
Quam Bene Non Quantum:
Bias in a Family of Quantum Random Number

Generators

Darren Hurley-Smith and Julio Hernandez-Castro

School of Computing, University of Kent, Canterbury CT2 7NF, Kent, UK
dh433@kent.ac.uk, jch27@kent.ac.uk

Abstract. Random number generation is critical to many security pro-
tocols, a basic building block on which it rests the robustness of many
security solutions. Quantum physics, on the other hand, offers a very
attractive approach to True Random Number Generation, based on the
inherent randomness of some physical phenomena. Naturally, there are
a number of quantum random number generators in the market. In this
work, we present the first analysis of a popular commercial family called
Quantis, designed and manufactured by ID Quantique. We subject their
output to three batteries of statistical tests, for evaluating its perfor-
mance. Dieharder and NIST STS 2.1.2 are included in many certification
schemes, whilst ENT provides a free, simple and powerful means of ex-
panding on the previous tests. The Quantis devices under examination
have achieved METAS and other independent certifications and indeed
the results over the Dieharder and NIST batteries confirm that the cer-
tifications awarded are based on an acceptable performance on both sets
of tests. However, ENT finds strong evidence of significant biases in the
Quantis devices. These biases are analyzed to identify their traits and
attempt to isolate their root cause. We end with a discussion on the
need to expand testing strategies to incorporate lesser-known tests that
regularly detect problems that the commonly accepted batteries do not.

Keywords: quantum random number generation · entropy · cryptogra-
phy · statistical analysis

1 Introduction

True random number generators (TRNG), harness circuitry designed to gather
entropy from a hardware source, process the output and present it to a host
device. USB devices such as the Chaos Key [1], Araneus II and Swift Key are
examples of such devices. Many aim to extend the capabilities of PC’s, which
may not gather sufficient entropy from system resources and user interaction to
provide reliable PRNG output over extended periods of time. TRNGs tend to
make use of noise generated using classical physical phenomena as their entropy
source.

Quantum random number generators (QRNG) are a more recent innovation.
Rarity et al. discuss the possibility of combining quantum random number gener-
ation and key sharing as far back as 1994 [2]. Stefanov et al. outline the scientific
principles and design of an optical quantum random number generator in 2000
[3]. In their work, they propose a quantum phenomenon by which photons may
either pass-through or reflect off of a partially mirrored surface. The probabil-
ity with which it will achieve either result is approximately 0.5, and the output
stream is inherently unpredictable. Its use as a source of randomness is intuitive.

ID Quantique were the first to harness quantum phenomena as an entropy
source in a commercial product, in 20011 [4]. This Swiss company has commer-
cialized devices that use an optical quantum process as a source of randomness
[5]. This has allowed them to generate random numbers at a speed of 4Mbit/s
and 16Mbit/s on PCI-E and USB hardware devices. The basic principles of the
quantum entropy source used by ID Quantique can be seen in Figure 1.

Fig. 1: Quantis RNG functionality overview [5]

Figure 2 outlines the different subsystems of the Quantis QRNG. A source
is used to generate individual photons, which are directed towards a semi-
transparent mirror. This mirror has a 0.5 probability of emitting or reflecting
the photons directed towards it. Two photon detectors, labeled ”0” and ”1”,
are incorporated to track which of these eventualities occurs. If the photon is
emitted a ”1” will result. If it is reflected a ”0” is generated.

An unbiasing algorithm is used to ensure that the each of the outputs of
the QRNG has a probability of 0.5. It is not possible to guarantee that this
probability will arise naturally, so the unbiasing function is needed to ensure
that values do not drift. An additional status monitoring scheme is used to
ensure that the QRNG hardware (emitter and detectors) remains operational
and in optimal working condition. If errors are detected, the device will notify
the user and stop generating output.

1 http://www.idquantique.com/random-number-generation/

Fig. 2: Quantis RNG block diagram [5]

Quantis devices, particularly the PCI-E 16M, PCI-E 4M, and USB 4M, have
been certified internally23. External certification by the Swiss Federal Office of
Metrology (METAS) has also been awarded, with the Diehard tests4 forming the
basis of their testing strategy [7]. The Compliance Testing Laboratory (CTL)
has also certified these devices as suitable for use in gaming and gambling, under
the auspices of the UK Gambling Commission’s standards5.

These modules are marketed as suitable for cryptographic use, lotteries, and
online gaming. However, ID Quantique explicitly states that these devices are
not BSI AIS 31 certified [8]. Dodis et al. comment on the impossibility of cryp-
tography with imperfect randomness, raising questions regarding the suitability
of any sufficiently biased RNG for cryptographic purposes [9]. A notable use-case
cited in ID Quantique’s press resources is the utilisation of Quantis devices simi-
lar to the ones under scrutiny by the Loterie Romande6. Mechanical draws, being
complex and time-consuming, were not sufficient to meet the demands of this
lottery, and so the Quantis platform was selected as part of their modernization
efforts. METAS certification was augmented with independent mathematical
analyses, with Loterie Romande deeming the device suitable for their purposes.
To add context, this Swiss lottery generated a revenue of $100 million in 2010,
a significant sum of money which is heavily dependent on the trustworthiness of
the randomness of Quantis.

2 The NIST SP800-22 Test Suite is used by ID Quantique [6]
3 http://marketing.idquantique.com/acton/attachment/11868/f-0117/1/-/-/-/-

/Quantis%20Certifications%20Collection.pdf
4 Diehard tests performed over 10 x 100MB samples from Quantis QRNG devices.

Passing these tests seems to be sufficient grounds to award the certificate
5 Certificate issued 30/03/2011 after successfully passing required tests
6 http://marketing.idquantique.com/acton/attachment/11868/f-0042/1/-/-/-/-

/Loterie%20Romande%20QRNG%20for%20Swiss%20Lottery.pdf

This paper provides the first in depth analysis of the Quantis QRNG 16M,
4M and USB modules [5], developed and sold by ID Quantique. Going far be-
yond the testing regiments needed to achieve certification by the Swiss Federal
Office of Metrology (METAS), Dieharder, NIST 2.1.2 and ENT are used to give
a thorough statistical analysis of the output of these devices. Comparative anal-
ysis is provided through a study of the Chaos Key TRNG (a hardware random
number generator in a USB package), and urandom (the kernel level PRNG pro-
vided in Linux operating systems). Significant biases are identified in the Quantis
QRNG modules, and further analysis is conducted in an attempt to characterize
these biases. To the best of the authors’ knowledge, these findings are novel and
highlight a previously unknown weakness in the studied QRNGs which could
potentially have a major impact in certain applications. Some additional discus-
sion is included regarding the testing strategies used to certify RNG products
and the need for more stringent tests.

The rest of the paper is laid out as follows. Section 2 discusses methodology,
with a technical breakdown of the devices and testing strategies employed in
the course of this research. Section 3 reports on the results of statistical testing
and presents an analysis of the results. Section 4 concludes the paper, with sub-
section 4.1 providing an overview of current and future work that will expand
on the findings reported in this paper.

2 Methodology

Three Quantis quantum random number generators (QRNG) were selected for
testing. These devices come in two types, PCI-E and USB connected modules.
The PCI-E modules, shown in Figures 3(a) and (b) possess an output speed
of 16Mbit/s and 4Mbit/s, respectively. The USB module shown in (c) has an
output speed of 4 Mbit/s.

(a) PCIE 16M (b) PCIE 4M (c) USB 4M

Fig. 3: Quantis devices used in this research

The 4Mbit/s devices have a single module (each containing an optical quan-
tum entropy source), while the 16Mbit/s model has 4x4M modules and a mixing

algorithm implemented in hardware, to provide the required entropy for its faster
rate. The data sheet for these devices states that they are suitable for cryptogra-
phy, statistical research, and PIN number generation. These devices are retailed
at a relatively high price, commanding between e2990 and e990 for the devices
previously listed7.

Each module has been issued a certificate that explicitly states that the de-
vices are not BSI AIS 31 certified. An example of this can be seen in Figure
4. A unique identifier for the device in question is provided on the certificate.
It is stressed that these QRNGs have been rigorously tested to ID Quantique’s
exacting specifications. Furthermore, it is stated that these devices are in compli-
ance with the certificate n. 151-04687 of the Swiss Federal Institute of Metrology
(METAS) [10].

Fig. 4: Quantis Certificate

The Quantis modules were tested on two different operating systems, on two
different machines. An Ubuntu workstation with an Intel i7 3770k processor and
16GB of RAM is shown in Figure 5 (a). A Windows 10 machine with an i7 3770k
processor and 16GB of RAM can be seen in Figure 5 (b).

The purpose of using two separate machines was to isolate, and possibly
identify, the role of a given operating system or machine in producing positive
or negative results. The use of machines with a similar processor and RAM
specifications was intended to minimise the role of differing local hardware that
may be important in the gathering and caching of data from each Quantis device.

7 Prices from http://www.idquantique.com/random-number-generation/order-
online/ at time of writing: Quantis PCI-E 16M: e2990. Quantis PCI-E 4M: e1299.
Quantis USB 4M: e990

(a) Ubuntu Workstation (b) Windows PC

Fig. 5: Different platforms and Operating Systems were used for testing the out-
put of the Quantis QRNGs

On both Windows 10 and Ubuntu 16.04, the Quantis ’Easy Quantis’ appli-
cation was used to collect 2GB8 of random data from each module. Figure 6
shows the Windows 10 interface for this application.

Fig. 6: Easy Quantis Application (Win 10)

Data will also be collected from a Chaos Key9 (Figure 7), which is another
USB package containing a (non-quantum) hardware random number generator.
The urandom function under Ubuntu 16.04 LTS will also be tested, as this is a
commonly used, high-speed software PRNG.

The data collection method for both the Chaos Key and urandom involved
the use of the ”dd” utility to print random values from each device to a binary
file. Sequences of 128 bytes were extracted 16,406,250 times to achieve a final
file size of 2GB for both RNGs. This is an important difference to note with
the Quantis devices, which provide an application for data extraction, while the

8 This is the maximum size allowed by the application.
9 The Chaos Key retails at e40 from a variety of third-party resellers

Fig. 7: The Chaos Key USB TRNG [1]

Chaos Key and urandom are both supported by the Linux kernel. The Quantis
devices also require driver installation and a roll back to kernel v3 otherwise
they will throw a ’version not recognized’ error when compiling. To ensure sim-
ilar testing conditions under Ubuntu, all the Quantis devices, urandom and the
Chaos Key were all tested with the v3 of the kernel.

The 2GB samples extracted from these RNGs will be used for comparative
analysis of the Quantis devices with unrelated hardware and software RNGs.
The following data was collected, in the listed amounts and from the named
operating systems:

– Quantis 16M PCI-E module: 2GB x 3 (Ubuntu), 2GB x 1 (Windows)
– Quantis 4M PCI-E module: 2GB x 3 (Ubuntu), 2GB x 1 (Windows)
– Quantis USB 4M module: 2GB x 3 (Ubuntu), 2GB x 1 (Windows)
– Chaos Key TRNG USB module: 2GB x 1 (Ubuntu)
– urandom PRNG: 2GB x 1 (Ubuntu)

The speed of random number generation was benchmarked for all three de-
vices, with the results shown in Table 1.

Table 1: Time taken to extract 2GB of data from all tested RNGs

Time 1 Time 2 Time 3 Mean time Mean data rate
(s) (s) (s) (s) (Mbit/s)

Quantis PCI-E 16M 1011.50 1024.72 1140.45 1058.90 15.87
Quantis PCI-E 4M 4321.45 4403.55 4303.37 4342.79 3.86
Quantis USB 4M 4300.66 4219.05 4203.70 4241.14 3.96

Chaos Key 4523.67 4399.98 4316.75 4413.47 3.80
urandom 330.15 334.67 331.47 332.10 50.59

These results confirm that the devices function close to their marketed speeds,
and well within the 10% bound specified in the product specification document.
The maximum time taken for the USB and 4M modules to provide a 2 GB
sample was 1 hour and 7 minutes. By comparison, the 16M generated 2GB of

data in approximately 17 minutes. Similar values were achieved during Windows
10 data extraction.

The Chaos Key and urandom have been subject to the same three-sample
speed test to provide a fair comparison with the Quantis devices. The Chaos Key
performs almost as quickly as the 4M modules, while urandom is significantly
faster. The primary issue with urandom is, of course, that it does not wait for
its entropy pool to replenish (it is nonblocking). This may mean that for larger
samples, and in low entropic environments such as virtual machines, it may
generate low-quality output without stopping or reporting this behavior though
this was not observed during our experiments.

A variable to bear in mind is the relative cost of these devices. The Quantis
QRNG modules are relatively expensive when compared with other hardware
random number generators. The Quantis PCI-E 16M is priced at e2990, while
the PCI-E 4M costs e1299. The Quantis USB 4M module is priced at e990.
The Chaos Key, by comparison, is a mere e40, in a much smaller package.

The collected data will be tested in accordance with the statistical testing
scheme outlined in the following subsection.

2.1 Randomness tests

The output of the Quantis devices, the Chaos Key and urandom were subject to
a battery of statistical tests. The Quantis devices were tested using Dieharder,
NIST STS 2.1.2, and ENT. All tests will be conducted on an Ubuntu work
station to ensure consistent testing conditions.

Diehard Tests. The Dieharder battery is an extension of the original Diehard
tests. It incorporates a variety of statistical tests and forms the basis for RNG
evaluation. Dieharder is not exhaustive in its testing, despite possessing over a
dozen individual test types with multiple permutations of each. However, it is
still considered a good gauge of the robustness of a generator, with failure on
any test being an indication of a flawed RNG. It is a part of many certification
test strategies, including BSI’s AIS 31.

The Quantis devices, urandom and Chaos Key will be analyzed using Dieharder.
All tested samples were run through Dieharder at their full length of 2GB. De-
fault values are used for all testing, and the file is rewound to the beginning for
each test.

NIST STS 2.1.2. The National Institute of Standards and Technology (NIST)
offers the Statistical Testing Suite (STS) for the analysis of randomness [11].
This software provides a more intuitive user interface than Dieharder and allows
the size and number of bit-streams to be defined. It is possible to select which
tests are used, but for the purposes of this research, all tests have been employed.

Due to the significant time it takes for larger files to be analyzed by this
test, the Quantis devices, urandom and the Chaos Key have been analyzed for
a stream size of 1,680,000 bits and 100 bit-streams.

ENT. ENT is a utility for evaluating pseudo-random number generators [12].
The entropy, compression, chi-square test, arithmetic mean, Monte Carlo value
for π and serial correlation coefficient are included. The most stringent of these
is the chi-square test, which is used to determine if a data source is uniform [13].
In previous work, we have found ENT to be an under-rated bias detection suite
[14].

ENT is not part of any recommended RNG testing strategy but has been
used to find significant and persistent biases in the DESFire EV1 RNG despite
it passing all recommended tests. As a result, this battery will be applied to all
data collected during this research. All files were analyzed for their full length
of 2GB.

3 Results

We present in this section the concise version of each test battery’s results. These
are discussed in their respective subsections, with analysis of unusual results
following after. The length of most test reports makes displaying them in this
format ill-advised. As a result, only a short form of the results will be shown
where possible.

Due to the limitations of print on displaying extensive statistical reports, a
GitHub repository with our results has been made available for general view-
ing10. The sample data used for these tests is of a substantial size (a total of
28GB in 14 binary files) but is available upon request to the authors.

3.1 Dieharder

The Quantis 16M PCI-E module reports between two and three weak results, all
rgb lagged sum tests, across its Ubuntu samples. The n-tuple value associated
with the weak tests varies from file to file, with no clear pattern, but it is always
this test that is reported as weak. However, the 16M does not fail any tests,
under Ubuntu.

The sample extracted under Windows 10, however, reports multiple weak
tests and several failures under Dieharder. The failed tests include:

– diehard bitstream (ntuple 0)
– sts serial (a total of 5 failures over ntuple 13, 15, 15, 16, and 16)
– rgb lagged sum (ntuple 31)

This is a significant degree of failure and warrants further analysis. Retesting
of the sample file reported the same results, indicating that the failures are
associated with the generator and not anomalous test conditions. At this stage
of the research, it is likely that this is a result of the QRNG producing a set of
odd values, as the other three samples do not appear to have any problems with
Dieharder. The other modules similarly have no significant difference in results
between their Ubuntu and Windows samples. Further research is needed.

10 https://github.com/DarrenHurleySmith/QuantisRNGData.git

The 4M module doesn’t share these results. For the Windows 10 sample of
the 4M, a single sts serial test reports a weak result, as do three rgb lagged sums
tests, but it passes the battery under the same conditions that the 16M fails it.
Thee Ubuntu results for this module look much the same: one sample reports
7 weak results, but none report any failures. This indicates that the 4M has
passed the Dieharder tests, but may require further scrutiny to ascertain why it
is considered weak for so many tests in some of its sample outputs.

The Quantis USB module reports 6 weak results and no failures, for the
Windows 10 sample. It also passes the battery, with a high of 5 weak results
on its Ubuntu samples, with the other two samples reporting 4 weak results.
As before, this indicates that the Dieharder test suite has been passed by this
generator.

The Chaos Key passes all Dieharder tests. Three weak results are reported:
rgb minimum distance (n-tuple 2), rgb lagged sum (n-tuple 27), and dab monobit
(n-tuple 12). These are not indicators of failure, but highlight that the results
are too close for comfort and further analysis would be beneficial. The Chaos
Key can be considered as passing the Dieharder battery.

The urandom RNG passes the Dieharder battery. Only three tests report
weak results, two in rgb lagged sums tests and 1 in sts serial (n-tuple 11). As a
result urandom can be considered as having passed the Dieharder battery, despite
the previously discussed issues with urandom being a nonblocking algorithm.
It appears that even with a large file and fast polling speed, urandom looks
sufficiently random for this test.

These results show that generally, the Quantis devices pass the Dieharder
battery, as does the Chaos Key. The failures of the 16M module under Windows
must be analyzed further, but at present appear to be anomalous: they do not
correspond with the behavior of the module across three Ubuntu samples, nor
does it match the results of the other modules’ Windows 10 sample results.

3.2 NIST STS 2.1.2

The Quantis 4M reports a borderline result for the RandomExcursionsVariant
test in each Ubuntu sample. It reports a borderline NonOverlappingTemplate
result for the Windows 10 sample. All of these borderline results are 1 point
below threshold (95/100 instead of 96/100). They do, however, have reasonable
p-values, indicating that the status of the test is uncertain. With only one failed
(borderline) test in each sample, the 4M is a cause for concern, but not yet
statistically proven to have any non-random characteristics.

The USB module passes all but one test in its Ubuntu samples. In each
Ubuntu sample a Non-overlapping test is failed, but only to the degree seen in
the 4M PCI-E module (1 point below the threshold and with good p-values). This
indicates, as with the PCI-E module, that the RNG requires further scrutiny,
but it may just be statistical noise. It should be noted that the Ubuntu samples
report these borderline values at different stages (as there are multiple such tests
in each run of STS 2.1.2). Therefore, it varies with differing data from the same
device, indicating that if there is an underlying bias, it is not consistent.

Under Windows, the Quantis USB module reports failures for the FFT test
and a single NonOverlappingTemplate test. The pass rates for both are 94/100
with p-values well within acceptable bounds. Although these results are only
slightly worse than those of the Ubuntu samples, they do indicate a failure in
the named tests. This indicates that there are issues with the randomness of the
collected files and that additional scrutiny must be levied against this device. As
ENT will perform a byte-by-byte analysis of the sample file, this is a good way
to deepen the investigation of such results.

Once again, the 16M Windows 10 sample paints a very poor picture. This
sample fails two serial tests completely, falling way below the acceptable thresh-
old of 96/100 tests passed, reporting values of 82 and 88. No other tests report
even borderline results: they are all passed with a safe margin. This weakness in
serial tests matches that observed in the Dieharder results for this module. The
16M sample collected on the Windows 10 machine exhibits weakness to serial
tests.

The serial test, for both NIST and Dieharder, analyses the frequency of each
and every overlapping m-bit pattern. This is done across the entire sequence
being tested. Failing this test indicates that the generator has produced output
with a greater number of 2m overlapping m-bit patterns than would be expected
in a truly random sequence. It must be stressed, however, that this failure is
confined to the single sample. All other devices and all other 16M samples appear
to perform well in this test.

The 16M passes every single test in each Ubuntu sample. This further rein-
forces the earlier intuition that the Windows sample is in some way anomalous,
despite being generated under the same variables, and with the same speed, as
all of the Ubuntu samples. As a result, the Windows 10 Ubuntu sample will
henceforth be considered unrepresentative of the 16M PCI-E module in general,
but useful for comparative analysis. Further tests on Windows machines will be
required to ascertain if this is typical behavior or not.

The Chaos Key reports two borderline results for NonOverlappingTemplate
tests. It has this in common with the Quantis 4M and USB modules. Both tests
barely fail, with p-values within the threshold, but test pass rates are 95/100
instead of 96/100. urandom passes all of the tests in this suite. No borderline
or failed results are reported. In this respect, it has surpassed all of the QRNGs
and TRNGs modules tested in this research, a surprising finding considering the
cost inherent to hardware random number generators when compared to a free
kernel module PRNG.

3.3 ENT Results

Table 2 displays the output of ENT for all tested devices. The Quantis devices
are separated into their respective samples, urandom and the Chaos Key both
provide a single entry each.

Chaos Key and urandom perform well across all of the tests. Notably, they
have chi-square values close to 256, the optimal value. Their p-values are similarly

Table 2: ENT results for Quantis, Chaos Key and urandom

Chi-square p-value Entropy Arith. Mean π Serial Corr.

16M 1 (Ubuntu) 339.98 3.40·10-4 8 127.49 0% 1.50·10-6
16M 2 (Ubuntu) 381.81 5.48·10-7 8 127.49 0% 7.00·10-6
16M 3 (Ubuntu) 305.14 1.89·10-2 8 127.49 0% 1.00·10-6
16M (Windows) 373.12 2.37·10-6 8 127.49 0% 2.40·10-6

4M 1 (Ubuntu) 536.41 <1.00·10-15 8 127.49 0% 1.00·10-6
4M 2 (Ubuntu) 464.65 2.86·10-14 8 127.49 0% 8.00·10-6
4M 3 (Ubuntu) 450.18 7.42·10-13 8 127.49 0% 6.00·10-6
4M (Windows) 553.77 <1.00·10-15 8 127.49 0% 1.40·10-5

USB 1 (Ubuntu) 507.04 <1.00·10-15 8 127.49 0% 1.10·10-6
USB 2 (Ubuntu) 450.35 7.15·10-13 8 127.49 0% 2.40·10-6
USB 3 (Ubuntu) 404.03 9.82·10-9 8 127.49 0% 1.20·10-6
USB (Windows) 436.95 1.30·10-11 8 127.50 0% 3.20·10-5

Chaos Key 262.41 3.78·10-1 8 127.50 0% 9.00·10-6
urandom 259.50 4.10·10-1 8 127.51 0% 1.80·10-5

greater than 0.01, putting them just in the center of the 0.01-0.99 range deemed
acceptable for this test.

This is not true of the Quantis devices. Every single one of them, barring
one exceptional 16M (Ubuntu) result, fails the chi-square test. They report good
results for every other test, passing by a good margin on each. But the chi-square
scores and p-values are exceptionally high. Tests on smaller samples derived from
the files used for these tests found that many of these devices will pass the chi-
square test at sizes of under 500MB (some even at 1GB or less), but the fact
that urandom and Chaos Key both pass at a 2GB sample size shows that the
Quantis devices should also be able to pass these tests if they are as robust a
source of randomness.

The 4M PCI-E and USB modules perform most poorly. Both report scores in
excess of 500, with their lowest scores being 450.17 (4M PCI-E), and 404.02 (4M
USB). They report similar values from their Windows 10 samples, showing that
there’s no detectable influence caused by the choice of operating system. The
16M PCI-E module performs better in general but fails all but one Chi-square
test on both Windows and Ubuntu. It is one of the Ubuntu samples that passes
in a most borderline manner, with a score of 305.13 and a p-value of 0.07. This
is barely a pass and is still a cause for concern.

Previous research into RFID based hardware random number generators,
undertaken by the authors, has identified that seemingly robust RNGs can fail on
these simplest and often overlooked tests [14]. This is especially true of hardware
random number generators. A poor chi-square result indicates that there is a low
degree of uniformity among byte values in the sample. The occurrence of values
may be clustered around a specific point, or a pattern may have emerged, leading
to a small but detectable structure in the frequency with which given byte values
occur.

In our previous work with the DESFire EV1 TRNG this took the form of
a sinusoidal structure, in which half of the possible byte values occurred frac-
tionally more frequently than the other half, leading to a perceptible trend in
the plotted occurrences of said bytes. To identify the presence of such a trend,
further analysis is required and follows in the next subsection.

Analysis of the Quantis bias. To analyze the biases associated with the de-
vices that failed the Chi-square test, the byte indices and rate of their occurrence
in the sample files were collected. From this, the bias of each byte value for a
given file can be computed, providing a visualization of the distribution of values
throughout a file at the byte level.

Figure 8 shows the biases for the Quantis PCI-E 16M module. Figure 8 (a)
shows the first set of data, with an exceptionally high occurrence of low-index
bytes. The greatest bias is 4.69·10-6, occurring on byte 0. Further biases that
significantly deviate from the norm by more than ±4 · 10-6 can be observed for
values 64, 65, 181, 184, and 231. This threshold value has been selected to focus
our observations on the most extreme biases and to highlight the abnormal fre-
quency with which they occur in what should be a randomly distributed sample.
Even with the vagaries of ’true’ randomness, in a sufficiently large sample, the
distribution of byte values should converge to a normalized state. Significant
biases indicate that this is not the case here.

Graph (b) shares the value of its highest bias with all of the other samples for
the 16M, with byte 0 possessing the maximum bias of 5.44·10-6. Further biases
above the ±4 · 10-6 threshold, can be observed at indices 21, 161, 213, and 222.
The positions of these biases do not correlate with those observed in the first
sample.

Figure 8 (c) bucks the trend set by the previous two samples, by not having
value 0 as its highest bias. The maximum bias for this sample is 4.14·10-6 for
value 132. Beyond the ±4·10-6 threshold are values 144 and 208. As befitting this
sample’s reasonably good chi-square score, it exhibits far fewer extreme biases
than the other 16M samples.

The Windows 10 sample, shown in (d), has its highest bias is at index 1,
with a magnitude of 5.46·10-6. This differs from (a) and (b) but the maximum is
again attained at a very low value, matching the established trend closely. The
rest of the sample possesses biases greater than ±4 · 10-6 at indices 2, 3, 36, 65,
227, and 230.

Figure 9 shows the biases of the Quantis PCI-E 4M module. Graph (a)
demonstrates the biases of the first sample of 4M data, where index 129 has
the highest bias of 5.92·10-6. The next largest bias is on index 83, with the value
-5.77·10-6. Indices 1, 2, 3, 4, 8, 65, 66, 83, 129, 172 and 187 all exceed the pre-
viously defined threshold value, indicating that the biases are more pronounced
in this sample than in any of those of the 16M. The first indices of the sample
are abnormally high, another element the 4M has in common with the 16M.

Graph (b) demonstrates the recurring low-index biases seen in previous re-
sults. Index 1 has the largest bias of this sample, with a magnitude of 5.39·10-6.

(a) 16M 1 (b) 16M 2

(c) 16M 3 (d) 16M Windows

Fig. 8: Bias of Quantis 16M PCIE Module - Ubuntu machine

Indices 1, 2, 5, 31, 129, 170, and 225 all fall outside the ±4 · 10-6 threshold.
This lesser number of extreme biases (compared with (a)), corresponds with the
substantially lower (but still poor) chi-square score for this sample.

Graph (c) again exhibits highly biased low index values, index 1 possessing a
bias of 4.41·10-6. However, the largest bias is of magnitude -5.63·10-6, on index
219. Biases beyond the established threshold are found on indices 17, 110, 129,
131, 167, 193, 219, and 225.

Figure 9 Graph (d) shows the Windows 4M sample. Oddly, this sample has
a large number of negative biases, with a relatively low number of biases in the
positive range. It starts with biased low index values, as previously observed in
the majority of 16M and 4M samples collected. The maximum bias observed
has a magnitude of -6.46·10-6, at index 215. Indices 88, 94, 170, 171, 174, 186,
215, and 230 all possess large negative biases, with only index 6 possessing a
large positive bias. This is distinct from all other results observed for the 4M,
or indeed any of the tested RNG implementations.

The 4M performs more poorly than the 16M, which is unsurprising given
the dramatically inferior performance it achieves in the chi-square test. The
predominance of low-index biases in many samples may indicate a systemic issue,
but as of yet, there is insufficient proof of this to state so with confidence. Also,
the biases migrate significantly between samples, there is no consistent bias

(a) 4M 1 (b) 4M 2

(c) 4M 3 (d) 4M Windows

Fig. 9: Bias of Quantis 4M PCIE Module

observed between samples, but large file sizes do cause this generator to fail a
very simple statistical test.

Figure 10 presents the results of the Quantis 4M USB module. Graph (a)
exhibits the biased low index values seen in most of the previous Quantis samples.
The maximum bias is observed at index 172, with a magnitude of -5.49·10-6.
Indices 1, 2, 4, 5, 36, 88, 99, 113, 155, 172, 174, 193, 211, and 249 all fall above or
below the ±4·10-6 threshold. This is a greater number of biases than that seen in
Figure 9 (a). However, this sample performs better on the chi-square test, though
only barely. As with Figure 9 (c), it appears that a more extreme difference
between the average and greatest bias values leads to a far more differentiated
expression of the bias.

Graph (b) exhibits a slant towards negative bias values, similar to that seen
in Figure 9 (d). The largest bias is found at index 171, with a magnitude of
-7.07·10-6. Other biases exceeding the threshold set for this experiment can be
found at 1, 10, 15, 17, 46, and 171. This is substantially fewer than that reported
in (a), which may be linked to the lower chi-square score. The trend of (b)
follows several curves, wherein indices report consistently positive or negative
biases. These curves appear to have no relationship, being of varying period and
magnitude. However, they do increase the distribution of bias values and reduce
the number of extreme biases.

(a) USB 1 (b) USB 2

(c) USB 3 (d) USB Windows

Fig. 10: Bias of Quantis USB Module

Graph (c) returns to the more even distribution. The largest bias is -5.52·10-6,
at index 86. Biases beyond the noted threshold are found at indices 4, 50, 86,
175, and 241.

Graph (d) shows the results for the Windows sample for the Quantis USB
module. This sample has the second best performance on the chi-square test. Its
largest bias is -5.29·10-6, at index 43. At values 20, 42, 118, 170 and 225, the
threshold of ±4 ·10-6 is exceeded. This is a greater number than observed in (c),
but less than (a) or (b). This reinforces the observation that this is directly tied
to the chi-square score.

An important observation to make is that despite its extremely poor perfor-
mance in the NIST and Dieharder tests, the 16M is not that much different from
the Ubuntu 16M samples. It is also not that different from the other Quantis
modules, in terms of bias occurrences and magnitudes. This suggests that the
issues identified by Dieharder and STS 2.1.2 are unrelated to the chi-square re-
sults, or at least not directly related. Extremely poorly performing 4M modules
in terms of chi-square score still pass both the Dieharder and STS batteries,
whereas the Windows sample from the 16M does not.

To allow a comparison with two better generators, Figure 11 shows the Chaos
Key and urandom results. These two generators performed well on the Dieharder
and STS batteries, especially urandom which passed all tests by a good margin.
Graph (a) demonstrates the results for the Chaos Key TRNG. Its largest bias is

-4.41·10-6, at index 44. Indices 44, and 172 possess biases greater than ±4 · 10-6.
This is an extremely low number of biases. At ±3 ·10-6 this increases to 7 indices
with biases greater than the new threshold value. This is still less than many
of the Quantis devices; demonstrating that the Chaos Key is far more evenly
distributed in terms of its byte values than the Quantis devices.

(a) Chaos Key (b) urandom

Fig. 11: Bias of Chaos Key and urandom

Graph (b) shows the results for urandom. This PRNG has the lowest upper
and lower bias values of all the samples collected for this research. Its largest
bias is -4.11·10-6, and this is the only value that exceeds the threshold of ±4 ·
10-6. Six indices fall outside a threshold of ±3 · 10-6, making it less biased than
the Chaos Key. Both of these RNGs perform better in all respects than the
Quantis devices, but urandom performs the best of all devices selected for this
research. Considering the costs, speeds and reliability issues involved in selecting
an appropriate random number generator, this goes to show that money cannot
buy everything.

4 Conclusion

This paper has presented some preliminary findings relating to the Quantis fam-
ily of quantum random number generation modules. These are commercially
available QRNGS, certified by the Swiss National Laboratory and Swiss Federal
Institute of Metrology (METAS). Delivered in PCI-E or USB packages, these
modules use quantum phenomena to provide entropy for random number gener-
ation. They are costly devices, ranging from e990 to e2990, and are suggested
as being suitable for cryptography, lotteries and similar tasks.

This research finds that although these QRNG modules pass Dieharder and
NIST STS 2.1.2 tests, for the most part, they fail the chi-square test of the ENT
suite by a significant degree. This is an indicator of byte-level biases in tested
files. In the interests of responsible disclosure, we have contacted Quantis with
our findings.

METAS has awarded the Quantis devices a certification based on applying
the Diehard tests over 10 data sets of 100MB for each tested device [10], as
they pass for 2GB datasets with a good degree of consistency between results.
However, such a certification only really certifies that the QRNG modules pass
the Diehard tests. urandom and Chaos Key both pass these tests under similar
conditions and are significantly less costly. Quantis itself verifies these devices,
providing a certificate that states they passed the Compliance Testing Labora-
tory (CTL) [15] tests. ID Quantis specifically states that the devices tested in
this paper are not certified under BSI AIS31. This is made clear on certificates
provided with the QRNG modules.

The difference between the biases in each Quantis module sample suggests
that the issue is not reproducible in any single form, but instead, a unique
set of biases is generated in each sample. This shows that there is a degree of
randomness provided by these devices, likely sufficient to appear random when
tested under traditionally accepted suites such as FIPS 140-2, NIST STS, and
Dieharder. However, a byte-level analysis shows that there is a consistent degree
of failure and associated levels of bias, despite the changing form in which said
bias presents itself between samples from a single device.

Further analysis will be required to characterize the bias, but this research
highlights the fundamental issues found. Using small data samples and a limited
selection of tests is, in essence, a form of confirmation bias, wherein a device may
be constructed in such a way that it passes the a-priory known target tests but
is flawed in many other ways. It is advisable to test innovative random number
generators with as many available tests as possible, with as large a sample as
technically possible.

4.1 Future Work

Testing will continue, with a wider range of data and statistical test batteries,
including the Crush, Alphabits and Rabbit tests from TestU01 applied over large
samples, to identify any further issues. An ongoing exploration of the suitability
of certain statistical tests to specific classifications of random number generation
will also benefit from the continuation of this research. The bias observed in
the ENT results will be explored further using a combination of Masking and
Avalanche tests to identify any potential underlying pattern that would conform
to structured sequences of n-bits. Such testing has enhanced our previous work
with the DESFire EV1 [14], and will take priority in our continuing study of
hardware random number generators.

Acknowledgements

This work was funded by InnovateUK as part of the authenticatedSelf project,
under reference number 102050. This work was partly sponsored by the ICT
COST Action IC1403 Cryptacus in the EU Framework Horizon 2020.

This project has received funding from the Euro-
pean Unions Horizon 2020 research and innovation pro-
gramme, under grant agreement No.700326 (RAMSES
project). The authors also want to thank EPSRC for
project EP/P011772/1, on the EconoMical, PsycHologi-
cAl and Societal Impact of RanSomware (EMPHASIS),
which supported this work.

References

1. Altus Metrum. Chaoskey true random number generator, June 2008.
2. JG Rarity, PCM Owens, and PR Tapster. Quantum random-number generation

and key sharing. Journal of Modern Optics, 41(12):2435–2444, 1994.
3. André Stefanov, Nicolas Gisin, Olivier Guinnard, Laurent Guinnard, and Hugo

Zbinden. Optical quantum random number generator. Journal of Modern Optics,
47(4):595–598, 2000.

4. IQ Quantique. IDQ Random Number Generation. IQ Quantique,
http://www.idquantique.com/random-number-generation/, 2017.

5. ID Quantique. Id quantique white paper - random number generation using quan-
tum physics, April 2010.

6. Lawrence E Bassham III, Andrew L Rukhin, Juan Soto, James R Nechvatal,
Miles E Smid, Elaine B Barker, Stefan D Leigh, Mark Levenson, Mark Vangel,
David L Banks, et al. Sp 800-22 rev. 1a. a statistical test suite for random and
pseudorandom number generators for cryptographic applications. 2010.

7. Robert G Brown, Dirk Eddelbuettel, and David Bauer. Dieharder: A random
number test suite. Open Source software library, under development, 2013.

8. Bundesamt fur Sichterheit in der Informationstechnik. Evaluation of random num-
ber generators version 0.10. Technical report, Bundesamt fur Sichterheit in der
Informationstechnik, 2013.

9. Yevgeniy Dodis, Shien Jin Ong, Manoj Prabhakaran, and Amit Sahai. On the
(im) possibility of cryptography with imperfect randomness. In Foundations of
Computer Science, 2004. Proceedings. 45th Annual IEEE Symposium on, pages
196–205. IEEE, 2004.

10. Damian Twerendol and Philippe Richard. Certificate of conformity no 151-04687,
May 2010.

11. National Institute of Standards and Technology. NIST com-
puter security resource center (CSRC). Retrieved from:
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html 13:53 07/09/2016.

12. John Walker. Ent. A pseudo-random number sequence testing program. Retrieved
from: https://www.fourmilab.ch/random/ 13:52 07/09/2016.

13. Walter Anderson. A study of entropyuh. Retrieved from:
https://sites.google.com/site/astudyofentropy/background-information/the-tests
13:30 07/09/2016.

14. Darren Hurley-Smith and Julio Hernandez-Castro. Bias in the mifare desfire ev1
trng. In Radio Frequency Identification: 12th International Workshop, RFIDsec
2016, Hong Kong, China, November 30-December 2, 2016. Springer International
Publishing, 2016.

15. Compliance Testing Laboratory. Certificate of compliance, March 2011.

