
1

Implementing Conjunction Obfuscation under
Entropic Ring LWE

David Bruce Cousins∗, Giovanni Di Crescenzo†, Kamil Doruk Gür‡, Kevin King§,
Yuriy Polyakov‡‖, Kurt Rohloff‡‖, Gerard W. Ryan‡ and Erkay Savaş†¶

∗ Raytheon BBN Technologies, dave.cousins@raytheon.com
† Applied Communication Sciences / Vencore Labs, gdicrescenzo@vencorelabs.com

‡ NJIT Cybersecurity Research Center, New Jersey Institute of Technology,
{kg365,polyakov,rohloff,gwryan}@njit.edu

§ Massachusetts Institute of Technology, kcking@mit.edu
¶ Sabancı University, erkays@sabanciuniv.edu

‖ Corresponding Authors

December 8, 2017

Abstract

We address the practicality challenges of secure program obfuscation by implementing, optimizing, and experi-
mentally assessing an approach to securely obfuscate conjunction programs proposed in [1]. Conjunction programs
evaluate functions f (x1, . . . , xL) =

∧
i∈I yi, where yi is either xi or ¬xi and I ⊆ [L], and can be used as

classifiers. Our obfuscation approach satisfies distributional Virtual Black Box (VBB) security based on reasonable
hardness assumptions, namely an entropic variant of the Ring Learning with Errors (Ring-LWE) assumption. Prior
implementations of secure program obfuscation techniques support either trivial programs like point functions,
or support the obfuscation of more general but less efficient branching programs to satisfy Indistinguishability
Obfuscation (IO), a weaker security model. Further, the more general implemented techniques, rather than relying
on standard assumptions, base their security on conjectures that have been shown to be theoretically vulnerable.

Our work is the first implementation of non-trivial program obfuscation based on polynomial rings. Our contri-
butions include multiple design and implementation advances resulting in reduced program size, obfuscation runtime,
and evaluation runtime by many orders of magnitude. We implement our design in software and experimentally assess
performance in a commercially available multi-core computing environment. Our implementation achieves runtimes
of 6.7 hours to securely obfuscate a 64-bit conjunction program and 2.5 seconds to evaluate this program over an
arbitrary input. We are also able to obfuscate a 32-bit conjunction program with 53 bits of security in 7 minutes and
evaluate the obfuscated program in 43 milliseconds on a commodity desktop computer, which implies that 32-bit
conjunction obfuscation is already practical. Our graph-induced (directed) encoding implementation runs up to 25
levels, which is higher than previously reported in the literature for this encoding. Our design and implementation
advances are applicable to obfuscating more general compute-and-compare programs and can also be used for many
cryptographic schemes based on lattice trapdoors.

CONTENTS

I Introduction 4
I-A Our Contributions . 5
I-B Related Work . 5
I-C Organization . 6

II Preliminaries 6
II-A Conjunction Programs and Their Applications . 6
II-B Cyclotomic Rings . 7
II-C Cyclotomic Fields . 7
II-D Double-CRT Representation . 7
II-E Ring Learning with Errors Problem . 7

III Conjunction Obfuscator 8
III-A Overview . 8
III-B Ring Instantiation of Directed Encoding . 9
III-C Word Encoding Optimization . 9

IV Trapdoor Sampling 9
IV-A Overview and Motivation . 9
IV-B Trapdoor Construction and G-Lattice Representation . 10
IV-C High-Level Trapdoor Sampling Algorithm . 11
IV-D Sampling G-lattices . 11
IV-E Perturbation Sampling . 12
IV-F Integer Gaussian Sampling . 12

V Setting the Parameters 12
V-A Distribution Parameters . 12

V-A1 Distribution Parameter for Ring-LWE Trapdoor Construction 13
V-A2 Short Ring Elements in Directed Encoding . 13
V-A3 Distribution Parameters for Directed Encoding 13
V-A4 Distribution Parameter for G-Sampling . 13
V-A5 Spectral norm s . 13

V-B Conjunction Obfuscator Correctness . 13
V-C Security . 13

V-C1 Ring Dimension n . 13
V-C2 Dimension m . 14
V-C3 Work Factors tV BB and tRLWE . 14
V-C4 Small-Secret Ring-LWE vs Error-Secret Ring-LWE for Directed Encoding 14

V-D Word Size w . 15
V-E G-Lattice Base t . 15

VI Efficient Matrix and Polynomial Arithmetic 16
VI-A Matrix Chain Product in the Evaluation . 16
VI-B Efficient Polynomial Arithmetic . 16

VI-B1 Double-CRT Operations . 16
VI-B2 Number Theoretic Transform . 17
VI-B3 Cyclotomic Fields . 17
VI-B4 Polynomial Transposition . 17
VI-B5 Modular Arithmetic . 17

2

VII Implementation Details 17
VII-A Pseudocode of Obfuscation Scheme Algorithms . 17
VII-B Integer Sampling . 17
VII-C Software Implementation . 17
VII-D Loop Parallelization . 18

VIII Experimental results 18
VIII-A Testbed . 18
VIII-B Integer Gaussian Sampling Experiments . 18
VIII-C Experiments for the Word Size of One Byte . 19
VIII-D Experiments for the Word Size of One Bit . 19
VIII-E Parallelization Experiments . 20

IX Concluding Remarks 21

X Acknowledgements 21

References 21

Appendix A: Pseudocode for Trapdoor Sampling Algorithms 23

Appendix B: Derivation of Correctness Constraint for Conjunction Obfuscator 25

Appendix C: Comparison of Integer Gaussian Samplers 26

Appendix D: Pseudocode for Conjunction Obfuscation Algorithms 27

3

I. INTRODUCTION

Program obfuscation has long been of interest in the cyber-security community. Obfuscated programs should be
difficult to reverse engineer, and should protect intellectual property contained in software from theft. This prevents
the identification of exploits usable by adversaries.

For many years practical program obfuscation techniques have been heuristic and have not provided secure
approaches to obfuscation based on the computational hardness of mathematical problems, similar to how cryptog-
raphy has provided data security based on the computational hardness assumptions. Prior techniques are discussed
in [2], [3], [4], [5], [6], [7]. Although often usable in practice, these prior approaches do not provide strong security
guarantees, and can often be defeated without large computational effort. For example, [8], [9], [10], [11], [12] all
provide methods to defeat heuristic software obfuscation.

There have been multiple recent attempts to develop cryptographically secure approaches to program obfuscation
based on the computational hardness of mathematical problems. See [13] for a survey of these recent approaches.
There are multiple definitions used for obfuscation in these recent approaches. Two prominent definitions are Virtual
Black Box (VBB) and Indistinguishability Obfuscation (IO).

Virtual Black Box (VBB) obfuscation is an intuitive definition of secure program obfuscation where the obfuscated
program reveals nothing more than black-box access to the program via an oracle [14]. VBB is known to have strong
limitations [15], [16], [17]. The most significant limitation is that general-purpose VBB obfuscation is unachievable
[15].

To address limitations of VBB, Barak et al. [15] define a weaker security notion of Indistinguishability Obfusca-
tion (IO) for general-purpose program obfuscation. IO requires that the obfuscations of any two circuits (programs)
of the same size and same functionality (namely, the same truth table) are computationally indistinguishable. The
IO concept has been of recent interest, with recent advances to identify candidate IO constructions based on multi-
linear maps [18], [19], [20], [21], [22], [23], [24]. There has also been recent work to implement multi-linear map
constructions [25], [26], [27]. Recent results show that these constructions might not be secure [28], [29], [30],
[31], [32], [33], [34], [35], [36]. The only IO construction supporting general functions that is not subject to any
attack to date is the work by Garg et al. [37]. These cryptographically secure program obfuscation capabilities have
also been considered impractical due to their computational inefficiency.

There have been attempts to securely obfuscate special-purpose functions, such as point, conjunction, and evasive
functions, using potentially practical techniques. For example, there have been several approaches to obfuscating
point functions [38], [39], [40], [41], [42]. Unfortunately, point functions have limited applicability.

We address the practicality challenges of secure program obfuscation by implementing, optimizing, and ex-
perimentally evaluating an approach proposed in [1] to securely obfuscate programs that execute conjunction
functions, which are significantly more complex than point functions. Conjunction programs evaluate functions
f (x1, . . . , xL) =

∧
i∈I yi, where yi is either xi or ¬xi and I ⊆ [L].

The obfuscation of conjunction programs is explored in [43] using the graded-encoding (multi-linear map)
candidate construction from [20]. This prior approach is modified for an approach that is based on a graph-
induced multi-linear map construction in [21] and secure under an entropic variant of the Ring-LWE assumption
[1]. The obfuscation scheme satisfies distributional VBB security, meaning that the obfuscated program reveals
nothing more than black-box access to the conjunction function via an oracle, as long as the conjunction is chosen
from a distribution having sufficient entropy. The original work [1] focused on theoretical feasibility of conjunction
obfuscation under entropic Ring-LWE and did not examine practicality issues of the construction.

To address the practicality of obfuscating conjunction programs, we introduce major design and system-level
improvements compared to [1] that enable obfuscation and evaluation procedures both in server and desktop com-
puting environments. These improvements include the use of optimized Gaussian sampling for lattice trapdoors and
arbitrary-base gadget matrix, word-based encoding of programs (instead of binary encoding), optimized correctness
constraint and parameter selection, efficient polynomial multiplication in double Chinese Remainder Transform
(CRT) representation, optimized matrix arithmetic, and loop parallelization at multiple levels of the implementation.
We implement this scheme in a C++ cryptographic library with multi-threading support.

Our implementation achieves runtimes of 6.7 hours to securely obfuscate a 64-bit conjunction program, and 2.5
sec. to evaluate this program over an arbitrary input in a server computing environment. The obfuscated program size
is about 750 GB. For a 32-bit conjunction program, we report the obfuscation runtime of 7.0 min. and evaluation
runtime of 43ms in a desktop computing environment, with the obfuscated program size under 6 GB.

4

A. Our Contributions

We implement the conjunction obfuscator on top of PALISADE1, an open-source lattice cryptography library.
We add new modules in PALISADE including the following:

1) Gaussian lattice trapdoor sampler for power-of-two cyclotomic rings. This implementation supports arbitrary
moduli, including primes and products of primes, and performs all computations without explicit generation
of a Cholesky decomposition matrix, which was a bottleneck of previous implementations based on [44]. Our
implementation also supports a gadget matrix with an arbitrary base, which is computationally and spatially
much more efficient than the classical binary gadget matrix.

2) Generic integer Gaussian samplers, including recent Karney’s rejection [45] and constant-time [46] samplers.
These samplers can be used for any integer Gaussian sampling operation in lattice-based cryptography.

3) Implementation of directed encoding, a special case of GGH15 multi-linear map construction.
4) Extended Double-CRT support to perform trapdoor sampling and obfuscation-related operations using native

integer data types.
5) Efficient matrix arithmetic to support fast evaluation of inputs using the obfuscated conjunction program.
6) Multi-threading and loop parallelization support for all operations of conjunction obfuscator and certain

lower-level matrix operations.
Our implementation includes several major original design improvements of the obfuscation scheme [1]:

1) Word encoding of conjunction program compared to the binary alphabet used in [1], which results in the
reduction of obfuscated program size and obfuscation/evaluation runtimes by many orders of magnitude.

2) Efficient ring-based trapdoor construction and preimage sampling, which substantially reduces the obfus-
cation runtime and storage requirements.

3) Dramatically reduced dimensions of encoding matrices due to the use of a gadget matrix with a large base,
which allow us to reduce program size and obfuscation/evaluation runtimes by multiple orders of magnitude.

4) Improved bounds on parameters coming from more careful analysis of the matrix/polynomial products and
use of the Central Limit Theorem.

B. Related Work

Prior implementation work on secure program obfuscation beyond point obfuscation includes [25], [26], [27].
The first imlementation attempt [25] is based on the CLT13 encoding [47]. The authors build a branching program

(BP) that obfuscates point functions. The obfuscation time for a 14-bit point function and 60-bit security is 9 hours,
the program size is 31 GB and the evaluation of a single input takes 3.3 hours. Better results are reported in [26]
which shows a framework for BP obfuscation using both CLT13 and GGH13 [48] multi-linear map encodings. The
obfuscation time for an 80-bit point function using CLT13 with 80-bit security is 3.3 hours, obfuscated program
size is 8.3 GB and evaluation time is 180 seconds. Note that the above two studies implement multi-linear map
constructions to IO not believed to be secure [28], [29], [30], [31], [32], [33].

Halevi et al. [27] present an implementation of a simplified variant of GGH15 [21] to obfuscate oblivious read-
once BPs, i.e., nondeterministic finite automata, of at most 80 bits with over 100 states. The GGH15 encoding is
more efficient than CLT13 and GGH13 for larger numbers of states (over approximately 50 states), and presently
appears to be immune to existing attacks in the obfuscation scenarios. Obfuscation takes 23 days, obfuscated
program size is 9 TB, and evaluation takes 25 min. The maximum BP length is 20.

Our implementation is based on GGH15 [21] and entropic Ring-LWE, which is different from [25], [26]. We
use a different security model for the obfuscation of a special-purpose function satisfying distributional VBB
security, rather than BP obfuscation satisfying IO. Hence, results can be compared only indirectly. The results of
this comparison are:

1) Our evaluation time for a 64-bit conjunction program (2.5 seconds), which is often the main runtime metric
when assessing the practicability of program obfuscation, is significantly smaller than the one reported in [27]
for the same bit length (949 seconds) and is smaller than the runtime for an 80-bit point function with 80-bit
security in [26] (180 seconds).

1https://git.njit.edu/palisade/PALISADE

5

Output: 1

Output: 0

0

0

1

0

1

0

0

1

0
1

1

1

1

0Start

Fig. 1: Sample conjunction program that accepts [0?1?].

2) Our evaluation time for 20 levels of directed encoding for binary alphabet (188 seconds) is also smaller than
the corresponding evaluation time in [27] (1514 seconds).

3) Our obfuscation time for a 64-bit pattern is 6.7 hours vs. 87 hours in [27].
4) The number of states supported by the conjunction obfuscator can be much higher than 100 (which is larger

than in [25], [26], [27]) and is an exponential function of the number of “wildcards” in the conjunction pattern.
5) Our conjunction obfuscation does not include any randomizing as in BP obfuscation and, hence, requires the

conjunction pattern to have high entropy to be VBB-secure, which is a drawback of our approach.
Although we take a software-only-based approach to program obfuscation, hardware-based approaches are also

feasible. The work [49] achieves simulation-secure obfuscation for RAM programs using secure hardware to
circumvent previous impossibility results.

There are related efforts to provide designs and implementations of obfuscation capabilities. Many building blocks
of our implementation can be used to obfuscate compute-and-compare programs, a generalization of conjunctions,
using the recently proposed construction based on LWE [50]. Another similar generalization is lockable obfuscation
[51]. These more general constructions have not been implemented yet.

C. Organization

The rest of the paper is organized as follows: Section II provides the preliminaries of conjunction programs
and lattices. Section III describes the conjunction obfuscator under entropic Ring-LWE and introduces our word
encoding optimization. Section IV presents our optimizations of lattice trapdoor sampling focusing on the G-lattice
generalization to arbitrary bases. Section V discusses the selection of parameters to optimize program size and
runtimes. Section VI discusses our algorithms for efficient polynomial and matrix operations. Sections VII and
VIII provide implementation details and performance evaluation of conjunction obfuscator. The paper concludes
in Section IX. Appendices provide pseudocode for trapdoor sampling and conjunction obfuscation procedures,
experimental results for integer Gaussian sampling, and derivation details.

II. PRELIMINARIES

A. Conjunction Programs and Their Applications

We define a conjunction as a function on L-bit inputs, specified as f (x1, . . . , xL) =
∧
i∈I yi, where yi is either

xi or ¬xi and I ⊆ [L]. The conjunction program checks that the values xi : i ∈ I match some fixed pattern
while the values with indices outside I can be arbitrary. We represent conjunctions further in the paper as vectors
v ∈ {0, 1, ?}L, where we define Fv (x1, . . . , xL) = 1 iff for all i ∈ [L] we have xi = vi or vi = ?. We refer to ?
as a “wildcard”.

Conjunctions are used in machine learning to execute or approximate classes of classifiers [52], [53]. We can
represent linear classifiers as conjunction programs, and we have used obfuscated conjunction programs to support
Optical Character Recognition (OCR) applications on the standard MNIST dataset, for example, [54]. In this
application, we use principal component analysis (PCA) techniques to construct a hypercube linear classifier for
specific characters that we obfuscate using our conjunction obfuscation technique.

Figure 1 shows a sample conjunction program represented as the accepting language of a finite state machine
where binary inputs drive state transitions. In this example the program accepts the input string [0?1?], where ?
represents a “wildcard input”. This program accepts all 4-bit strings where the first bit is a 0 and the third bit is
a 1. The second and fourth bits in the program are wildcards, meaning either 0 or 1 inputs in these locations can
lead to accepting states.

6

We discuss below how one can group bits into larger alphabets of inputs using word encoding and we are not
bound to binary inputs for conjunction programs. With these larger encodings, conjunction programs can be used
to represent L∞-norm and hypercube description region classifiers, among others [55], [56].

B. Cyclotomic Rings

Our implementation utilizes cyclotomic polynomial rings R = Z[x]/ 〈xn + 1〉 and Rq = Zq[x]/ 〈xn + 1〉, where
n is a power of 2 and q is an integer modulus. The order of cyclotomic polynomial Φm̂(x) = xn + 1 is m̂ = 2n.
The modulus q is chosen to satisfy q ≡ 1 mod m̂. The elements in these rings can be expressed in coefficient
or evaluation representation. The coefficient representation of polynomial a(x) =

∑
i<n aix

i treats the polynomial
as a list of all coefficients a = 〈a0, a1, . . . , an−1〉 ∈ (Z/qZ)n. The evaluation representation, also referred to as
polynomial Chinese Remainder Transform (CRT) representation [57], computes the values of polynomial a(x) at
all primitive m̂-th roots of unity modulo q, i.e., bi = a(ζi) mod q for i ∈ (Z/m̂Z)∗. These cyclotomic rings support
fast polynomial multiplication by transforming the polynomials from coefficient to evaluation representation in
O(n log n) time using Fermat Theoretic Transform (FTT) [58] and component-wise multiplication.

Lattice sampling works with n-dimensional discrete Gaussian distributions over lattice Λ ⊂ Rn denoted as DΛ,c,σ,
where c ∈ Rn is the center and σ is the distribution parameter. At the most primitive level, the lattice sampling
algorithms work with discrete Gaussian distribution DZ,c,σ over integers with floating-point center c and distribution
parameter σ. If the center c is omitted, it is assumed to be set to zero. When discrete Gaussian sampling is applied
to cyclotomic rings, we denote discrete Gaussian distribution as DR,σ.

We use Uq to denote discrete uniform distribution over Zq and Rq. T denotes discrete ternary uniform distribution
over {−1, 0, 1}n. We define k = dlog2 qe as the number of bits required to represent integers in Zq.

C. Cyclotomic Fields

The perturbation generation procedure in trapdoor sampling also utilizes cyclotomic fields K2n = Q[x]/ 〈xn + 1〉,
which are similar in their properties to the cyclotomic rings except that the coefficients/values of the polynomials
are rationals rather than integers. The elements of the cyclotomic fields also have coefficient and evaluation (CRT)
representation, and support fast polynomial multiplication using variants of the Fast Fourier Transform (FFT). The
evaluation representation of such rational polynomials in our implementation works with complex primitive roots
of unity rather than the modular ones.

D. Double-CRT Representation

Our implementation utilizes the Chinese Remainder Theorem (referred to as integer CRT) representation to break
multi-precision integers in Zq into vectors of smaller integers to perform operations efficiently using native (64-
bit) integer types. We use a chain of same-size prime moduli q0, q1, q2, . . . satisifying qi ≡ 1 mod m̂. Here, the
modulus q is computed as

∏l−1
i=0 qi, where l is the number of prime moduli needed to represent q. All polynomial

multiplications are performed on ring elements in polynomial CRT representation where all integer components
are represented in the integer CRT basis. Using the notation proposed in [59], we refer to this representation of
polynomials as “Double-CRT”.

E. Ring Learning with Errors Problem

Our scheme is based on a special case of the Ring-LWE problem [60] introduced in Definition 1. Let us define
an operator MakePoly such that for all rings R, if a ∈ Rn, then MakePoly (a) ∈ R[x] is the polynomial whose
coefficients are the elements of a. If D is a distribution over Rn, then MakePoly(D) is the respective distribution
over R[x].

Definition 1 (PLWEn,m,q,χ). Let n be a power of two, and let R = Z[x]/ 〈xn + 1〉. Let q = 2ω(log λ), where λ is
a security parameter, be such that q ≡ 1 (mod 2n) and define Rq = R/qR. Let m ∈ N and let χ be a distribution
over the integers. The PLWEn,m,q,χ problem is the problem of distinguishing
{(ai, ai · s+ ei (mod xn + 1, q))}i∈[m] from {(ai, ui)}i∈[m], where s, ei ←MakePoly (χn) and ai, ui ←MakePoly

(
Znq
)
.

7

In our implementation, we also use a modification of Definition 1 where s ←MakePoly (T). This variant is
often referred to as a small-secret case of Ring-LWE.

Prior to defining the entropic variant of the PLWEn,m,q,χ problem, we introduce H̃∞ (X|Z) as follows:

Definition 2 (Average Min-Entropy). Let X and Z be (possibly dependent) random variables, the average min-
entropy of X conditioned on Z is

H̃∞ (X|Z) = − log

(
E

z←Z

[
2−H∞(X|Z=z)

])
,

where H∞ (Y) is the min-entropy of random variable Y .

Conceptually the min-entropy is the smallest of the Rényi family of entropies, which corresponds to the most
conservative way of measuring the unpredictability of a set of outcomes. In this case, we deal with its averaged
expression.

The entropic version of the PLWEn,m,q,χ problem is defined as follows:

Definition 3 (α-Entropic PLWEn,m,q,χ). Let m,n, q, χ be parameters of λ and Rq as in Definition 1, and let
D = {Dλ} be an efficiently samplable distribution with (x, z) ← Dλ having x ∈ {0, 1}` for some ` = `(λ) and
H̃∞ (x|z) ≥ α(λ). The α-entropic PLWEn,m,q,χ problem is to distinguish(

{sj}j∈[`] , z, {(ai, ai · s+ ei)}i∈[m]

)
from (

{sj}j∈[`] , z, {(ai, ui)}i∈[m]

)
,

where sj , ei ←MakePoly (χn), s =
∏
j∈[`] s

xj

j , and
ai, ui ←MakePoly

(
Znq
)
.

In our implementation, we use a modification of Definition 3 where sj ←MakePoly (T). This variant will be
referred to as a small-secret case of entropic Ring-LWE.

III. CONJUNCTION OBFUSCATOR

A. Overview

We first formulate the abstract conjunction obfuscator using the definition developed in [43].
To obfuscate a conjunction Fv with v ∈ {0, 1, ?}L, we perform the following steps:
• Choose random short ring elements {si,b, ri,b : i ∈ [L], b ∈ {0, 1}} subject to si,0 = si,1 if vi = ?.
• Create encodings Ri,b of ri,b and encodings Si,b of si,b ·ri,b under Ai−1 → Ai (the specific encoding technique

used in our implementation is described in III-B).
• Choose a random short ring element rL+1. Create an encoding RL+1 of rL+1 and encoding SL+1 of rL+1

∏L
i=1 si,vi .

These encodings are under AL → AL+1.
We set the obfuscated program to be

Πv =
(
A0, {Si,b,Ri,b}i∈[L],b∈{0,1} ,RL+1,SL+1

)
.

To evaluate
∏

v on an input x ∈ {0, 1}L, we compute

S∗ =

(
L∏
i=1

Si,xi

)
RL+1 , R∗ =

(
L∏
i=1

Ri,xi

)
SL+1.

If Fv = 1, then both S∗ and R∗ are encodings of the same value rL+1
∏L
i=1 si,vi under A0 → AL+1, and if

Fv = 0, then S∗ and R∗ are extremely unlikely to encode the same value, i.e., the probability of this event is
negl (λ). Therefore, we can compute the output of the program by testing the equality of encoded values using
EqualTestA0→AL+1

(S∗,R∗).

8

B. Ring Instantiation of Directed Encoding

We implement an instantiation of conjunction obfuscator based on a directed encoding scheme, which is a special
case of GGH15 graph-induced multi-linear maps [21], specialized to a line. The ring instantiation of the directed
encoding scheme for the case of cyclotomic rings Rq = Zq[x]/ 〈xn + 1〉, which was originally proposed in [1], is
described below:
• KeyGen

(
1λ, 1d

)
takes as input a security parameter λ and upper bound d on the number of levels, runs lattice

trapdoor generation algorithm TrapGen
(
1λ
)

(defined in Algorithm 1) and outputs

(PKi,EKi) = (Ai,Ti) ∈ Rq1×m ×Rm×κ,

where i ∈ {0, . . . , d} and m and κ are two trapdoor-related parameters explained in Section IV.
• EncodeAi→Ai+1

(Ti, r), where r ∈ R, is performed in two steps
– Compute bi+1 := rAi+1 + ei+1 ∈ Rq1×m, where ei+1 ← DR1×m,σ.
– Output a matrix

Ri+1 ← GaussSamp (Ai,Ti,bi+1, σt, s) ∈ Rm×m,

where GaussSamp is the preimage sampling algorithm discussed in Section IV and σt and s are distribution
parameters defined in Section V-A.

Note that AiRi+1 = bi+1 = rAi+1 + ei+1 ∈ Rq1×m.
• REncodeAi→Ai+1

(
1λ
)

is the public encoding procedure that simply samples a matrix Ri+1 ← DRm×m,σ.
• Mult (R1,R2) = R1R2, where multiplication is performed over Rq.
• EqualTestA0→Ai

(R1,R2) outputs 1 for “accept” if

‖A0 (R1 −R2)‖∞ ≤ q/8

and 0 for “reject” otherwise. Note that this procedure does not depend on any Ai, where i > 0.
The correctness of the encoding scheme is shown in [1].

C. Word Encoding Optimization

The original conjunction obfuscation design of [1] uses one level for each bit in pattern v ∈ {0, 1, ?}L. Our
first design improvement is to utilize a larger input encoding alphabet to reduce the multi-linearity degree of the
directed encoding scheme, i.e., use fewer levels than the length of the pattern.

A naı̈ve approach to extend to a larger alphabet would be to convert words of w bits into base-2w representation
and then generate 2w encoding matrices for each word. This method would work for short elements ri,b, where
i ∈ [L], b ∈ {0, . . . , 2w − 1}, and L = dL/we is the new effective length of the pattern. However, short elements
si,b, which encode the wildcard information, need to be generated and assigned in a more complex manner.

To keep track of bit-level wildcards, we introduce wildcard subpatterns for each word that share the same short
element si,b. Specifically, we compute a binary mask for each word that has the wildcard entries set to 1 and all
other entries set to 0. Then for every new index b ∈ {0, . . . , 2w − 1} we perform bitwise AND between b and the
mask. If the result is 0 (all wildcard bits in the word are set to 0), we generate a new short element si,b. Otherwise,
we reuse an existing one. The pseudocode for this optimization is depicted in Algorithm 7 (Appendix D).

To illustrate the effect of this optimization, consider the case of 32-bit conjunctions. The binary alphabet encoding
method requires 33 levels of directed encoding. If instead we use 8-bit words, then the number of directed encoding
levels reduces to 5. At the same time, the number of encoding matrices per level grows from 4 for w = 1 to 512
for w = 8, which increases the program size. Hence, there is a tradeoff between a lower multi-linearity degree and
the number of encoding matrices, which both affect the obfuscated program size.

IV. TRAPDOOR SAMPLING

A. Overview and Motivation

The main computational bottleneck of the obfuscation procedure in the conjunction obfuscation scheme is the
preimage sampling GaussSamp. Also, the dimensions of the encoding keys and obfuscated program matrices are
determined by the dimension of the lattice trapdoor used for preimage sampling. Therefore, any advances in this

9

area have a profound effect on the performance of conjunction obfuscation and many other program obfuscations
schemes.

Our implementation uses a trapdoor sampling approach proposed by Micciancio and Peikert [44] and im-
proved/extended trapdoor sampling algorithms recently proposed in [61]. In this approach, samples around a target
point t in lattice Λ are generated using an intermediate gadget lattice Gn. The lattice Λ is first mapped to Gn, then
a Gaussian sample is generated in Gn. The sample is then mapped back to Λ. The linear function T mapping Gn to
Λ is used as the trapdoor. The main challenge of this approach is that the mapping T produces a lattice point in Λ
with an ellipsoidal Gaussian distribution and covariance dependent on the transformation T . To generate spherical
samples, the authors apply a perturbation technique that adds noise with complimentary covariance to the target
point t prior to using it as the center for Gn sampling.

From an implementation perspective, this approach decomposes the lattice trapdoor sampling GaussSamp pro-
cedure into two phases: 1) a perturbation sampling stage (SamplePZ), where target-independent perturbation
vectors with a covariance matrix defined by the trapdoor mapping T are generated, and 2) a target-dependent
stage (SampleG) where Gaussian samples are generated from lattice Gn. The first phase, usually referred to as
perturbation generation [61], can be performed offline as it does not depend on the target point t. The second
stage, referred to as G-sampling [61], is always performed online as it depends on the target point.

The prior Gaussian sampling algorithm introduced in [44] and improved and implemented in [62] has a high
computational complexity for an arbitrary modulus (the SampleG operation requires O

(
n log3 q

)
primitive op-

erations as compared to O (n log q) for a power-of-two modulus). Moreover, both variants of the algorithm have
high storage requirements for a Cholesky decomposition matrix (computed for each trapdoor pair and used in
perturbation sampling) composed of a large number of multiprecision floating-point numbers. The above implies
that this prior Gaussian sampling approach is not practical for our implementation of the conjunction obfuscation
construction dealing with non-power-of-two moduli and m calls to SampleG for each encoding matrix.

We implement a much more efficient approach based on the trapdoor sampling algorithms recently proposed
in [61]. The SampleG algorithm developed in [61] has O (n log q) complexity for arbitrary moduli (same as for
power-of-two moduli in [44], [62]). The perturbation sampling method proposed in [61] works with a Cholesky
decomposition matrix implicitly and does not require additional storage. Our trapdoor sampling implementation is
described in the rest of this section.

B. Trapdoor Construction and G-Lattice Representation

The concrete value of dimension m is determined by the ring trapdoor construction chosen for the implementation.
It is common to write m = m̄ + k, where m̄ is a security dimension and k denotes the dimension of (binary)
gadget matrix. Two ring constructions were suggested in [44] and further developed in [62]. The first one, where
m̄ = 2 and, therefore, m = 2 + k, is generated by drawing k samples (a, ar̂i + êi), where i ∈ [k], from Ring-LWE
distribution. The second construction uses m̄ uniformly random polynomials, where m̄ is usually set to at least
k. As the second construction requires that m be at least 2k, the Ring-LWE construction deals with a smaller
dimension and is thus preferred for our implementation.

Note that a different type of ring trapdoor construction was proposed in [63] based on a non-standard NTRU
assumption. This construction cannot be applied to the conjunction obfuscator because the generated samples have a
large distribution parameter, i.e., Θ

(√
q
)
, which prevents one from using the samples for multiplying the encodings

without invalidating the correctness.
As another major optimization of this work, we introduce a generalized version of the Ring-LWE construction in

[62], [44]. In our implementation m = 2+κ, where κ = dk/ log2 te and t is the base for the gadget lattice Gn (t was
set to 2 in [62]). The use of base t higher than 2 reduces the dimension of encoding matrices, which dramatically
improves all main performance metrics of the conjunction obfuscator, as shown in Section V. The algorithmic idea
of using an arbitrary base t was originally suggested in [44] but has not been explored in implementations based
on polynomial rings.

The pseudocode for the Ring-LWE trapdoor construction is depicted in Algorithm 1. In the pseudocode, r̂ and ê
are the row vectors of secret trapdoor polynomials generated using discrete Gaussian distribution, A is the public
key, and gT = {g1, g2, . . . , gκ} is the gadget row vector corresponding to the gadget lattice Gn. The latter is often
denoted as simply G because it is an orthogonal sum of n copies of a low-dimensional lattice G.

10

Algorithm 1 Trapdoor generation using Ring-LWE for G lattice of base t

function TRAPGEN(1λ)
a← Uq ∈ Rq
r̂ := [r̂1, . . . , r̂κ]← DR,σ ∈ R1×κ

q

ê := [ê1, . . . , êκ]← DR,σ ∈ R1×κ
q

A := [a, 1, g1 − (ar̂1 + ê1), . . . , gκ − (ar̂κ + êκ)] ∈ R1×(2+κ)
q

return (A, (r̂, ê))
end function

Although the trapdoor T in the general definition in Section III-B has dimensions m× κ, for this construction
we can perform all computations with a compact trapdoor T̃ = (r̂, ê) ∈ Rq2×κ, as explained in Section IV-E.

C. High-Level Trapdoor Sampling Algorithm

The high-level preimage sampling algorithm adapted for our lattice trapdoor construction is listed in Algorithm
2. It is based on the general approach proposed in [44]. Note that we use the distribution parameter σt, which
depends on the base t of G-lattice. The vector p is the perturbation vector required to produce spherical samples.

Algorithm 2 Gaussian preimage sampling

function GAUSSSAMP(A, T̃,b, σt, s)
for i = 0..m− 1 do

p← SamplePZ

(
n, q, s, σt, T̃

)
∈ Rmq

z← SampleG(σt, bi −Ap, q)
Convert z ∈ Zκ×n to ẑ ∈ Rκq
xi := [p1 + r̂ẑ, p2 + êẑ, p3 + ẑ1, . . . , pm + ẑκ]

end for
return x ∈ Rqm×m

end function

Sections IV-D and IV-E describe in more detail the procedures SampleG and SamplePZ , respectively.

D. Sampling G-lattices

The G-lattice sampling problem is defined as the problem of sampling the discrete Gaussian distribution on
a lattice coset Λ⊥v

(
gT
)

=
{
z ∈ Zκ : gT z = v mod q

}
, where q ≤ tκ, v ∈ Z and g =

(
1, t, t2, . . . , tκ−1

)
. The

G-sampling problem is formulated here for a single integer v rather than a n-dimensional lattice because each of
the n integers can be sampled in parallel. Our implementation of G-sampling works with a n-dimensional lattice.

We implement a variation of the G-sampling algorithm developed in [61], which supports arbitrary bases for
G-lattice. Our variation (depicted in Algorithm 3 of Appendix A) relies on continuous Gaussian sampling in the
internal perturbation sampling step (in contrast to discrete Gaussian sampling in Figure 2 of [61]), reduces the
number of calls to polynomial CRT operations, and increases opportunities for parallel execution.

Algorithm 3 has complexity O (n log q) for an arbitrary modulus. The main idea of the algorithm is not to
sample Λ⊥v

(
gT
)

directly, but to express the lattice basis Bq = TD as the image (using a transformation T) of a
matrix D with a sparse, triangular structure. This technique requires adding a perturbation with a complementary
covariance to obtain a spherical Gaussian distribution, as in the case of the GaussSamp procedure described in
Algorithm 2. In this prior work the authors select an appropriate instantiation of D that is sparse and triangular, and
has a complementary covariance matrix with simple Cholesky decomposition Σ2 = L · LT , where L is an upper
triangular matrix, and find the entries of the L matrix in closed form.

11

E. Perturbation Sampling

The lattice preimage sampling algorithm developed in [44] requires the generation of nm-dimensional Gaussian
perturbation vectors p with covariance Σp := s2 · I−σ2

t

[
T I
]T · [TT I

]
, where T ∈ Z2n×nκ is a matrix with small

entries serving as a lattice trapdoor, s is the upper bound on the spectral norm of σt
[
TT , I

]T .
When working with algebraic lattices, the trapdoor T can be compactly represented by a matrix T̃ ∈ R2×κ

n ,
where n denotes the rank (dimension) of the ring Rn. In our case, this corresponds to the cyclotomic ring of order
m̂ = 2n. For the Ring-LWE trapdoor construction used in our implementation (Algorithm 1), the trapdoor T̃ is
computed as (r̂, ê). The main challenge with the perturbation sampling techniques developed in [62], [44] is the
direct computation of a Cholesky decomposition of Σp that destroys the ring structure of the compact trapdoor and
operates on matrices over R.

Genise and Micciancio [61] propose an algorithm that leverages the ring structure of Rn and performs all
computations either in cyclotomic rings or fields over Φ2n(x) = xn + 1. The algorithm does not require any
preprocessing/storage and runs with time and space complexity quasi-linear in n. The perturbation sampling
algorithm can be summarized in a modular way as a combination of three steps [61]:

1) The problem of sampling a n(2 +κ)-dimensional Gaussian perturbation vector with covariance Σp is reduced
to the problem of sampling a 2n-dimensional integer vector with covariance expressed by a 2× 2 matrix over
Rn.

2) The problem of sampling with covariance in R2×2
n is reduced to sampling two n-dimensional vectors with

covariance in Rn.
3) The sampling problem with covariance in Rn is reduced to sampling n-dimensional perturbation with covari-

ance expressed by a 2× 2 matrix over the smaller ring Rn/2 using an FFT-like approach.
We implement a variation of the perturbation generation algorithm developed in [61]. Our variation (depicted in

Algorithm 4 of Appendix A) reduces the number of calls to CRT operations and increases opportunities for parallel
execution.

F. Integer Gaussian Sampling

Our implementations of G-sampling and perturbation sampling procedures require generating integers with
Gaussian distribution for large distribution parameters and varying centers. For instance, the optimal values of
base t lead to distribution parameters up to 220 for G-sampling and even larger values for perturbation generation.
This implies that conventional Gaussian sampling techniques such as the inversion sampling developed in [64] and
rejection sampling proposed in section 4.1 of [65] are not practical for trapdoor sampling, as described in detail in
[46].

To this end, we implement two recently proposed generic samplers: Karney’s rejection sampler [45] and constant-
time sampler [46].

The rejection sampler [45] provides a relatively low rejection rate (roughly 0.5) vs. a much higher rate in the
case of rejection sampling [65], and has no additional storage requirements, at least when it is not separated into
offline and online stages. However, it has a relatively significant variability in sampling time making it prone to
timing attacks.

The generic sampler [46], on the other hand, uses a constant-time algorithm that breaks down sampling for large
distribution parameters into multiple runs for much smaller distribution parameters. It also utilizes multiple cosets to
support varying-center requirements, with the number of cosets being an adjustable parameter. At the lowest level,
this generic sampler depends on the implementation of a base sampler for a small distribution parameter and fixed
center, which can be realized using efficient Cumulative Distribution Function (CDF) inversion [64] or Knuth-Yao
[66] methods. This algorithm has significant memory requirements to store precomputed lookup tables/trees for the
base sampler but the storage requirements can be adjusted at the expense of increased sampling runtime.

The choice of a specific generic sampler in our experiments is determined by minimizing the obfuscation runtime.

V. SETTING THE PARAMETERS

A. Distribution Parameters

12

1) Distribution Parameter for Ring-LWE Trapdoor Construction: The trapdoor secret polynomials are generated
using the smoothing parameter σ estimated as σ ≈

√
ln(2nm/ε)/π, where nm is the maximum ring dimension

and ε is the bound on the statistical error introduced by each randomized-rounding operation [44]. For nm ≤ 214

and ε ≤ 2−80, we choose a value of σ ≈ 4.578.
2) Short Ring Elements in Directed Encoding: For short ring elements si,b, ri,b, we use ternary uniformly random

ring elements, which are sampled over {−1, 0, 1}n. This implies that we rely on small-secret Ring-LWE for directed
encoding.

3) Distribution Parameters for Directed Encoding: To encode ternary random elements, we use the smoothing
parameter σ (for the noise polynomials) defined in Section V-A1.

To encode a product of ternary random ring elements under the Ring-LWE assumption, we need to sample
noise polynomials using σ′ = ω (log λ)

√
nσ (Section 4.3 of [1]). The term ω (log λ) guarantees that DR,√nσ+σ′

is “smudged” by Lemma 2.4 of [1] to DR,σ′ . In our implementation, we use a concrete estimate σ′ = k
√
nσ.

4) Distribution Parameter for G-Sampling: Our G-sampling procedure requires that σt = (t + 1)σ. This
guarantees that all integer sampling operations inside G-sampling use at least the smoothing parameter σ, which
is sufficient to approximate the continuous Gaussian distribution with a negligible error.

5) Spectral norm s: Parameter s is the spectral norm used in computing the Cholesky decomposition matrix (it
guarantees that the perturbation covariance matrix is well-defined). To bound s, we use inequality s > s1 (X)σt,
where X is a sub-Gaussian random matrix with parameter σ [44].

Lemma 2.9 of [44] states that s1 (X) ≤ C0σ
(√
nκ+

√
2n+ C1

)
, where C0 is a constant and C1 is at most 4.7.

We can now rewrite s as s > C0σσt
(√
nκ+

√
2n+ 4.7

)
. In our experiments we used C0 = 1.3, which was

found empirically.

B. Conjunction Obfuscator Correctness

The correctness constraint for a conjunction pattern with L words (L ≥ 2) is expressed as

q > 192σ′
(
2s
√
mn
)L
. (1)

The correctness constraint (1), which is derived using the Central Limit Theorem, significantly reduces bitwidth
requirements for modulus q (as compared to the analysis in [1] for a multi-level directed encoding scheme; note
also that no correctness constraint for conjunction obfuscator was derived in [1]). Hence, our correctness estimate is
another major improvement in this work. The details of deriving the correctness constraint are provided in Appendix
B.

C. Security

1) Ring Dimension n: We utilize Ring-LWE for the trapdoor construction and a combination of small-secret Ring-
LWE and an entropic variant of small-secret Ring-LWE for directed encoding. Since entropic small-secret Ring-LWE
is the strongest assumption, it should determine the value of the ring dimension n. However, no experimental results
for entropic Ring-LWE are available and hence we assume that we can use the same lower bounds for λ as for
regular (non-entropic) Ring-LWE. As the directed encoding Ring-LWE instance uses the ternary distribution T to
generate secret polynomials, our lower-bound estimates of the number of security bits λ are computed for this
variant of Ring-LWE.

We run the LWE security estimator2 (commit 9302d42) [67] to find the lowest security levels for the uSVP,
decoding, and dual attacks following the standard homomorphic encryption security recommendations [68]. We
choose the least value of λ for all 3 attacks on classical computers based on the estimates for the BKZ sieve
reduction cost model.

2https://bitbucket.org/malb/lwe-estimator

13

2) Dimension m: The dimension m can be written as m̄+ κ, where m̄ is a security dimension determined by
the Ring-LWE trapdoor construction and κ is a functional parameter.

Consider the Ring-LWE construction constraint. Let us write the public key A in Algorithm 1 as A =
[
Ā|gT − ĀR

]
,

where A×
(
R
I

)
= gT . Here, Ā is uniformly random and R is small. The pseudorandomness of A =

[
Ā|gT − ĀR

]
(required by our application) immediately follows from the pseudorandomness of

[
Ā|ĀR

]
, which is implied by

the Ring-LWE assumption.
More specifically, we use the Ring-LWE construction from [44], [62], implying that Ā is represented as [a, 1],

i.e., a 1 × 2 matrix over the Ring-LWE ring. Then each column of ĀR is of the form ci = ar̂i + êi. The
pseudorandomness of (a, ci) follows from Ring-LWE. Since each ci uses a different “secret” ri, the public value of
a can be reused, and joint pseudorandomness follows by a standard hybrid argument. This means that the security
dimension m̄ = 2, i.e., m = 2 + κ, can be used regardless of dimension κ.

3) Work Factors tV BB and tRLWE: We consider two attack models to learn the full conjunction pattern. The
first one is based on VBB (input-output) analysis, independently of the underlying cryptographic obfuscation
construction. The second model is based on lattice attacks on the obfuscated program, i.e., requires solving multiple
Ring-LWE problems. We present here the attacks that result in lowest work factors tV BB and tRLWE for the VBB
and lattice models, respectively (our analysis showed these attacks correspond to optimal lower bounds for both
models but the formal proofs are beyond the scope of this paper). The work factors are expressed in terms of the
number of clock cycles to abstract from specific hardware architectures.

VBB model. The work factor for a specific conjunction pattern depends on the number of wildcard bits, denoted
as X . If we assume that the conjunction pattern has high entropy, then the adversary can (on average) run 2L−X

random-input evaluation queries to find a first match, which is equivalent to a point function with L−X bits.
Once the first match is found, the adversary can run additional L evaluation queries to find the wildcard positions.
Therefore, the VBB work factor can be estimated as tV BB =

(
2L−X + L

)
teval ≈ 2L−Xteval, where teval is the

number of clock cycles for a single evaluation of the obfuscated program.
Lattice model. Our most efficient lattice-based attack can be described as follows:

1) Find all wildcard positions. For each word of w bits, solve w × 2× 2 = 4w Ring-LWE problems, where the
first factor of 2 corresponds to bits 0 and 1, and the second factor of 2 corresponds to each encoding matrix
for si,b · ri,b and ri,b, respectively (both ring elements are needed to find si,b). This procedure is repeated for
each word, i.e., L/w times (for simplicity, we assume w|L), which implies this step requires a work factor of
2λ+2L.

2) For each word, solve additional 2× 2w−Xi problems to find all si,b, where Xi is the number of wildcards in
the i-th word. Some solutions may have already been found in Step 1 but we can expect their contribution to
be small (to simplify the analysis). The work factor of this step is 2λ+1

∑L/w
i=1 2w−Xi .

3) Solve Ring-LWE problems for rL+1 and rL+1
∏L
i=1 si,vi .

4) Steps 1–2 yield all values of si,b. Now compare 2L−X products
∏L
i=1 si,b with

∏L
i=1 si,vi found in step 3. The

computation of one product
∏L
i=1 si,b requires approximately the work factor of

(
2m2

)−1
teval, as can be seen

from Algorithm 8.
The Ring-LWE work factor can then be written as

tRLWE ≈ 2λ+1

L/w∑
i=1

2w−Xi + 2L

+
2L−Xteval

2m2
.

For conjunction obfuscation with at least 80 bits of security, the following constraints have to be satisfied:
tRLWE ≥ tV BB ≥ 280. Note that for a 2.5 GHz core, 280 clock cycles correspond to 1.4× 107 core-years.

4) Small-Secret Ring-LWE vs Error-Secret Ring-LWE for Directed Encoding: Our implementation also supports
integer Gaussian distribution DR,σ for short ring elements si,b, ri,b, i.e., the error-secret Ring-LWE (Definition 1).
This variant increases the modulus q, more specifically the parameter Be in expression (5), by a factor of σ

√
γ (γ

is explained in Section V-B), which is only 5 bits for our parameters.
According to our estimates using [67], error-secret and small-secret Ring-LWE require almost the same bitwidth

for q to achieve the same level of security for practical ring dimensions (the modulus q is at most 4 bits larger
for small-secret Ring-LWE). Hence, both small-secret and error-secret Ring-LWE variants can be used without any
major difference in program size or runtimes (none of the performance metrics increase by more than 15% for

14

TABLE I: Program size as a function of word size for 32-bit conjunctions (with λ > 80 bits and t = 2)

w L k n Σtheor (Πv), Terabytes

1 32 1041 32768 617
2 16 505 16384 36
4 8 248 8192 5
8 4 127 4096 3

16 2 70 2048 42
32 1 45 2048 294,900

TABLE II: Program size as a function of word size for 64-bit conjunctions (with λ > 80 bits and t = 2)

w L k n Σtheor (Πv), Terabytes

1 64 2204 65536 22,200
2 32 1049 32768 1,230
4 16 505 16384 142
8 8 248 8192 77

16 4 127 4096 792
32 2 70 2048 2,730,000

the error-secret case according to our experimental analysis), achieving approximately the same level of security
according to LWE estimator [67].

We choose the small-secret Ring-LWE case for our main experiments because it is slightly more efficient than
the error-secret Ring-LWE scenario and is currently believed to be as secure against known attacks.

D. Word Size w

The selection of word size w is governed by the tradeoff between the decrease in multi-linearity degree (L+ 1)
and increase in the number of encoding matrices.

To find the optimal value of w, we introduce a formal definition of theoretical program size Σtheor (in bytes):

Σtheor (Πv) =
1

4
(2w · L+ 1) (2 + κ)2 nk. (2)

The first multiplicand accounts for the number of encoding matrices, the second multiplicand represents the number
of ring elements per encoding matrix, and the last term nk deals with the storage for each ring element. This
theoretical program size is generally slightly smaller than the actual storage consumed in an implementation (due
to storage overhead related to the size of underlying native integers and extra data members in C++ classes).

We consider the program size as the main practical limitation of conjunction obfuscator due to the high size
estimates (in Terabytes) listed in Tables I and II, which are found for the G-lattice base t of 2 (larger bases are
discussed in Section V-E) and all other parameters computed using the input parameters and constraints described
in Sections V-A–V-C. These estimates imply that w = 4 and w = 8 produce the smallest program sizes.

In addition to obfuscated program size, we should consider the evaluation runtime as another optimization
constraint. The evaluation runtime is proportional to L (2 + κ)2 nk, which implies that smaller L, n, and k reduce
the runtime. Therefore, the case of w = 8 is optimal for our experiments when the combined effect of obfuscated
program size and evaluation runtime is considered.

Tables I and II suggest that the use of w = 8 instead of w = 1 reduces the program size by more than 2 and
3 orders of magnitude for 32-bit and 64-bit conjunction patterns, respectively. The proportionality of evaluation
runtime to L (2 + κ)2 nk suggests that the runtime is reduced by about 4 orders of magnitude when switching from
w = 1 to w = 8 both for 32-bit and 64-bit conjunction programs.

E. G-Lattice Base t

Larger values of G-lattice base t decrease the dimension of public key A0, encoding secret keys T̃i, and encoding
matrices Ri, where i corresponds to the level of directed encoding. More concretely, the sizes of A0, T̃i, and Ri

15

are proportional to (2 + κ)nk, κnk, and (2 + κ)2 nk, respectively. Here, κ = dk/ log2 te and k is the number of
bits in modulus q. The program size, obfuscation time, and evaluation time are determined by the size of Ri.

When t is increased, the term (2 + κ)2 in the size of Ri becomes smaller but the modulus bitwidth k and
ring dimension n grow as follows from expression (1) and security analysis for n (Section V-C1). The correctness
constraint (1) suggests that q is proportional to (t+ 1)L, which means that k grows linearly with log2 t. This implies
that the size of Ri, and hence the obfuscation program size, is always reduced with increase in t. The maximum
practical value of t is reached when one of the following conditions is met:

1) Evaluation runtime becomes inadequately slow (as it is proportional to kn);
2) Implementation limitations of integer Gaussian sampling are reached, for instance, the samples start exceeding

the bitwidth of a native integer data type;
3) The value of κ reaches 2 (m = 4), which is the smallest value supported by our perturbation sampling

procedure.
It should be pointed out that the choice of t also depends on the value of the most significant digit of modulus

q with respect to base t, which affects the value of dκ−1 in Algorithm 3. For the worst-case analysis, assume that
qκ−1 = 1, then dκ−1 ≈ 1/t. Once this value is substituted into SampleD, zκ−1 is sampled using a distribution
parameter ≈ σt. Then the term q0zκ−1 in the expression for t0 in SampleG may reach values that are proportional
to σt2, which are much higher than one would expect, i.e., comparable to σt.

To avoid this scenario, we introduce an additional constraint qκ−1/t > 1/ζ, where ζ is a constant. In our
experiments, we set ζ = 2, which implies qκ−1 has at most one bit less than t.

We also performed a combined optimization analysis for word size w and G-lattice base t, which confirmed that
w = 8 is still the optimal value for t > 2.

We use the highest value of t = 220 in our experiments due to the limitations of our implementation of Gaussian
sampling, which operates with native C++ unsigned integers, and selected bitwidth of prime moduli in the Double-
CRT representation. If these constraints are removed, higher values of G-lattice base t can be used.

VI. EFFICIENT MATRIX AND POLYNOMIAL ARITHMETIC

A. Matrix Chain Product in the Evaluation

The matrix chain multiplication in the evaluation operation involves multiplications of encoding matrices of
m ×m by each other, which requires a running time of O

(
m3n

)
for the naive implementation or O

(
mlog2 7n

)
in the case of Strassen’s algorithm. At the same time, the product of encoding matrices is multiplied at the end
by a row vector A0 ∈ Rq1×m. This suggests that by changing the order of multiplications, we can transform this
matrix chain multiplication into a row-vector-by-matrix chain product. Each row-vector-by-matrix product has a
running time of O

(
m2n

)
and can provide a running time improvement by a factor of m, as compared to the naive

implementation of matrix product. This optimization is included in Algorithm 8 listed in Appendix D. A similar
idea was used in [25], [26].

B. Efficient Polynomial Arithmetic

1) Double-CRT Operations: All polynomial multiplications are performed in the Double-CRT representation. We
use the bitwidth of 60 for each prime modulus (64-bit native unsigned integers are leveraged for storing the numbers).
This implies a product of two polynomials with ring dimension n and modulus q (bitwidth k) requires ndk/60e
multiplications of 64-bit native integers, i.e., scales almost linearly with increase in k. Hence, multiplications of
polynomials with large k, for example, 1000 bits, can be supported without involving multiprecision arithmetic.

There are certain operations where we have to switch from Double-CRT representation to a polynomial of
multiprecision integers with a large modulus q. This requires transforming all small-modulus polynomials to the
coefficient representation and then performing the CRT interpolation to get large (multiprecision) coefficients of
the polynomial with respect to modulus q. This procedure is computationally expensive and involves dk/60e NTTs
followed by the CRT interpolation with modulo reductions for every coefficient with respect to q. The two operations
requiring CRT Interpolation are (1) G-sampling where the digits of the large coefficients are extracted and (2) infinity
norm computation at the last stage of evaluation.

16

2) Number Theoretic Transform: The multiplication of elements in cyclotomic rings Rpi is performed using
the Chinese Remainder Transform (CRT) [57]. We use an implementation of Fermat Theoretic Transform (FTT)
described in [58]. We implement FTT with Number Theoretic Transform (NTT) as a subroutine. For NTT, we use
the iterative Cooley-Tukey algorithm with optimized butterfly operations, which is implemented in PALISADE.

3) Cyclotomic Fields: For multiplications in K2n we use the iterative Cooley-Tukey FTT algorithm over complex
primitive roots of unity.

To convert elements of rings to fields, we switch the polynomials from the evaluation representation to the
coefficient one as an intermediate step because the CRTs for rings operate with modular primitive roots of unity
and CRTs for fields deal with complex primitive roots of unity.

4) Polynomial Transposition: Element transposition for a polynomial f(x) = f0 + f1x + · · · + fn−1x
n−1 over

cyclotomic polynomial xn+1 is expressed as f t(x) = f0−fn−1x−· · ·−f1x
n−1. This transposition technique was

used for both rings and fields. In our implementation the transposition operation is performed directly in evaluation
representation by applying an automorphism from f(ζ2n) to f(ζ2n−1

2n).
5) Modular Arithmetic: For modular reduction of multiprecision integers (in CRT interpolation), we use a

generalized Barrett modulo reduction algorithm [69]. This approach requires one pre-computation per NTT run and
converts modulo reduction to roughly two multiplications.

VII. IMPLEMENTATION DETAILS

A. Pseudocode of Obfuscation Scheme Algorithms

We provide pseudocode for key generation, encoding, obfuscation, and evaluation of the scheme in Appendix D.
The pseudocode matches our implementation in C++.

B. Integer Sampling

Both conjunction obfuscation and trapdoor sampling algorithms call the integer sampling subroutine SampleZ(σ, c)
that returns a sample statistically close to DZ,c,σ. When the center c does not change and distribution parameter is
small (as in directed encoding or Ring-LWE trapdoor construction), our SampleZ implementation uses the inversion
sampling method developed in [64]. In all other cases (trapdoor sampling), we use either Karney’s rejection sampler
[45] or constant-time sampler [46].

A bottleneck of integer sampling operations in lattice-based cryptography, specifically those called in the subrou-
tines of GaussSamp, is the use of multiprecision floating-point numbers where the number of bits in the mantissa
should roughly match the number of security bits supported by the cryptographic protocol. A recent theoretical
result in [46] suggests that both the G-sampling and perturbation generation algorithms used in our implementation
can support at least 100 bits of security using double-precision floating point arithmetic. More specifically, Lemma
3.2 in [46] states that λ/2 significant bits in a floating-point number is sufficient for λ bits of security. This result
also applies to joint (possibly dependent) distributions, as in Lemma 4.3 of [46]. Because we are not attempting
to exceed 100 bits of security, the significand precision of 53 bits provided by IEEE 754 double-precision floating
numbers is sufficient for our security target. Therefore, our implementation of integer Gaussian sampling performs
computations on double-precision floating-point numbers.

C. Software Implementation

We implement the conjunction obfuscation scheme in PALISADE, an open-source lattice cryptography library.
PALISADE uses a layered approach with four software layers, each including a collection of C++ classes to provide
encapsulation, low inter-class coupling and high intra-class cohesion. The software layers are as follows:

1) The cryptographic layer supports cryptographic protocols such as homomorphic encryption schemes through
calls to lower layers.

2) The encoding layer supports plaintext encodings for cryptographic schemes.
3) The lattice constructs layer supports power-of-two and arbitrary cyclotomic rings (coefficient, CRT, and double-

CRT representations). Lattice operations are decomposed into primitive arithmetic operations on integers,
vectors, and matrices here.

17

4) The arithmetic layer provides basic modular operations (multiple multiprecision and native math backends are
supported), implementations of Number-Theoretic Transform (NTT), Fermat-Theoretic Transform (FTT), and
Bluestein FFT. The integer distribution samplers are implemented in this layer.

Our conjunction obfuscation implementation is a new PALISADE module called “trapdoor”, which includes the
following new features broken down by layer:
• Conjunction obfuscation scheme in the cryptographic layer.
• Directed encoding in the encoding layer.
• Trapdoor sampling, including Ring-LWE trapdoor generation, G-sampling and perturbation generation rou-

tines in the lattice layer. Cyclotomic fields K2n and additional polynomial/double-CRT operations, such as
polynomial transposition, are also in this layer.

• Generic integer Gaussian samplers and a Cooley-Tukey transform based on complex roots of unity in the
arithmetic layer.

Several lattice-layer and arithmetic-layer optimizations are also applied for runtimes improvements.

D. Loop Parallelization

Multi-threading is performed using OpenMP3. Loop parallelization is applied to parallelize obfuscation, lattice,
and matrix operations, and we use the following loop parallelization optimizations:

1) In KeyGen (Algorithm 5), the loop calling TrapGen is parallelized, with its results combined in an ordered
way into an STL vector.

2) In GaussSamp (Algorithm 2), the main loop is executed in parallel. The loop is called by Encode, which is
called by Obfuscate. This optimization effectively achieves the overall parallel execution of the obfuscation
procedure.

3) The loops in matrix and matrix-vector multiplication are parallelized. This optimization determines the paral-
lelization of Evaluate (Algorithm 8).

4) Number-theoretic transforms of matrices (vectors) of ring elements are executed in parallel for each ring
element. This optimization applies to key generation, obfuscation, and evaluation operations.

5) CRT Interpolation used in G-sampling (Obfuscate) and norm computation (Evaluate) is executed in parallel
for each coefficient of the polynomial.

We discuss the effect of these optimizations in Sec. VIII-E.

VIII. EXPERIMENTAL RESULTS

A. Testbed

Experiments were performed using a server computing environment with 4 sockets of Intel Xeon CPU E7-8867
v3 rated at 2.50GHz, each with 16 cores. The total number of cores was 64 (128 logical processors). 2TB of RAM
was accessible for the experiment. The executable was run using a docker image with Linux Ubuntu 16.04 LTS.
The evaluation environment for parallelization experiments was a commodity desktop computer with an Intel Core
i7-3770 CPU with 4 cores (8 logical processors) rated at 3.40GHz and 16GB of memory, running Linux CentOS
7. In all of our obfuscation experiments, we selected the minimum modulus bitwidth k that satisfies the correctness
constraint (1) for a ring dimension n corresponding to the chosen security level.

B. Integer Gaussian Sampling Experiments

We experimentally compared the runtimes of Karney’s rejection method [45] with the generic sampler [46] using
the CDF inversion [64] method as the base sampler. The results are in Appendix C. Based on this analysis, we
selected Karney’s method for our main conjunction obfuscation experiments.

3http://www.openmp.org/

18

TABLE III: Runtimes and program size for 32-bit conjunction programs in a server computing environment for
w=8

n k log2 t λV BB / Σexp (Πv) KeyGen Obfuscate Evaluate
λRLWE (GB) (ms) (min) (ms)

1024 180 20 53/54 5.85 94 6.2 32
2048 180 15 54/56 16.4 411 17.3 60
4096 180 15 55/86 37.9 1141 36.0 117

TABLE IV: Runtimes and program size for 64-bit conjunction programs in a server computing environment for
w=8

n k log2 t λV BB / Σexp (Πv) KeyGen Obfuscate Evaluate
λRLWE (GB) (s) (hr) (s)

1024 360 20 70/60 77 0.31 0.7 0.29
2048 360 20 71/61 155 0.66 1.4 0.53
4096 360 18 72/62 374 1.58 3.3 1.06
8192 360 18 73/87 748 3.03 6.7 2.45

C. Experiments for the Word Size of One Byte

Tables III and IV show results for the word size w of 8 bits in the server computing environment for 32-bit and
64-bit conjunction programs, respectively. Σexp (Πv) is the actual program size (experimentally measured as the
RAM amount used by the process after the obfuscation program is generated). These experiments were run in the
multi-threaded mode with 16 and 32 threads for 32-bit and 64-bit conjunctions, respectively.

Tables III and IV also list the work factors (in bits of security) for the VBB and lattice attacks, which are
computed as λV BB = log2 (tV BB) and λRLWE = log2 (tRLWE), respectively. For 32-bit and 64-bit conjunctions,
the number of wildcard bits was set to 8 and 16, respectively. The wildcard bits were assumed to be uniformly
distributed over the words of the pattern (2 wildcard bits per byte).

Table III suggests that lattice security parameters for 32-bit conjunctions are sufficient to match the VBB security,
but the VBB work factor for the case of n = 1024 is only 253 clock cycles, which corresponds to 39 core-days
for a 2.5 GHz core. Table IV shows that the lattice attack work factor starts exceeding the VBB work factor for
64-bit conjunctions at n = 8192, when the VBB work factor is 273 clock cycles, i.e., 1.1× 105 core-years.

Note that our implementation is based on the entropic Ring-LWE problem with a small-secret (ternary) distri-
bution, which is a stronger assumption than Ring-LWE. While our work factor estimates already incorporate the
effect of small-secret distribution (using the LWE estimator [67]), the effect of the entropic variant of Ring-LWE
on the work factor is currently unknown and is thus ignored in our estimates.

As suggested in Section V-D, program size is a major practical limitation of conjunction obfuscator. For a 64-
bit conjunction program, the experimental program size reached 750 GB. However, the program size for a 32-bit
program is small enough to be loaded into the RAM of a commodity desktop computer.

The experimental results in Tables III and IV also demonstrate that the key generation time is small, on the order
of one second.

The obfuscation takes 6.7 hours to achieve 73-bit security for the 64-bit conjunction program, and is the main
computational bottleneck of conjunction obfuscator. This operation is run offline and once per program. Thus
obfuscation time is does not impact many practical settings.

Evaluation takes 32 ms to acheive 53 bits of security for a 32-bit pattern and 2.5 seconds to attain 73-bit
security for a 64-bit conjunction pattern. The evaluation time is the main online operation and is expected to be run
frequently. The 32-bit pattern results imply that runtime is practical. Our evaluation runtime for a 64-bit conjunction
obfuscator is smaller by more than two orders of magnitude than the time (949 sec.) reported for a 64-bit read-once
branching program obfuscated using GGH15 in [27].

D. Experiments for the Word Size of One Bit

To explore the effect of multilinearity degree on the runtime metrics of conjunction obfuscator, we performed a
series of experiments at w = 1 (Table V). The multinearity degree of directed encoding corresponds to L + 1 as

19

TABLE V: Runtimes and program size for conjunction programs at w=1, t = 220, and λ > 80

L n k Σexp (Πv) KeyGen Obfuscate Evaluate
(GB) (s) (min) (s)

5 8192 240 1.08 1.1 1.1 0.39
6 8192 300 2.36 1.7 1.8 0.72
8 16384 420 13.2 7.6 8.2 3.7
10 16384 480 28.6 11 12 5.5
12 16384 600 60.4 18 22 12
14 32768 720 227 62 103 74
16 32768 780 363 81 135 101
18 32768 900 565 115 198 158
19 32768 960 723 134 237 188
20 32768 960 825 148 252 213
21 32768 1020 994 172 310 230
22 32768 1080 1232 199 350 247
23 32768 1140 1459 212 404 286
24 32768 1200 1774 257 510 379

TABLE VI: Runtimes for 32-bit conjunction patterns at n = 1024 as a function of number of threads in a 4-core
commodity desktop computing environment

threads KeyGen Obfuscate Evaluate
(s) (min) (ms)

1 0.179 24.3 161
2 0.106 13.8 90
4 0.056 7.7 48
8 0.053 7.0 43

we have one more level of encoding at the end, which is specific to the test for conjunction obfuscator.
Table V shows that our implementation is able to achieve the multilinearity degree of 25 (in contrast to 20 in

[27] for a comparable computing environment). For the degree of 20, our obfuscation time is 237 minutes (vs 4,060
minutes in [27]) and our evaluation is 188 seconds (vs 1,514 seconds in [27]).

Our main experimental limitation was memory in the server computing environment. Results in Table V show
that our implementation would be able to support at most 24-bit conjunction programs if the word encoding
optimization were not applied. Also, the runtimes for this 24-bit scenario are substantially higher than our results
for 32-bit conjunction programs in Table III.

E. Parallelization Experiments

Table VI shows the runtime results for a 32-bit pattern with 53 bits of security on a 4-core desktop commodity
CPU as a function of the number of threads. The total program size and all input parameters are the same as in
the first row of Table III. As expected, runtimes for 4 and 8 threads are approximately the same. There is no major
benefit of hyper-threading, as the number of physical cores is 4.

When increasing the number of threads from 1 to 4, the key generation time decreases by a factor of 3.2,
suggesting that key generation benefits from loop parallelization. The obfuscation procedure scales well with more
threads. Runtime improvement is a factor of 3.2 (and even 3.5 when 8 threads are considered). This implies that
further obfuscation runtime improvements can be achieved using more CPU cores. The evaluation procedure also
benefits from loop parallelization. The runtime improvement in this case is 3.4 (3.7 for 8 threads).

The evaluation runtime of 43 ms on a commodity desktop environment implies that a 32-bit conjunction obfuscator
is already practical.

We also ran the evaluation of an obfuscated 64-bit conjunction program (with 73 bits of security) on the
commodity desktop computer for the scenario where the obfuscation is previously performed in a high-performance
computing environment (corresponds to the last row in Table IV). This fits the scenario where the obfuscated program
would be stored on SSD drives (or other fast access media.) The average time of evaluation was 3.5 sec.

20

IX. CONCLUDING REMARKS

Our work presents an improved design and software implementation for the secure obfuscation of conjunction
programs, which are significantly more complex than simple point obfuscation functions supported by prior obfus-
cation implementations. The obfuscation construction we implement is based on a reasonable hardness variant of a
standard lattice assumption (entropic Ring-LWE) and distributional VBB, in constrast to previous implementations
of non-trivial obfuscators based on IO via multilinear maps [25], [26], [27] or the heuristic techniques not derived
from the computational hardness of mathematical problems [2], [3], [4], [5], [6], [7].

Through our optimizations, we are able to reduce the program size, obfuscation runtime, and evaluation runtime
by multiple orders of magnitude. This allows us to execute the obfuscation and evaluation of 32-bit conjunction
programs in a commodity desktop environment. Our implementation can also run secure obfuscation of 64-bit
conjunction programs in a commercially available server computing environment and execute evaluation in a
commodity desktop environment, achieving the evaluation runtime of 3.5 seconds.

A major challenge not addressed by this work is the encoding of real practical programs as conjunctions chosen
from a distribution having sufficient entropy. A potential approach to this problem is to use the obfuscation technique
for compute-and-compare programs, a recently proposed generalization of conjunction obfuscators, based on LWE
[50]. Note that many design elements and optimizations presented in this study can also be applied to this more
general obfuscation technique.

X. ACKNOWLEDGEMENTS

We gratefully acknowledge the input and feedback from Sean Al-Gattas, David Archer, Lisa Bahler, Brian Coan,
Nicholas Genise, Shafi Goldwasser, Michael Hsieh, Daniele Micciancio, Michael Naehrig, Rafail Ostrovsky, David
Renardy, Carey Schwartz, Nigel Smart, Vinod Vaikuntanathan, and Michael Walter. We also thank the S&P’18
reviewers for helpful comments.

This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Army Research
Laboratory (ARL) under Contract Numbers W911NF-15-C-0226 and W911NF-15-C-0233. The views expressed
are those of the authors and do not necessarily reflect the official policy or position of the Department of Defense
or the U.S. Government.

REFERENCES

[1] Z. Brakerski, V. Vaikuntanathan, H. Wee, and D. Wichs, “Obfuscating conjunctions under entropic ring lwe,” in Proceedings of the
2016 ACM Conference on Innovations in Theoretical Computer Science, ser. ITCS ’16, 2016, pp. 147–156.

[2] D. Low, “Protecting java code via code obfuscation,” Crossroads, vol. 4, no. 3, pp. 21–23, Apr. 1998.
[3] G. Wroblewski, “General method of program code obfuscation,” Ph.D. dissertation, Citeseer, 2002.
[4] C. Linn and S. Debray, “Obfuscation of executable code to improve resistance to static disassembly,” in Proceedings of the 10th ACM

Conference on Computer and Communications Security, ser. CCS ’03, 2003, pp. 290–299.
[5] S. Schrittwieser, S. Katzenbeisser, P. Kieseberg, M. Huber, M. Leithner, M. Mulazzani, and E. Weippl, “Covert computation: Hiding code

in code for obfuscation purposes,” in Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications
Security, ser. ASIA CCS ’13, 2013, pp. 529–534.

[6] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Impeding malware analysis using conditional code obfuscation.” in NDSS, 2008.
[7] Y. Zhou, A. Main, Y. X. Gu, and H. Johnson, “Information hiding in software with mixed boolean-arithmetic transforms,” in Proceedings

of the 8th International Conference on Information Security Applications, ser. WISA’07, 2007, pp. 61–75.
[8] C. S. Collberg and C. Thomborson, “Watermarking, tamper-proffing, and obfuscation: Tools for software protection,” IEEE Trans.

Softw. Eng., vol. 28, no. 8, pp. 735–746, Aug. 2002.
[9] N. Eyrolles, L. Goubin, and M. Videau, “Defeating mba-based obfuscation,” in Proceedings of the 2016 ACM Workshop on Software

PROtection, ser. SPRO ’16, 2016, pp. 27–38.
[10] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static disassembly of obfuscated binaries,” in USENIX Security Symposium, 2004.
[11] A. H. Sung, J. Xu, P. Chavez, and S. Mukkamala, “Static analyzer of vicious executables (save),” in 20th Annual Computer Security

Applications Conference, Dec 2004, pp. 326–334.
[12] S. K. Udupa, S. K. Debray, and M. Madou, “Deobfuscation: reverse engineering obfuscated code,” in 12th Working Conference on

Reverse Engineering (WCRE’05), Nov 2005, p. 10.
[13] B. Barak, “Hopes, fears, and software obfuscation,” Commun. ACM, vol. 59, no. 3, pp. 88–96, Feb. 2016.
[14] S. Hada, Zero-Knowledge and Code Obfuscation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 443–457.
[15] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang, “On the (im)possibility of obfuscating programs,”

J. ACM, vol. 59, no. 2, pp. 6:1–6:48, May 2012.
[16] N. Bitansky, R. Canetti, H. Cohn, S. Goldwasser, Y. T. Kalai, O. Paneth, and A. Rosen, The Impossibility of Obfuscation with Auxiliary

Input or a Universal Simulator. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 71–89.

21

[17] S. Goldwasser and Y. T. Kalai, “On the impossibility of obfuscation with auxiliary input,” in 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’05), Oct 2005, pp. 553–562.

[18] B. Applebaum and Z. Brakerski, Obfuscating Circuits via Composite-Order Graded Encoding. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 528–556.

[19] B. Barak, S. Garg, Y. T. Kalai, O. Paneth, and A. Sahai, Protecting Obfuscation against Algebraic Attacks. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 221–238.

[20] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters, “Candidate indistinguishability obfuscation and functional
encryption for all circuits,” SIAM Journal on Computing, vol. 45, no. 3, pp. 882–929, 2016.

[21] C. Gentry, S. Gorbunov, and S. Halevi, Graph-Induced Multilinear Maps from Lattices. Berlin, Heidelberg: Springer Berlin Heidelberg,
2015, pp. 498–527.

[22] H. Lin, Indistinguishability Obfuscation from SXDH on 5-Linear Maps and Locality-5 PRGs. Cham: Springer International Publishing,
2017, pp. 599–629.

[23] H. Lin, R. Pass, K. Seth, and S. Telang, Indistinguishability Obfuscation with Non-trivial Efficiency. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 447–462.

[24] H. Lin and S. Tessaro, Indistinguishability Obfuscation from Trilinear Maps and Block-Wise Local PRGs. Cham: Springer International
Publishing, 2017, pp. 630–660.

[25] D. Apon, Y. Huang, J. Katz, and A. J. Malozemoff, “Implementing cryptographic program obfuscation,” Cryptology ePrint Archive,
Report 2014/779, 2014, http://eprint.iacr.org/2014/779.

[26] K. Lewi, A. J. Malozemoff, D. Apon, B. Carmer, A. Foltzer, D. Wagner, D. W. Archer, D. Boneh, J. Katz, and M. Raykova, “5gen:
A framework for prototyping applications using multilinear maps and matrix branching programs,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS ’16, 2016, pp. 981–992.

[27] S. Halevi, T. Halevi, V. Shoup, and N. Stephens-Davidowitz, “Implementing bp-obfuscation using graph-induced encoding,” Cryptology
ePrint Archive, Report 2017/104 [to appear in ACM CCS 2017], 2017, http://eprint.iacr.org/2017/104.

[28] J.-S. Coron, C. Gentry, S. Halevi, T. Lepoint, H. K. Maji, E. Miles, M. Raykova, A. Sahai, and M. Tibouchi, Zeroizing Without
Low-Level Zeroes: New MMAP Attacks and their Limitations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 247–266.

[29] J.-S. Coron, M. S. Lee, T. Lepoint, and M. Tibouchi, Cryptanalysis of GGH15 Multilinear Maps. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2016, pp. 607–628.

[30] J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé, Cryptanalysis of the Multilinear Map over the Integers. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 3–12.

[31] J. H. Cheon, P.-A. Fouque, C. Lee, B. Minaud, and H. Ryu, Cryptanalysis of the New CLT Multilinear Map over the Integers. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2016, pp. 509–536.

[32] Y. Hu and H. Jia, Cryptanalysis of GGH Map. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 537–565.
[33] E. Miles, A. Sahai, and M. Zhandry, Annihilation Attacks for Multilinear Maps: Cryptanalysis of Indistinguishability

Obfuscation over GGH13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 629–658. [Online]. Available:
http://dx.doi.org/10.1007/978-3-662-53008-5 22

[34] J.-S. Coron, M. S. Lee, T. Lepoint, and M. Tibouchi, Zeroizing Attacks on Indistinguishability Obfuscation over CLT13. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2017, pp. 41–58.

[35] Y. Chen, C. Gentry, and S. Halevi, Cryptanalyses of Candidate Branching Program Obfuscators. Cham: Springer International
Publishing, 2017, pp. 278–307. [Online]. Available: https://doi.org/10.1007/978-3-319-56617-7 10

[36] D. Apon, N. Döttling, S. Garg, and P. Mukherjee, “Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13,” in 44th
International Colloquium on Automata, Languages, and Programming (ICALP 2017), vol. 80, 2017, pp. 38:1–38:16.

[37] S. Garg, E. Miles, P. Mukherjee, A. Sahai, A. Srinivasan, and M. Zhandry, Secure Obfuscation in a Weak Multilinear Map Model.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 241–268. [Online]. Available: https://doi.org/10.1007/978-3-662-53644-5 10

[38] M. Bellare and I. Stepanovs, Point-Function Obfuscation: A Framework and Generic Constructions. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 565–594. [Online]. Available: http://dx.doi.org/10.1007/978-3-662-49099-0 21

[39] S. Goldwasser and G. N. Rothblum, On Best-Possible Obfuscation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp.
194–213. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-70936-7 11

[40] B. Lynn, M. Prabhakaran, and A. Sahai, Positive Results and Techniques for Obfuscation. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 20–39. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-24676-3 2

[41] G. D. Crescenzo, L. Bahler, B. A. Coan, Y. Polyakov, K. Rohloff, and D. B. Cousins, “Practical implementations of program
obfuscators for point functions,” in International Conference on High Performance Computing & Simulation, HPCS 2016, Innsbruck,
Austria, July 18-22, 2016. IEEE, 2016, pp. 460–467. [Online]. Available: http://dx.doi.org/10.1109/HPCSim.2016.7568371

[42] L. Bahler, G. Di Crescenzo, Y. Polyakov, K. Rohloff, and D. B. Cousins, “Practical implementation of lattice-based program
obfuscators for point functions,” in 2017 International Conference on High Performance Computing & Simulation, HPCS 2017,
Genoa, Italy, July 17-21, 2017, 2017, pp. 761–768. [Online]. Available: https://doi.org/10.1109/HPCS.2017.115

[43] Z. Brakerski and G. N. Rothblum, “Obfuscating conjunctions,” Journal of Cryptology, vol. 30, no. 1, pp. 289–320, 2017.
[44] D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler, tighter, faster, smaller,” in Advances in Cryptology–EUROCRYPT 2012.

Springer, 2012, pp. 700–718.
[45] C. F. F. Karney, “Sampling exactly from the normal distribution,” ACM Trans. Math. Softw., vol. 42, no. 1, pp. 3:1–3:14, Jan. 2016.

[Online]. Available: http://doi.acm.org/10.1145/2710016
[46] D. Micciancio and M. Walter, “Gaussian sampling over the integers: Efficient, generic, constant-time,” in Advances in Cryptology -

CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part
II, 2017, pp. 455–485.

[47] J.-S. Coron, T. Lepoint, and M. Tibouchi, Practical Multilinear Maps over the Integers. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 476–493. [Online]. Available: https://doi.org/10.1007/978-3-642-40041-4 26

22

[48] S. Garg, C. Gentry, and S. Halevi, Candidate Multilinear Maps from Ideal Lattices. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 1–17. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-38348-9 1

[49] K. Nayak, C. W. Fletcher, L. Ren, N. Chandran, S. Lokam, E. Shi, and V. Goyal, “Hop: Hardware makes obfuscation practical,”
in 24th Annual Network and Distributed System Security Symposium, NDSS. Internet Society, February 2017. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/hop-hardware-makes-obfuscation-practical-2/

[50] D. Wichs and G. Zirdelis, “Obfuscating compute-and-compare programs under lwe,” Cryptology ePrint Archive, Report 2017/276,
2017, http://eprint.iacr.org/2017/276.

[51] R. Goyal, V. Koppula, and B. Waters, “Lockable obfuscation,” Cryptology ePrint Archive, Report 2017/274, 2017, http://eprint.iacr.
org/2017/274.

[52] M. Kubat, An Introduction to Machine Learning, 1st ed. Springer Publishing Company, Incorporated, 2015.
[53] Y. Xiao, K. G. Mehrotra, and C. K. Mohan, Efficient Classification of Binary Data Stream with Concept Drifting Using Conjunction

Rule Based Boolean Classifier, 2015, pp. 457–467.
[54] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST database of handwritten digits,” http://yann.lecun.com/exdb/mnist/, accessed:

2017-11-13.
[55] A. Anand, L. Wilkinson, and D. N. Tuan, “An l-infinity norm visual classifier,” in 2009 Ninth IEEE International Conference on Data

Mining, Dec 2009, pp. 687–692.
[56] L. Wilkinson, A. Anand, and D. N. Tuan, “Chirp: A new classifier based on composite hypercubes on iterated random projections,”

in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’11. New
York, NY, USA: ACM, 2011, pp. 6–14. [Online]. Available: http://doi.acm.org/10.1145/2020408.2020418

[57] V. Lyubashevsky, C. Peikert, and O. Regev, “A toolkit for ring-LWE cryptography,” in EUROCRYPT, vol. 7881. Springer, 2013, pp.
35–54.

[58] A. Aysu, C. Patterson, and P. Schaumont, “Low-cost and area-efficient fpga implementations of lattice-based cryptography,” in Hardware-
Oriented Security and Trust (HOST), 2013 IEEE International Symposium on, June 2013, pp. 81–86.

[59] C. Gentry, S. Halevi, and N. P. Smart, Homomorphic Evaluation of the AES Circuit. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 850–867. [Online]. Available: https://doi.org/10.1007/978-3-642-32009-5 49

[60] V. Lyubashevsky, C. Peikert, and O. Regev, On Ideal Lattices and Learning with Errors over Rings. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 1–23. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-13190-5 1

[61] N. Genise and D. Micciancio, “Faster gaussian sampling for trapdoor lattices with arbitrary modulus,” Cryptology ePrint Archive,
Report 2017/308, 2017, http://eprint.iacr.org/2017/308.

[62] R. El Bansarkhani and J. Buchmann, “Improvement and efficient implementation of a lattice-based signature scheme,” in Selected Areas
in Cryptography–SAC 2013, T. Lange, K. Lauter, and P. Lisoněk, Eds. Springer, 2014, pp. 48–67.

[63] L. Ducas, V. Lyubashevsky, and T. Prest, Efficient Identity-Based Encryption over NTRU Lattices. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 22–41.

[64] C. Peikert, “An efficient and parallel Gaussian sampler for lattices,” in CRYPTO, 2010, pp. 80–97.
[65] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard lattices and new cryptographic constructions,” in Proceedings of the

Fortieth Annual ACM Symposium on Theory of Computing, ser. STOC ’08. New York, NY, USA: ACM, 2008, pp. 197–206.
[66] N. C. Dwarakanath and S. D. Galbraith, “Sampling from discrete gaussians for lattice-based cryptography on a constrained device,”

Applicable Algebra in Engineering, Communication and Computing, vol. 25, no. 3, pp. 159–180, Jun 2014.
[67] M. Albrecht, S. Scott, and R. Player, “On the concrete hardness of learning with errors,” Journal of Mathematical Cryptology, vol. 9,

no. 3, p. 169203, 10 2015.
[68] M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, J. Hoffstein, K. Lauter, S. Lokam, D. Moody, T. Morrison, A. Sahai, and

V. Vaikuntanathan, “Security of homomorphic encryption,” HomomorphicEncryption.org, Redmond WA, Tech. Rep., July 2017.
[69] J.-F. Dhem and J.-J. Quisquater, “Recent results on modular multiplications for smart cards,” in Smart Card Research and Applications,

ser. Lecture Notes in Computer Science, J.-J. Quisquater and B. Schneier, Eds. Springer Berlin Heidelberg, 2000, vol. 1820, pp.
336–352.

APPENDIX A
PSEUDOCODE FOR TRAPDOOR SAMPLING ALGORITHMS

The algorithms described in this section are variations of trapdoor sampling algorithms proposed in [61]. The
modifications were made to reduce the number of calls to polynomial CRT operations, increase opportunities for
parallel execution, and ease the software implementation.

A more significant modification is in the Perturb subroutine of Algorithm 3. Instead of using discrete Gaussian
distribution, we switched to the continuous distribution. The use of discrete Gaussian distribution would require
a higher value of σt, proportional to t2 rather than t + 1, due to the Σ3 condition in Corrolary 3.1 of [61]. This
would significantly increase the modulus q (for large t) determined by the correctness constraint (1). The use of the
continuous distribution eliminates the Σ3 condition. A more detailed discussion of this scenario is provided after
Corrolary 3.1 in [61].

23

Algorithm 3 G-sampling [61]

function SAMPLEG(σt, u,q) . q = [q]κt is the vector of base-t digits in modulus q
σ := σt/ (t+ 1)
l0 :=

√
t (1 + 1/κ) + 1

h0 := 0
d0 := q0/t
for i = 1..κ− 1 do

li :=
√
t (1 + 1/(κ− i)) . li, hi are entries in sparse triangular matrix L

hi :=
√
t (1− 1/ {κ− (i− 1)})

di := (di−1 + qi) /t . di are entries in the last column of matrix D
end for
Define Z ∈ Zκ×n . this vector will store the result of G-sampling
for i = 0..n− 1 do . Iterate through all coefficients of polynomial. This loop can be parallelized.

v := u(i) . v = [v]κt is the vector of digits in coefficient u(i) ∈ Zq
p← PERTURB(σ, l,h) . p, l,h ∈ Rκ
c0 := (v0 − p0)/t
for j = 1..κ− 1 do

cj = (cj−1 + vj − pj)/t
end for
z← SAMPLED(σ, c,d) . z ∈ Zκ; c,d ∈ Rκ
t0 := t · z0 + q0 · zκ−1 + v0

for j = 1..κ− 2 do
tj := t · zj − zj−1 + qj · zκ−1 + vj

end for
tκ−1 := qκ−1 · zκ−1 − zκ−2 + vκ−1

Z(:, i) := t . t = (t0, t1, . . . , tκ−1) ∈ Zκ
end for
return Z

end function

function PERTURB(σ, l,h) . l,h ∈ Rκ are the entries in matrix L
for i = 0..κ− 1 do

zi ← SAMPLER(σ, 0) . SAMPLER is continuous Gaussian sampler
end for
for i = 0..κ− 2 do

pi = li · zi + hi+1 · zi+1

end for
pκ−1 = hκ−1 · zκ−1

return p . p = (p0, p1, . . . , pκ−1) ∈ Rκ
end function

function SAMPLED(σ, c,d) . Sample from the lattice generated by matrix D
zκ−1 ← SAMPLEZ(σ/dκ−1,−cκ−1/dκ−1)
c := c− zκ−1d
for i = 0..κ− 2 do

zi ← SAMPLEZ(σ,−ci)
end for
return z . z = (z0, z1, . . . , zκ−1) ∈ Zκ

end function

24

Algorithm 4 Perturbation generation [61]

function SAMPLEPZ(n, q, s, σt, (r̂, ê))
z :=

(
σ−2
t − s−2

)−1

a := s2 − z
∑κ

i=1 r̂
T
i r̂i . a ∈ K2n

b := −z
∑κ

i=1 r̂
T
i êi . b ∈ K2n

d := s2 − z
∑κ

i=1 ê
T
i êi . d ∈ K2n

for i = 0..nκ− 1 do
qi ← SAMPLEZ(

√
s2 − σ2

t)
end for
convert q ∈ Zκ×n to q̂ ∈ Rκq . CRT operations can be executed in parallel

c := − σ2
t

s2−σ2
t

[
r̂

ê

]
q̂ . c ∈ K2

2n

p← SAMPLE2Z (a, b, d, c) . p ∈ Z2×n

convert p ∈ Z2×n to p̂ ∈ R2
q

return (p̂, q̂)
end function

function SAMPLE2Z(a, b, d, c)
let c = (c0, c1)
q1 ← SAMPLEFZ(d, c1) . q1 ∈ Zn
convert q1 ∈ Zn to q̂1 ∈ K2n

c0 := c0 + bd−1 (q̂1 − c1)
q0 ← SAMPLEFZ(a− bd−1bT , c0) . q0 ∈ Zn
return (q0, q1)

end function

APPENDIX B
DERIVATION OF CORRECTNESS CONSTRAINT FOR CONJUNCTION OBFUSCATOR

Consider initially the case of a 2-word conjunction obfuscation pattern, where we use R1, R2, and R3 to denote
the encoding matrices and A0, A1, A2, and A3 to denote the public keys. The Encode operation for the first level
can then be expressed as

A0R1 = r1A1 + e1 ∈ R1×m
q ,

where r1 is a product of two uniform ring elements sampled over {−1, 0, 1}n,A0 ∈ R1×m
q , and R1 ∈ Rm×mq .

The expression corresponding to the minuend in Evaluate, i.e., A0SΠR3, can be written as follows:

A0R1R2R3 = (r1A1 + e1) R2R3 =

(r1 (r2A2 + e2) + e1R2) R3 =

(r1 (r2 (r3A3 + e3) + e2R3) + e1R2R3) .

function SAMPLEFZ(f, c)
if dim(f) = 1 then return SAMPLEZ

(√
f, c
)

else
let f(x) = f0(x2) + x · f1(x2) . Extract even and odd componets of f(x)
c′ := Pstride(c) . Pstride permutes coefficients (a0, a1, . . . , an−1) to (a0, a2, . . . , an−2, a1, a3, . . . , an−1)
(q0, q1)← SAMPLE2Z (f0, f1, f0, c

′)
let q(x) = q0(x2) + x · q1(x2)
return q

end if
end function

25

Switching to infinity norms, we get the following expression for the noise norm:

‖A0R1R2R3 − r1r2r3A3‖∞ =

‖e1R2R3 + r1e2R3 + r1r2e3‖∞ .

For the subtrahend in Evaluate, i.e., A0RΠS3, we can use the same estimate as an upper bound for the noise.
The term r1r2r3A3 is present in both terms in Evaluate by the definition of conjunction obfuscator (r1r2r3A3

gets eliminated by the subtraction in Evaluate). The actual norm of noise terms will be significantly smaller in this
case because Gaussian polynomials are sampled using the distribution parameter σ rather than a much larger σ′.

Hence, the norm for a 2-word obfuscated conjunction pattern can be bounded as

∆̃ < 2 ‖e1R2R3 + r1e2R3 + r1r2e3‖∞ .

The encoding matrix Ri contains m rows with infinity norm BR = βs (for the initial encoding matrix before
any multiplications of encodings), where β = 2.0 (was found empirically).

As ‖Ri‖∞ � ri, we have
∆̃ < 4 ‖e1R2R3‖∞ . (3)

Parameter Be is introduced as an upper bound for the values generated using discrete Gaussian distribution and
can be taken as σ′

√
γ, where assurance measure γ can be found empirically (usually between 36 and 144; we set

γ := 36 in our experiments).
If we consider a product of R2 and R3, we obtain

‖R×‖∞ = ‖R2R3‖∞ ≤ nmB
2
R.

Now consider the product of e1 and R×:

‖e1R×‖∞ ≤ nmBe ‖R×‖∞ ≤ (nm)2BeB
2
R.

As e1, R1, and R2 are generated using zero-centered Gaussian sampling and the number of samples involved
in each polynomial multiplication is relatively large, we can apply the Central Limit Theorem to replace every
instance of nm with

√
nm, which yields

‖e1R×‖∞ ≤ nmBeB
2
R. (4)

Applying the EqualTest condition (∆ < q/8) and substituting (4) into (3), we obtain a correctness constraint
for a 2-word conjunction obfuscator:

q > 32
√
mnBe

√
mnB2

R = 32Be
(√
mnBR

)2
.

Using the 2-word conjunction correctness constraint as the base case, we can derive by induction the following
expression for an L-word conjunction:

q > 32Be
(√
mnBR

)L (5)

for L ≥ 2.

APPENDIX C
COMPARISON OF INTEGER GAUSSIAN SAMPLERS

Table VII shows the comparison of sampling rates for generic integer Gaussian samplers in the desktop computing
environment for the case of single-threaded execution. The distribution parameter σ was varied from 217 to 227 to
cover the range of distribution parameters used by the subroutines of the G-sampling and perturbation generation
procedures in trapdoor sampling for the conjunction obfuscator. These results were used to select the generic sampler
for our main obfuscation experiments. The rejection sampling method [65] is included only for reference. Up to
20 MB of memory was allowed for the generic constant-time sampler [46]. The other two methods do not have
any significant memory requirements.

Table VII suggests that Karney’s method [45] has the highest sampling rate for the distribution parameter range
of interest and was thus chosen for our main obfuscation experiments. The sampling rates shown in Table VII are

26

TABLE VII: Sampliing rates in 106 per second for generic integer Gaussian samplers

σ Rejection sampling [65] Karney [45] Constant-time [46]

217 0.929 3.810 1.587
222 0.932 3.811 1.502
227 0.900 3.798 1.507

within 20% of the corresponding rates reported in [46], which suggests that our conclusions are not specific to our
implementation but reflect the computational complexity at the algorithmtic level.

It should be noted that both constant-time sampler [46] and Karney’s method [45] can be separated into offline
and online subroutines. The analysis presented in [46] suggests that the constant-time sampler [46] may be faster in
this case. Since the generic integer sampling method is used only in the obfuscation procedure, which is executed
offline, this additional complexity is not needed for our application.

Despite a higher runtime, a constant-time sampler, such as [46], could be preferred in practice over a rejection
sampler, like [45], because it reduces the opportunities for timing attacks.

APPENDIX D
PSEUDOCODE FOR CONJUNCTION OBFUSCATION ALGORITHMS

When the ring instantiation of directed encoding (described in section III-B) is applied to the conjunction
obfuscator, the encodings Ri,b,Si,b,RL+1,SL+1 get represented as matrices of m×m ring elements over Rq.

The key generation algorithm for the ring instantiation of conjunction obfuscator is listed in Algorithm 5.
Parameter L is the effective length of conjunction pattern.

Algorithm 5 Key generation

function KEYGEN(1λ)
for i = 0..L+1 do

Ai, T̃i := TRAPGEN(1λ)
end for

return KL+1 :=
(
{Ai, T̃i}i∈{0,..,L+1}

)
end function

The conjunction obfuscator relies on the Encode algorithm of directed-encoding ring instantiation (defined in
Section III-B) to encode each part of the conjunction pattern. The Encode algorithm is depicted in Algorithm 6.

Algorithm 6 Directed encoding

function EncodeAi→Ai+1
(Ti, r, σ)

ei+1 ← DR,σ ∈ Rq1×m.
bi+1 := rAi+1 + ei+1 ∈ R1×m

q

Ri+1 := GaussSamp(Ai,Ti,bi+1, σt, s) ∈ Rm×mq

return Ri+1

end function

Algorithm 7 lists the pseudocode for the main obfuscation function. In contrast to the obfuscated program defined
in Section III-A, we encode words of conjunction pattern v ∈ {0, 1, ?}L. Each word is w bits long, and 2w is
the number of encoding matrices for each encoded word of the pattern. The actual pattern length L gets replaced
with the effective length L = dL/we to reduce the number of encoding levels (multl-inearity degree). The word
encoding is a major optimization proposed in this work, and is discussed in detail in Section III-C.

The si,b, ri,b elements are ternary uniformly random ring elements, i.e., sampled over {−1, 0, 1}n, for i ∈ [L] and
b ∈ {0, . . . , 2w − 1}. We set si,b = · · · = si,j for indices b, · · · , j corresponding to the same wildcard subpattern.
To implement these wildcard subpatterns, we rely on binary masks, where the subpattern with all zeros in the

27

wildcard characters is used to generate a uniformly random ring element, which is then reused for all subpatterns
with non-zero bits in the wildcard characters.

The obfuscated program then transforms to

Πv :=
(
A0, {Si,b,Ri,b}i∈[L],b∈{0,...,2w−1} ,RL+1,SL+1

)
.

Algorithm 7 Obfuscation

function OBFUSCATE(v ∈ {0, 1, ∗}L,KL+1, σ, σ
′)

{ri,b}i∈[L],b∈{0,...,2w−1} ← T
for i = 1..L do

Build binary wildcard mask M?

for b = 0..2w-1 do
if (b ∧M) = 0 then

si,b ← T
else

j := b ∧ ¬M
si,b := si,j

end if
end for

end for
for i = 1..L do

for b = 0..2w-1 do
Si,b := EncodeAi−1→Ai

(T̃i−1, si,b · ri,b, σ′)
Ri,b := EncodeAi−1→Ai

(T̃i−1, ri,b, σ)
end for

end for
rL+1 ← T ∈ R
s× := rL+1

∏L
i=1 si,v[1+(i−1)w : iw]

SL+1 := EncodeAL→AL+1
(T̃L, s×, σ)

RL+1 := EncodeAL→AL+1
(T̃L, rL+1, σ

′)

Πv :=
(
A0, {Si,b,Ri,b}i∈[L],b∈{0,...,2w−1} ,RL+1,SL+1

)
return Πv

end function

Algorithm 8 Optimized Evaluation

function EVALUATE(x ∈ {0, 1}L, Πv)
SΠ := A0 ∈ Rq1×m

RΠ := A0 ∈ Rq1×m

for i = 1..L do
SΠ := SΠSi,x[1+(i−1)w : iw] ∈ Rq1×m

RΠ := RΠRi,x[1+(i−1)w : iw] ∈ Rq1×m

end for
∆ := ‖SΠRL+1 −RΠSL+1‖∞

return ∆ ≤ q/8
end function

Algorithm 7 operates with two variants of Encode distinguished by the distribution parameter used. To encode
ring elements ri,b and s×, we sample using σ. To encode ring elements si,b · ri,b and rL+1, we use σ′ = k

√
nσ. We

need to use a larger value of distribution parameter in order to apply the Ring-LWE assumption to “secret” ring

28

elements si,b · ri,b in the security proof for the ring variant of directed encoding specific to conjunction obfuscator,
which is presented in section 4.3 of [1].

Note that the security proof presented in Section 4.3 of [1] has typos in expression (1) and Hybrid 1 distribution.
The vectors e′0 and e′1 should be sampled from DRm,σ′ rather than DRm,σ (here, we use the notation of [1]). This
typo does not affect the rest of Hybrid distributions and the correctness of the proof itself.

The use of ternary distribution T implies that we rely on a small-secret variant of the Ring-LWE assumption to
minimize the noise growth.

The pseudocode for the optimized evaluation procedure is presented in Algorithm 8 (optimization is described
in VI-A). Just like in the abstract algorithm described in section III-A, if both SΠ and RΠ are the encodings of
the same value, the result of Fv is 1. Otherwise, the result is 0. The infinity norm computation finds a coefficient
with the maximum absolute value in the row vector of ring elements A0 (SΠRL+1 −RΠSL+1) ∈ Rq1×m. The
inequality ∆ ≤ q/8 comes directly from EqualTest in the ring instantiation of directed encoding (Section III-B).

29

