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Abstract. This work introduces FAST which is a new family of cryptographic primitives. Several
instantiations of FAST are described. These are targeted towards two goals, the specific task of disk
encryption and a more general scheme suitable for a wide variety of practical applications. A major
contribution of this work is to present detailed and careful implementations of several instantiations of
FAST in both software and hardware. For disk encryption, the results from the implementations show
that FAST compares very favourably to the IEEE disk encryption standards XCB and EME2 as well
as the more recent proposal AEZ. Formally, FAST is a new family of tweakable enciphering schemes.
It is built using a fixed input length pseudo-random function and an appropriate hash function. FAST
uses a single-block key, is parallelisable and can be instantiated using only the encryption function of a
block cipher. The hash function can be instantiated using either the Horner’s rule based usual polyno-
mial hashing or hashing based on the more efficient Bernstein-Rabin-Winograd polynomials. Security
of FAST has been rigorously analysed using the standard provable security approach and concrete secu-
rity bounds have been derived. Based on our implementation results, we put forward FAST as a serious
candidate for standardisation and deployment.
Keywords: disk encryption, tweakable enciphering schemes, pseudo-random function,
Horner, BRW.

1 Introduction

There is a huge amount of data residing on various kinds of storage devices. For example, the Indian
national repository of biometric data called Aadhaar runs into several petabytes3. In today’s world,
much of the data at rest are sensitive and require encryption to be protected from unwanted
access or tampering. The solution is to use full disk encryption where the storage device holds the
encryption of the data under a secret key. Reading from the disk requires decrypting the relevant
portion of the disk, while writing to the disk requires encrypting the data and then storing it at
an appropriate location on the disk. The tasks of encryption and decryption are performed using
a disk encryption algorithm. To be useful in practice a disk encryption algorithm needs to be both
secure and efficient. The goal of security is to ensure that unwanted access or tampering is indeed
not feasible while the goal of efficiency is to ensure that there is no noticeable slowdown in the
process of reading from or writing to the disk.

A logical level view of a hard disk and most other storage devices is as a collection of sectors
where each sector can store a fixed number of bytes. For example, present day hard disks have
4096-byte sectors while some of the older disks had 512-byte sectors4. Each sector has a unique
address. A read or write operation on a disk works at the granularity of sectors. A read operation
will specify a bunch of sector addresses and the complete contents of those sectors will be returned.

3 https://www.cse.iitb.ac.in/~comad/2010/pdf/Industry Sessions/UID_Pramod_Varma.pdf
4 https://en.wikipedia.org/wiki/Disk_sector



Similarly, a write operation will specify the data and a bunch of sector addresses and the contents
of the corresponding sectors will be overwritten with the new data.

A disk encryption algorithm proceeds sector by sector. The content of a sector is encrypted
using the secret key and stored in-place, i.e., the content of the sector is overwritten using the
encrypted content. The original unencrypted content is not stored anywhere. Just encryption is not
sufficient for security as can be seen from the following simple attack. Suppose that the contents of
two successive sectors s1 and s2 are C1 and C2 corresponding to plaintexts P1 and P2 respectively.
An adversary may simply swap C1 and C2. Subsequent decryption will show s1 containing P2 and
s2 containing P1 whereas decryption before the swap would have shown s1 containing P1 and s2
containing P2. If it turns out that s1 containing P2 and s2 containing P1 is meaningful data, then
by a simple swap operation, the adversary has been able to alter the content of the disk to a
meaningful data which was not originally stored on the disk.

To prevent the above possibility, the encryption of the content of a sector needs to be somehow
tied to the sector address. Decryption of any adversarially modified content of a sector should result
in a random looking string which is unlikely to be meaningful data.

Viewed in this manner, a disk encryption mechanism is an example of a length preserving
encryption where the length of the ciphertext is equal to the length of the plaintext. Further, there
is another quantity (which is the sector address in case of disk encryption) which determines the
ciphertext but, is itself not encrypted. In the literature this quantity has been called a tweak. The
functionality of a tweak-based length preserving encryption has been called a tweakable enciphering
scheme (TES) [24].

While disk encryption is a very important application of a TES, the full functionality of a TES
is much more broader than just disk encryption. For the specific case of disk encryption, messages
are contents of a sector and so are fixed length strings. A TES can have a more general message
space consisting of binary strings of different lengths. Similarly, in the case of disk encryption, the
tweak is a sector address and can be encoded using a short fixed length string. More generally, the
tweak space in a TES can also consist of strings of different lengths or even consist of vectors of
strings.

Our Contributions

This paper describes a new family of tweakable enciphering schemes called FAST which is built using
a pseudo-random function (PRF) and a hash function with provably low collision and differential
probabilities. The domain and the range of the pseudo-random function are both equal to the set
of all n-bit binary strings for an appropriately chosen n. The hash function is built using arithmetic
over the finite field GF (2n). Some of the salient aspects of FAST are described below.

Wide range of applications: FAST can be used in the following settings.

Fixed length setting: This setting is targeted towards disk encryption application. It supports an
n-bit tweak and messages whose lengths are a fixed multiple of the block size n.

General setting: This setting is very general. Messages are allowed to have different lengths and
tweaks are allowed to be vectors of binary strings where the numbers of components in the
vectors can vary. The richness of the tweak space provides considerable flexibility in applications
where there is a message and an associated set of attributes. The message is to be encrypted
while the attributes are to be in the clear but the ciphertext needs to be bound to the attributes.
We mention two possible applications for such a functionality.
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1. The message is a data packet that is to be stored at a destination node while the vector of
attributes encode the path taken by the data packet to reach the destination node with the
components of the vector identifying the intermediate nodes.

2. The message consists of biometric information while the attributes are date-time, gender
and other related information. A possible application would be to the Aadhaar database
mentioned earlier.

We note that the idea of having associated data to be a vector of strings was earlier proposed [37]
in the context of deterministic authenticated encryption. AEZ [26] provides a conceptual level de-
scription of how to handle a vector of strings as tweak using an almost XOR universal hash function
to process the vector. A generic security bound is provided in terms of the collision probability of
the hash function. No concrete proposal for the hash function is provided. Consequently, the effi-
ciency of processing the tweak cannot be determined and neither it is possible to obtain a concrete
security bound. In contrast, following our objective of practical implementation we put forward
several concrete designs for hashing a vector of strings with associated concrete secuity bounds and
detailed software and hardware implementations.

Software and hardware implementations: A major objective of the paper consists of both
software and hardware implementations of FAST and the most important TES schemes in the
literature. The goal of such implementations is to perform a comparative study of software and
hardware performances of FAST with those of the previous schemes. To this end, we have carried
out detailed software and hardware implementations of the IEEE standards XCB and EME2 as
well as AEZ (instantiated with the encryption function of the AES block cipher) along with similar
implementations of variants of FAST.

1. The software implementation is targeted towards modern Intel processors and is in Intel in-
trinsics using the specialised AES-NI instructions including the pclmulqdq instruction. The
code for the software implementation of FAST is publicly available from https://github.com/

sebatighosh/FAST. The software implementation of FAST covers both the fixed length and the
general settings. We provide timing results for the Skylake and the Kabylake processors of Intel.

2. The hardware implementation is based on FPGA and is targeted towards the disk encryption
application.

Results arising from the implementations show that the new proposal compares favourably to the
most important previous constructions in both software and hardware. For the fixed length setting,
the best speed achieved by FAST on the Intel Skylake platform is 1.24 cycles per byte (cpb). In
comparison, XCB, EME2 and AEZ achieve speeds of 1.92 cpb, 2.07 cpb and 1.74 cpb respectively.
The corresponding figures on Kabylake for FAST, XCB, EME2 and AEZ are 1.19, 1.85, 1.99 and
1.70 cpb respectively. Further timing details are provided later. On the Virtex 5 FPGA platform,
the best throughput of FAST is 30.55 Gbps while XCB, EME2 and AEZ achieve throughputs of
28.05 Gbps, 24.77 Gbps and 22.70 Gbps respectively. The corresponding figures on the Virtex 7
FPGA for FAST, XCB, EME2 and AEZ are 39.73, 37.21, 33.90 and 30.45 Gbps respectively. Further
details on timings and area (in terms of slices and block RAMs) are provided later.

Based on the detailed comparative results of software and hardware performances, we conclude
that FAST is the TES of choice for both disk encryption and general purpose applications. This
makes FAST the definitive candidate for standardisation and deployment.

Dispensing with invertibility: There are several concrete TES proposals in the literature. Most
of these proposals including the ones that have been standardised are modes of operations of a
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block cipher and use both the encryption and the decryption functions of the underlying block
cipher. FAST, on the other hand, uses a PRF and does not require the invertibility property of a
block cipher. The PRF itself may be instantiated using the encryption function of a block cipher
such as AES. This provides two distinct advantages.

1. From a practical point of view, the advantage is that the decryption function of the block cipher
does not require to be implemented. This is an advantage in hardware implementation since it
results in a smaller hardware. A software implementation also benefits by requiring a smaller
size code.

2. From a theoretical point of view, a block cipher is modelled as a strong pseduo-random per-
mutation (SPRP). A PRF assumption on the encryption function of a block cipher is a weaker
assumption than an SPRP assumption on the block cipher. So security of FAST can be based
on a weaker assumption on the underlying block cipher.

We note that a previous work [40] had pointed out the possibility of using only the encryption
function of a block cipher to build a TES. The work was more at a conceptual level using generic
components and some unnecessary operations. It did not provide any specific instantiation or
implementation. Subsequent to [40], the constructions AEZ [26] and FMix [7] proposed single key
TESs using only the encryption function of the block cipher. FMix is a sequential scheme while
AEZ is parallelisable. Later we discuss in more details several issues regarding the comparison of
FAST to previous schemes.

Parallelisable: At a top level, the construction applies a Feistel layer of encryption on the first
two message blocks and sandwiches a counter type mode of operation in-between two layers of
hashing for the rest of the message. The counter mode is fully parallelisable. This leads to efficient
implementations in both hardware and software.

Design of hash functions: We provide instantiations using two kinds of hash functions both of
which are based on arithmetic over the finite field GF (2n). The first kind of hash function is based
on the usual polynomial based hashing using Horner’s rule. The second kind is based on a class of
polynomials [6] which was later called BRW polynomials [39]. For tackling variable length inputs,
a combination of BRW and Horner based hashing called Hash2L [9] turns out to be advantageous.
For the fixed length setting, we show instantiations using Horner and BRW while for the general
setting, we use the vector version vecHorner of Horner and the vector version vecHash2L of Hash2L.

Provable security treatment: The security of the proposed scheme is analysed following the
standard provable security methodology. The theoretical notion of security of a TES is shown
to hold under the assumption that the encryption function of the underlying block cipher is a
PRF. The proof requires the hash functions to satisfy certain properties. We show that the hash
functions obtained from Horner, vecHorner, BRW and vecHash2L satisfy the required properties.
Concrete security bounds are derived for the different instantiations. These bounds show that the
security of FAST is adequate for practical purposes and is comparable to those achieved in previous
designs.

Previous Works on TES

The first proposal for the construction of a strong pseudorandom permutation using a hash-ECB-
hash approach was by Naor and Reingold [34]. This work, though, did not consider tweaks since

4



the paper predates the formal introduction of the notion tweaks and hence of a TES. The notion of
a tweakable block cipher and its security was formalised by Liskov, Rivest and Wagner [29]. This
was followed by a formalisation of the notion of a tweakable enciphering scheme by Halevi and
Rogaway [24]. The paper also described a TES called CMC which is based on the CBC mode of
operation. A subsequent work [25] by the same authors introduced a TES called EME which is a
parallelisable mode of operation of a block cipher. EME was extended to handle arbitrary length
messages by Halevi [21] and the resulting scheme was called EME∗. The EME family of TESs does
not require finite field multiplication. The main cost of encryption is roughly two block cipher calls
per block of the message.

Construction of a TES using a counter based mode of operation of a block cipher and a Horner
type hash function was first proposed by McGrew and Fluhrer [30]. This scheme was called XCB. A
later variant [31] of XCB was proposed to improve efficiency and reduce key size. Various security
problems for XCB have been pointed out [10].

There have been a number of works proposing different constructions of TESs. Examples are
PEP [15], ABL [32], HCTR [41], HCH [16], TET [22] and HEH [39]. An improved security analysis of
HCTR has been done later [14]. A generalisation of EME using a general masking scheme has been
proposed [38]. As mentioned earlier, the conceptual possibility of constructing a TES from a PRF
(and hence using only the encryption function of a block cipher) has been suggested earlier [40].
The constructions AEZ [26] and FMix [7] are also TESs constructed from a PRF. The possibility of
constructing TESs from stream ciphers has been considered [40]. Concrete proposals and detailed
FPGA implementations of stream cipher based TESs have been described [13].

Another line of investigation has been the construction of ciphers that can securely encipher
their own keys [23, 4]. A generic method is known [4] which converts a conventional TES to one
which can be proved to be secure even under the possibility of encrypting its own key. This generic
method has been applied to EME2 [4]. We note that the method can equally well be applied to the
construction FAST proposed in the present work.

Relation of FAST to Previous Works

As discussed above, there is a long line of constructions of the hash-encrypt-hash type TESs. FAST
is also a construction of this type. The ideas behind the design of FAST have been gathered from
existing works.

– FAST uses a counter type mode of operation for the encryption layer. XCB [30, 31] was the first
to propose such a design. The actual counter type mode used in FAST was proposed in the
HCTR [41] construction.

– FAST provides an option to use the Bernstein-Rabin-Winograd polynomials for the hash layers.
This idea has been proposed earlier [39].

– The encryption layer of FAST is built from a PRF and this idea is based on an earlier sugges-
tion [40].

So, FAST collects various good design ideas from the existing literature to come up with a definitive
scheme.

The other approach to the construction of TES does not use hash functions. The known examples
are CMC [24], EME2 [25, 21], AEZ [26] and FMix [7]. Of these, only AEZ is both parallelisable and
is built from a PRF; CMC and FMix are sequential while EME2 requires to be instantiated using
a strong pseudo-random permutation (SPRP).
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Related Primitives

Authenticated encryption with associated data (AEAD) [28, 5] encrypts a message under a key and
a nonce to produce a ciphertext. The ciphertext is longer than the message and contains a tag
which serves the purpose of authentication. The notion of deterministic authenticated encryption
with associated data (DAEAD) [37] has been proposed as a solution to the key-wrap problem and
such a scheme does not use a nonce. A DAEAD is to be used when the message contains sufficient
entropy. In terms of known constructions, AEAD schemes turn out to be the most efficient, followed
by DAEAD schemes and then TESs. The difficulty of using AEAD schemes for disk encryption and
the possibility of indeed using DAEAD schemes for this purpose have been discussed in details [12].
The notion of robust authenticated encryption (RAE) has been proposed [26] and it was shown
that a TES is a special case of an RAE. Further, a simple and generic method of constructing an
RAE from a TES is known [26]. This method can also be applied to FAST to construct an RAE.

Standards and Patents

IEEE [3] has standardised two tweakable enciphering schemes, namely EME2 and XCB. Essentially,
EME2 is the variant EME∗ [21] while the standardised version of XCB is a variant [31] of the
original scheme [30]. Both EME2 and XCB are patented algorithms. Till date there is no unpatented
algorithm which has been standardised. Apart from offering superior performance guarantees with
respect to previous schemes XCB, EME2 and AEZ, it is our hope that FAST will also fill the gap
of providing an attractive solution which is unencumbered by intellectual property claims.

An earlier IEEE standard is XTS [2] which has also been standardised [18] by NIST of USA.
This is based on the XEX construction of Rogaway [36]. XTS is not a TES and the security provided
by XTS is not adequate for disk encryption application. Rogaway [1] himself mentioned that XTS
only provides light security and should be preferred only when there is an overriding concern for
speed.

2 Preliminaries

Throughout the paper, we fix a positive integer n and a positive integer η ≥ 3.

Notation: Let X and Y be binary strings.

• The length of X will be denoted as len(X).
• The concatenation of X and Y will be denoted as X||Y .
• For an integer i with 0 ≤ i < 2n, binn(i) denotes the n-bit binary representation of i.

We define the following terminology.

firsti(X): For a binary string X, 0 < i ≤ len(X), firsti(X) will denote the first (or, the most
significant) i bits of X.

padn(X): For a binary string X and n > 0, if X is the empty string, then padn(X) will denote the
string 0n; while if X is non-empty, then padn(X) will denote X||0i, where i ≥ 0 is the minimum
integer such that n divides len(X||0i).

parsen(X): For a binary string X such that len(X) ≥ 2n, parsen(X) denotes (X1, X2, X3) where
len(X1) = len(X2) = n and X = X1||X2||X3. In other words, parsen(X) divides the string X
into three parts with the first two parts having length n bits each with the remaining bits of X
(if any) forming the third part.
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formatn(X): For a non-empty binary string X and a positive integer n, formatn(X) denotes
(X1, X2, . . . , Xm) where X = X1||X2|| · · · ||Xm, m = dlen(X)/ne, len(Xi) = n for 1 ≤ i ≤ m− 1
and 1 ≤ len(Xm) ≤ n. In other words, formatn(X) divides the string X into m− 1 n-bit blocks
X1, . . . , Xm−1 and a possibly partial last block Xm.

Number of n-bit blocks: Let X be a binary string and suppose that formatn(padn(X)) returns
X1|| · · · ||Xm. We will say that the number of n-bit blocks in X is m. Note that if X is the
empty string, then pad(X) is 0n and so formatn(padn(X)) is also 0n whence m = 1, i.e., as per
our formalism, the empty string has one n-bit block. The number of n-bit blocks in X will be
denoted by l(X).
For a vector of binary strings Y = (Y1, . . . , Yk), by the number of n-bit blocks in Y we will mean
the sum of the numbers of n-bit blocks in the strings Y1, . . . , Yk. The number of n-bit blocks in
Y will be denoted by t(Y ).

superBlksn,η(Z): For a binary string Z, superBlksn,η(Z) denotes the vector of strings (Z1, . . . , Z`)
obtained as (Z1, . . . , Z`) ← formatnη(padn(Z)). For 1 ≤ i ≤ ` − 1, Zi is an nη-bit string while
Z` is a string whose length is at most nη and is divisible by n. The strings Z1, . . . , Z` are called
super-blocks. The first `−1 of these super-blocks consist of exactly η n-bit blocks while the last
super-block consists of at most η n-bit blocks. We will say that the number of super-blocks in
Z is `.

Finite field: Let F = GF (2n) be the finite field of 2n elements. Using a fixed irreducible polynomial
of degree n over GF (2) to represent F, the elements of F can be identified with the binary strings
of length n. Viewed in this manner, an n-bit binary string will be considered to be an element of F.
The addition operation over F will be denoted by ⊕; for X,Y ∈ F, the product will be denoted as
XY . The additive identity of F will be denoted as 0 and will be represented as 0n; the multiplicative
identity of F will be denoted as 1 and will be represented as 0n−11.

For n = 128, let F be represented as GF (2)[α]/ψ(α) where ψ(α) = α128 ⊕ α7 ⊕ α2 ⊕ α ⊕ 1.
The 128-bit string X is considered to be a polynomial X(α) ∈ GF (2)[α]. Let Y be a 128-bit string
representing the polynomial Y (α) = αX(α) mod ψ(α). The string Y can be obtained from the
string X as Y = (X � 1) ⊕ (msb(X) · 135), where msb(X) denotes the most significant bit of
X. Over F, this operation corresponds to the ‘multiply by α’ map and has been called a doubling
operation [36].

Pseudo-random function: The construction requires a family of functions where each function in
the family maps n-bit strings to n-bit strings. More precisely, let {FK}K∈K be a family of functions,
where for K ∈ K, FK : {0, 1}n → {0, 1}n. Here K is the key space of F. The security requirement
on {FK}K∈K is that of a pseudo-random function family. Informally this means, for a randomly
chosen K, on distinct inputs, the outputs of FK(·) appear independent and uniformly distributed
to a computationally bounded adversary. We provide the formal definition later. It is possible to
instantiate F using the encryption (or the decryption) function of a block cipher. In particular, one
may use the encryption function of AES to instantiate F. This, however, is an overkill, since the
invertibility property of the block cipher is not required by the construction.

Counter mode: The PRF F can handle only n-bit strings. Longer strings are handled in the
following manner. Let X be a non-empty binary string. For K ∈ K and S ∈ {0, 1}n, we define
CtrK,S(X) in the following manner.

CtrK,S(X) = (S1 ⊕X1, . . . , Sm−1 ⊕Xm−1, firstr(Sm)⊕Xm) (1)
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where (X1, . . . , Xm) ← formatn(X), len(Xm) = r and Si = FK(S ⊕ binn(i)). This variant of the
counter mode was originally used in HCTR [41]. Note that the PRF F is used to define the counter
mode, but, the counter mode itself as defined here is not a PRF.

3 Hash Functions

Let D and G be finite non-empty sets. Let {Hτ}τ∈T be an indexed family of functions such that for
each τ , Hτ : D → G.

Collision and differential probabilities:

– For distinct x, x′ ∈ D, the collision probability of {Hτ}τ∈T for the pair (x, x′) is defined to
be Prτ [Hτ (x) = Hτ (x′)].

– Suppose G is an additively written group. For distinct x, x′ ∈ D and any y ∈ G, the differen-
tial probability of {Hτ}τ∈T for the triplet (x, x′, y) is defined to be Prτ [Hτ (x)−Hτ (x′) = y].

The above probabilities are taken over uniform random choices of τ from T.

Almost universal function family: The family {Hτ} is said to be ε-almost universal (ε-AU) if
for all distinct x, x′ in D, the collision probability for the pair (x, x′) is at most ε.

Almost XOR universal function family: The family {Hτ} is said to be ε-almost XOR universal
(ε-AXU) if for all distinct x, x′ in D and any y ∈ G, the differential probability for the triplet
(x, x′, y) is at most ε.

We define two standard hash functions.

Polynomials: For m ≥ 0, let Horner : F× Fm → F be defined as follows.

Horner(τ,X1, . . . , Xm) =

{
0, if m = 0;
X1τ

m−1 ⊕X2τ
m−2 ⊕ · · · ⊕Xm−1τ ⊕Xm, if m > 0.

We write Hornerτ (X1, . . . , Xm) to denote Horner(τ,X1, . . . , Xm). The degree of Hornerτ (X1, . . . , Xm)
as a polynomial in τ is at most m−1. For m > 0, Hornerτ (X1, . . . , Xm) = τHornerτ (X1, . . . , Xm−1)⊕
Xm and so Hornerτ (X1, . . . , Xm) can be evaluated using m− 1 field multiplications.

For a fixed value of m, {Hornerτ} is ((m−1)/2n)-AU and the family {τ ·Hornerτ} is (m/2n)-AXU.

BRW polynomials: Bernstein [6] defined a family of polynomials based on a previous work by
Rabin and Winograd [35]. (These have been called the BRW polynomials [39]). For m ≥ 0, let
BRW : F× Fm → F be defined as follows. We write BRWτ (· · · ) to denote BRW(τ, · · · ).

• BRWτ () = 0;
• BRWτ (X1) = X1;
• BRWτ (X1, X2) = X1τ ⊕X2;
• BRWτ (X1, X2, X3) = (τ ⊕X1)(τ

2 ⊕X2)⊕X3;
• BRWτ (X1, X2, · · · , Xm)

= BRWτ (X1, · · · , Xt−1)(τ
t ⊕Xt)⊕ BRWτ (Xt+1, · · · , Xm);

if t ∈ {4, 8, 16, 32, · · · } and t ≤ m < 2t.

From the definition it follows that for m ≥ 3, BRWτ (X1, X2, · · · , Xm) is a monic polynomial and
for m = 0, 1, 2, BRWτ (X1, . . . , Xm) = Hornerτ (X1, . . . , Xm). We further note the following points
about BRW polynomials [6].
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1. For m ≥ 3, BRWτ (X1, . . . , Xm) can be computed using bm/2c field multiplications and blgmc
additional field squarings to compute τ2, τ4, . . ..

2. Let d(m) denote the degree of BRWτ (X1, . . . , Xm). For m ≥ 3, d(m) = 2blgmc+1 − 1 and so
d(m) ≤ 2m − 1; equality is achieved if and only if m = 2a; and d(m) = m if and only if
m = 2a − 1 for some integer a ≥ 2.

3. The map from Fm to F[τ ] given by (X1, . . . , Xm) 7−→ BRWτ (X1, . . . , Xm) is injective.

For a fixed value of m, {BRWτ} is ((2m−1)/2n)-AU and the family {τ ·BRWτ} is (2m/2n)-AXU.

3.1 Hash Function vecHorner

Let

VD =
255⋃
k=0

{(M1, . . . ,Mk) : Mi ∈ {0, 1}∗, 0 ≤ len(Mi) ≤ 2n−16 − 1}. (2)

The upper bound of 255 on k ensures that the value of k fits in a byte and the upper bound of 2n−16−
1 on the lengths of strings ensures that the lengths of such strings fit into an (n − 16)-bit binary
string. The definition of vecHorner : F×VD → F is shown in Table 1 where we write vecHornerτ (·)
to denote vecHorner(τ, ·). The degree of vecHornerτ (M1, . . . ,Mk) is at most k +

∑k
i=1mi and its

constant term is 0. Here mi = l(Mi), i = 1, . . . , k.

Table 1: Computations of vecHorner and vecHash2L. The string 1n denotes the element of F whose
binary representation consists of the all-one string.

vecHornerτ (M1, . . . ,Mk)
if k = 0 return 1nτ ;
digest← 0;
for i← 1, . . . , k − 1 do

(Mi,1, . . . ,Mi,mi)← formatn(padn(Mi));
Li ← binn(len(Mi));
for j ← 1, . . . ,mi do

digest← τdigest⊕Mi,j ;
end for;
digest← τdigest⊕ Li;

end for;
(Mk,1, . . . ,Mk,mk )← formatn(padn(Mk));
Lk ← bin8(k)||08||binn−16(len(Mk));
for j ← 1, . . . ,mk do

digest← τdigest⊕Mk,j ;
end for;
digest← τdigest⊕ Lk;
digest← τdigest;
return digest.

vecHash2Lτ (M1, . . . ,Mk)
if k = 0 return 1nτ ;
digest← 0;
for i← 1, . . . , k − 1 do

(Mi,1, . . . ,Mi,`i)← superBlksn,η(Mi);
Li ← binn(len(Mi));
for j ← 1, . . . , `i do

digest← τd(η)+1digest⊕ BRWτ (Mi,j);
end for;
digest← τdigest⊕ Li;

end for;
(Mk,1, . . . ,Mk,`k )← superBlksn,η(Mk);
Lk ← bin8(k)||08||binn−16(len(Mk));
for j ← 1, . . . , `k do

digest← τd(η)+1digest⊕ BRWτ (Mk,j);
end for;
digest← τdigest⊕ Lk;
digest← τdigest;
return digest.

The following result shows that vecHorner is an AXU family.

Proposition 1. Let k ≥ k′ ≥ 0; M = (M1, . . . ,Mk) and M′ = (M ′1, . . . ,M
′
k′) be two distinct

vectors in VD and α ∈ F. For a uniform random τ ∈ F,

Pr
τ

[
vecHornerτ (M)⊕ vecHornerτ (M′) = α

]
≤

max
(
k +

∑k
i=1mi, k

′ +
∑k′

j=1m
′
j

)
2n

(3)
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where mi (resp. m′j) is the number of n-bit blocks in padn(Mi) (resp. padn(M ′j)).

Proof. Let p(τ) = vecHornerτ (M) ⊕ vecHornerτ (M′) ⊕ α. If p(τ) is a non-zero polynomial, then

the degree of p(τ) is at most max
(
k +

∑k
i=1mi, k

′ +
∑k′

j=1m
′
j

)
. The probability that a uniform

random τ is a root of p(τ) is at most the stated bound. So, it is sufficient to argue that p(τ) is
non-zero.

If k′ = 0, then, as M 6= M′, k > 0. In this case, vecHornerτ (M′) = 1nτ and the coefficient of τ
in vecHornerτ (M) is Lk 6= 1n. Hence, in this case p(τ) is a non-zero polynomial.

Let Mi1,i2 (resp. M ′j1,j2) be the n-bit blocks obtained from M (resp. M′) using format. If k >
k′ > 0, then the coefficient of τ in p(τ) is Lk ⊕ L′k′ 6= 0 and so p(τ) is a non-zero polynomial. So,
suppose k = k′. If there is an i such that Li 6= L′i, let i be the maximum such index. Using the
maximality of i it is possible to argue that Li ⊕ L′i occurs as a coefficient of some power of τ in
p(τ) and again it follows that p(τ) is a non-zero polynomial. So, now suppose that Li = L′i for all
1 ≤ i ≤ k = k′. Since M 6= M′, there must be an i and j such that Mi,j 6= M ′i,j again showing that
p(τ) is a non-zero polynomial. ut

3.2 Hash Function vecHash2L [9]

Two hash functions, namely Hash2L and vecHash2L, have been defined earlier [9]. Here we only
recall the definition of vecHash2L since we will not be using the hash function Hash2L in this work.
The definition of vecHash2L : F × VD → F is given in Table 1 where we write vecHash2Lτ (·) to
denote vecHash2L(τ, ·). The degree of vecHash2Lτ (M1, . . . ,Mk) is at most (d(η)+1)(`1+· · ·+`k)+k,
and its constant term is 0. The values of `1, . . . , `k are defined by the algorithm given in Table 1.
Theorem 2 of [9] shows that vecHash2L is an AXU family. More precisely, the following is proved.
Let k ≥ k′ ≥ 0; M = (M1, . . . ,Mk) and M′ = (M ′1, . . . ,M

′
k′) be two distinct vectors in VD. For a

uniform random τ ∈ F and for any α ∈ F,

Pr
τ

[
vecHash2Lτ (M)⊕ vecHash2Lτ (M′) = α

]
≤ max (k + (d(η) + 1)Λ, k′ + (d(η) + 1)Λ′)

2n
(4)

where Λ =
∑k

i=1 `i and Λ′ =
∑k′

j=1 `
′
j ; `i (resp. `′j) is the number of super-blocks in Mi (resp. M ′j).

Note that the hash function vecHash2L is parameterised by the value of η. In the rest of the
paper, we will assume that η + 1 is a power of two so that the degree d(η) of BRWτ (X1, . . . , Xη) is
η.

4 Construction

Formally, FAST = (FAST.Encrypt,FAST.Decrypt) where

FAST.Encrypt,FAST.Decrypt : K × T × P → P, (5)

– K is a finite non-empty set called the key space,

– T is a finite non-empty set called the tweak space and

– P denotes both the message and the ciphertext spaces such that for any string P ∈ P, len(P ) >
2n. So, for any P ∈ P, the number of n-bit blocks in padn(P ) is at least three. This requirement
will be called the length condition on P.
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We emphasise that P does not necessarily contain all strings of lengths greater than 2n. We provide
the precise definitions of P for specific instantiations later.

For K ∈ K, T ∈ T and P ∈ P, we write FAST.EncryptK(T, P ) to denote FAST.Encrypt(K,T, P );
for K ∈ K, T ∈ T and C ∈ P, we write FAST.DecryptK(T,C) to denote FAST.Decrypt(K,T,C).
The definitions of FAST.EncryptK(T, P ) and FAST.DecryptK(T,C) are given in Table 2. These
definitions use the functions Hτ , Gτ , H′τ and G′τ which themselves are defined using two hash
functions h and h′ in the following manner.

Hτ (P1, P2, P3, T ) = (P1 ⊕ hτ (T, P3), P2 ⊕ τ(P1 ⊕ hτ (T, P3)));
Gτ (X1, X2, X3, T ) = (X1 ⊕ hτ (T,X3), X2 ⊕ τX1);
H′τ (C1, C2, C3, T ) = (C1 ⊕ τ(C2 ⊕ h′τ (T,C3)), C2 ⊕ h′τ (T,C3));
G′τ (Y1, Y2, Y3, T ) = (Y1 ⊕ τY2, Y2 ⊕ h′τ (T, Y3)).

(6)

From the definitions of Hτ ,Gτ and H′τ ,G
′
τ it is easy to verify the following properties.

Hτ (P1, P2, P3, T ) = (A1, F1) implies Gτ (A1, F1, P3, T ) = (P1, P2);
H′τ (C1, C2, C3, T ) = (F2, B2) implies G′τ (F2, B2, C3, T ) = (C1, C2).

(7)

Note that for fixed τ , P3 and T , Hτ (·, ·, P3, T ) and Gτ (·, ·, P3, T ) are inverses of one another and
similarly, H′τ (·, ·, P3, T ) and G′τ (·, ·, P3, T ) are inverses of one another.

The hash functions h and h′ required in the definitions of H,G and H′,G′ respectively and the
other components used in Table 2 are given below.

1. The two hash functions h and h′ are defined in the following manner.

h, h′ : F× T ×M→ F, (8)

where

M = {x : w||x ∈ P for some w ∈ {0, 1}2n}; (9)

F is the key space and also the digest space, T is the tweak space and M is the message space
for the hash functions. For τ ∈ F, T ∈ T and M ∈M, we will write hτ (T,M) (resp. h′τ (T,M))
to denote h(τ, T,M) (resp. h′(τ, T,M)). Note that in FAST, both h and h′ share the same key
τ . Later we discuss the properties required of the pair of hash functions (h, h′) and how to
construct such pairs using standard hash functions.

2. A PRF {FK}K∈K where for K ∈ K, FK : {0, 1}n → {0, 1}n. The PRF is used in the Ctr mode
as given in (1). Since strings in P are of length greater than 2n, the Ctr mode is applied to
non-empty strings.

3. A fixed n-bit string fStr.
4. Sub-routines Feistel and Feistel−1 which are shown in Table 3.

From the descriptions of FAST.EncryptK(T, P ) and FAST.DecryptK(T,C) in Table 2, the following
two facts are easy to verify. For K ∈ K, T ∈ T and P ∈ P,

FAST.DecryptK(T,FAST.EncryptK(T, P )) = P ; (10)

len (FAST.EncryptK(T, P )) = len(P ). (11)

From (10), it follows that the decryption function of FAST is the inverse of the encryption function,
while (11) shows that the length of the ciphertext produced by the encryption function is equal to
the length of the plaintext.
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Remarks:

1. FAST.EncryptK(T, P ) and FAST.DecryptK(T,C) can be seen as consisting of three distinct lay-
ers – hash-encrypt-hash. The quantity τ is the key for the hashing layers and is not used in the
encryption layer while K is used only in the encryption layer and not in the hashing layers. In
an earlier version, we had used a different description, where the first two blocks were processed
using a 4-round Feistel network where the first and the last round consisted of multiplication
by τ so that one could consider the first two blocks to be processed by a strong pseudo-random
permutation. The present description is equivalent to the previous description (except as dis-
cussed in the next point) and is perhaps more modular in the sense of separating the hashing
and the encryption keys. The suggestion for providing such a modular description is due to a
reviewer of the previous version.

2. The quantity Z in FAST.EncryptK(T, P ) and FAST.DecryptK(T,C) is defined to be equal to
F1 ⊕ F2. In an earlier version, we had defined Z to be equal to P2 ⊕ C1. The suggestion to
define Z as F1 ⊕ F2 is due to Mridul Nandi. This saves a few cycles in a pipelined hardware
implementation when F is instantiated with AES; it has no effect on the efficiency of software
implementation.

Table 2: Encryption and decryption algorithms for FAST.

C
3

P
3

CtrK

Hτ

1F

P
2

P
1

C
2

C
1

1A

B22F

τG’

Feistel
Layer

Z

T

T

Algorithm FAST.EncryptK(T, P )
1. τ ← FK(fStr);
2. (P1, P2, P3)← parsen(P );
3. (A1, F1)← Hτ (P1, P2, P3, T );
4. (F2, B2)← FeistelK(A1, F1);
5. Z ← F1 ⊕ F2;
6. C3 ← CtrK,Z(P3);
7. (C1, C2)← G′τ (F2, B2, C3, T );
8. return (C1||C2||C3).

Algorithm FAST.DecryptK(T,C)
1. τ ← FK(fStr);
2. (C1, C2, C3)← parsen(C);
3. (F2, B2)← H′τ (C1, C2, C3, T );
4. (A1, F1)← Feistel−1

K (F2, B2);
5. Z ← F1 ⊕ F2;
6. P3 ← CtrK,Z(C3);
7. (P1, P2)← Gτ (A1, F1, P3, T );
8. return (P1||P2||P3).

Table 3: A two-round Feistel construction required in Table 2.

F2 FK

FK

A1

2F

1F

B2

FeistelK(A1, F1)
1. F2 ← A1 ⊕ FK(F1);
2. B2 ← F1 ⊕ FK(F2);
return (F2, B2).

Feistel−1
K (F2, B2)

1. F1 ← B2 ⊕ FK(F2);
2. A1 ← F2 ⊕ FK(F1);
return (A1, F1).
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5 Instantiations of FAST

Certain properties are required from the pair of hash functions (h, h′). These properties will be
used in the security argument to show that in an information theoretic setting, the adversary’s
probability of breaking the security of FAST is low. The specific properties that will be required
are formalised below.

Definition 1. Let (h, h′) be a pair of hash functions where h, h′ : F × T × M → F satisfy the
following properties. For any (T,M), (T ′,M ′) ∈ T ×M, with (T,M) 6= (T ′,M ′); any α, β ∈ F; and
τ chosen uniformly at random from F:

Pr[τ(hτ (T,M)⊕ α) = β] ≤ ε1(t, l); (12)

Pr[τ(h′τ (T,M)⊕ α) = β] ≤ ε1(t, l); (13)

Pr[τ(hτ (T,M)⊕ hτ (T ′,M ′)⊕ α) = β] ≤ ε2(t, l, t′, l′); (14)

Pr[τ(h′τ (T,M)⊕ h′τ (T ′,M ′)⊕ α) = β] ≤ ε2(t, l, t′, l′). (15)

For any (T,M), (T ′,M ′) ∈ T ×M; any α, β ∈ F; and τ chosen uniformly at random from F:

Pr[τ(hτ (T,M)⊕ h′τ (T ′,M ′)⊕ α) = β] ≤ ε2(t, l, t′, l′). (16)

Here t ≡ t(T ), t′ ≡ t(T ′), l ≡ l(M), l′ ≡ l(M ′); and ε1 and ε2 are functions of t, l, t′ and l′. Then
(h, h′) is said to be an (ε1, ε2)-eligible pair of hash functions.

We consider the following two scenarios for FAST.

Fixed length setting Fxm for some positive integer m > 2: For this setting, in (5), we define

T = {0, 1}n, P = {0, 1}mn and so M = {0, 1}n(m−2). (17)

In other words, a tweak T is an n-bit string while plaintexts and ciphertexts consist of m n-bit
strings. This particular setting is suited for disk encryption application, where for a fixed n, the
number of blocks m in a message is determined by the size of a disk sector. In this case, for M ∈M,
l(M) = m− 2 and for T ∈ T , t(T ) = 1. By the length condition on P, we must have m ≥ 3.

Consider the encryption and decryption algorithms of FAST. The number of n-bit blocks in P
(resp. C) is m and so the number of n-bit blocks in P3 (resp. C3) is m − 2. The hash functions h
and h′ are invoked in FAST as h(T, P3) and h′(T,C3). So, in Definition 1, T = F and M = Fm−2
and we have

h, h′ : F× F× Fm−2 → F. (18)

For the setting of Fxm, we describe two instantiations of h and h′, one with Horner and the other
with BRW. The corresponding instantiations of FAST will be denoted as FAST[Fxm,Horner] and
FAST[Fxm,BRW].
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General setting Gn: Let k be a fixed integer in the range {0, . . . , 254}. For this setting, in (5), we
define

T =

k⋃
k=0

{(T1, . . . , Tk) : 0 ≤ len(Ti) ≤ 2n−16 − 1}; (19)

P =
2n−16−1⋃
i>2n

{0, 1}i; and so (20)

M =

2n−16−2n−1⋃
i>0

{0, 1}i. (21)

A tweak T is a vector T = (T1, . . . , Tk) where 0 ≤ k ≤ k and each Ti is a binary string. Since
k ≤ 254, k + 1 ≤ 255 and so the binary representation of k + 1 will fit in a byte.

For P ∈ P, suppose M ∈ M is such that P = X||M for some binary string X of length 2n.
Then l(M) = m − 2, where m is the number of blocks in padn(P ). For a tweak T = (T1, . . . , Tk),
t(T ) =

∑k
i=1mi, where mi is the number of blocks in padn(Ti).

The parameter k controls the maximum number of components that can appear in a tweak.
This does not imply that the number of components in all the tweaks is equal to k. Rather, the
number of components in a tweak is between 0 and k. So, the above definition of the tweak space
models tweaks as vectors having variable number of components. Since we put an upper bound of
254 on k, one possibility is to do away with the parameter k and replace it with the value 254. The
reason we do not do this is the following. The parameter k enters the security bound. If we replace k
by 254, then this value would enter the security bound. If in practice, the actual value of k is much
less than 254 (as it is likely to be), then using 254 instead of k will lead to a looser security bound
than what it should actually be. It is to avoid this unnecessary looseness in the security bound that
we introduce and work with the parameter k.

For the setting of Gn, we describe two instantiations of h and h′. One of these is based on
vecHorner while the other is based on vecHash2L. The parameter k is required in both cases
while the parameter η is required only in the case of vecHash2L. The instantiations of FAST in
the general setting with vecHorner and vecHash2L will be denoted as FAST[Gn, k, vecHorner] and
FAST[Gn, k, η, vecHash2L] respectively.

In the general setting, the lengths of the plaintexts can vary. Also, the tweak space has a
rich structure which provides considerable flexibility in applications. Examples of such applications
have been mentioned in the introduction. On the downside, the specific instantiations of the general
setting are somewhat slower than the corresponding instantiations for the fixed length setting. So,
for targeted applications such as disk encryption, it would be preferable to use the fixed length
setting leaving out some of the extra overheads incurred in the general setting.

5.1 Hash Functions h and h′ for FAST[Fxm,Horner]

Fix a positive integer m ≥ 3 so that the length condition on P is satisfied. The hash functions h, h′

are defined using Horner as follows:

hτ (T,X1|| · · · ||Xm−2) = τHornerτ (1, X1, . . . , Xm−2, T ); (22)

h′τ (T,X1|| · · · ||Xm−2) = τ2Hornerτ (1, X1, . . . , Xm−2, T ). (23)
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Note that Hornerτ (1, X1, . . . , Xm−2, T ) is a monic polynomial in τ of degree m− 1. Consequently,
h and h′ are monic polynomials in τ of degrees m and m+ 1 respectively whose constant terms are
zero.

Proposition 2. Let m ≥ 3 be an integer. The pair (h, h′) of hash functions defined in (22) and (23)
for the construction FAST[Fxm,Horner] is an (ε1, ε2)-eligibile pair, where ε1 = ε2 = (m+ 2)/2n.

Proof. In this case, for M ∈ M, l(M) = m− 2 and for T ∈ T , t(T ) = 1. We write l and t instead
of l(M) and t(T ).

The polynomials τ(hτ (T,X1|| · · · ||Xm−2) ⊕ α) ⊕ β and τ(h′τ (T,X1|| · · · ||Xm−2) ⊕ α) ⊕ β are
monic polynomials of degrees l + t + 2 = m + 1 and l + t + 3 = m + 2 in τ respectively. So,
the probability that a uniform random τ in F is a root of τ(hτ (T,X1|| · · · ||Xm−2) ⊕ α) ⊕ β (resp.
τ(h′τ (T,X1|| · · · ||Xm−2)⊕α)⊕β) is (l+ t+ 2)/2n = (m+ 1)/2n (resp. (l+ t+ 3)/2n = (m+ 2)/2n).
This shows the value of ε1.

Let X = X1|| · · · ||Xm−2 and X ′ = X ′1|| · · · ||X ′m−2 and T, T ′ be such that (T,X) 6= (T ′, X ′).
Then hτ (T,X)⊕hτ (T ′, X ′) is a non-zero polynomial of degree at most l+ t = m−1 whose constant
term is zero. This is because the leading terms of hτ (T,X) and hτ (T ′, X ′) will cancel out in the
sum hτ (T,X) ⊕ hτ (T ′, X ′) so that its degree will be at most m − 1; (T,X) 6= (T ′, X ′) ensures
that hτ (T,X)⊕ hτ (T ′, X ′) is a non-zero polynomial; and the constant terms of both hτ (T,X) and
hτ (T ′, X ′) are zero. As a result, τ(hτ (T,X)⊕ hτ (T ′, X ′)⊕ α)⊕ β is a non-zero polynomial in τ of
degree at most m. So, the probability that a uniform random τ is a root of this polynomial is at
most (l+ t+ 1)/2n = m/2n. A similar reasoning shows that the probability that a uniform random
τ is a root of τ(h′τ (T,X)⊕ h′τ (T ′, X ′)⊕ α)⊕ β is at most (l + t + 2)/2n = (m+ 1)/2n.

For any (T,X) and (T ′, X ′), the polynomial hτ (T,X) ⊕ h′τ (T ′, X ′) is a monic polynomial of
degree l + t + 2 = m+ 1 whose constant term is zero. Consequently, the polynomial τ(hτ (T,X)⊕
h′τ (T ′, X ′) ⊕ α) ⊕ β is a monic polynomial of degree m + 2 and so the probability that a uniform
random τ is a root of this polynomial is (l+ t+ 3)/2n = (m+ 2)/2n. This shows the value of ε2. ut

5.2 Hash Functions h and h′ for FAST[Fxm,BRW]

Fix an integer m ≥ 4. From the length condition on P, we only need m ≥ 3 and the condition
m ≥ 4 is a special requirement for FAST[Fxm,BRW] as we explain below. In this case, the hash
functions h, h′ are defined using BRW as follows:

hτ (T,X1|| · · · ||Xm−2) = τBRWτ (X1, . . . , Xm−2, T ); (24)

h′τ (T,X1|| · · · ||Xm−2) = τ2BRWτ (X1, . . . , Xm−2, T ). (25)

Note that from the definition of BRW polynomials, for m = 3, BRWτ (X1, . . . , Xm−2, T ) is not
necessarily monic, while for m ≥ 4, BRWτ (X1, . . . , Xm−2, T ) is necessarily monic. It is to ensure
the monic property that we enforce the condition m ≥ 4 for FAST[Fxm,BRW]. An alternative would
have been to prepend 1 as in the case of FAST[Fxm,Horner]. This though would create complications
which do not seem to be necessary for the fixed length setting. Instead, we use this technique later
in the context of the general setting.

Recall that the degree of BRWτ (X1, . . . , Xm−2, T ) is denoted as d(m− 1). So, h and h′ are also
monic polynomials of degrees 1 + d(m− 1) and 2 + d(m− 1) respectively whose constant terms are
zero.

Proposition 3. Let m ≥ 4 be an integer. The pair (h, h′) of hash functions defined in (24) and (25)
for the construction FAST[Fxm,BRW] is an (ε1, ε2)-eligibile pair, where ε1 = ε2 = (3+d(m−1))/2n.
Further, if m is a power of two, then (h, h′) is an ((m+ 2)/2n, (m+ 2)/2n)-eligibile pair.
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Proof. The proof is analogous to the proof of Proposition 2. It is required to use the expres-
sion d(m − 1) for the degree of BRWτ (X1, . . . , Xm−2, T ) and further the injectivity of the map
(X1, . . . , Xm−2, T ) 7−→ BRWτ (X1, . . . , Xm−2, T ) ensures that for (T,X) 6= (T ′, X ′), the polynomial
BRWτ (X1, . . . , Xm−2, T )⊕ BRWτ (X ′1, . . . , X

′
m−2, T

′) is not zero.
The last statement follows from the previously mentioned fact that d(m − 1) = m − 1 if and

only if m ≥ 4 is a power of two. ut

Remark: In the case where m is a power of two, (h, h′) is an ((m+ 2)/2n, (m+ 2)/2n)-eligible pair
for both FAST[Fxm,Horner] and FAST[Fxm,BRW].

5.3 Hash Functions h and h′ for FAST[Gn, k, vecHorner]

In this setting, we define h, h′ : F × T × M → F where T and M are given by (19) and (21)
respectively. For T = (T1, . . . , Tk) ∈ T and M ∈M, let d = t(T ) + l(M) + k + 2. We define

hτ (T,M) = τd ⊕ vecHornerτ (T1, . . . , Tk,M); (26)

h′τ (T,M) = τ(τd ⊕ vecHornerτ (T1, . . . , Tk,M)). (27)

It is easy to see that h and h′ are monic polynomials of degrees d and d + 1 respectively whose
constant terms are zero. The computation of τd ⊕ vecHornerτ (T1, . . . , Tk,M) can be done by the
following simple modification of the algorithm for computing vecHorner shown in Table 1. The
initialisation of digest using digest = 0 is to be replaced with digest = 1.

Proposition 4. The hash functions h and h′ defined in (26) and (27) respectively for the con-
struction FAST[Gn, k, vecHorner] form an (ε1, ε2)-eligibile pair, where

ε1 =
t + l + k + 4

2n
; ε2 =

max(t + l, t′ + l′) + k + 4

2n
.

Proof. For T = (T1, . . . , Tk), recall that t = t(T ) =
∑k

i=1mi where mi is the number of n-bit blocks
in padn(Ti). Also, l = l(M) is the number of n-bit blocks in padn(M).

The degree of hτ (T,M) is d = t + l + k + 2 ≤ t + l + k + 2 and the degree of h′τ (T,M) is
d+ 1 = t+ l+ k+ 3 ≤ t+ l+ k+ 3. So, the polynomial τ(hτ (T,M)⊕α)⊕ β is a monic polynomial
of degree at most t + l + k + 3 and the polynomial τ(h′τ (T,M) ⊕ α) ⊕ β is a monic polynomial of
degree at most t + l + k + 4. This shows the value of ε1.

Consider (T ′,M ′) 6= (T,M) where T ′ = (T ′1, . . . , T
′
k′), t

′ = t(T ′) and l′ = l(M ′). Without loss
of generality assume that k ≥ k′. Let p(τ) = τ(hτ (T,M) ⊕ hτ (T ′,M ′) ⊕ α) ⊕ β. If the degrees
of hτ (T,M) and hτ (T ′,M ′) are not equal, then p(τ) is a polynomial of degree max(t + l + k +
3, t′ + l′ + k′ + 3) ≤ max(t + l + k + 3, t′ + l′ + k + 3). So, suppose that the degrees of hτ (T,M)
and hτ (T ′,M ′) are equal. The leading monic terms of the two polynomials cancel out. If p(τ) is a
non-zero polynomial, then it has maximum degree max(t+ l+ k+2, t′+ l′+ k+2). So, it is sufficient
to show that p(τ) is a non-zero polynomial. This argument is similar to that of Proposition 1.
Further, a similar argument applies for h′ where the degree of τ(h′τ (T,M)⊕ h′τ (T ′,M ′)⊕α)⊕ β is
at most max(t + l + k + 4, t′ + l′ + k + 4).

Now consider (T,M) and (T ′,M ′) which are not necessarily distinct and let p(τ) = τ(hτ (T,M)⊕
h′τ (T ′,M ′) ⊕ α) ⊕ β. The coefficient of τ in hτ (T,M) is L = bin8(k + 1)||08||binn−16(len(M)) 6= 0
which is the coefficient of τ2 in τhτ . The coefficient of τ2 in τh′τ (T ′,M ′) is 0 and so the coefficient
of τ2 in p(τ) is L 6= 0. So, p(τ) is a non-zero polynomial. The degree of p(τ) is at most max(t+ l+
k + 3, t′ + l′ + k + 4).

This completes the proof. ut
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5.4 Hash Functions h and h′ for FAST[Gn, k, η, vecHash2L]

In this setting, we define h, h′ : F × T × M → F where T and M are given by (19) and (21)
respectively. For T = (T1, . . . , Tk) ∈ T and M ∈M, let the number of super-blocks in padn(Ti) be
`i and the number of super-blocks in padn(M) be `. Let d = (d(η) + 1)(`1 + · · · + `k + `) + k + 2.
We define

hτ (T,M) = τd ⊕ vecHash2Lτ (T1, . . . , Tk,M); (28)

h′τ (T,M) = τ(τd ⊕ vecHash2Lτ (T1, . . . , Tk,M)). (29)

The definition of vecHash2L requires choosing the value η. As mentioned earlier, we will assume
that η is chosen so that η + 1 is a power of two and so d(η) = η. The computation of τd ⊕
vecHash2Lτ (T1, . . . , Tk,M) can be done by the following simple modification of the algorithm for
computing vecHash2L shown in Table 1. The initialisation of digest using digest = 0 is to be replaced
with digest = 1.

Proposition 5. Let the parameter η ≥ 3 required in the definition of vecHash2L be such that
η + 1 is a power of two. The hash functions h and h′ defined in (28) and (29) respectively for the
construction FAST[Gn, k, η, vecHash2L] form an (ε1, ε2)-eligibile pair, where

ε1 =
((η + 1)/η)(t + l) + (k + 1)(η + 2) + 3

2n
;

ε2 =
((η + 1)/η) max(t + l, t′ + l′) + (k + 1)(η + 2) + 3

2n
.

Proof. Since η + 1 ≥ 4 is a power of two, d(η) = η.
For i = 1, . . . , k, let the number of super-blocks in padn(Ti) be `i and the number of super-

blocks in padn(M) be `. For i = 1, . . . , k, let the number of n-bit blocks in padn(Ti) be mi, so that
t = t(T ) =

∑k
i=1mi and the number of n-bit blocks in padn(M) be l. In padn(Ti), each of the

first `i− 1 super-blocks contains exactly η n-bit blocks and the last super-block contains at most η
blocks. Since the total number of n-bit blocks in padn(Ti) is mi, we have mi > η(`i−1) from which
we obtain (η + 1)`i < mi((η + 1)/η) + η + 1. Similarly, (η + 1)` < l((η + 1)/η) + η + 1. We have

d = (d(η) + 1)(`1 + · · ·+ `k + `) + k + 2

≤ (d(η) + 1)(`1 + · · ·+ `k + `) + k + 2

= (η + 1)(`1 + · · ·+ `k + `) + k + 2 (since d(η) = η)

< ((η + 1)/η)(t + l) + (k + 1)(η + 1) + k + 2

≤ ((η + 1)/η)(t + l) + (k + 1)(η + 2) + 1. (30)

So, the degree of τhτ (T,M) is d+ 1 which is at most ((η+ 1)/η)(t+ l) + (k+ 1)(η+ 2) + 2 and the
degree of τh′τ (T,M) is d+ 2 which is at most ((η+ 1)/η)(t+ l) + (k+ 1)(η+ 2) + 3. This shows the
value of ε1.

Consider (T ′,M ′) 6= (T,M) where T ′ = (T ′1, . . . , T
′
k′), t

′ = t(T ′) and l′ = l(M ′). Let d′ be the
degree of hτ (T ′,M ′). For any α, β ∈ F, we wish to bound the probability (over uniform random
choice of τ in F) that the polynomial p1(τ) = τ(hτ (T,M)⊕ hτ (T ′,M ′)⊕ α)⊕ β is zero. If d 6= d′,
then p1(τ) is a monic polynomial of degree max(d+ 1, d′ + 1) and so the probability that it is zero
is at most max(d+ 1, d′ + 1)/2n. If d = d′, then p1(τ) is zero if and only if the polynomial

p2(τ) = τ(vecHash2Lτ (T1, . . . , Tk,M)⊕ vecHash2Lτ (T ′1, . . . , T
′
k′ ,M

′)⊕ α)⊕ β
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is zero. Using Theorem 2 of [9] (see (4)), we have this probability to be at most max(d, d′)/2n. So,
the probability that p1(τ) is zero is at most max(d + 1, d′ + 1)/2n. Similarly, the probability that
τ(h′τ (T,M)⊕ h′τ (T ′,M ′)⊕ α)⊕ β is zero is at most max(d+ 2, d′ + 2)/2n.

Consider (T,M) and (T ′,M ′) which are not necessarily distinct. Fix α, β ∈ F and consider
p(τ) = τ(hτ (T,M)⊕ h′τ (T ′,M ′)⊕ α)⊕ β. The coefficient of τ in

hτ (T,M) = τd ⊕ vecHash2Lτ (T1, . . . , Tk,M)

is
L = bin8(k + 1)||08||binn−16(len(M)) 6= 0,

which is the coefficient of τ2 in τhτ (T,M). The coefficient of τ2 in τh′τ (T ′,M ′) is 0 and so the
coefficient of τ2 in p(τ) is L 6= 0. So, p(τ) is a non-zero polynomial. The degree of p(τ) is at most
max(d+ 1, d′ + 2) ≤ max(d+ 2, d′ + 2). This shows the value of ε2. ut

6 Security

In this section, we provide the formal definitions and the formal security statement for FAST. The
detailed security proof is provided in the Appendix.

An adversary A is a possibly probabilistic algorithm with access to one or more oracles. The
output of an adversary is a single bit. The notation AO1,O2,... ⇒ 1 denotes the fact that A outputs
the bit 1 after interacting with the oracles O1,O2, . . .. The interaction of A with its oracles is
allowed to be adaptive, i.e., the adversary is allowed to choose an oracle and a query to be made
to this oracle based on the responses it has received to its previous queries.

The important parameters of an adversary are its running time T, the number of queries q that
it makes to all its oracles and its query complexity σ. The query complexity is defined later.

The bulk of the actual security analysis will be in the information theoretic sense which in
particular means that there is no restriction on the resources of the adversary. For such analysis, it
is sufficient to consider the adversary to be a deterministic algorithm.

6.1 Pseudo-Random Function

Let {FK}K∈K be a family of functions where for each K ∈ K, FK : D → R. Here K is the keyspace,
D is the domain and R is the range. We require that all three of K, D and R are finite non-empty
sets.

Let ρ be a function chosen uniformly at random from the set of all functions from D to R. An
equivalent and more convenient view of ρ is the following. For distinct elements X1, . . . , Xq from
D, the elements ρ(X1), . . . , ρ(Xq) are independent and uniformly distributed elements of R.

Roughly speaking, the function family {FK}K∈K is said to be a PRF if for a uniform random
K ∈ K, the outputs of FK(·) on distinct elements of D are computationally indistinguishable from
the outputs of ρ. This is formalised in the following manner. An adversary A has access to an oracle
and can make queries to its oracle in an adaptive manner. We will assume that A does not repeat
a query. The advantage of the adversary A in breaking the PRF-property of {FK}K∈K is defined
as follows.

Adv
prf
F (A) = Pr

[
K

$← K : AFK(·) ⇒ 1
]
− Pr

[
Aρ(·) ⇒ 1

]
. (31)

Suppose A makes a total of q queries which are X(1), . . . , X(q). The query complexity of A is the
sum total of the number of n-bit blocks in padn(X(s)), s = 1, . . . , q.
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By Adv
prf
F (T, q, σ) we denote the maximum of Adv

prf
F (A) over all adversaries A which run in

time T, make q queries and have query complexity σ. The function family {FK}K∈K (or, more

simply F) is said to be a (T, q, σ, ε)-PRF if Adv
prf
F (T, q, σ) ≤ ε.

6.2 Tweakable Enciphering Scheme

A tweakable enciphering scheme is a pair TES = (TES.Encrypt,TES.Decrypt) where

TES.Encrypt,TES.Decrypt : K × T × P → P

for finite non-empty sets K, T and P. The set K is called the key space, T is called the tweak space
and P is called the message/ciphertext space. We write TES.EncryptK(·, ·) (TES.DecryptK(·, ·)) to
denote TES.Encrypt(K, ·, ·) (resp. TES.Decrypt(K, ·, ·)). The functions TES.Encrypt and TES.Decrypt
satisfy the following two properties. For K ∈ K, T ∈ T and P ∈ P,

1. TES.DecryptK(T,TES.EncryptK(T, P )) = P ;

2. len (TES.EncryptK(T, P )) = len(P ).

The first property states that the encrypt and the decrypt functions are inverses while the second
property states that the length of the ciphertext is equal to the length of the plaintext. In other
words, TES.EncryptK(T, ·) is a length preserving permutation of P.

The notion of security for a TES that we consider is that of indistinguishability from uniform
random strings. This implies other notions of security (see [24]). Let F be the set of all functions f
from T ×P to P such that for any T ∈ T and P ∈ P, len(f(T, P )) = len(P ). Let ρ1 and ρ2 be two
functions chosen independently and uniformly at random from F.

An adversary A attacking a TES has access to two oracles which we will call the left and the
right oracles. Both the oracles are functions from F. An input to the left oracle is of the form (T, P )
and the response is C, while an input to the right oracle is of the form (T,C) and the response is
P . The adversary A adaptively queries its oracles possibly interweaving its queries to its left and
right oracles. At the end, A outputs a bit.

We assume that the adversary does not make any pointless query. This means that A does not
repeat a query to any of its oracles; does not query the right oracle with (T,C) if it received C in
response to a query (T, P ) made to its left oracle; and does not query the left oracle with (T, P ) if
it received P in response to a query (T,C) made to its right oracle. The advantage of A in breaking
TES is defined as follows:

Adv±rnd
TES (A)

= Pr
[
K

$← K : ATES.EncryptK(·,·),TES.DecryptK(·,·) ⇒ 1
]
− Pr

[
Aρ1(·,·),ρ2(·,·) ⇒ 1

]
. (32)

Suppose A makes q queries (T (1), X(1)), . . . , (T (q), X(q)) where T (s) = (T
(s)
1 , . . . , T

(s)

k(s)
) and X(s)

is either P (s) or C(s). For j = 1, . . . , k(s), let m
(s)
j be the number of n-bit blocks in padn(T

(s)
j )

and let m(t) be the number of n-bit blocks in padn(X(t)). We will write t(s) to denote t(T (s)). Let

X(s) = X
(s)
1 ||X

(s)
2 ||X

(s)
3 with len(X

(s)
1 ) = len(X

(s)
2 ) = n and len(X

(s)
3 ) ≥ 1. Then X

(s)
3 ∈ M and

l(X
(s)
3 ) = m(s) − 2. We will write l(s) to denote l(X

(s)
3 ).
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The tweak query complexity θ, the message query complexity ω and the total query complexity
σ are defined as follows.

θ =

q∑
s=1

t(T (s)) =

q∑
s=1

t(s); (33)

ω =

q∑
t=1

m(t); (34)

σ = θ + ω. (35)

By Adv±rnd
TES (T, q, θ, ω) we denote the maximum of Adv±rnd

TES (A) over all adversaries A which
run in time T, make q queries and have tweak query complexity θ and message query complexity
ω. TES is said to be (T, q, θ, ω, ε)-secure if Adv±rnd

TES (A) ≤ ε for all A running in time T, making a
total of q queries with tweak query complexity θ and message query complexity ω.

6.3 Security of FAST

The security statement for FAST is the following.

Theorem 1. Let n be a positive integer; F = GF (2n) is represented using some fixed irreducible
polynomial of degree n over GF (2); {FK}K∈K where for K ∈ K, FK : {0, 1}n → {0, 1}n; (h, h′) is
an (ε1, ε2)-eligible pair of hash functions, where h, h′ : F × T ×M → F; and fStr is a fixed n-bit
string used to build the TES

FAST = (FAST.Encrypt,FAST.Decrypt)

given in Table 2. Fix q, ω ≥ q to be positive integers and θ to be a non-negative integer. For all
T > 0,

Adv±rnd
FAST(T, q, θ, ω) ≤Adv

prf
F (T + T′, ω + 1, ω + 1) +∆(FAST), where

∆(FAST) = 2ω

(
q∑
s=1

ε
(s)
1

)
+ 3

∑
1≤s<t≤q

ε
(s,t)
2 +

q∑
s=1

ε
(s,s)
2 +

3ω2

2n
; (36)

T′ is the time required to answer q queries with tweak query complexity θ and message query complex-

ity ω plus some bookkeeping time; and for 1 ≤ s, t ≤ q, ε(s)1 = ε1(t
(s), l(s)), ε

(s,t)
2 = ε2(t

(s), l(s), t(t), l(t)).

We have the following consequences of Theorem 1 for the specific instantiations of FAST.

Corollary 1. Let m ≥ 3 be a fixed positive integer. Let q and σ ≥ q be positive integers and
ω = σ− q. Consider the instantiations FAST[Fxm,Horner] and FAST[Fxm,BRW] of FAST. Then for
all T > 0,

Adv±rnd
FAST[Fxm,Horner]

(T, q, q, ω)

≤Adv
prf
F (T + T′, ω + 1, ω + 1) +

1

2n

(
5ω2 + ω +

11ωq

2
+ 3q2 + 2q

)
. (37)

If m ≥ 4, then for all T > 0,

Adv±rnd
FAST[Fxm,BRW](T, q, q, ω)

≤Adv
prf
F (T + T′, ω + 1, ω + 1) +

1

2n

(
6ωq +

9q2

2
+ 3q + 3ω2 + d(m− 1)

(
2ωq +

3q2

2
+ q

))
≤Adv

prf
F (T + T′, ω + 1, ω + 1) +

1

2n
(
7ω2 + 3ωq + 2ω

)
. (38)
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Further, if m ≥ 4 is a power of two, then for all T > 0,

Adv±rnd
FAST[Fxm,BRW](T, q, q, ω)

≤Adv
prf
F (T + T′, ω + 1, ω + 1) +

1

2n

(
5ω2 + ω +

11ωq

2
+ 3q2 + 2q

)
. (39)

Proof. Let ∆(FAST[Fxm,Horner]) and ∆(FAST[Fxm,BRW]) denote the expressions for ∆ in (36)
when FAST[Fxm,Horner] and FAST[Fxm,BRW] are respectively used.

In the setting of Fxm, each query consists of a single n-bit block for the tweak and m n-bit
blocks for the plaintext or the ciphertext, i.e., m(s) = m for all 1 ≤ s ≤ q. So, θ = q, ω = qm and
σ = θ + ω = q(m+ 1). Also, m ≥ 3 and q ≥ 1 imply that q < ω and m ≤ ω.

From Proposition 2, we have ε
(s)
1 = ε

(s,t)
2 = (m + 2)/2n for 1 ≤ s, t ≤ q. Using these,

∆(FAST[Fxm,Horner]) can be upper bounded as given in (37).

From Proposition 3, we have ε
(s)
1 = ε

(s,t)
2 = (3 + d(m − 1))/2n for 1 ≤ s, t ≤ q. Using these,

∆(FAST[Fxm,BRW]) achieves the first bound and using d(m− 1) ≤ 2(m− 1)− 1 yields the second
bound.

In the case where m ≥ 4 is a power of two, then d(m−1) = m−1. Also, from Proposition 3, we

have ε
(s)
1 = ε

(s,t)
2 = (m + 2)/2n and so ∆(FAST[Fxm,BRW]) = ∆(FAST[Fxm,Horner]) which shows

the required statement. ut

Remarks:

1. As mentioned above, the query complexity σ is equal to the sum of the tweak query complexity
θ and the message query complexity ω, i.e., σ = θ + ω. For the setting of Fx, θ = q so that
σ = q + ω. Using this, the bounds in (37), (38) and (39) are all of the form cσ2 for some small
constant c. This is the typical form of the bound that is obtained for other constructions in the
literature. So, FAST does not suffer any security loss compared to previous constructions.

2. Consider the application of FAST to disk encryption of 4096 byte sectors. Then m = 28. Using
ω = mq the bounds for ∆(FAST[Fxm,Horner]) ∆(FAST[Fxm,BRW]) given by (37) and (39)
respectively both reduce to the following form.

1

2n
(
q2(5 · 216 + 1441) + 258q

)
<

1

2n
(
5σ2 + 2σ

)
.

Corollary 2. Let q, ω ≥ q be positive integers and θ be a non-negative integer. Consider the
instantiations FAST[Gn, k, vecHorner] and FAST[Gn, k, η, vecHash2L] of FAST. Then for all T > 0,

Adv±rnd
FAST[Gn,k,vecHorner](T, q, θ, ω) ≤ Adv

prf
F (T + T′, ω + 1, ω + 1)

+
5ω2 + 2ωθ + ω + θ

2n
+

3q(θ + ω) + (k + 2)((2ω + 1)q + 3q2) + 6q2

2n
; (40)

Adv±rnd
FAST[Gn,k,η,vecHash2L](T, q, θ, ω) ≤ Adv

prf
F (T + T′, ω + 1, ω + 1)

+
(3 + 2(η + 1)/η)ω2 + (2(η + 1)/η)ωθ + ((η + 1)/η)(ω + θ)

2n

+
3q((η + 1)/η)(θ + ω) + ((2ω + 1)q + 3q2)(k + 1)(η + 2) + 3q(2ω + 1) + 9q2

2n
. (41)
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Proof. Let ∆(FAST[Gn, k, vecHorner]) and ∆(FAST[Gn, k, η, vecHash2L]) denote the expressions for
∆ in (36) when FAST[Gn, k, vecHorner] and FAST[Gn, k, η, vecHash2L] are respectively used.

First consider FAST[Gn, k, vecHorner]. From Proposition 4, ε
(s)
1 = (t(s) + l(s) + k + 4)/2n and

ε
(s,t)
2 = (max(t(s) + l(s), t(t) + l(t)) + k + 4)/2n. So, ε

(s,s)
2 = ε

(s)
1 . We have

q∑
s=1

ε
(s)
1 =

q∑
s=1

t(s) + l(s) + k + 4

2n
=
θ + ω

2n
+
q(k + 2)

2n
;

∑
1≤s<t≤q

ε
(s,t)
2 ≤

∑
1≤s<t≤q

max(t(s) + l(s), t(t) + l(t)) + k + 4

2n
≤ q(θ + ω)

2n
+
q2(k + 4)

2n
.

Using these in Theorem 1, we obtain

∆(FAST[Gn, k, vecHorner]) ≤ 5ω2 + 2ωθ + ω + θ

2n
+

3q(θ + ω) + (k + 2)((2ω + 1)q + 3q2) + 6q2

2n
.

Now consider FAST[Gn, k, η, vecHash2L]. From Proposition 5,

ε
(s)
1 =

((η + 1)/η)(t(s) + l(s)) + (k + 1)(η + 2) + 3

2n
;

ε
(s,t)
2 =

((η + 1)/η) max(t(s) + l(s), t(t) + l(t)) + (k + 1)(η + 2) + 3

2n
.

So, ε
(s,s)
2 = ε

(s)
1 . We have

q∑
s=1

ε
(s)
1 ≤

((η + 1)/η)(θ + ω) + q(k + 1)(η + 2) + 3q

2n
;

∑
1≤s<t≤q

ε
(s,t)
2 ≤ q((η + 1)/η)(θ + ω) + q2(k + 1)(η + 2) + 3q2

2n
;

Using these in Theorem 1, we obtain

∆(FAST[Gn, k, η, vecHash2L])

≤ (3 + 2(η + 1)/η)ω2 + (2(η + 1)/η)ωθ + ((η + 1)/η)(ω + θ)

2n

+
3q((η + 1)/η)(θ + ω) + ((2ω + 1)q + 3q2)(k + 1)(η + 2) + 3q(2ω + 1) + 9q2

2n
.

ut

Remarks:

1. Recall that k is the number of components in the tweak while η is the number of blocks in a
BRW super-block. So, k and η are constants, i.e., they are independent of n.

2. The query complexity σ is equal to the sum of the tweak query complexity θ and the mes-
sage query complexity ω, i.e., σ = θ + ω. Using this, it can be seen that the bounds on
∆(FAST[Gn, k, vecHorner]) and ∆(FAST[Gn, k, η, vecHash2L]) given by (40) and (41) respectively
are of the form cσ2 for some constant c. We provide illustrations below. As mentioned earlier,
this is the typical form of the security bound for earlier constructions and so FAST does not
have any security loss compared to the known constructions.
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3. In our implementations, we take η = 31 and we use the bounds (η + 1)/η < 2, 2(η + 1)/η < 3
and 3(η + 1)/η < 4. The value of k and the lengths of the tweaks depend on the application.
We provide two illustrations.
Case k = 1 and each tweak is an n-bit string: The bounds for ∆(FAST[Gn, k, vecHorner]) and
∆(FAST[Gn, k, η, vecHash2L]) can be shown to be respectively less than

5σ2 + σq + 12q2 + σ + 3q

2n
and

6σ2 + 135σq + 72q2 + 2σ + 69q

2n
.

Case k = 8 where the components of a tweak can have variable lengths:
The bounds for ∆(FAST[Gn, k, vecHorner]) and ∆(FAST[Gn, k, η, vecHash2L]) can be shown to be
respectively less than

1

2n
(
5ω2 + 2ωθ + ω + θ

)
+

1

2n
(
3q(ω + θ) + 10((2ω + 1)q + 3q2) + 6q2

)
(42)

and
1

2n
(
6ω2 + 3ωθ + 2(ω + θ) + 6q(θ + ω) + 300q(2ω + 1) + 900q2

)
. (43)

The expressions in (42) and (43) are determined by the values of q, ω and θ. These quantities are
in turn determined by the manner in which the adversary makes its queries. Since the adversary
can make queries of varying lengths, it is not possible to obtain further simplifications of the
expressions given in (42) and (43).

7 Comparison

This section provides a comparison of the design features of FAST with previously proposed TESs.
Several block cipher based TES constructions essentially use a layer of encryption using a mode

of operation of the block cipher sandwiched between two layers of hashing. Differences arise in the
choice of the mode of operation, the choice of the hash functions and other details.

1. For the mode of operation, the electronic codebook mode (ECB) has been suggested in TET [22]
and HEH [39] while some form of the counter mode of operation has been used in XCB [30, 31],
HCTR [41] and HCH [16]. In this paper, we use the counter mode of operation as described in
the scheme HCTR [41].

2. For the hash functions, XCB, HCTR and HCH essentially use polynomial hashing based on
Horner’s rule. The cost of hashing in TET is higher. BRW based hashing has been suggested
for HEH and implemented in hardware for fixed length messages [11].

All of the above mentioned TESs require both the encryption and the decryption functions of the
block cipher. The possibility of using only the encryption function of a block cipher to build a TES
has been reported [40] and for the convenience of description let us denote this scheme by TESX.
The present work is based upon the idea behind TESX. In terms of similarity, both TESX and the
present work use a Feistel layer on the first two blocks and a counter mode of operation on the rest
of the blocks. There are several differences in the two constructions.

1. For TESX, inside the Feistel layer, the hash function h is used to process A1 and B2. The key
for this hash function is τ ′ which is independent of the key τ which is used for the hash function
outside the Feistel layer. In contrast, FAST is organised such that the Feistel layer consists of
only two encryption rounds and the entire hashing using a single key τ takes place outside the
Feistel layer. In summary, TESX uses two hash keys while FAST uses a single hash key.
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2. For TESX, the hash of P3 is masked with β1 and XORed to both P1 and P2 and the hash of C3

is masked with β2 and XORed to both C1 and C2. FAST does away with the maskings with β1
and β2; the hash of P3 is XORed to only P1; and the hash of C3 is XORed to only C2.

3. For TESX, the seed to the counter mode is generated as A1⊕P2⊕C1⊕B2. FAST generates the
seed to the counter mode as F1 ⊕ F2.

4. The counter mode suggested in TESX requires a doubling operation for each block. The counter
mode used in FAST is given by (1) and is based on HCTR [41]; this counter mode does not
require the doubling operation.

Some of the above differences such as reducing the hash key size and avoiding doubling operations
are important from a practical point of view while the others are simplifications obtained by re-
moving unnecessary operations. Keeping the similarities and the differences in mind, it would be
proper to view the present work as a fine-tuned version of TESX. This fine tuning is required from
an engineering point of view where the goal is to obtain an efficient and clean design. More im-
portantly, this work presents detailed implementations in both software and hardware and thereby
actually demonstrates the advantages of the new proposal in comparison to the previous works.

Another class of block cipher based TESs such as CMC [24], EME [25, 21] (the scheme EME2
is essentially EME∗ [21]), AEZ [26] and FMix [7] essentially uses several layers of encryption using
a mode of operation of a block cipher. CMC, EME and FMix use two layers of encryption whereas
AEZ uses three layers of encryption. These TESs do not use any hash function. Out of these
CMC and FMix are sequential while EME and AEZ are parallelisable. AEZ and FMix require only
the encryption function of the underlying block cipher whereas CMC and EME require both the
encryption and the decryption functions of the block cipher. The costs of encryption for CMC,
EME and FMix are roughly two block cipher calls per block of the message and for AEZ the cost
is roughly two-and-half block cipher calls per block of the message. CMC and FMix do not use
any doubling operation while both EME and AEZ use doubling operations. Since AEZ and EME
are parallelisable while CMC and FMix are not, any reasonable implementations of AEZ and EME
will be faster than both CMC and FMix. Later we provide implemetation results which show the
superiority of FAST in comparison to both AEZ and EME in both software and hardware and hence
also imply the superiority of FAST over CMC and FMix.

Table 4 compares FAST to previously proposed schemes. From the viewpoint of efficiency, it
is preferable to have schemes which are parallelisable. This would eliminate CMC and FMix from
the comparison. Further, again from an efficiency point of view it would be preferable to have
schemes which use only the encryption module of a block cipher. This restricts the comparison to
AEZ and TESX. As explained above, the current construction is a fine-tuned version of TESX and
Table 4 shows the comparative advantage in terms of operation counts and key size. The inherent
simplification of the design of FAST over that of TESX is not captured by these parameters. Since
the design approaches of FAST and AEZ are different, the comparison between FAST and AEZ
cannot be determined only from the operation counts.

Among the various schemes that have been proposed, only XCB and EME2 (which is essentially
EME∗ [21]) have been standardised. Further, AEZ is a more recent proposal and has received a
fair amount of attention as part of the CAESAR5 competition. So, it is important to provide more
detailed comparison to XCB, EME2 and AEZ. Below we provide details of the implementations
of FAST in both software and hardware and the performance results of these implementations in
comparison to those of XCB, EME2 and AEZ. For the purpose of such comparison, we have made
efficient implementations of XCB, EME2 and AEZ in both software and hardware. In Appendix B

5 https://competitions.cr.yp.to/caesar.html
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Table 4: Comparison of different tweakable enciphering schemes. The block size is n bits, the tweak
is a single n-bit block and the number of blocks m ≥ 3 in the message is fixed. [BC] denotes
the number of block cipher calls; [M] denotes the number of field multiplications; [D] denotes the
number of doubling (‘multiplication by α’) operations; [BCK] denotes the number of block cipher
keys; and [HK] denotes the number of blocks in the hash key.
type scheme [BC] [M] [D] [BCK] [HK] dec module parallel

enc-mix-enc

CMC [24] 2m+ 1 – – 1 – reqd no
EME2∗ [21] 2m+ 1 +m/n – 2 1 2 reqd yes
AEZ [26] (5m+ 4)/2 – (m− 2)/4 1 2 not reqd yes
FMix [7] 2m+ 1 – – 1 – not reqd no

hash-enc-hash

XCB [30] m+ 1 2(m+ 3) – 3 2 reqd yes
HCTR [41] m 2(m+ 1) – 1 1 reqd yes
HCHfp [16] m+ 2 2(m− 1) – 1 1 reqd yes
TET [22] m+ 1 2m 2(m− 1) 2 3 reqd yes
HEH-BRW[39] m+ 1 2 + 2b(m− 1)/2c 2(m− 1) 1 1 reqd yes
TESX with BRW [40] m+ 1 4 + 2b(m− 1)/2c 2(m− 1) 1 2 not reqd yes
FAST[Fxm,Horner] m+ 1 2m+ 1 – 1 – not reqd yes
FAST[Fxm,BRW] m+ 1 2 + 2b(m− 1)/2c – 1 – not reqd yes

we provide a brief overview of the software and hardware implementation of AEZ. This is of some
independent interest.

8 Software Implementation

In this section, we describe our implementations of the various instantiations of FAST in software.
For the implementation, we set n = 128 and so F = GF (2128). The implementation of the PRF F
was done using the encryption function of AES.

Our target platforms for software implementation were modern Intel processors which support
the AES-NI instructions which includes the 64-bit binary polynomial multiplication. The relevant
Intel instructions for the two main tasks are the following.

Computation of AES: The relevant instructions are aeskeygenassist (for round key genera-
tion); aesenc (for one round of AES encryption) and aesenclast (for the last round of AES
encryption). There are additional instructions for AES decryption. We do not mention these,
since we do not require the AES decryption module.

Computation of polynomial multiplication: The relevant instruction is pclmulqdq. This
instruction takes as input two 64-bit unsigned integers representing two polynomials each of
maximum degree 63 over GF (2) and returns a 128-bit quantity which represents the product
of these two polynomials over GF (2).

For software implementation, the two relevant parameters are latency and throughput. These
are defined6 as follows: “Latency is the number of processor clocks it takes for an instruction to have
its data available for use by another instruction. Throughput is the number of processor clocks it
takes for an instruction to execute or perform its calculations.” On Skylake the latency/throughput
figures of aesenc, aesenclast and pclmulqdq are 4/1.

6 https://software.intel.com/en-us/articles/measuring-instruction-latency-and-throughput
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8.1 Implementation of the Hash Functions

The several variants of the hash functions used in this work are all based on finite field computations
over F = GF (2n). For the implementation, we choose n = 128. Addition over this field is a simple
XOR operation of 128-bit data types. Multiplication, on the other hand, is more involved.

We consider the field F to be represented using the irreducible polynomial ψ(x) = x128 ⊕ x7 ⊕
x2⊕x⊕ 1 over GF (2). The elements of F are represented using polynomials over GF (2) of degrees
at most 127. Let a(x) and b(x) be two such polynomials. The multiplication of a(x) and b(x) in F
consists of the following two operations. Compute the polynomial multiplication of a(x) and b(x)
over GF (2) and let c(x) be the result. Then c(x) is a polynomial over GF (2) of degree at most
254. The product of a(x) and b(x) over F is c(x) mod ψ(x). The above computation consists of two
distinct steps, namely polynomial multiplication followed by reduction.

Polynomial multiplication: The instruction pclmulqdq multiplies two polynomials over GF (2)
of degrees at most 63 each and returns a polynomial of degree at most 126. This is a 64-bit poly-
nomial multiplication over GF (2). Our requirement is a 128-bit polynomial multiplication over
GF (2). Using the direct schoolbook method, a 128-bit polynomial multiplication can be computed
using four 64-bit polynomial multiplications and hence using four pclmulqdq calls. Karatsuba’s
algorithm, on the other hand, allows the computation of a 128-bit polynomial multiplication us-
ing three pclmulqdq calls at the cost of a few extra XOR operations. Due to the low latency of
pclmulqdq on Skylake processors, it turns out that schoolbook is faster than Karatsuba. This has
been reported by Gueron7 and we also observed this in our experiments. So, we opted to implement
128-bit polynomial multiplication using the schoolbook method.

Reduction: Efficient computation of c(x) mod ψ(x) has been discussed earlier [19]. It was shown
that this operation can be efficiently computed using two pclmulqdq instructions along with a few
other shifts and xors. A more detailed description of this procedure can also be found elsewhere [9].
We implemented reduction using this method.

Horner: As mentioned earlier, Hornerτ (X1, . . . , Xm) can be computed using m − 1 multiplications
in F. Each multiplication consists of a polynomial multiplication followed by a reduction. Doing
this directly, would lead to a count of m− 1 polynomial multiplications and m− 1 reductions.

The efficiency can be improved by using a delayed (or lazy) reduction strategy. Let i > 1
be a positive integer and suppose the powers 1, τ, τ2, . . . , τ i−1, τ i are available (i.e., the powers
τ2, . . . , τ i−1, τ i have been pre-computed and stored). The expression X1τ

i−1+ · · ·+Xi−1τ+Xi over
F can be computed using i−1 polynomial multiplications followed by a single reduction. Extension
to handle arbitrary number of blocks is easy. For simplicity, assume that i|m and λ = m/i. The m
blocks are divided into λ groups of i blocks each. Each group of i blocks is processed and suppose
the outputs are Y1, Y2, . . . , Yλ. Then Hornerτ (X1, . . . , Xm) = τ i(· · · τ i(τ iY1⊕Y2)⊕ · · ·⊕Yλ−1)⊕Yλ.
Processing of a single such group of i blocks requires i− 1 polynomial multiplications and a single
reduction plus a multiplication by τ i. Note that the computation of τ iY1⊕Y2 is done by performing
the polynomial multiplication of τ i and Y1, computing Y2 without the final reduction, adding the
two results and then performing a reduction. Further, this strategy is also carried out for the
intermediate computations. So, processing a group of i blocks requires i polynomial multiplications
and a single reduction except for the last group. In the case where i does not divide m, it is easy
to modify this strategy to handle this case. We have implemented this strategy for i = 8 (for use

7 https://github.com/Shay-Gueron/AES-GCM-SIV/
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in Horner and vecHorner) and i = 9 (for use in vecHash2L). This strategy of delayed reduction has
been earlier used [20] in the context of evaluation of POLYVAL which is a variant of Horner.

There is another technique which can result in efficiency improvement. The sequence X1, . . . , Xm

is decimated into j subsequences X1, Xj+1, . . .; X2, Xj+2, . . .; . . .; Xj , X2j , . . .; each subsequence is
computed as a polynomial in τ j and then the results are combined together to obtain the final
result. This is a well known technique and we provide further details as part of the discussion
on hardware implementation. The advantage of this technique is that the j sub-sequences can be
computed in parallel. This is a distinct advantage in hardware while in software the ability to
batch j independent multiplications allows the processor to efficiently pre-fetch and pipeline the
corresponding operations. We have experimented with j = 1, 2 and 3 and later we report timing
results for j = 3. There are cases, however, where j = 1 provides slightly better performance than
j = 3.

vecHorner: The computation of vecHorner essentially boils down to Horner computation on sev-
eral different blocks. The implementation of Horner is extended to implement the computation of
vecHorner.

BRW: The implementation of BRW arises as part of the implementation of FAST[Fxm,BRW]. For
this implementation, we chose m = 256 and n = 128 (corresponding to a 4096-byte disk sector to
be encrypted using AES). With m = 256, BRW is invoked on m−2+1 = 255 (the first two message
blocks are not hashed while the single tweak block is hashed) blocks. The implementation of BRW
on 255 blocks has been done in the following manner. Write

BRWτ (X1, . . . , X255) = BRWτ (X1, . . . , X127)(X128 ⊕ τ128)⊕ BRWτ (X129, . . . , X255).

This shows that the 255-block BRW computation can be broken down into 2 127-block BRW
computations. Continuing, we break up the 255-block BRW computation into 8 31-block BRW
computations. A completely loop unrolled 31-block BRW computation can be implemented using
15 polynomial multiplications and 8 reductions [9]. We use this implementation of 31-block BRW
computation to build the 255-block BRW computation. This strategy requires 127 polynomial mul-
tiplications and 71 reductions. Following the delayed reduction strategy for BRW computation [9],
it is possible to have a completely loop unrolled 255-block BRW computation requiring 127 poly-
nomial multiplications and 64 reductions. The code for such a loop unrolled implementation would
be quite complex and could lead to a substantial performance penalty. This is the reason why we
have chosen to build the 255-block BRW computation from the (loop unrolled) implementation of
the 31-block BRW computation.

vecHash2L: The hash function vecHash2L is parameterised by two quantities, namely the block size
n and the super-block size η. The use of AES fixes n to be 128. We have taken η = 31. This requires
the implementations of 31-block BRW and also i-block BRW for i = 1, . . . , 30 to tackle the last
super-block which can possibly have less than 31 blocks. As mentioned earlier, an implementation of
Hash2L for n = 128 and η = 31 was reported earlier [9], but, the implementation of vecHash2L was
not considered in that work. The computation of vecHash2L can be conceptually seen as 31-block
BRW computations whose outputs are combined using Horner. Additionally, after each component,
the length block is processed. As discussed above, the computation of Horner can be improved by
using the delayed reduction strategy and the decimation technique. We have experimented with
various combinations and later we report the results for 3-decimated implementations with and
without the delayed reduction strategy.
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8.2 Implementation of FAST

We have described several variants of FAST. Software implementations of these variants are built
from the implementation of AES and the implementations of the various hash functions. The AES
based parts consist of the Ctr mode and the Feistel layer while the hash functions are built from
either Horner or BRW in case of the fixed length setting and are built from either vecHorner or
vecHash2L in the general setting. We describe these aspects below.

Key schedule generation: All versions of FAST use a single key K which is the key to the
underlying PRF FK . Instantiating FK with the encryption function of AES requires generating the
round keys. This is a one-time activity and is done using the instruction aeskeygenassist. The
generated round keys are stored and used in both the Ctr mode and the Feistel layer.

Ctr: The Ctr mode defined in (1) requires a PRF F which is implemented using the encryption
function of AES. Each invocation of the encryption function can be implemented using aesenc

followed by aesenclast. The invocations of aesenc can be speeded up using an interleaving of
multiple AES invocations. The AES encryption calls in the Ctr mode are fully parallelisable. Let
i ≥ 1 be a positive integer. The computations of the AES calls in the Ctr mode are done in batches
of i calls each. The inputs to one batch of i encryptions are prepared; then the first rounds of AES
encryptions of this batch of i encryptions are computed using i calls to aesenc; this is followed by
the second rounds of this batch of i encryptions again using aesenc and so on. This ensures that
the second round of any AES encryption does not have to wait to obtain the output of the first
round. This interleaved strategy leads to substantial speed-up over computing the complete AES
encryptions one after another. In our implementation, we have used i = 8 which follows the earlier
work by Gueron8.

Feistel: The Feistel layer has two calls to AES encryptions. These calls are not parallelisable. So,
these calls are implemented using a sequence of aesenc followed by a single call to aesenclast

to perform the computation of a single AES encryption. The second encryption call in the Feistel
layer can be executed in parallel with the first encryption call of the Ctr. We do not use this in the
software implementation, though this aspect is exploited in the hardware implementation.

Hash key generation: The hash key τ is obtained by applying FK to fStr. This is a one-time
operation and the value of τ does not change during the life-time of K. So, it is possible to generate
τ once and store it securely along with K. More generally, it is also possible to use a uniform random
τ as the hash key instead of generating it by applying FK to fStr. This will not affect the security
analysis, but, will increase the key storage requirement. Alternatively, it is possible to generate τ
once per session. The cost of generating τ is amortised over all the encryptions/decryptions per
session and hence is negligible. Timing results provided later include the time for generating τ .

FAST[Fxm,Horner]: In the setting of Fxm, tweaks consist of a single n-bit block while plaintexts and
ciphertexts consist of m n-bit blocks. In our implementation, we have taken m = 256 so that the
total number of bytes in a plaintext/ciphertext is 4096. As mentioned earlier, this corresponds to
the size of a modern disk sector. In this case, P3 = (P3,1, . . . , P3,m−2) consists of (m−2) n-bit blocks
and the hash function Hornerτ (1, P3,1, . . . , P3,m−2, T ) needs to be computed. An implementation of
Horner as mentioned above is used. This requires a total of 255 polynomial multiplications and a

8 Interleaving of 8 AES encryptions has been called a sweat point in https://crypto.stanford.edu/

RealWorldCrypto/slides/gueron.pdf
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total of 32 reductions. Counting a single polynomial multiplication as 4 pclmulqdq and a reduction
as 2 pclumulqdq, the total number of pclmulqdq calls required is 1084.

FAST[Fxm,BRW]: As above, we take m = 256. The requirement is to compute

BRWτ (P3,1, . . . , P3,m−2, T ).

This is done as described above which requires 127 polynomial multiplications and 71 reductions.
The total number of pclmulqdq calls required is 650. This is 434 calls lesser than that required
for computing Hornerτ (1, P3,1, . . . , P3,m−2, T ). So, one would expect FAST[Fxm,BRW] to be faster
than FAST[Fxm,Horner]. Our implementation shows a speed-up, but, not as much as one might
expect from the counts of the pclmulqdq calls. Indeed instruction cache and pipelining are rather
complicated issues and precise information about these issues for Intel processors are not easily
available9. So, it is possible that the code for BRW that we have developed can be tuned further
to obtain speed improvements.

FAST[Gn, k, vecHorner]: This requires the implementation of the hash function vecHorner which is
an easy extension of the implementation of Horner.

FAST[Gn, k, η, vecHash2L]: This requires the implementation of the hash function vecHash2L. The
implementation of this hash function has been discussed above.

8.3 Timing Results

In this section, we provide timing results for the software implementations of all the four variants
of FAST. The corresponding code is available at https://github.com/sebatighosh/FAST. The
timing results for FAST are for both the settings of Fx and Gn.

In the setting of Fx, messages are 4096 bytes long, i.e., each message consists of 256 128-bit
blocks and the tweak is a single 128-bit block. The timing results are shown in Table 5 along with
the timing results for XCB, EME2 and AEZ.

In the setting of Gn, timing measurements are separately reported for messages of lengths 512,
1024, 4096 and 8192 bytes. For tweaks, the number of components has been considered to be 2,
3 and 4 and the sum of the lengths of the components of the tweaks has been taken to be 1024
bytes: For tweaks with 2 components, each component has length 512 bytes; for tweaks with 3
components, the 3 components have lengths 336, 336 and 352 bytes; whereas for tweaks with 4
components, each component has length 256 bytes. Two columns of measurements are shown for
FAST[Gn, k, η, vecHash2L]. The column with the heading ‘delayed’ reports measurements for the case
where the Horner layer in vecHash2L has been implemented using the delayed reduction strategy
while the column with the heading ‘normal’ reports measurements for the case where the Horner
layer in vecHash2L has been implemented without using the delayed reduction strategy. The timing
results are shown in Table 6.

The timing measurements were taken on two platforms.

– Skylake: The processor was Intel Core i7-6500U @ 2.5GHz. The operating system was 64-bit
Ubuntu 14.04 LTS and the C codes were complied using GCC version 5.5.0.

– Kabylake: The processor was Intel Core i7-7700 @ 3.6GHz. The operating system was 64-bit
Ubuntu 18.04 LTS and the C codes were complied using GCC version 7.3.0.

9 https://blog.cr.yp.to/20140517-insns.html
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For the setting of Fx, we have carried out efficient implementations of XCB, EME2 and AEZ. In
the implementation of AEZ, for the underlying block cipher, the full AES has been used unlike the
reduced round versions considered earlier [26]. XCB uses hashing based on Horner’s rule and we
have used the same delayed reduction strategy in the implementation of this hashing as we did in the
implementation of the hash function for FAST[Fx256,Horner]. The efficient software implementations
of XCB, EME2 and AEZ are of independent interest. We provide a brief description of the software
implementation of AEZ in Appendix B.1. Timing results from the setting of Fx show that all three
of XCB, EME2 and AEZ are slower than FAST. Consequently, we do not compare FAST to XCB,
EME2 and AEZ in the setting of Gn.

Based on Tables 5 and 6, we make the following observations.

1. In the setting of Fx, FAST[Fx256,Horner] and FAST[Fx256,BRW] are faster than all three of XCB,
EME2 and AEZ with FAST[Fx256,BRW] being faster than FAST[Fx256,Horner].

2. In the setting of Gn for vecHorner, the speed decreases with increase in message length while
for vecHash2L the speed increases with increase in message length. In both cases, for the same
message length, the speed mostly does not vary much with increase in the number of components
in the tweak. In the case of vecHash2L, using the delayed reduction strategy for implementing the
Horner layer results in improved speed than an implementation without using delayed reduction.
Overall, on Kabylake FAST[Gn, k, 31, vecHash2L] is faster than FAST[Gn, k, vecHorner] while on
Skylake FAST[Gn, k, 31, vecHash2L] is faster than FAST[Gn, k, vecHorner] for longer messages.

Table 5: Comparison of the cycles per byte measure of FAST with those of XCB, EME2 and AEZ
in the setting of Fx256.

scheme Skylake Kabylake

XCB 1.92 1.85

EME2 2.07 1.99

AEZ 1.74 1.70

FAST[Fx256,Horner] 1.63 1.56

FAST[Fx256,BRW] 1.24 1.19

Table 6: Report of cycles per byte measure for the setting of Gn for FAST[Gn, k, vecHorner] and
FAST[Gn, k, 31, vecHash2L].

Skylake Kabylake

msg len k vecHorner vecHash2L vecHash2L vecHorner vecHash2L vecHash2L
(bytes) (delayed) (normal) (delayed) (normal)

2 1.51 1.38 1.59 1.42 1.32 1.56
512 3 1.40 1.38 1.39 1.32 1.31 1.35

4 1.34 1.37 1.36 1.26 1.31 1.33

2 1.53 1.34 1.48 1.42 1.27 1.42
1024 3 1.45 1.34 1.34 1.35 1.27 1.30

4 1.40 1.33 1.32 1.29 1.27 1.30

2 1.57 1.30 1.35 1.45 1.24 1.30
4096 3 1.54 1.29 1.31 1.43 1.24 1.27

4 1.51 1.29 1.30 1.40 1.24 1.26

2 1.57 1.27 1.32 1.45 1.22 1.27
8192 3 1.56 1.27 1.30 1.44 1.22 1.25

4 1.54 1.27 1.30 1.43 1.22 1.25
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Remark: From Table 5, it may be noted that AEZ is faster than EME2. From Table 4, it can be
seen that the number of block cipher calls made by AEZ is more than that made by EME2. So,
the fact that in practice AEZ turns out to be faster may be surprising. The explanation lies in the
difference in the number of doubling operations made by EME2 and AEZ. From Table 4, EME2
requires roughly 2[BC]+2[D] operations per block whereas AEZ requires roughly 2.5[BC]+0.25[D]
operations per block. Executing AES instructions in groups using pipelining results in very fast
AES timings. Our experiment on the Skylake processor shows that AES requires about 0.65 cycles
per byte. In contrast, while the doubling operation should in theory be much faster, there is no
support for 128-bit shift and consequently doubling takes about 0.29 cycles per byte. (We refer
to [17] for an elaborate discussion on various strategies for constant time doubling operation.)
Using these figures, the operations count of 2[BC]+2[D] for EME2 translates to about 1.88 cycles
per byte while the operations count of 2.5[BC]+0.25[D] for AEZ translates to about 1.70 cycles per
byte. This provides an explanation of why AEZ is faster than EME2. Note that EME2 requires
additional block cipher calls and so the actual observed time of 2.07 cycles per byte for EME2 is a
bit higher than the estimated 1.88 cycles per byte whereas the observed and the estimated timings
for AEZ are quite close.

9 Hardware Implementation

The fixed length variants of FAST (i.e., FAST[Fxm,Horner] and FAST[Fxm,BRW]) have been imple-
mented in reconfigurable hardware. The implementations were done keeping in mind the application
of disk encryption. The design decisions that were made are as follows:

1. PRF: For the PRF F, we have used the encryption function of AES. So, the block length
n = 128.

2. Message and tweak lengths: We have assumed a message length of 4096 bytes. As mentioned
earlier, this is the current sector size of commercially available hard disks. For n = 128, 4096
bytes correspond to 256 blocks, i.e., m = 256. For disk encryption application, the tweaks are
sector addresses and we have assumed the tweak to be a single n-bit block. So, our implemen-
tations are those of FAST[Fx256,Horner] and FAST[Fx256,BRW].

3. Choice of FPGA: The basic design goal was speed and so the implementations were optimised
for speed. Nevertheless, we tried to keep the area metric reasonable. The target devices were
high end fast FPGAs. In particular, we have optimised our designs for the Xilinx Virtex 5 and
Virtex 7 families.

With m = 256 and a single block tweak, the numbers of blocks in the inputs to the hash functions
h and h′ are both 255. The 255 blocks comprise of 254 blocks arising from P3 or C3 and one block
from the tweak. Since 255 blocks are to be hashed, for FAST[Fx256,Horner], the requirement is to
implement 255-block Horner while for FAST[Fx256,BRW], the requirement is to implement 255-block
BRW.

For both FAST[Fx256,Horner] and FAST[Fx256,BRW], we have implemented two variants, one
with a single core of the AES encryption module and the other with two cores of the AES encryption
module. We denote variants of FAST[Fx256,Horner] and FAST[Fx256,BRW] using a single AES core
as FAST[AES,Horner]-1 and FAST[AES,BRW]-1 respectively. The variants of FAST[Fx256,Horner] and
FAST[Fx256,BRW] using two AES cores are denoted as FAST[AES,Horner]-2 and FAST[AES,BRW]-2
respectively.

The two basic building blocks for all of these designs are the encryption function of the AES
and a finite field multiplier.
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In our implementations, we have used pipelined AES encryption cores. An AES encryption
core requires a key generation module. For the two-core designs the same key generation module is
shared by both the cores. The latency of each AES core is 11 cycles, i.e., the first block of ciphertext
is produced after a delay of 11 cycles and thereafter one cipher block is obtained in each cycle. The
design of the AES cores adopts some interesting ideas reported earlier [8]. The earlier design [8] was
that of a sequential AES design tailored for the Virtex 5 family of devices. An important aspect of
this design is that the S-boxes are implemented as 256× 8 multiplexers and one S-box fits into 32
six-input LUTs which are available in Virtex 5 FPGAs. We have used the same idea to design the
S-boxes of our pipelined AES core.

With n = 128, the requirement is to compute products in GF (2128). For this, we have used a
4-stage pipelined Karatsuba multiplier. The number of stages was selected to match the maximum
frequency of the AES encryption core, which is the only other significant component in the circuits.
The multiplier design is the same as reported in a previous work [12].

To use the pipelined multiplier efficiently, it is important to schedule the multiplications in such
a way that pipeline delays are minimised. The BRW computation is amenable to a very efficient
pipelined implementation. This requires identifying an “optimal” order of the multiplications so
that both pipeline delays and the necessity to store intermediate results are minimised. A detailed
study of such an optimal ordering is available in the literature [11]. A circuit for computing BRW
polynomials on 31 blocks of inputs using a 3-stage pipelined Karatsuba multiplier is known [11]. In
the present work, the requirement is to compute BRW polynomials on 255 blocks using a 4-stage
pipelined multiplier. We scale up the earlier design [11] suitably for our purpose.

For computing Horner using a pipelined multiplier the idea of decimation is used. This has been
briefly mentioned in the context of software implementation. We provide some more details here.
Let (X1, X2, . . . , Xm) and a positive integer d be given. Let χi = m− i (mod d). The d-decimated
Horner computation [9] is based on the following observation.

Hornerτ (X1, X2, . . . , Xm)

= τχ1Hornerτd(X1, X1+d, X1+2d, . . .)⊕ · · · ⊕ τχdHornerτd(Xd, X2d, X3d, . . .).

So, Hornerτ (X1, X2, . . . , Xm) can be computed by evaluating d independent polynomials at τd and
then combining the results. This representation allows efficient use of a d-stage pipelined multiplier,
as in each clock, d independent multiplications can be scheduled.

In what follows, we give a detailed description of the architecture of FAST[AES,BRW]-2 followed
by a short description of the architecture of FAST[AES,Horner]-2.

9.1 Architecture for FAST[AES,BRW]-2

FAST[AES,BRW]-2 uses two pipelined AES encryption cores and a 4-stage pipelined multiplier.
An overview of the architecture is shown in Figure 1. We briefly describe its components and
functioning.

The basic components of the architecture are the two AES encryption cores which are de-
noted as AESodd and AESeven. The module for the BRW polynomial evaluation using a 4-stage
Karatsuba multiplier is shown as BRWPoly eval.

The two AES cores, two multiplexers M1 and M2 and a counter named Counter are enclosed
inside a dashed rectangle. This constitutes a module which implements the counter mode. The
module can also perform AES encryption of a single block. The AESeven core is used only in
counter mode whereas the AESodd core is used for both encryption in the counter mode and to
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encrypt single blocks. According to the algorithms in Tables 2 and 3, encryption of a single block
is required for the blocks F1 and F2 in the Feistel function and for fStr in the main function.

The counter has two outputs, one for odd values and the other for even values. The even values
are fed directly to the AESeven core and the odd values are fed to the AESodd core through the
multiplexer M1. The block BRWPoly eval performs the 255-block BRW computation. Addition-
ally, this block also computes the single multiplications by τ required for the computation of Hτ

and G′τ (see Table 2).

The registers Z, A1, F1, F2 and B2 are used to store the intermediate values and these
correspond to the variables Z,A1, F1, F2 and B2 respectively of the algorithms described in Tables 2
and 3.

The input ports Podd and Peven are used to feed in the odd numbered message blocks and
even numbered message blocks respectively. The tweak is also fed in through Podd. The hash key
is fed in through a separate port. The output ports Ceven and Codd output the even and odd
numbered cipher blocks respectively.

Fig. 1: Architecture for FAST[AES,BRW]-2.

The multiplexer M5 selects the input to AESodd from one of the four possible inputs, namely,
Podd, F1, F2 or the string fStr. The multiplexer M1 selects either the output of M5 or Z ⊕ i,
where i is the output from the odd port of Counter. This input design to the AESodd core
through the multiplexers M1 and M5 allows AESodd to encrypt in the counter mode and also
to encrypt the required single blocks.
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The BRW computation module BRWPoly eval is required to be fed two blocks of plaintext
or ciphertext in each cycle. The multiplexer M3 provides the first input to BRWPoly eval. This
input is selected by M3 to be one of Podd, Codd, A1 or B2. The inputs Podd and Codd are
relevant for BRW while the inputs A1 and B2 are relevant when a single-block multiplication is
required. The second input to BRWPoly eval is the output of the multiplexer M4 and can be
either Peven or Ceven.

The final outputs of the circuit are selected using multiplexers M6 and M7. Control signals are
generated using a finite state machine which follows the algorithm of FAST.

Timing analysis: Figure 2 shows the timing diagram for the architecture for FAST[AES,BRW]-2.
The first 11 clock cycles are required to compute the hash key τ by applying the AES encryption
module to fStr. The computation of the hash function Hτ (see (6)) requires a 255-block BRW com-
putation and two subsequent field multiplications by τ . The 255-block BRW computation requires
127 field multiplications. The 4-stage multiplier has a latency of 4 cycles. So, the BRW computation
requires 131 cycles. The two subsequent multiplications require 4 cycles each. The computation of
Hτ is completed after 141 cyles which includes two additional synchronisation cycles. The Feistel
network has two encryptions. The first encryption requires 11 cycles. After the first encryption,
both F1 and F2 are available and so the input Z = F1 ⊕ F2 to the counter can be obtained. Let
Ji = Z ⊕ binn(i), i = 1, . . . , 254. AESodd performs the encryptions of F1, F2, J1, J3, . . . , J253 while
AESeven performs the encryptions of J2, J4, . . . , J254. AESodd and AESeven are synchronised
such that the encryptions of J2j−1 and J2j , j = 1, . . . , 127, are obtained simultaneously. This allows
the computation of G′τ to start after the encryptions of J1 and J2 are completed and be executed in
parallel with the rest of the encryptions of the counter. The total computation requires 319 cycles
which includes a few synchronisation cycles.

Fig. 2: Time diagram for encryption using FAST[AES,BRW]-2.

9.2 Architecture for FAST[AES,Horner]-2

To take the advantage of two AES cores in the design of FAST[AES,Horner]-2 it becomes necessary
to use two multipliers. The reason is the following. The crucial parallelisation is in computing the
second hash layer where the hash of the ciphertexts produced by the counter mode is computed.
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Since two pipelined AES cores are used to implement the counter mode, after an initial delay, in
each clock cycle two blocks of ciphertexts are produced. So, the hash module has to be capable of
processing two ciphertext blocks in each cycle. For BRW based hashing, each multiplication involves
two ciphertext blocks. On the other hand, in the case of Horner, each multiplication involves a single
block. So, to process two ciphertext blocks in each cycle it is required to use two multipliers. Each
multiplier operates in a 4-stage pipeline. For proper scheduling using the two multipliers, it is
required to use a 8-decimated version of Horner. This allows the scheduling of four independent
multiplications to each multiplier in every clock cycle.

9.3 Experimental Results

We present performance data for four implementations of FAST. The results are compared with
the implementations of XCB, EME2 and AEZ. The implementations of XCB and EME2 are as
reported in an earlier work [12]. Two architectures for each of EME2 and XCB are reported. These
are named EME2-1, EME2-2 and XCB-1, XCB-2 respectively. For AEZ, we have carried out an
efficient implementation which is described in Appendix B.2. This implementation uses two cores
and we name the architecture AEZ-2. The hardware resources utilized in these architectures along
with those used in the different architectures for FAST are summarized in Table 7.

Table 7: Summary of the main hardware resources in the architectures of FAST, EME2, XCB and
AEZ.

Scheme Pipelined AES Pipelined AES Sequential AES Pipelined
encryption core decryption core decryption core multiplier

FAST[AES,BRW]-1 1 0 0 1

FAST[AES,Horner]-1 1 0 0 1

EME2-1 1 1 0 0

XCB-1 1 0 1 1

FAST[AES,BRW]-2 2 0 0 1

FAST[AES,Horner]-2 2 0 0 2

EME2-2 2 2 0 0

XCB-2 2 0 1 2

AEZ-2 2 0 0 0

Some important aspects of the architectures of XCB, EME2 and AEZ are as follows:

1. The encryption cores utilised in FAST are the same as those utilised in XCB, EME2 and AEZ.
Further, the multiplier utilised in FAST is also utilised in XCB. The sequential decryption core
required in XCB was optimised for speed. To match the critical path of the AES encryption
core the sequential decryption core was implemented using T-boxes.

2. EME2 is an encrypt-mask-encrypt type construction which consists of two ECB layers with
an intermediate masking. The ECB layers can be implemented with pipelined AES cores. For
decryption, ECB in decryption mode is required; hence for efficient decryption functionality
pipelined AES decryption cores are required to be used. The second layer of ECB in EME2 can
only be computed once the first layer has been completed and so the intermediate results of the
first layer of ECB encryption are required to be stored. Block RAMs are used for this purpose.
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3. XCB is a hash-counter-hash type mode which involves a counter mode of operation sand-
wiched between two polynomial hash layers. The main encryption/decryption in XCB takes
place through a variant of the counter mode (which is different from the counter mode used in
FAST). The counter mode can be implemented using only the encryption module of AES. One
call to the decryption module of AES is required in XCB for both encryption and decryption.
For this, a sequential AES decryption core is utilised. Thus, XCB-2 uses two pipelined AES en-
cryption cores which does the bulk encryption and in addition uses a sequential AES decryption
core.

4. The polynomial hash layers in XCB consist of Horner computations. The second Horner computa-
tion in XCB can be computed in parallel with the counter mode. As in case of FAST[AES,Horner]-
2 the counter mode in XCB-2 is implemented using two AES cores. So, in each clock cycle, two
blocks of ciphertexts are obtained and to utilise this parallelisation two multipliers are required.

5. For AEZ, we do not consider an architecture consisting of a single AES core. The number of
cycles required by such an architecture will be too high compared to the other schemes.

6. There are two architectures for AEZ, namely, AEZ-2-pre and AEZ-2-otf. In AEZ-2-pre, the
required masks are precomputed whereas in AEZ-2-otf, the required masks are computed on
the fly. A total of 145 cycles are required to precompute the masks in AEZ-2-pre.

7. The architecture for EME2 needs to store intermediate results of lengths equal to the message
length. For doing this, EME2 requires 4 block RAMs. In contrast to EME2, both AEZ-2-pre and
AEZ-2-otf require to store more intermediate results requiring 8 block RAMs. Further, AEZ-
2-pre stores the precomputed masks which requires an additional 4 block RAMs. So, overall
AEZ-2-otf requires 8 block RAMs while AEZ-2-pre requires 12 block RAMs.

The performance results presented in Table 8 are obtained after place and route process in ISE
14.7. The target device was xc5vlx330t-2ff1738. We tried many timing restrictions and the best
case is reported.

Table 8: Implementation results for Virtex 5.
Architecture Area Frequency Clock Throughput

slices blk RAMs (MHz) cycles (Gbps)

AES-PEC 2859 0 300.56 1 38.47

AES-PDC 3110 0 239.34 1 30.72

AES-SDC 1800 0 292.48 11 3.40

128-bit mult 1650 0 298.43 1 38.20

FAST[AES,BRW]-2 7175 0 289.56 319 29.74

FAST[AES,Horner]-2 8983 0 289.98 311 30.55

XCB-2 9752 0 270.52 316 28.05

EME2-2 10970 4 230.56 305 24.77

AEZ-2-pre 5646 12 269.56 389 (+145) 22.70†
AEZ-2-otf 5854 8 272.32 404 22.08

FAST[AES,BRW]-1 5064 0 290.57 455 20.92

FAST[AES,Horner]-1 4781 0 291.05 565 16.88

XCB-1 6070 0 272.75 569 15.70

EME2-1 6500 4 233.58 561 13.64
†: ignores the 145 cycles required for pre-computation.
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The first part of Table 8 shows the performance of the basic modules, i.e., the pipelined en-
cryption core (PEC), the pipelined decryption core (PDC), the sequential decryption core (SDC)
and the 128-bit pipelined Karatsuba multiplier. The decryption cores are not required in FAST and
AEZ. The pipelined decryption core is required for EME2 and the sequential decryption core is
required for XCB. The results for individual AES cores in Table 8 include the area required for the
key schedule module. For the implementations of modes of operation we have implemented only
one key schedule, and it is shared between all the AES cores presented in the architecture.

From the results in Table 8 we observe the following:

1. Comparison of area.

(a) AEZ requires two cores but no multiplier and so the number of slices is lesser than those
required for 2 core architectures for FAST. On the other hand, the number of slices for
AEZ is more than the single core architectures for FAST which use a single AES core and a
multiplier.

(b) Of all the two-core architectures, AEZ-2-pre requires the smallest number of slices and the
highest number of block RAMs. FAST[AES, BRW]-2, on the other hand, requires more slices
than AEZ, but no block RAM. Among the single-core architectures, FAST[AES, Horner]-1 is
the smallest which is also the smallest design overall.

(c) In comparison to Horner, the module for implementing BRW requires more registers and
also circuits for squaring. As a result, FAST[AES, BRW]-1 requires 283 slices more than
FAST[AES, Horner]-1.

(d) For the two-core architectures, FAST[AES, Horner]-2 requires more area than FAST[AES,
BRW]-2 since the implementation of FAST[AES, Horner]-2 requires two multipliers while the
implementation of FAST[AES, BRW]-2 requires a single multiplier.

(e) EME2 is the costliest in terms of area in both categories of single core and double core
architectures. This is because it requires AES decryption cores. Further, both EME2-1 and
EME2-2 require four block RAMs in addition to the slices.

(f) The overall architecture of XCB is similar to that of FAST[AES, Horner]. The main difference
is that XCB requires an additional sequential AES decryption core and this results in XCB
being costlier than FAST[AES, Horner] in terms of area.

2. Comparison of throughput.

(a) Among the two-core architectures, FAST[AES,Horner]-2 has the highest throughput while
among the single-core architectures, FAST[AES,BRW]-1 has the highest throughput.

(b) As computing BRW requires about half the number of multiplications required for computing
Horner, in comparison to FAST[AES,Horner]-1, a significant number of clocks can be saved
in computing the first hash in case of FAST[AES,BRW]-1. As a result, the total number of
clocks required by FAST[AES,BRW]-1 is smaller than that required by FAST[AES,Horner]-1
and this leads to a better throughput for FAST[AES,BRW]-1.

(c) FAST[AES,Horner]-2 is marginally better than FAST[AES,BRW]-2 in terms of throughput.
This is due to the following reason. FAST[AES,Horner]-2 uses two multipliers which compen-
sates for the gain from the use of BRW polynomials. Overall, FAST[AES,Horner]-2 requires
slightly lesser number of clocks and utilises slightly higher frequency.

(d) Both versions of XCB operate at a lower frequency than the corresponding versions of FAST.
This leads to lower throughput of XCB compared to FAST. The lower frequency of XCB is
essentially due to the use of the sequential AES decryption core which is not present in the
architectures for FAST.
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(e) Among the 2-core architectures, AEZ has the lowest throughput while EME2-1 has the
lowest throughput overall. EME2 has the lowest frequency due to the use of the pipelined
decryption core, which is absent in all other architectures.

(f) The frequency of AEZ is lower than FAST. This is due to the use of block RAMs.

To confirm the comparative performance of the different designs, we have also obtained results
for the high end Virtex 7 FPGA. The target device was xc7vx690t-3fgg1930. The results are
presented in Table 9. Based on Table 9, we make the following observations.

1. The frequency grows significantly in comparison with Virtex 5 results. This is basically a direct
effect of the difference of the fabrication technology between the two families. While Virtex 5
family is built with 65 nm technology, Virtex 7 is built with 28 nm technology.

2. The number of slices for the AES cores is significantly lesser than the corresponding implemen-
tations in Virtex 5. This is due to the fact that slices in Virtex 7 include 8 Flip-Flops which is
4 more than that in Virtex 5.

3. In some cases, the number of slices grows in comparison with the Virtex 5. Examples are the 128-
bit multiplier and FAST[AES,Horner]-1. This behaviour can be attributed to the optimisation
performed by the tool.

Table 9: Implementation results for Virtex 7.
Architecture Area Frequency Clock Throughput

slices blk RAMs (MHz) cycles (Gbps)

AES-PEC 2093 0 405.02 1 51.84

AES-PDC 2352 0 352.19 1 45.08

AES-SDC 1575 0 390.056 11 4.54

128-bit mult 1884 0 404.86 1 51.82

FAST[AES,BRW]-2 7202 0 375.43 319 38.56

FAST[AES,Horner]-2 8906 0 377.03 311 39.73

XCB-2 9330 0 358.84 316 37.21

EME2-2 11800 4 315.58 305 33.90

AEZ-2-pre 6072 12 361.52 389 (+ 145) 30.45†
AEZ-2-otf 5202 8 362.78 404 29.42

FAST[AES,BRW]-1 5024 0 377.87 455 27.21

FAST[AES,Horner]-1 4783 0 379.25 565 21.99

XCB-1 5875 0 360.67 569 20.77

EME2-1 6350 4 319.74 561 18.67
†: ignores the 145 cycles required for pre-computation.

10 Conclusion

In this paper we have presented a tweakable enciphering scheme called FAST. Instantiations of the
scheme for both fixed length messages with single block tweaks and variable length messages with
very general tweaks have been described. A detailed security analysis in the style of reductionist
security proof has been provided. Software implementations of both kinds of instantiations have
been made. The instantiation for fixed length messages with single block tweaks is appropriate
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for low-level disk encryption. An FPGA based hardware implementation has been done for this
application. Both the software and the hardware implementations show that the new scheme out-
performs previous schemes which makes the new scheme an attractive option for designers and
standardisation bodies.
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A Proof of Theorem 1

This section provides the proof of Theorem 1.

Proof. Let A be an adversary attacking FAST. We use A to build an adversary B attacking the
PRF-property of F. B has access to an oracle which is either FK(·) for a uniform random K in K,
or, the oracle is ρ which is a uniform random function from {0, 1}n to {0, 1}n. Adversary B uses
the (ε1, ε2)-eligible pair of hash functions (h, h′) to set up an instance of FAST and invokes A to
attack this instance. A makes a number of oracle queries to the encryption and decryption oracles
of FAST. B uses its own oracle and the hash functions h and h′ to compute the responses which it
provides to A. At the end, A outputs a bit and B outputs the same bit. Note that both encryption
and decryption queries by A can be answered using the oracle of B and the hash functions h, h′.

The running time of B is the running time of A along with the time required to compute the
responses to the queries made by A using B’s oracle plus some bookkeeping time which includes the
time for set-up. So, the total running time of B is T+T′ as desired. Further, to answer A’s queries,
B needs to make a query to its oracle on fStr and to answer the s-th query, it needs to make m(s)

queries to its oracle. So, the total number of times B queries its oracle is 1 +
∑q

s=1m
(s) = ω + 1.

Since each query of B consists of a single n-bit block, the query complexity is also ω + 1.
If the oracle to B is the real oracle, i.e., the oracle is FK , then A gets to interact with the real

encryption and decryption oracles of FAST. So,

Pr
[
K

$← K : BFK(·) ⇒ 1
]

= Pr
[
K

$← K : AFAST.EncryptK(·,·),FAST.DecryptK(·,·) ⇒ 1
]
. (44)

Denote by FASTρ the instance of FAST where FK is replaced by ρ. If the oracle to B is the random
oracle, i.e., the oracle is ρ, then

Pr
[
Bρ(·) ⇒ 1

]
= Pr

[
AFASTρ.Encrypt(·,·),FASTρ.Decrypt(·,·) ⇒ 1

]
. (45)

So,

Adv
prf
F (B) = Pr

[
K

$← K : BFK(·) ⇒ 1
]
− Pr

[
Bρ(·) ⇒ 1

]
= Pr

[
K

$← K : AFAST.EncryptK(·,·),FAST.DecryptK(·,·) ⇒ 1
]

−Pr
[
AFASTρ.Encrypt(·,·),FASTρ.Decrypt(·,·) ⇒ 1

]
. (46)

The advantages of A and B are related as follows. Recall that F is the set of all functions f from
T × P to P such that for any T ∈ T and P ∈ P, len(f(T, P )) = len(P ). Let ρ1(·, ·) and ρ2(·, ·) be
two independent and uniform random functions from F.

Adv±rnd
FAST(A)

= Pr
[
K

$← K : AFAST.EncryptK(·,·),FAST.DecryptK(·,·) ⇒ 1
]
− Pr

[
Aρ1(·,·),ρ2(·,·) ⇒ 1

]
= Pr

[
K

$← K : AFAST.EncryptK(·,·),FAST.DecryptK(·,·) ⇒ 1
]
− Pr

[
AFASTρ.Encrypt(·,·),FASTρ.Decrypt(·,·) ⇒ 1

]
+ Pr

[
AFASTρ.Encrypt(·,·),FASTρ.Decrypt(·,·) ⇒ 1

]
− Pr

[
Aρ1(·,·),ρ2(·,·) ⇒ 1

]
= Pr

[
AFASTρ.Encrypt(·,·),FASTρ.Decrypt(·,·) ⇒ 1

]
− Pr

[
Aρ1(·,·),ρ2(·,·) ⇒ 1

]
+ Adv

prf
F (B). (47)
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There are two events to consider, namely,

AFASTρ.Encrypt(·,·),FASTρ.Decrypt(·,·) ⇒ 1 and Aρ1(·,·),ρ2(·,·) ⇒ 1.

Consider the event AFASTρ.Encrypt(·,·),FASTρ.Decrypt(·,·) ⇒ 1. Suppose A makes a total of q queries
with tweak query complexity θ and message query complexity ω. For 1 ≤ s ≤ q, let ty(s) = enc
if the s-th query is an encryption query and ty(s) = dec if the s-th query is a decryption query.
Denote the tweak, the plaintext and the ciphertext associated with the s-th query by T (s), P (s) =

P
(s)
1 ||P

(s)
2 ||P

(s)
3 and C(s) = C

(s)
1 ||C

(s)
2 ||C

(s)
3 respectively. We have t(s) = t(T (s)) and m(s) is the

number of n-bit blocks in padn(P (s)) and padn(C(s)). Also, l(s) = l(P
(s)
3 ) = l(C

(s)
3 ) = m(s) − 2.

The interaction of A with the oracle in this setting is given by the game Greal which is shown
in Table 10. In this game, the random function ρ is built incrementally. Whenever a “new” input
to ρ is received, the output is chosen independently and uniformly at random. The variable bad is
set to true if it turns out that two inputs to ρ collide. Let Badreal(A) be the event that bad is set
to true in the game Greal. Also, by AGreal ⇒ 1 we denote the event that A outputs 1 in the game
Greal. Note that AGreal ⇒ 1 is exactly the event AFASTρ.Encrypt(·,·),FASTρ.Decrypt(·,·) ⇒ 1.

If Badreal(A) does not occur, then the boxed instruction in game Greal is not executed. The
absence of the boxed instruction does not affect the probability of Badreal(A). We consider the

distributions of the plaintexts and ciphertexts when Badreal(A) does not occur. Let Y
(s)
1 denote the

output of Ch-ρ(F
(s)
1 ) and Y

(s)
2 denote the output of Ch-ρ(F

(s)
2 ). Suppose ty(s) = enc, i.e., the s-th

query is an encryption query. Then from game Greal, we can write

C
(s)
1 = Y

(s)
1 ⊕ P (s)

1 ⊕ τC(s)
2 ⊕ τh

′
τ (T (s), C

(s)
3 )⊕ hτ (T (s), P

(s)
3 );

C
(s)
2 = Y

(s)
2 ⊕ P (s)

2 ⊕ τP (s)
1 ⊕ h′τ (T (s), C

(s)
3 )⊕ τhτ (T (s), P

(s)
3 );

C
(s)
3,i = S

(s)
i ⊕ P

(s)
3,i for i = 1, . . . ,m(s) − 3;

C
(s)

3,m(s)−2 = firstr(s)(D
(s))⊕ P (s)

3,m(s)−2;

When Badreal(A) does not occur, Y
(s)
1 , Y

(s)
2 , S

(s)
i , (i = 1, . . . ,m(s) − 3), D(s) are independent and

uniform random strings. From the above relations, it is easy to argue that the ciphertext C(s)

is also independent and uniform random. A similar argument shows that when ty(s) = dec, i.e.,
the query is a decryption query, then P (s) is an independent and uniform random string. So, if
Badreal(A) does not occur, then the adversary obtains independent and uniform random strings as
responses to all its queries.

In the next step, the game Greal is modified to the game Gint. This game is shown in Table 11.
In this game, the outputs of ρ are not chosen directly. Instead, these are defined from the plaintexts
and the ciphertexts. For a enciphering query, the ciphertext is chosen independently and uniformly
at random while for a deciphering query, the plaintext is chosen independently and uniformly at
random. The outputs of ρ are defined from these in the following manner.

ρ(F
(s)
1 ) = Y

(s)
1 ← C

(s)
1 ⊕ P

(s)
1 ⊕ τC(s)

2 ⊕ τh′τ (T (s), C
(s)
3 )⊕ hτ (T (s), P

(s)
3 );

ρ(F
(s)
2 ) = Y

(s)
2 ← C

(s)
2 ⊕ P

(s)
2 ⊕ τP (s)

1 ⊕ h′τ (T (s), C
(s)
3 )⊕ τhτ (T (s), P

(s)
3 );

ρ(J
(s)
i ) = C

(s)
3,i ⊕ P

(s)
3,i for i = 1, . . . ,m(s) − 3;

ρ(J
(s)

m(s)−2) =

{
D(s) ⊕ (P

(s)

3,m(s)−2||0
n−r(s)) if ty(s) = enc;

E(s) ⊕ (C
(s)

3,m(s)−2||0
n−r(s)) if ty(s) = dec;

(48)
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As for an encryption query, C
(s)
1 , C

(s)
2 , C

(s)
3,1 , . . . , C

(s)

3,m(s)−3, D
(s) are chosen independently and uni-

formly at random, from (48) it follows that the outputs of ρ are also independent and uniformly

distributed. For a decryption query, P
(s)
1 , P

(s)
2 , P

(s)
3,1 , . . . , P

(s)

3,m(s)−3, E
(s) are chosen independently

and uniformly at random. Again, from (48) it follows that the outputs of ρ are also independent
and uniformly distributed. So, as in game Greal, in game Gint also the outputs of ρ are independent
and uniformly distributed.

Let Badint(A) be the event that the variable bad is set to true in the game Gint. Let AGint ⇒ 1
denote the event that A outputs 1 in the game Gint. From the description of the games, it follows
that if bad does not occur, then A’s views in both Greal and Gint are the same. Also, the probabilities
that bad occurs in the two games are equal. This gives the following.

Claim 1.

Pr
[(
AGreal ⇒ 1

)
∧ Badreal(A)

]
= Pr

[(
AGint ⇒ 1

)
∧ Badint(A)

]
;

Pr [Badreal(A)] = Pr [Badint(A)] .

Next, the game Gint is changed to the game Grnd which is shown in Table 12. In this game,
there is no ρ. For an enciphering query, the ciphertext is chosen independently and uniformly at
random and for a deciphering query, the plaintext is chosen independently and uniformly at random.
These are returned to A. After the interaction is over, in the finalisation step, the internal random
variables are included in D and bad is set to true if there is a collision in D. Let Badrnd(A) be the
event that the variable bad is set to true in the game Grnd. Let AGrnd ⇒ 1 denote the event that A
outputs 1 in the game Grnd. If bad does not occur, then in both the games Gint and Grnd, A obtains
independent and uniform random strings as responses to all its queries. Also, the probabilities that
bad occurs in the two games are equal. So, we have the following.

Claim 2.

Pr
[(
AGint ⇒ 1

)
∧ Badint(A)

]
= Pr

[(
AGrnd ⇒ 1

)
∧ Badrnd(A)

]
;

Pr [Badint(A)] = Pr [Badrnd(A)] .

Note that the event AGrnd ⇒ 1 is exactly the event Aρ1(·,·),ρ2(·,·) ⇒ 1.
Using (47) along with Claims 1 and 2, we have the following.

Adv±rnd
FAST(A)

= Pr
[
AFASTρ.Encrypt(·,·),FASTρ.Decrypt(·,·) ⇒ 1

]
− Pr

[
Aρ1(·,·),ρ2(·,·) ⇒ 1

]
+ Adv

prf
F (B)

= Adv
prf
F (B) + Pr

[
AGreal ⇒ 1

]
− Pr

[
AGrnd ⇒ 1

]
≤Adv

prf
F (B) + Pr

[(
AGreal ⇒ 1

)
∧ Badreal(A)

]
+ Pr [Badreal(A)]− Pr

[(
AGrnd ⇒ 1

)
∧ Badrnd(A)

]
= Adv

prf
F (B) + Pr

[(
AGint ⇒ 1

)
∧ Badint(A)

]
+ Pr [Badint(A)]− Pr

[(
AGrnd ⇒ 1

)
∧ Badrnd(A)

]
= Adv

prf
F (B) + Pr [Badrnd(A)] . (49)

Adversary A runs in time T. We instead consider an adversary C which is allowed unbounded
runtime and also unbounded memory. Consider the interaction of C with the oracle in the game
Grnd and define the event Pr [Badrnd(C)] in a manner analogous to Pr [Badrnd(A)]. Clearly, we have

Pr [Badrnd(A)] ≤ Pr [Badrnd(C)] . (50)

So, it is sufficient to upper bound Pr [Badrnd(C)]. Since C has unbounded computational power,
without loss of generality, we may assume that C is deterministic.
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Upper bound on Pr [Badrnd(C)]: An upper bound on Pr [Badrnd(C)] is obtained by showing that
in the game Grnd the event that two random variables in D are equal occurs with low probability.
The main crux of the whole proof is to argue this in the various cases that arise in considering the
different pairs of random variables from D. The claims below tackle all the different cases that can
arise.

Claim 3. For 1 ≤ s ≤ q, Pr[F
(s)
1 = fStr] ≤ ε(s)1 .

Proof.

Pr[F
(s)
1 = fStr] = Pr[τP

(s)
1 ⊕ τhτ (T (s), P

(s)
3 )⊕ P (s)

2 = fStr]

= Pr[τ(hτ (T (s), P
(s)
3 )⊕ P (s)

1 ) = P
(s)
2 ⊕ fStr]

≤ ε(s)1 .

The last inequality follows from (12). ut

Claim 4. For 1 ≤ s ≤ q, Pr[F
(s)
2 = fStr] ≤ ε(s)1 .

Proof.

Pr[F
(s)
2 = fStr] = Pr[τC

(s)
2 ⊕ τh

′
τ (T (s), C

(s)
3 )⊕ C(s)

1 = fStr]

= Pr[τ(h′τ (T (s), C
(s)
3 )⊕ C(s)

2 ) = C
(s)
1 ⊕ fStr]

≤ ε(s)1 .

The last inequality follows from (13). ut

Claim 5. For 1 ≤ s ≤ q, 1 ≤ i ≤ m(s) − 2, Pr[J
(s)
i = fStr] = 1/2n.

Proof.

J
(s)
i ⊕ fStr = Z(s) ⊕ binn(i)⊕ fStr

= F
(s)
1 ⊕ F (s)

2 ⊕ binn(i)⊕ fStr

= τ(P
(s)
1 ⊕ hτ (T (s), P

(s)
3 ))⊕ P (s)

2 ⊕ C(s)
1 ⊕ τ(C

(s)
2 ⊕ h

′
τ (T (s), C

(s)
3 ))⊕ binn(i)⊕ fStr.

When ty(s) = enc, then C
(s)
1 is an n-bit uniform random string which is independent of the other

quantities and when ty(s) = dec, then P
(s)
2 is an n-bit uniform random string which is independent

of the other quantities. So in both cases we have the required probability. ut

Claim 6. For s 6= t, Pr[F
(s)
1 = F

(t)
1 ] ≤ max{ε(s,t)2 , 1/2n}.

Proof.

F
(s)
1 ⊕ F (t)

1 = τ(P
(s)
1 ⊕ P (t)

1 )⊕ τ(hτ (T (s), P
(s)
3 )⊕ hτ (T (t), P

(t)
3 ))⊕ P (s)

2 ⊕ P (t)
2 .

There are four cases to consider.

Case 1: ty(s) = ty(t) = enc. There are two sub-cases.
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(a) Case 1a: (T (s), P
(s)
1 , P

(s)
3 ) = (T (t), P

(t)
1 , P

(t)
3 ).

As the adversary is not allowed to repeat a query, hence (T (s), P
(s)
1 , P

(s)
3 ) = (T (t), P

(t)
1 , P

(t)
3 )

implies P
(s)
2 6= P

(t)
2 and so Pr[F

(s)
1 = F

(t)
1 ] = 0.

(b) Case 1b: (T (s), P
(s)
1 , P

(s)
3 ) 6= (T (t), P

(t)
1 , P

(t)
3 ).

If (T (s), P
(s)
3 ) = (T (t), P

(t)
3 ), then P

(s)
1 6= P

(t)
1 and so F

(s)
1 ⊕F

(t)
1 = τ(P

(s)
1 ⊕P

(t)
1 )⊕P (s)

2 ⊕P
(t)
2

is a non-zero polynomial in τ of degree 1. Thus, Pr[F
(s)
1 = F

(t)
1 ] = 1/2n.

If (T (s), P
(s)
3 ) 6= (T (t), P

(t)
3 ), then

Pr[F
(s)
1 = F

(t)
1 ] = Pr[τ(hτ (T (s), P

(s)
3 )⊕ hτ (T (t), P

(t)
3 )⊕ P (s)

1 ⊕ P (t)
1 ) = P

(s)
2 ⊕ P (t)

2 ]

≤ ε(s,t)2 .

The last inequality follows from (14).

Case 2: ty(s) = ty(t) = dec. In this case all of P
(s)
1 , P

(t)
1 , P

(s)
2 , P

(t)
2 are independent and uniformly

distributed n-bit strings and so Pr[F
(s)
1 = F

(t)
1 ] = 1/2n.

Case 3: ty(s) = enc and ty(t) = dec. In this case P
(t)
1 and P

(t)
2 are independent and uniformly

distributed n-bit strings and so Pr[F
(s)
1 = F

(t)
1 ] = 1/2n.

Case 4: ty(s) = dec and ty(t) = enc. In this case P
(s)
1 and P

(s)
2 are independent and uniformly

distributed n-bit strings and so Pr[F
(s)
1 = F

(t)
1 ] = 1/2n.

ut

Claim 7. For s 6= t, Pr[F
(s)
2 = F

(t)
2 ] ≤ max{ε(s,t)2 , 1/2n}.

The proof is almost the same as the proof of Claim 6.

Claim 8. For 1 ≤ s, t ≤ q, Pr[F
(s)
1 = F

(t)
2 ] ≤ max{ε(s,t)2 , 1/2n}.

Proof.

F
(s)
1 ⊕ F (t)

2 = τ(P
(s)
1 ⊕ C(t)

2 )⊕ τ(hτ (T (s), P
(s)
3 )⊕ h′τ (T (t), C

(t)
3 ))⊕ (P

(s)
2 ⊕ C(t)

1 ).

There are four cases.

Case 1: ty(s) = ty(t) = enc. In this case, C
(t)
1 is an independent and uniform random n-bit

string and so Pr[F
(s)
1 = F

(t)
2 ] = 1/2n.

Case 2: ty(s) = enc and ty(t) = dec. We have

Pr[F
(s)
1 = F

(t)
2 ] = Pr[τ(P

(s)
1 ⊕ C(t)

2 )⊕ τ(hτ (T (s), P
(s)
3 )⊕ h′τ (T (t), C

(t)
3 )) = P

(s)
2 ⊕ C(t)

1 ]

= Pr[τ(hτ (T (s), P
(s)
3 )⊕ h′τ (T (t), C

(t)
3 )⊕ P (s)

1 ⊕ C(t)
2 ) = P

(s)
2 ⊕ C(t)

1 ]

≤ ε(s,t)2 .

The last inequality follows from (16).

Case 3: ty(s) = dec and ty(t) = enc. In this case, P
(s)
2 is an independent and uniform random

n-bit string and so Pr[F
(s)
1 = F

(t)
2 ] = 1/2n.

Case 4: ty(s) = ty(t) = dec. In this case also, P
(s)
2 is an independent and uniform random n-bit

string and so Pr[F
(s)
1 = F

(t)
2 ] = 1/2n.
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ut

Claim 9. For 1 ≤ s, t ≤ q and 1 ≤ i ≤ m(t) − 2, Pr[F
(s)
1 = J

(t)
i ] ≤ ε(s)1 .

Proof.

Pr[F
(s)
1 = J

(t)
i ] = Pr[F

(s)
1 = F

(t)
1 ⊕ F

(t)
2 ⊕ binn(i)]

= Pr[τ(hτ (T (s), P
(s)
3 )⊕ P (s)

1 )⊕ P (s)
2

= τ(P
(t)
1 ⊕ hτ (T (t), P

(t)
3 ))⊕ P (t)

2

⊕C(t)
1 ⊕ τ(C

(t)
2 ⊕ h

′
τ (T (t), C

(t)
3 ))⊕ binn(i)].

First suppose that s 6= t. If ty(t) = enc, then C
(t)
1 is a uniform n-bit string which is independent of

the other quantities and if ty(t) = dec, then P
(t)
2 is a uniform n-bit string which is independent of

the other quantities. In both cases, the above probability is 1/2n.

So, suppose that s = t. Then the required probability reduces to

Pr[F
(s)
1 = J

(s)
i ] = Pr[F

(s)
2 = binn(i)]

= Pr[τ(C
(s)
2 ⊕ h

′
τ (T (s), C

(s)
3 )) = C

(s)
1 ⊕ binn(i)]

≤ ε(s)1 .

If ty(s) = enc, then C
(s)
1 is a uniform n-bit string which is independent of the other quantities and

so the probability is equal to 1/2n; on the other hand, if ty(s) = dec, then the last inequality follows
from (13). ut

Claim 10. For 1 ≤ s, t ≤ q and 1 ≤ i ≤ m(t) − 2, Pr[F
(s)
2 = J

(t)
i ] ≤ ε(s)1 .

The proof is almost the same as the proof of Claim 9.

Claim 11. For 1 ≤ s, t ≤ q, 1 ≤ i ≤ m(s)− 2, 1 ≤ j ≤ m(t)− 2 and (s, i) 6= (t, j), Pr[J
(s)
i = J

(t)
j ] ≤

1/2n.

Proof.

J
(s)
i ⊕ J

(t)
j = F

(s)
1 ⊕ F (s)

2 ⊕ F (t)
1 ⊕ F

(t)
2 ⊕ binn(i)⊕ binn(j)

= τ(P
(s)
1 ⊕ hτ (T (s), P

(s)
3 ))⊕ P (s)

2 ⊕ C(s)
1 ⊕ τ(C

(s)
2 ⊕ h

′
τ (T (s), C

(s)
3 ))

⊕ τ(P
(t)
1 ⊕ hτ (T (t), P

(t)
3 ))⊕ P (t)

2 ⊕ C
(t)
1 ⊕ τ(C

(t)
2 ⊕ h

′
τ (T (t), C

(t)
3 ))

⊕ binn(i)⊕ binn(j).

If s = t, then i 6= j and so Pr[J
(s)
i = J

(t)
j ] = Pr[binn(i) = binn(j)] = 0. Suppose that s 6= t. There

are four cases to consider.

– If ty(s) = ty(t) = enc, then both C
(s)
1 and C

(t)
1 are independent and uniform random strings

which are independent of the other quantities.

– If ty(s) = ty(t) = dec, then both P
(s)
2 and P

(t)
2 are independent and uniform random strings

which are independent of the other quantities.
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– If ty(s) = enc and ty(t) = dec, then both C
(s)
1 and P

(t)
2 are independent and uniform random

strings which are independent of the other quantities.

– If ty(s) = dec and ty(t) = enc, then both P
(s)
2 and C

(t)
1 are independent and uniform random

strings which are independent of the other quantities.

From the above it follows that if s 6= t, then in all cases the probability is equal to 1/2n. Thus, the
claim follows. ut

By Claims 3 to 11 and the union bound we have

Pr [Badrnd(C)] ≤ 2

q∑
s=1

ε
(s)
1 +

q∑
s=1

(
m(s) − 2

2n

)
+

∑
1≤s<t≤q

2

(
ε
(s,t)
2 +

1

2n

)

+
∑

1≤s≤t≤q

(
ε
(s,t)
2 +

1

2n

)
+ 2

(
q∑
s=1

ε
(s)
1

)(
q∑
t=1

(m(t) − 2)

)
+

1

2n

(∑q
s=1(m

(s) − 2)

2

)

= 2

(
q∑
s=1

ε
(s)
1

)(
1 +

q∑
t=1

(m(t) − 2)

)
+

3

2n
q(q − 1)

2
+

q

2n
+ 3

∑
1≤s<t≤q

ε
(s,t)
2 +

q∑
s=1

ε
(s,s)
2

+

q∑
s=1

(
m(s) − 2

2n

)
+

1

2n

(∑q
s=1(m

(s) − 2)

2

)

≤ 2

(
q∑
s=1

ε
(s)
1

)
(1 + ω − 2q) +

2q2

2n
+ 3

∑
1≤s<t≤q

ε
(s,t)
2 +

q∑
s=1

ε
(s,s)
2

+
ω − 2q

2n
+

1

2n
ω(ω − 1)

2

≤ 2ω

(
q∑
s=1

ε
(s)
1

)
+ 3

∑
1≤s<t≤q

ε
(s,t)
2 +

q∑
s=1

ε
(s,s)
2 +

3ω2

2n
. (51)

Putting together (49), (50) and (51) we obtain

Adv±rnd
FAST(A) ≤Adv

prf
F (B) + 2ω

(
q∑
s=1

ε
(s)
1

)
+ 3

∑
1≤s<t≤q

ε
(s,t)
2 +

q∑
s=1

ε
(s,s)
2 +

3ω2

2n
.

The relations between the resources of A and B have been stated earlier. Maximising the left hand
side on the resources shows the required result and completes the proof of Theorem 1. ut
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Table 10: Game Greal.
Subroutine Ch-ρ(X)

Y
$← {0, 1}n;

if X ∈ D then bad ← true; Y ← ρ(X); endif;

ρ(X)← Y ; D ← D ∪ {X}; return(Y );
Initialization:

τ
$← {0, 1}n; D ← {fStr}; bad← false.

ty(s) = enc: input (T (s), P (s))

(P
(s)
1 , P

(s)
2 , P

(s)
3 )← parsen(P (s));

A
(s)
1 ← P

(s)
1 ⊕ hτ (T (s), P

(s)
3 );

F
(s)
1 ← τA

(s)
1 ⊕ P

(s)
2 ;

F
(s)
2 ← A

(s)
1 ⊕ Ch-ρ(F

(s)
1 );

B
(s)
2 ← F

(s)
1 ⊕ Ch-ρ(F

(s)
2 );

C
(s)
1 ← τB

(s)
2 ⊕ F

(s)
2 ;

Z(s) ← F
(s)
1 ⊕ F (s)

2 ;

for i = 1 to m(s) − 3 do

J
(s)
i ← Z(s) ⊕ binn(i);

S
(s)
i ← Ch-ρ(J

(s)
i );

C
(s)
3,i ← P

(s)
3,i ⊕ S

(s)
i ;

end for;

J
(s)

m(s)−2
← Z(s) ⊕ binn(m(s) − 2);

D(s) ← Ch-ρ(J
(s)

m(s)−2
);

C
(s)

3,m(s)−2
← P

(s)

3,m(s)−2
⊕ firstr(s)(D

(s));

C
(s)
2 ← B

(s)
2 ⊕ h′τ (T (s), C

(s)
3 );

return (C
(s)
1 ||C

(s)
2 ||C

(s)
3 ).

ty(s) = dec: input (T (s), C(s))

(C
(s)
1 , C

(s)
2 , C

(s)
3 )← parsen(C(s));

B
(s)
2 ← C

(s)
2 ⊕ h′τ (T (s), C

(s)
3 );

F
(s)
2 ← C

(s)
1 ⊕ τB(s)

2 ;

F
(s)
1 ← B

(s)
2 ⊕ Ch-ρ(F

(s)
2 );

A
(s)
1 ← F

(s)
2 ⊕ Ch-ρ(F

(s)
1 );

P
(s)
2 ← τA

(s)
1 ⊕ F

(s)
1 ;

Z(s) ← F
(s)
1 ⊕ F (s)

2 ;

for i = 1 to m(s) − 3 do

J
(s)
i ← Z(s) ⊕ binn(i);

S
(s)
i ← Ch-ρ(J

(s)
i );

P
(s)
3,i ← C

(s)
3,i ⊕ S

(s)
i ;

end for;

J
(s)

m(s)−2
← Z(s) ⊕ binn(m(s) − 2);

E(s) ← Ch-ρ(J
(s)

m(s)−2
);

P
(s)

3,m(s)−2
← C

(s)

3,m(s)−2
⊕ firstr(s)(E

(s));

P
(s)
1 ← A

(s)
1 ⊕ hτ (T (s), P

(s)
3 );

return (P
(s)
1 ||P

(s)
2 ||P

(s)
3 ).
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Table 11: Game Gint.
Subroutine ChkDom(X)

if X ∈ D then bad ← true; endif;
D ← D ∪ {X};

Initialization:

τ
$← {0, 1}n; D ← {fStr}; bad← false.

ty(s) = enc: input (T (s), P (s))

(P
(s)
1 , P

(s)
2 , P

(s)
3 )← parsen(P (s));

C
(s)
1

$← {0, 1}n; C
(s)
2

$← {0, 1}n;

for i = 1, . . . ,m(s) − 3 do C
(s)
3,i

$← {0, 1}n;

D(s) $← {0, 1}n; C3,m(s)−2 ← firstr(s)(D
(s));

A
(s)
1 ← P

(s)
1 ⊕ hτ (T (s), P

(s)
3 );

F
(s)
1 ← τA

(s)
1 ⊕ P

(s)
2 ; ChkDom(F

(s)
1 );

Y
(s)
1 ← C

(s)
1 ⊕ P (s)

1 ⊕ τ(C
(s)
2 ⊕ h′τ (T (s), C

(s)
3 ))

⊕hτ (T (s), P
(s)
3 );

ρ(F
(s)
1 )← Y

(s)
1 ;

F
(s)
2 ← A

(s)
1 ⊕ Y

(s)
1 ; ChkDom(F

(s)
2 );

Y
(s)
2 ← C

(s)
2 ⊕ P (s)

2 ⊕ τP (s)
1 ⊕ h′τ (T (s), C

(s)
3 )

⊕τhτ (T (s), P
(s)
3 );

ρ(F
(s)
2 )← Y

(s)
2 ;

B
(s)
2 ← F

(s)
1 ⊕ Y (s)

2 ;

C
(s)
1 ← τB

(s)
2 ⊕ F

(s)
2 ;

Z(s) ← F
(s)
1 ⊕ F (s)

2 ;

for i = 1 to m(s) − 3 do

J
(s)
i ← Z(s) ⊕ binn(i); ChkDom(J

(s)
i );

ρ(J
(s)
i )← C

(s)
3,i ⊕ P

(s)
3,i ;

end for;

J
(s)

m(s)−2
← Z(s) ⊕ binn(m(s) − 2); ChkDom(J

(s)

m(s)−2
);

ρ(J
(s)

m(s)−2
)← D(s) ⊕ (P

(s)

3,m(s)−2
||0n−r

(s)

);

return (C
(s)
1 ||C

(s)
2 ||C

(s)
3 ).

ty(s) = dec: input (T (s), C(s))

(C
(s)
1 , C

(s)
2 , C

(s)
3 )← parsen(C(s));

P
(s)
1

$← {0, 1}n; P
(s)
2

$← {0, 1}n;

for i = 1, . . . ,m(s) − 3 do P
(s)
3,i

$← {0, 1}n;

E(s) $← {0, 1}n; P3,m(s)−2 ← firstr(s)(E
(s));

B
(s)
2 ← C

(s)
2 ⊕ h′τ (T (s), C

(s)
3 );

F
(s)
2 ← C

(s)
1 ⊕ τB(s)

2 ; ChkDom(F
(s)
2 );

Y
(s)
2 ← C

(s)
2 ⊕ P (s)

2 ⊕ τP (s)
1 ⊕ h′τ (T (s), C

(s)
3 )

⊕τhτ (T (s), P
(s)
3 );

ρ(F
(s)
2 )← Y

(s)
2 ;

F
(s)
1 ← B

(s)
2 ⊕ Y

(s)
2 ; ChkDom(F

(s)
1 );

Y
(s)
1 ← C

(s)
1 ⊕ P (s)

1 ⊕ τ(C
(s)
2 ⊕ h′τ (T (s), C

(s)
3 ))

⊕hτ (T (s), P
(s)
3 );

ρ(F
(s)
1 )← Y

(s)
1 ;

A
(s)
1 ← F

(s)
2 ⊕ Y (s)

1 ;

P
(s)
2 ← τA

(s)
1 ⊕ F

(s)
1 ;

Z(s) ← F
(s)
1 ⊕ F (s)

2 ;

for i = 1 to m(s) − 3 do

J
(s)
i ← Z(s) ⊕ binn(i); ChkDom(J

(s)
i );

ρ(J
(s)
i )← C

(s)
3,i ⊕ P

(s)
3,i ;

end for;

J
(s)

m(s)−2
← Z(s) ⊕ binn(m(s) − 2); ChkDom(J

(s)

m(s)−2
);

ρ(J
(s)

m(s)−2
)← E(s) ⊕ (C

(s)

3,m(s)−2
||0n−r

(s)

);

return (P
(s)
1 ||P

(s)
2 ||P

(s)
3 ).
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Table 12: Game Grnd

Respond to the sth adversary query as follows:

if ty(s) = enc; C
(s)
1 ||C

(s)
2 ||C

(s)
3,1 || . . . ||C

(s)

3,m(s)−3
||D(s) $← {0, 1}nm

(s)

;

C
(s)

3,m(s)−2
← firstr(s)(D

(s)) return C(s) = C
(s)
1 ||C

(s)
2 ||C

(s)
3,1 || . . . ||C

(s)

3,m(s)−2
;

if ty(s) = dec; P
(s)
1 ||P

(s)
2 ||P

(s)
3,1 || . . . ||P

(s)

3,m(s)−3
||E(s) $← {0, 1}nm

(s)

;

P
(s)

3,m(s)−2
← firstr(s)(E

(s)) return P (s) = P
(s)
1 ||P

(s)
2 ||P

(s)
3,1 || . . . ||P

(s)

3,m(s)−2
;

Finalisation:

D ← {fStr}; bad← false; τ
$← {0, 1}n;

for s = 1 to q do

A
(s)
1 ← P

(s)
1 ⊕ hτ (T (s), P

(s)
3 );

B
(s)
2 ← C

(s)
2 ⊕ h′τ (T (s), C

(s)
3 );

F
(s)
1 ← τA

(s)
1 ⊕ P

(s)
2 = τ(P

(s)
1 ⊕ hτ (T (s), P

(s)
3 ))⊕ P (s)

2 ;

D ← D ∪ {F (s)
1 };

F
(s)
2 ← C

(s)
1 ⊕ τB(s)

2 = C
(s)
1 ⊕ τ(C

(s)
2 ⊕ h′τ (T (s), C

(s)
3 ));

D ← D ∪ {F (s)
2 };

Z(s) ← F
(s)
1 ⊕ F (s)

2 ;

for i = 1 to m(s) − 3;

J
(s)
i ← Z(s) ⊕ binn(i) = F

(s)
1 ⊕ F (s)

2 ⊕ binn(i);

D ← D ∪ {J(s)
i };

end for;

if ty(s) = enc then J
(s)

m(s)−2
← D(s) ⊕ (P

(s)

3,m(s)−2
||0n−r

(s)

);

if ty(s) = dec then J
(s)

m(s)−2
← E(s) ⊕ (C

(s)

3,m(s)−2
||0n−r

(s)

);

D ← D ∪ {J(s)

m(s)−2
};

end for;
if (some value occurs more than once in D) then bad ← true endif;
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B Implementation of AEZ

For α ∈ {0, 1}128 and i ∈ N, the following operation has been defined [26] in the context of AEZ:

i · α =


0 if i = 0;
α if i = 1;
(α� 1)⊕ (msb(α) · 135) if i = 2;
2 · (j · α) if i = 2j > 2;
(2j · α)⊕ α if i = 2j + 1 > 2.

(52)

The operation in (52) corresponding to i = 2 is the doubling operation. (See Section 2).

There are different versions of AEZ [26] built from different variants of AES. The version which
is relevant to our work is the one where the proper AES algorithm is used. Messages of lengths at
least 2n bits are handled differently from messages of lengths less than 2n bits. For our purpose, we
will be considering the portion which can handle messages of lengths at least 2n bits. This portion
has been called AEZ-Core [26]. By AEZ, we will denote AEZ-Core[AES].

The length of the message is written as 2nk + µ bits with 0 ≤ µ < 2n and k ≥ 1. Below we
provide an overview of the encryption algorithm of AEZ where µ = 0. Let m = 2m+2 and consider
a message having m blocks with total length n(2m + 2) bits. The message is partitioned into two
parts: The first part consists of 2mn bits organised as 2m n-bit blocks M1,M

′
1, . . . ,Mm,M

′
m and

the second part consists of 2n bits organised as 2 n-bit blocks Mx and My. The ciphertext blocks
are Ci, C

′
i, i = 1, . . . ,m and Cx, Cy.

At a conceptual level, this encryption consists of three layers. The first and the third layers
consist of a sequence of 2-round Feistel networks where each Feistel network requires 2 block cipher
calls. The second layer is a mixing layer and requires one block cipher call for each i. Let E denote
the encryption function of AES and for α ∈ {0, 1}n, define Ẽi,jK (α) = EK(α ⊕ (i + 1) · I ⊕ j · J)
where I = EK(0) and J = EK(1) [26]. The encryption proceeds as follows:

First layer: for i = 1, . . . ,m, Wi = Mi ⊕ Ẽ1,i
K (M ′i); Xi = M ′i ⊕ Ẽ

0,0
K (Wi);

Sx = Ẽ0,1
K (My)⊕Mx ⊕X ⊕∆; Sy = Ẽ−1,1K (Sx)⊕My;

Second layer: for i = 1, . . . ,m, S′i = Ẽ2,i
K (S); Yi = S′i ⊕Wi; Zi = S′i ⊕Xi;

Third layer: for i = 1, . . . ,m, C ′i = Yi ⊕ Ẽ0,0
K (Zi); Ci = Zi ⊕ Ẽ1,i

K (C ′i);

Cy = Sx ⊕ Ẽ−1,2K (Sy); Cx = Sy ⊕ Ẽ0,2
K (Cy)⊕∆⊕ Y ;

Here X = X1 ⊕ · · · ⊕ Xm, Y = Y1 ⊕ · · · ⊕ Ym, S = Sx ⊕ Sy and ∆ is obtained by processing the
tweak.

Remarks:

1. For both the software and hardware implementations, we have considered n = 128 and m = 256,
i.e., messages of lengths equal to 4096 bytes. So, writing m = 2m + 2 we have m = 127.

2. In our software and hardware implementations, we have taken ∆ = 0, i.e., we have ignored the
processing of the tweak. Since the resulting implementations of AEZ turn out to be less efficient
than FAST, considering the processing of the tweak for AEZ will result in further slowdown
compared to FAST.
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B.1 Software Implementation

The design of AEZ is based on OTR [33] and the parallelism in AEZ is the same as that in
OTR. The encryptions in the first layer can be divided into two classes – one class consisting of the
encryptions of W1,W2, . . . and the other class consisting of the encryptions of M ′1,M

′
2, . . .. Following

the pipelining strategy for AES described in Section 8.2, the encryptions in each class have to be
bunched into groups of eight. The encryptions proceed as follows. One bunch of M ′i ’s is encrypted
followed by the corresponding bunch of Wi’s; then the next bunch of M ′i ’s is encrypted followed
by the corresponding bunch of Wi’s and so on. After all the encryptions in the first layer are over,
the encryptions in the second layer are to be computed. These encryptions are independent and
can be executed in groups of eight. The strategy for executing the encryptions in the third layer is
similar to that of the first layer. Though somewhat complicated, the above mentioned strategy can
be used to obtain the benefits of pipelined AES execution.

One important efficiency issue is that of computing the values j ·J . As briefly mentioned in the
paper introducing AEZ [26], by storing some of the previously generated values, it is possible to
efficiently generate the required values. We provide some details. A queue of values 2 · J, 3 · J, . . . is
maintained. When j · J is computed, it is added to the tail of the queue. If the head of the queue
contains  · J , then this value is used to generate 2 · J and (2 + 1) · J and then the entry  · J
is deleted from the queue. Using this strategy, the computation of 2 · J from  · J requires one
doubling and the computation of (2+1) ·J from  ·J requires one XOR. Overall, the computations
of 2 · J and (2+ 1) · J require one doubling and one XOR. For the 2m blocks in the first part, the
operation (52) will be required to be applied m times. This will require bm/2c doubling operations
and b(m − 1)/2c XOR operations. Since m = 2m + 2, the computations of all the masks require
b(m− 2)/4c doubling operations.

B.2 Hardware Implementation

Hardware implementation of AEZ has been reported in the literature [27]. This work considered a
reduced round version of AES, i.e., AEZ instantiated with 4-round AES. In contrast, we consider
AEZ with full AES. Consequently, the pipelining issues considered in the earlier work [27] are
different from our work. Below we provide a brief description of the architecture that we have
designed to implement AEZ.

The architecture in Figure 3 allows the computation of AEZ encryption/decryption. The two
AES cores are labelled as AES and AES′ and the inputs to these cores are selected by mux1 and
mux2 respectively. For computing the masking values I and J we need the encryptions of 0 and 1
respectively. This is enabled using mux3. AES and AES′ work in parallel to compute Xi and Wi

respectively. Since Xi depends on Wi, AES waits for the first value of Wi to be produced to start the
computation. The computed values of Wi and Xi have to be stored and for that we use the single-
port-block-RAMs memWi and memXi respectively. At a later stage, the values Sx and Sy are also
stored in memWi and memXi respectively. The computation of X = X1⊕· · ·⊕X127 is performed
by ACCX. The values of S′i’s are computed with the two AES cores. Due to data dependencies,
these values need to be stored and for this purpose the dual-port-block-RAM memSi is used. In
memSi, the last value is initialised to 0 and so Z128 = Sy ⊕ 0 = Sy and Y128 = Sx ⊕ 0 = Sx. The
computation of Y = Y1 ⊕ · · · ⊕ Y127 is performed by ACCY. The input line marked C ′i to mux1
carries Cy at the end.

The masking values j · J can be computed in two different ways.
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Fig. 3: Pipelined architecture for AEZ using two AES-encryption cores.

Pre-computation: The values of I, J and all the necessary values i · I, j ·J can be precomputed.
Computing I and J take 13 clock cycles while 127 clock cycles are necessary to compute all j · J ;
i · I are only 4 values and are computed in parallel with j · J . So the precomputation takes 145
clock cycles, taking into account the reset time and some clock cycles for synchronisation of the
memory. In Figure 4b, we show the architecture to compute all the necessary values of j · J using
double and add method. The values are stored in block RAMs. For the values i · I, only the values
{0, I, 2 · I, 3 · I} are required and so they are computed and stored in registers.

On the fly: The values i · I are computed as above. For j · J we used the circuit in Figure 4a. It
consists of the computations of J, 2 · J, 4 · J, 8 · J, 16 · J, 32 · J, 64 · J . Subsequently, depending on the
binary representation of j some of these are selected and XORed to obtain the required value j · J .
For example, 86 · J = 64 · J ⊕ 16 · J ⊕ 4 · J ⊕ 2 · J .

The timing diagram for the architecture in Figure 3 is shown in Figure 5. Apart from the
pre-computation, a total of 389 cycles is required to complete the encryption.
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(a) Masks generated on the fly (b) Precomputing masks using double and add

Fig. 4: Two ways to compute the masks j · J . In the figure ×2 denotes doubling.

Fig. 5: Timing diagram for encryption using AEZ.

54


