphertexts. Or equivalent-
ly, before performing fully homomorphic computations, our
schemes do not incorporate any noise-control process (such
as bootstrapping, modulus switching, etc) to refresh the ci-
phertexts, since our fully homomorphic operations do not
induce any noise. Instead of decrypting approximately, our
proposal works in an exact homomorphic manner, no mat-
ter the inputs are the first-hand ciphertexts that come from
the encryptions of plaintexts, or the second-hand ciphertexts
that come from homomorphic combinations of other cipher-
texts. Therefore in essential, our schemes have no limitation
on the depth of the fully homomorphic operations over the
ciphertexts.

Our solution is comprised of three steps. First, Ostrovsky
and Skeith’s idea for building FHE from a multiplicative
homomorphic encryption (MHE) over a non-abelian simple
group is extended so that FHE can be built from an MHE
over a group ring that takes an underlying non-abelian sim-
ple group as the natural embedding. Second, non-trivial zero
factors of the underlying ring are plugged into the encoding
process for entirely removing the noise after fully homomor-
phic operations, and a slight but significant modification to-
wards Ostrovsky-Skeith’s NAND gate representation is also
introduced for avoiding computing inverse matrices of the
underlying group ring. In such manner, a symmetric FHE
scheme is produced. Finally, based on the proposed symmet-
ric FHE scheme, an asymmetric FHE scheme is built by tak-
ing a similar diagram to the well-known GM84 scheme. But
different from GM84 that only supports ciphertext homo-
morphism according to the logically incomplete gate XOR,
our scheme supports ciphertext homomorphism according to
the logically complete gate NAND.
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1. INTRODUCTION
Being viewed as one of the holy grails of modern cryp-

tography [1], fully homomorphic encryption (FHE) is also
regarded among the golden keys for securing cloud compu-
tation, multi-party computation, data banks [9], etc. After
conceptualizing FHE in 1978 [9], it took three decades to
discover the first plausible construction of FHE. At STOC
2009, Gentry proposed the first FHE scheme based on ideal
lattices [4]. Since then, a lot of developments and improve-
ments were witnessed [1, 10, 11, 12], but all such proposals
use essentially the same “noisy” approach in the sense that
they encrypt via a noisy encoding of the message, decrypt
using an “approximate” ring homomorphism, and have to
employ noise control techniques to keep a delicate balance
between structure and randomness [3]. Although these noise
control techniques, such as bootstrapping [4] and modulus
switching [1], are full of creative ideas, however, noise con-
trol process in general requires computationally expensive
steps to bound the noise before fully homomorphic opera-
tions over ciphertexts are performed [3], and thus becomes
a leg-pulling factor towards improving the efficiency of un-
derlying FHE schemes. Therefore, Gentry recently claimed
that

“I would like nothing more than ... a radically
different way of constructing fully homomorphic
encryption ... that escapes the current paradig-
m of using noisy, approximate homomorphisms
[3].”

1.1 Our Methodology and Results
In fact, two years before Gentry’s discovery of the first

FHE scheme [4], Ostrovsky and Skeith concluded that con-
structing an FHE scheme is equivalent to constructing a
multiplicative homomorphic encryption (MHE) scheme over
any finite non-abelian simple group. Their core idea lies
in that given an arbitrary finite non-abelian simple group,
the logically complete gate NAND (i.e. the combing of
the gate AND and the gate NOT) and thus any function
f : {0, 1}m → {0, 1}n can be composably representable over
the underlying group. Moreover, such kind of group-based
representation of NAND gate is noiseless in sense of the
following two features:

• F1: The corresponding decryption algorithms work in



an exact manner, no matter the inputs are the first-
hand ciphertexts that come from the encryptions of
plaintexts, or the second-hand ciphertexts that come
from homomorphic combinations of other ciphertexts;

• F2: Before performing homomorphic operations or de-
cryption, there is no noise control process to “refresh”
the ciphertexts.

Therefore, if a noiseless MHE scheme over some finite non-
abelian simple group is attained, then a noiseless FHE scheme
can be obtained. But up to now, it is little known how to
design a noiseless MHE scheme over finite non-abelian sim-
ple groups. We think the main obstacles lie in, at least, the
following two limitations:

• L1: The non-commutativity of the underlying group
is both a boon and a bane. On one hand, it is neces-
sary for representing NAND gate by using non-trivial
commutators [8]; on the other hand, it also imposes a
limitation on the flexibility of cryptographic construc-
tions.

• L2: The monotonicity of the underlying algebraic op-
eration (i.e. group multiplication) is blamed for. For
instance, although the alternative group A5 is suggest-
ed in [8], we face much inconvenience in cryptographic
constructions by using only permutations in A5.

Apparently, the limitation L1 is rigid and we must obey
it; otherwise, we face a new problem of how to represent a
logically complete gate. But through careful investigations
of the related proofs in [8], we found that the limitation L2

is comparatively relaxable: If the underlying simple group
can be embedded into a ring, then we can use the ring op-
erations, including addition and multiplication for crypto-
graphic constructions.

Based on the aforementioned considerations, we try to
construct three noiseless HE schemes, including not only a
symmetric MHE, but also a symmetric FHE and an asym-
metric FHE. Ostrovsky and Skeith’s framework (referred as
OS07) is the most important base for our constructions. Be-
sides, we follow the well known Goldwasser-Micali diagram
of XOR homomorphic encryption (referred as GM84) [5],
with a necessary adaption for transforming the underlying
group from the Abelian group Zn to the non-Abelian group
ring Zn[A5] that takes the suggested alternative group A5 as
a natural embedding (where n is a big Blum integer).

2. CONSTRUCTIONS: NOISELESS (FULLY)
HOMOMORPHIC ENCRYPTIONS

2.1 Review of Ostrovsky-Skeith Framework
Ostrovsky and Skeith [8] presented an elegent framework

for building FHE from MHE over non-abelian simple group-
s. At first, the logically complete gate, NAND, is defined on
two special elements of the underlying simple group. Thus,
any function F : {0, 1}m → {0, 1}n becomes representable
(Lemma 1). Then, an FHE scheme can be obtained by ap-
plying the NAND gate to the corresponding MHE’s cipher-
texts according to the multiplicative homomorphism (Lem-
ma 2).

Lemma 1. (Theorem 4.25 of [8]) Let G be a finite non-
abelian simple group. Then any function F : {0, 1}m →
{0, 1}n is representable over G.

In the proof of the above lemma, Ostrovsky and Skeith [8]
presented that there must exists some product for a 2-order
element x ∈ G such that x = s1 · · · sl (l ≥ 2) for some
si = [gixg

−1
i , hixh

−1
i ] and gi, hi ∈ G (i = 1, · · · , l), where

the notation [·, ·] is the commutator operator. Let e be
the the identity of group G. Then, e and x can be viewed
as codewords of logic bits 0 and 1, respectively. Now, the
NAND gate with two input codewords g, h ∈ 〈x〉 ⊂ G can
be represented as follows:1

NAND(g, h) = g ∧ h = x

l∏
i=1

[gigg
−1
i , hihh

−1
i ].

For instance, let G = A5 be the 5-degree alternating group,
and let e = (1), x = (12)(34), s1 = (12345), s2 = (345),
g1 = (354), g2 = (345), h1 = (243), h2 = (1) = e. Then, it
is easy to check that x is an 2-order permutation satisfying
x = (s41s

2
2)2s21 and

si = [gixg
−1
i , hixh

−1
i ], (i = 1, 2).

From the expression of x, we have that

NAND(g, h) = g ∧ h
= x · ([g1gg−1

1 , h1hh
−1
1 ]4[g2gg

−1
2 , h2hh

−1
2 ]2)2 ·

[g1gg
−1
1 , h1hh

−1
1 ]2,

and

e ∧ e = e ∧ x = x ∧ e = x, x ∧ x = e.

Finally, the logical completeness of the NAND gate implies
that any function F : {0, 1}m → {0, 1}n is also representable
over G.

Lemma 2. (Corollary 4.26 of [8]) Designing a fully homo-
morphic encryption (FHE) scheme over a ring with identi-
ty is equivalent to constructing a group multiplication ho-
momorphic encryption (MHE) scheme over any finite non-
abelian simple group G.

Suppose such an MHE scheme be at hand, then the corre-
sponding decryption algorithm, denoted by DecM, supports
multiplication homomorphism over G, i.e.,

DecM(sk,Mul(C1C2)) = DecM(sk, C1)DecM(sk, C2) ∈ G.

Thus, the proposed NAND gate in Lemma 1 also works over
ciphertexts.

2.2 Our Constructions
To overcome the aforementioned limitation L2, the 5-

degree alternative group A5 is embedded into the group
ring Zn[A5] (where n is a big Blum integer) that can be
regarded as a modular space defined over the basis A5 =
{g1, · · · , g60}. The embedding map is given by

ν : G→ Zn[A5] ⊆ Z60
n , gi 7→ (ag1 , · · · , ag60), (i = 1, · · · , 60)

with agi = 1 and agj = 0 for all j 6= i (j = 1, · · · , 60).
Reversely, we assume that the unembedding map, denoted
by ν−1, that takes as input a vector ~a = (ag1 , · · · , ag60) ∈
Z60
n , will output gi if the i-th component of ~a is the only

non-zero one, and ⊥ otherwise. Further, an ever large ring,

1For visual comfort and layout convenience, we interweavly
use two equivalent notations NAND(·, ·) and · ∧ · without
further explanation.



M2(Zn[A5]), can be defined as the set of all 2 × 2 matrices
with entries taking from Zn[A5]. More details about group
ring and matrices of group ring are given in Appendix A.

2.2.1 Random Homomorphic Encoding Maps
Suppose that the involved group elements e, x, gi, hi ∈ A5

are defined as the same way in Section 2.1. In addition, all
of them, as well as their embedding ν(e), ν(x), ν(gi), ν(hi)
∈ Zn[A5], are published publicly in case of necessity. For
convenience in subsequent descriptions, we would like to in
advance introduce two random maps with respect to an in-
vertible matrix H ∈M2(Zn[A5]) and two safe primes p, q:

1. Φ : A5 → M2(Zn[A5]), named as free-phi map that is
given by

g 7→ H

(
pt1 · ν(g) + q · ~α0 ~α1

~0 ~α2

)
H−1,

where ~α0, ~α1, ~α2 ∈ Zn[A5] and t1 ∈ Z∗n are picked at
random.

2. Φγ : A5 → M2(Zn[A5]), named as γ-phi map that is
given by

g 7→ H

(
pt1 · ν(g) + q · ~α0 ~α1

~0 ~γ

)
H−1,

where ~α0, ~α1 ∈ Zn[A5] and t1 ∈ Z∗n are picked at ran-
dom.

2.2.2 Symmetirc MHE scheme over A5

Let n be a big Blum integer2, i.e., n = pq for two distinct
safe primes p and q such that p ≡ q ≡ 3 (mod 4) [6]. Over
the group A5, we try to built a symmetric MHE scheme that
consists the following four algorithms:

• KeyGenM: Select an invertible matrixH ∈M2(Zn[A5])
and output the secret key sk = (H, p, q) and the sys-
tem public parameter n.

• EncM(sk,m): A message m ∈ A5 is encrypted as a
matrix C = Φ(m).

• DecM(sk, C): A ciphertext C is decrypted as m =
ν−1(p · ~w11), where ~w11 ∈ Zn[A5] is the left-top corner
entry of the matrix W = H−1CH.

• Mul(C1, C2): The multiplicative homomorphism algo-
rithm is provided by Theorem 1.

Theorem 1. If C1 and C2 are the valid ciphertexts of m1

and m2 respectively, then the multiplication C1C2 is a valid
ciphertext of the message m1m2. Or equivalently,

DecM(sk,Mul(C1, C2)) = DecM(sk, C1)DecM(sk, C2).

In other words, DecM(sk,Φ(m1)Φ(m2)) = DecM(sk,Φ(m1m2)).

The proof of Theorem 1 is deferred a bit later.

Theorem 2. The above symmetric MHE scheme is consis-
tent.

2Typically, we can choose four large primes p, p0, q, q0 such
that p = 2p0 + 1 and q = 2q0 + 1 and let n = pq.

Proof. Suppose C be a valid ciphertext on a message
m ∈ A5. That is,

C = H

(
pt1 · ν(m) + q · ~α0 ∗

~0 ∗

)
H−1,

for some t1 ∈ Z∗n and ~α0 ∈ Zn[A5], where the second column
of two ∗ symbols indicate some random elements in Zn[A5]
that we do not concern. Then, taking as inputs the decryp-
tion key (H, p, q) and the ciphertext C, the DecM algorithm
will output

ν−1(p · (H−1CH)11) = ν−1(p · (pt1 · ν(m) + q · ~α0))

= ν−1(p2t1 · ν(m))

= m,

where the second equality comes from the fact that

pq · ~α0 = n · ~α0 = 0 · ~α0 = ~0 ∈ Zn[A5],

while the third equality is derived from Lemma 3 and the
fact p2t1 6≡ 0 (mod n) considering that t1 is coprime with
n.

[Proof of Theorem 1.] Suppose C1 and C2 be two ci-
phertexts on messages m1 and m2, respectively. That is,

C1 = Φ(m1) = H

(
pt1 · ν(m1) + q · ~α0 ~α1

~0 ~α2

)
H−1

and

C2 = Φ(m2) = H

(
pt′1 · ν(m2) + q · ~α′0 ~α′1

~0 ~α′2

)
H−1

for some t1, t
′
1 ∈ Z∗n and ~αi, ~α

′
i ∈ Zn[A5] (i = 0, 1, 2). Then

Mul(C1, C2) , C1C2 = H

(
~α∗0 ~α∗1
~0 ~α∗2

)
H−1

for some ~α∗1, ~α
∗
2 ∈ Zn[A5] that we do not much concern,

while

~α∗0 = (pt1 · ν(m1) + q · ~α0)(pt′1 · ν(m2) + q · ~α′0)

= p2t1t
′
1 · (ν(m1)ν(m2)) + pqt1 · ν(m1)~α′0

+ pqt′1 · ~α0ν(m2) + q2 · ~α0~α
′
0

= p2t1t
′
1 · ν(m1m2) +~0 +~0 + q2 · ~α0~α

′
0

= p2t̃1 · ν(m1m2) + q2 · ~̃α0

with t̃1 = t1t
′
1 ∈ Z∗n and ~̃α0 = ~α0~α

′
0 ∈ Zn[A5]. Therefore,

we have that

DecM(sk,Mul(C1, C2)) = ν−1(p · (H−1Mul(C1, C2)H)11)

= ν−1(p · ~α∗0)

= m1m2

= DecM(sk, C1)DecM(sk, C2).

In other words, DecM(sk,Φ(m1)Φ(m2)) = DecM(sk,Φ(m1m2)).
This is the end of the proof of Theorem 1.

2.2.3 Symmetirc FHE Scheme over Z2

Now, a symmetric FHE scheme over the ring Z2 is given
by the following four algorithms:

• KeyGenF: Produce the secret key sk = (H, p, q) by
calling KeyGenM. Then, output sk and the system
public parameters ppub = (n,K1,K2,K3), where

K1 = Φ(x), K2 = Φ(g1), K3 = Φ(h1).



• EncF(sk,m): A message m ∈ Z2 is encrypted as a
matrix C = Φ(e) if m = 0, and C = Φ(x) otherwise.
(Note that Φ is a random map, thus C = K1 or C = K2

holds only with a negligible probability.)

• DecF(sk, C): A ciphertext C is decrypted as

m = f(g) =

 0, if g = e
1, if g = x
⊥, if g =⊥

where g = DecM(sk, C). That is, for g ∈ {e, x}, we
have

m = DecF(sk,Φ(g)) = f(DecM(sk,Φ(g))) = f(g).

• NAND(C1, C2): The NAND homomorphism algorith-
m is given by Theorem 3.

Theorem 3. If C1 and C2 are the ciphertexts of two bits
m1 andm2 respectively, then the multiplicationK1(ξ41ξ

2
2)2ξ21

is a ciphertext of the bit NAND(m1,m2), where

ξ1 = (K2C1K
2
2K3C2K

2
3 )2, ξ2 = (K2

2C1K2K
2
1C2K

2
1 )2.

Or equivalently,

DecF(sk,NAND(C1, C2)) = NAND(DecF(sk, C1),DecF(sk, C2)).

Remark 1. Note that the definition of the NAND gate
over ciphertexts in our scheme is slightly different but es-
sentially coherent with Ostrovsky and Skeith’s framework
[8]. In [8], the commutators over non-abelian groups are
directly used to define NAND gate. However, we face the
difficulty in directly computing commutators over cipher-
texts, since our ciphertexts lie in the group ring matrices
M2(Zn[A5]) and they might not be invertible. Fortunately,
this difficulty does not affect much on the feasibility of the
FHE schemes. Actually, based on Theorem 1, we let the
commutator operation directly act on the preimage set of
function Φ. In other words, to avoid computing inversion
over M2(Zn[A5]), we adopt a substitution strategy based on
the following observations:

• Suppose that r = ord(g) is the order of g ∈ A5. That
is, gr−1 = g−1. Then, in the NAND algorithm, any
required appearance of the “inverse” of Φ(g) can be
replaced with Φ(g)r−1, no matter whether Φ(g) is in-
verse or not. This is correct since DecM(sk,Φ(g)r−1) =
DecM(sk,Φ(gr−1)) = DecM(sk,Φ(g−1)) based on the
multiplication homomorphism of the MHE scheme.

• The feasibility of our FHE schemes depends on the cor-
rectness of the NAND gate on the preimages of Φ and
the multiplication homomorphism of the MHE scheme.
Thus, designing a FHE scheme over Z2 is equivalent to
construct a MHE scheme with a random mapping Φ
from a finite non-abelian simple group to a ring such
that DecM(sk,Φ(g1)Φ(g2)) = DecM(sk,Φ(g1g2)). In
other words, the ciphertexts of the MHE scheme can
be allowed to lie in a ring, but not necessarily a group.

2.2.4 Asymmetric FHE scheme over Z2

To proceed, an asymmetric FHE scheme over the ring Z2

is given by the following four algorithms:

• KeyGen: Produce the secret key sk′ = (H, p, q) by
calling KeyGenM. Randomly choose an invertible ring
element ~α ∈ Zn[A5] and set ~γ = ~αϕ(n), where ϕ is the
Euler totient function. Then, output the secret key
sk = (H, p) and the corresponding public key pk =
(n,K1,K2,K3), where

K2 = Φγ(g1), K3 = Φγ(h1)

and

K1 = H

(
t0 · ν(x) ~0

~0 t0 · ν(e)

)
H−1

for some random t0 ∈ QR.

• Enc(pk,m): A message m ∈ Z2 is encrypted as a ma-
trix

C = K2b1
1 K3b2

2 K3b3
3

if m = 0, and

C = K2b1+1
1 K3b2

2 K3b3
3

otherwise, where bi ∈ {0, 1}λ (i = 1, 2, 3) are picked at
random. Here, λ is the bit length of bi (i = 1, · · · , 3),
and it should be large enough for resisting brute force
attack. In practice, the sum of the lengthes of bi (i =
1, 2, 3) is set to 160.

• Dec(sk, C): Same as DecF(sk, C) in Section 2.2.3.

• NAND(C1, C2): Same as NAND(C1, C2) in Section
2.2.3.

2.2.5 Noiseless Features Analysis
At first, as for the symmetric MHE scheme, the proof of

the consistency (i.e. Theorem 2) suggests that on input a
first-hand ciphertext C = EncM(sk,m), the decryption al-
gorithms DecM(sk, C) outputs the corresponding plaintext
m ∈ A5 in an exact manner. For a second-hand cipher-
text C = Mul(C1, C2) = C1C2, the proof of Theorem 1
also suggests that on one hand, C takes the same form as
that of the first hand ciphertexts, and on the other hand,
DecM(sk,Mul(C1, C2)) also outputs DecM(sk, C1)DecM(sk,
C2) ∈ A5 in an exact manner, no matter Ci is a first-hand
ciphertext (i.e. Ci = EncM(mi) for some mi ∈ A5) or a
second-hand ciphertext (i.e. Ci = Mul(Ci1, Ci2)) (i = 1, 2).
Thus, the proposed MHE scheme meets the so-called noise-
freeness feature F1 mentioned in Introduction.

Similarly, as for the symmetric FHE scheme, a first-hand
ciphertext C = EncF(sk,m) (where m ∈ {0, 1}) will al-
so be decrypted in an exact manner, since DecF(sk, C) =
f(DecM(sk, C)) and f is an exact, well-defined map. As for a
second-hand ciphertext C = NAND(C1, C2) = K1(ξ41ξ

2
2)2ξ21 ,

where ξ1 = (K2C1K
2
2K3C2K

2
3 )2, ξ2 = (K2

2C1K2K1C2K1)2,
the proof of Theorem 2 implies that the decryption algorith-
m DecF(sk,NAND(C1, C2)) outputs a bit NAND(DecF(sk, C1),
DecF(sk, C2)) ∈ {0, 1} in an exact manner according to
the OS07 framework. Thus, the proposed symmetric FHE
scheme caters to the noise-freeness feature F1, too.

As for the asymmetric FHE scheme, the decryption al-
gorithm Dec and the NAND homomorphism algorithm are
directly inherited from the symmetric FHE scheme. That
is, the proposed asymmetric FHE scheme also satisfies the
noise-freeness feature F1.



Moreover, before performing decryption or the multiplica-
tive (resp. NAND) homomorphic combinations, there is no
additional noise cleaning or squashing process to “refresh”
the ciphertexts. In fact, our trick lies in the encoding di-
agram used in definitions of the random maps Φ and Φγ .
That is, the left-top corner elements is encoded in such a
way that the products of two valid codewords automatically
remove the noise term by taking modulo n (cf. the term
~α∗0 in the proof of the Theorem 1). By doing so, the pro-
posed three (fully) homomorphic encryption schemes meet
the aforementioned noise-freeness feature F2, too.

Therefore, our proposals are noiseless in the sense that all
of them meets the noise-freeness features F1 and F2.

Remark 2. In an even abstract perspective, our trick for
achieving noiseless FHE schemes comes from the following
simple observation: If the non-trivial zero factors (i.e. p
and q in our proposals) were introduced into the encoding
process, then after multiplication of two ciphertexts, the un-
expected noise terms becomes zeros automatically. That is,

(pt1 · ν(m1) + q · ~α0)(pt′1 · ν(m2) + q · ~α′0)

= p2t1t
′
1 · ν(m1m2) +~0 +~0 + q2 · ~α0~α

′
0.

This observation also encourages us to propose the following
conjecture that might have independent interests.

Conjecture 1. In our proposals, the underlying ring Zn
could be securely replaced by other ring R, if given an ex-
plicit description of R, it is still difficult in finding non-trivial
zero factors of R.

3. FURTHER DISCUSSION
Lastly, we would like to present further explanation on

some tricks used in our constructions.

3.1 H’s Conjugation Actions
Before seeing H’s role, we might need to notice the follow-

ing weird facts about determinants and characteristic poly-
nomials of matrices over a non-commutative ring R:

• det(AB) 6= det(A) det(B) in general forA,B ∈M2(R);

• χ(BAB−1) 6= χ(A) in general for A,B ∈M2(R).

Then, in our constructions, suppose C be a MHE ciphertext
on a message m ∈ A5. That is,

C = H

(
pt1 · ν(m) + q · ~α0 ~α1

~0 ~α2

)
H−1,

for some t1 ∈ Z∗n and ~α0, ~α1, ~α2 ∈ Zn[A5]. Based on the
above two facts, none can work out pt1 · ν(m) + q · ~α0 by
computing det(C) or χ(C). In fact, one of our core tricks is
to protect pt1·ν(m)+q·~α0 by employing the conjugate action

of H. In detail, suppose H =

(
~h1

~h2

~h3
~h4

)
, H−1 =

(
~y1 ~y2
~y3 ~y4

)
.

The ciphertext is equal to C =

(
C11 C12

C21 C22

)
, where

C11 = pt1 · ~h1ν(m)~y1 + q · ~h1~α0~y1 + ~h1~α1~y3 + ~h2~α2~y3,

C12 = pt1 · ~h3ν(m)~y1 + q · ~h3~α0~y1 + ~h3~α1~y3 + ~h4~α2~y3,

C21 = pt1 · ~h1ν(m)~y2 + q · ~h1~α0~y2 + ~h1~α1~y4 + ~h2~α2~y4,

C22 = pt1 · ~h3ν(m)~y2 + q · ~h3~α0~y2 + ~h3~α1~y4 + ~h4~α2~y4.

Due to the randomness of ~αi and H, each component of
Cij (1 ≤ i, j ≤ 2) contains sufficient randomness for hiding
p, q and ν(m). Furthermore, H cannot be a triangular ma-
trix; otherwise, the modulus n can be factorized. To see this,

suppose H =

(
~h1 ∗

~h4

)
, then H−1 =

(
~h−1
1 ∗′

~h−1
4

)
. Then

for the message m = e, we have C11 = pt1 ·ν(e)+q ·~h1~α0
~h−1
1 ,

where ν(e) = (1, 0, . . . , 0). Let ~h1~α0
~h−1
1 = (l1, . . . , l60) ∈

Zn[A5]. Hence, C11 = (pt1 + ql1, ql2, . . . , ql60) and q =
gcd(n, ql2).

3.2 Relations to GM84 Diagram
Compared to the well-known GM84 diagram, our con-

struction of asymmetric FHE scheme has the following sim-
ilarities and differences.

• Similarities. Both the GM84 scheme and our asym-
metric FHE scheme can be represented by the follow-
ing common framework

C = Y 2b1+m ·X,

where m ∈ {0, 1} is the message to be encrypted, b1 is
a random integer, and the similarities of the terms Y
and X are depicted in Table 1. That is, the Y -term
in GM84 is specified by a non-quadratic residue, while
the Y -term in our construction is an encryption of non-
identity, more precisely, a 2-order element. Meanwhile,
the X-term in both schemes plays the role of introduc-
ing necessary randomness: In GM84, it is a random
quadratic residue, while in our scheme it is a random
encryption of identity.

Table 1: Similarities of the GM84 scheme and Ours

Y Y ’s meaning X X’s meaning

GM84: y non-quadratic residue x2 quadratic residue

Ours: K1 Enc of non-identity K
3b2
2 K

3b3
3 Enc of identity

• Differences. Firstly, the core difference between the G-
M84 scheme and ours lies in the commutativity of the
underlying algebraic structures. The GM84 scheme
works over the commutative ring Zn, while our pro-
posal is defined over M2(Zn[A5]) (i.e. the ring of the
group ring matrices) that is non-commutative. This
difference is an essential modification towards the G-
M84 diagram in the sense that in order to accommo-
date the OS07 framework in representing NAND gate,
we have to abandon commutative algebraic structures.
As a result, our scheme can support NAND homo-
morphism over ciphertexts, while the original GM84
scheme can only support XOR homomorphism over
ciphertexts. Secondly, another slight difference be-
tween the GM84 scheme and ours is the number of
random components used in the X-term: In GM84,
X contains only one random quadratic residue, while
in our scheme, X is the product of two random en-
cryptions of identity. This change is necessary for re-
sisting the commutativity-testing attack described be-
low. Suppose that we only use X = K3b2

2 , then the

ciphertext of bit 0 is C = K2b1
1 K3b2

2 . Then, we have



K2b1
1 K2 = K2K

2b1
1 considering that

K2b1
1 = H

(
t2b10 · ν(x2b1) ~0

~0 t2b10 · ν(e)

)
H−1

= t2b10 ·
(
ν(e) ~0
~0 ν(e)

)
.

Therefore, anyone can decide whether the encrypted
message is 0 or 1 by checking whether the equality
CK2 = K2C holds. The vulnerability of letting X =
K3b3

3 can be analyzed similarly. Lastly, although the
quadratic residues have also been used in our scheme,
but the roles are different from these of in the G-
M84 scheme. In our scheme, the embedded quadratic
residue t0 in K1 does not directly depend on the value
of m.
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APPENDIX
A. GROUP RING

Definition 1. (Group Ring [2]) Let G be a group and R
a ring. The group ring R[G] is the set of all formal sums∑
gi∈G

agi · gi (where agi ∈ R) with the addition and multipli-

cation defined below:∑
gi∈G

agi · gi +
∑
gi∈G

bgi · gi =
∑
gi∈G

(agi + bgi) · gi.

∑
gi∈G

agi · gi

∑
gi∈G

bgi · gi

 =
∑
gi∈G

∑
gjgk=gi

(agj bgk ) · gi.

It is easy to check that the group ring R[G] is indeed a
ring. If we represent a group ring element as a vector ~α =
(a1, a2, · · · , a|G|), then the addition is a direct sum of vectors
and the multiplication is a twist product of vectors.

Definition 2. (Matrices of Group Rings [7]) A matrix over
a group ring R[G] is a matrix in which the entries are taken
from the group ring R[G]. Usually, the ring of d× d matrix
over R[G] is denoted by Md(R[G]).

For the given commutative ring R and the group ring R[G]
with |G| = k, Myasnikov and Ushakov [7] built the following
ring monomorphism

φ : Md(R[G])→Md·k(R), A 7→ A∗

with

A∗ =

ψ(~a1,1) · · · ψ(~a1,d)
...

. . .
...

ψ(~ad,1) · · · ψ(~ad,d)

 ,

where ψ : R[G]→Mk(R) is also a ring monomorphism that
is defined as follows:

~a = (ag1 , · · · , agk ) 7→


a
g1g

−1
1

· · · a
g1g

−1
k

...
. . .

...
a
gkg

−1
1

· · · a
gkg

−1
k

 .

In this paper, we adopt the settings R = Zn for a big
Blum integer n, G = A5, and d = 2. Moreover, we have the
following observations.

Lemma 3. Over the group ring Zn[A5], we have that

• For any t1 ∈ Zn and ~α1, ~α2 ∈ Zn[A5], (t1 · ~α1)(·~α2) =
t1 · (~α1~α2).

• For ∀m1,m2 ∈ A5, ν(m1)ν(m2) = ν(m1m2).

• For any positive integer z, if z 6≡ 0 (mod n), then
ν−1(z · ν(m)) = m for ∀m ∈ A5.

Here, ν an ν−1 are respectively the embedding and unem-
bedding maps given in the beginning of Section 2.2.


