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Abstract. We present a generic, yet simple and efficient transformation to obtain
a forward secure authenticated key exchange protocol from a two-move passively
secure unauthenticated key agreement scheme (such as standard Diffie–Hellman
or Frodo or NewHope). Our construction requires only an IND-CCA public key
encryption scheme (such as RSA-OAEP or a method based on ring-LWE), and
a message authentication code. Particularly relevant in the context of the state-
of-the-art of postquantum secure primitives, we avoid the use of digital signature
schemes: practical candidate post-quantum signature schemes are less accepted
(and require more bandwidth) than candidate post-quantum public key encryption
schemes. An additional feature of our proposal is that it helps avoid the bad prac-
tice of using long term keys certified for encryption to produce digital signatures.
We prove the security of our transformation in the random oracle model.

1 Introduction

Forward secrecy and authentication are the standard security requirements for authen-
ticated key agreement protocols (AKA). They require that parties authenticate one an-
other, and that the key derived remains secret to anyone but to the two parties involved
at the time of the execution. Modern realizations rely on the Diffie–Hellman protocol
which is unauthenticated and guarantees key secrecy only against passive adversaries.
The stronger property is obtained via additional mechanisms which authenticate the
two parties and ensure integrity of the conversation between them, even against active
adversaries.

Numerous generic transformations in the literature show how to achieve full AKA
active security from protocols with weaker guarantees [3,9,22,28,18,24] using simple
mechanisms such as signatures, encryption, and MACs.

Such generic techniques are particularly appealing; on the one hand they enable
a modular approach where the base protocol and the details of the transformation are
designed and analyzed independently – in particular, if needed, the underlying protocol
can be easily swaped out and replaced with a different mechanism. On the other it
provide conceptual clarity for choices that are made, e.g. which part of the the protocol
provides say, key-secrecy, and which deals with integrity/entity authentication.

In this paper we contribute to this research direction. We provide a simple generic
transformation which, when applied to a certain class of passively secure key-exchange
protocols, yields the most round-efficient authenticated key-agreement protocols against
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active adversaries to date. Besides optimal round complexity, our proposal has two in-
teresting implications which serve as further motivation for this work. The first concerns
the practicalities of existing RSA certified public keys; the second concerns security of
key-agreement protocols in the post-quantum world.

Consider the instantiation of the “signed Diffie-Hellman” construction which ap-
pears, for example, in the popular TLS 1.0-1.2 ciphersuite

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,

using RSA signatures and elliptic curve based Diffie–Hellman. This usage is a bit of a
kludge: RSA certificates in existence were issued for dual-use of RSA in both signature
and encryption mode (which was needed for the earlier TLS mechanism of RSA key-
transport which is still prevalent). Deploying protocols where the same keys are used
for both signature and encryption would encourage a usage which is not supported by
rigorous mathematical guarantees. Short of issuing new RSA keys, this type of misuse
could be avoided by ensuring that existing keys are only used for encryption. We note
that this is not just a theoretical concern. Attacks against deployed cryptography that
reuse keys in unintended ways have been previously reported [27,19,20].

We now discuss the design of key-exchange protocols secure in the post-quantum
setting. Here, a natural strategy is to consider existing designs and replace the different
components with post-quantum secure versions. The underlying Diffie-Hellman con-
structions can be replaced by (Ring-)LWE-based variant such as NewHope [7] or Frodo
[1]. For other primitives, the situation seems to be more delicate. Both for historical and
technical reasons, there seems to be less confidence in proposals for post-quantum sig-
natures th an for post-quantum encryption. Whilst lattice based encryption schemes
have a strong track record, see NTRU [16] for a h istoric scheme or Ring-LWE [26,25]
for more modern ones, the use of lattice based signature s chemes is less stable. Many
early schemes, such as GGH [13] and NTRUSign [17,15], were eventually broken due
to issues with the distribution of the signatures [12,29]; however recently more promis-
ing lattice based candidates have been proposed such as [10]. Post-quantum signature
schemes based on Merkle hash trees have also had issues related to the need to main-
tain a large state; again recently this issue has been overcome with the introduction of
state-less hash tree based [5].

Questionable dual use of RSA keys, and the relatively slow progress of post-quantum
secure signature schemes, raises the question of whether one can design a passively (for-
ward) secure unauthenticated protocol together with authentication mechanisms that
rely solely on post-quantum public key encryption schemes.

Our results. We answer this question in the positive. We propose a generic transforma-
tion which bootstraps a forward secure AKA protocol out of a two-pass passively secure
unauthenticated key agreement (KA) scheme which satisfies some mild additional con-
ditions. The transformation uses an arbitrary IND-CCA public key encryption scheme
and a strongly unforgeable MAC. Below we provide a sketch of our transformation,
motivate its design and discuss the additional requirements on the underlying protocol.

Consider an arbitrary such protocol Π , whose execution between parties U and V
is described in Figure 1 using the general syntax introduced by Bellare and Rogaway
[4]. For example, Diffie–Hellman is an instantiation where U ’s ephemeral key is eA
and m1 is geA , V ’s ephemeral key is eB (which can be deleted as soon as it is used to
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U V

(eA,m1, ∗)← Π(init,−,−; $1)

m1

(−,m2, kB)← Π(resp,m1,−; $2)

m2

(−,a, kA)← Π(init,m1‖m2, eA, $3)

return kA return kB

Fig. 1: An Arbitrary Two-Round Unauthenticated Key Agreement Protocol Π .

derive m2 = geB and kB = meB
1 ), finally the computation of kA is done by U using

the equation kA = meA
2 . To obtain forward secrecy, the ephemeral key data is assumed

to be deleted as soon as the session keys are locally computed.
We bootstrap this two round KA protocol into a fully authenticated one (which in-

herits the forward secrecy property). Our construction, presented in Figure 2, requires
a public key encryption scheme secure under chosen ciphertext attacks, a strongly un-
forgeable message authentication code, and two key derivation functions H1 and H2

which we model as random oracles.
The protocol works by wrapping the message flows, m1 and m2, of the KA proto-

col in encryptions under the long term keys of the two parties. Interestingly, the main
role played by encryption here is to authenticate the parties and ensure integrity of the
messages they exchange. Indeed, one can think of the first two messages of the protocol
as a challenge-response exchange where U attempts to authenticate V by sending an
encryption of m1 under the public key of V and expecting to receive the same m1 in
the next flow. Similarly, the second and third flow can be interpreted as a challenge-
response where V sends m2 to U and expects to receive a message that depends on
m2. In addition, the MAC send as the last message also ties the identities of the parties
involved with this particular execution of the protocol run. The final application key is
derived from the same key from Π , but in a way that decouples it from the MAC key
and also incorporates the identities of the participants.

The last message flow and key derivation methodology also thwart an analogue of
the (in)famous attack against the Needham-Schroeder protocol. A malicious V could
reencrypt the first message for a third party W who would reply with its own encrypted
m2 for U ; V could simply forward this message so U . Parties U and W would thus
derive the same key for the underlying passively secure protocol. However, W will no
longer accept the MAC as it will be on the wrong message (U‖V as opposed to U‖W ),
thus thwarting the attack. In addition, since it depends on the participants’ identities,
the derived session key will also be different for U and W .

The essence of our transformation is that it attempts to ensure that an active ad-
versary cannot interfere with the execution of the underlying protocol, i.e. that when a
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U (pkU , skU ) V (pkV , skV )

(eU ,m1, ∗)← Π(init,−,−; $1)

m1 ← EncpkV (U‖m1) m1 U‖m1 = DecskV (m1)

(−,m2, κV )← Π(resp,m1,−; $2)

m′
1‖m2 = DecskU (m2) m2 m2 ← EncpkU (m1‖m2)

if m′
1 6= m1 then

reject
(−,`, κU )← Π(init,m1‖m2, eU ; $3)

kU,1 ← H1(κU )

m3 ← MackU,1(U‖V ) m3 kV,1 ← H1(κV )

if VrfykV,1
(U‖V,m3) = 0 then

reject
kU,2 ← H2(κU‖U‖V ) kV,2 ← H2(κV ‖U‖V )

return kU,2 return kV,2

Fig. 2: The New AKA Protocol Construction.

party accepts, it must have engaged in an execution with another honest party. Put other-
wise, even an active adversary cannot force a session to accept other than by forwarding
honest messages.

Using non-malleable encryption to protect the integrity of messages goes some-
way towards implementing this intuition. Ensuring that parties authenticate each other
successfully is however not obvious, and in fact require additional properties on the
underlying protocol Π . As explained above, one should think of the first two messages
as a challenge-response protocol to authenticate V . Notice that for security of authen-
tication, this requires that message m1 of the Π has sufficient entropy; otherwise, an
adversary who guessesm1 can reply with an appropriately message which encryptsm1

and some m2 and get U to accept.
Similarly, one should think of the second and third messages as a challenge-response

protocol that authenticates U : the last message should only be computable by some
party which received m2 and derived the MAC key from it. This intuition is valid only
ifm2 actually helps determine the MAC key, which is not necessarily the case. Consider
a two message protocol where, if the first message of U for V is some fixed message
bad, then V sets the local key to, say, 0n. Such a protocol may still be secure against
a passive adversary as an honest execution U would never send bad. Yet, the protocol
obtained by applying our transformation is not actively secure since the adversary can
send the encryption of bad to V . More generally, a close look shows that the problem
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is that the adversary can send an appropriately crafted message m1 which coerces the
key into one which can be easily guessed (even if V behaves honestly).

The above discussion shows that we need two additional properties for our trans-
formation to work: i) that the first message of Π is unpredictable and ii) that even if the
first message is an arbitrary message sent by the adversary then the key derived by V is
still unpredictable.

Naturally, one can ask if further subtle attacks are possible. We show that this is
not the case and provide rigorous guarantees for the above intuition. We show that if
the starting protocol is an arbitrary passively secure two-message protocol and satisfies
the two additional security properties informally described above, then the transforma-
tion that we propose yields a full fledged forward secure key exchange protocol with
mutual authentication (in the random oracle model), under standard assumptions on the
encryption and MAC scheme used in the transformation.

Related work. The first generic compilers for authenticated key exchange were by Bel-
lare, Canetti, and Krawczyk [3] later refined by Canetti and Krawczyk [9]. These works
consider adversaries of different strength, but share an interesting idea of protocol de-
sign. First construct a protocol secure in a model where links between parties are au-
thenticated (i.e. secure against passive adversaries), and then compile it into a stronger
version, secure in a world with unauthenticated links, by using special-purpose authen-
ticators which authenticate the sender of each message and ensure their integrity. In
particular, BCK present an authenticator that uses IND-CCA2 secure encryption and
MAC schemes. However, the use of authenticator replaces every message flow of the
base protocols with three flows, so starting from a two-message flow protocols one ob-
tains a stronger protocol that requires five rounds. Unfortunately the general setting of
MT-authenticators of BCK works does not immediately allows for further optimisation
which reduces the number of rounds.

Katz and Young[22] consider the problem of boosting passive security to active
security for group key exchange by first exchanging nonces between parties and then
authenticating each message through signatures that involve these nonces. For the case
of two parties this result in a protocol with four message flows. For this type of pro-
tocols, a less efficient compiler is the one studied by Morrissey, Smart and Warinschi
[28]. They show that TLScan be regarded as TLS as the successive applications of two
generic transformations which bootstrap passive security to active security.

A second line of work which is related to ours is based on the observation that key
encapsulation mechanisms naturally give rise to passively secure key-exchange proto-
cols (where one party sends the parameters of a KEM scheme, and the second party
sends a KEM). There are by now several constructions of key-exchange protocols (in
settings which are sometimes different from ours) which start from KEMs. For exam-
ple, Boyd et al. [8] construct authenticated key exchange from KEMs, meeting the eCK
stronger security requirement, and Gunther et al [14] show how to add forward security
to KEMs to obtain forward security when these are used as a full-key exchange protocol
that enables forward secure 0-RTT. Both transformations work in the ID-based setting,
use pairings and therefore are not generic.

Perhaps the closest work with ours is that of Li et al. [24] who present two transfor-
mations that bootstrap AKA protocols out of passively secure ones, one based on sig-
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natures and another based on encryption. Both transformations first execute a passively
secure KA protocol and then use three additional flows to perform entity authentication
(and ensure the integrity of the conversation between the two parties). Just like our pro-
posal, the encryption-based construction of [24] can serve to avoid the two issues which
we have outlined above but at an increased round-complexity cost. In essence, we avoid
additional communication rounds by showing how to piggy-back entity authentication
on top of the passively secure protocol.

One observations which is warranted at this point is that our transformation does not
achieve key-confirmation [11] (while derived keys are secret and parties authenticate
each other, one party may accept without the other party actually having derived the
key), whereas some other transformations do. This was not an explicit goal, afterall the
notion has only recently been formalized [11].

2 Preliminaries

We first recall some standard definitions of primitives and their security notions. A
comprehensive overview of this material can be found in [21] and in the full version of
this paper. We then recall basic notions of security for passive key agreement protocols
and introduce two new formal definitions. Throughout this paper, we denote the security
parameter by λ, represented in unary notation as 1λ, and the empty string by −.

2.1 Standard Definitions

We recall briefly the informal descriptions of actively secure public-key encryption
schemes (with the addition of multi-user security), strongly unforgeable message au-
thentication codes as well as key derivation functions and the random oracle model.

Public-key encryption schemes. In this paper, we denote a public-key encryption
scheme by a tuple E = (Setup,KGen,Enc,Dec) of poly(λ)-time algorithms. We as-
sume that such schemes correctly decrypt honestly encrypted ciphertexts with over-
whelming probability.

The standard (single-user) active security notion for such schemes is that of indistin-
guishability under chosen ciphertext attack, denoted IND-CCA. The experiment, also
called game, for this setting gives an arbitrary adversary a randomly sampled public-
key and, upon query of a left-right oracle, denoted L-R, with two messages of identical
lengths, returns the encryption of one of the two. Given access to a decryption oracle,
the adversary’s goal is to guess which of the two messages the oracle encrypts. The
adversary may query either oracle several times, with the only restriction that it may
not query the decryption oracle on any ciphertext output by the left-right oracle.

In the proof of security of our protocol, we make use of the multi-user security
notion described in [2]. For n participants, the n-IND-CCA security experiment is very
similar to the single-user setting. The difference is that the adversary is provided with
n different public keys and may query the left-right oracle on any one of these keys.
Whether it is the right or left message which is encrypted is still selected at random, but
this choice remains consistent between all queries of the L-R oracle.
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Unforgeable message authentication codes. Message authentication codes (MACs)
are symmetric key primitives that allow parties sharing a secret key k to authenticate
and verify messages, thus detecting eventual modification of their content. A MAC is a
triple of poly(λ)-time algorithms M = (KGen,Mac,Vrfy) such that, given a message
and a key, Mac produces a tag, and such that, given a message, a tag and a key, Vrfy
verifies that the tag corresponds to the message.

The security experiment for strong unforgeability, denoted MAC-sFORGE, gener-
ates a random key and gives the adversary access to a Mac oracle whilst recording pairs
of queried messages and the tag that was returned for each. The goal of the adversary is
to output a message and a tag such that the verify algorithms accepts this tag and such
that this tag was never produced by the Mac oracle for this message.
Key derivation functions and the random oracle model. In cryptographic schemes
such as key agreement protocols, the secret information that is exchanged often cannot
be used “out of the box” to achieve other goals such as encryption or authentication.
Instead, we must use a method to transfer the high entropy of the key agreement session
key into a format that is more suitable. This is acheived by making use of key derivation
functions (KDFs) which are functions with high min-entropy, i.e. an adversary has a
negligible chance of correctly guessing the output computed from a given input. While
in practice great care must be given to the instanciation of such a KDF, we will make
use here of the random oracle model and assume that the KDFs we use sample their
output uniformly at random from a given space. We will use two independent random
oracles which we will denote by H1 and H2.

2.2 Passively Secure Unauthenticated Key Agreement Protocol

First, we formalise what we mean by a (simple) unauthenticated key agreement protocol
and what it means for such a protocol to be passively secure. Informally we consider a
protocol passively secure if an adversary cannot determine the session key from seeing
a transcript. We make no usage of long term keys at this stage, as we are focusing on
unauthenticated protocols. In a later section we will discuss the model for fully actively
secure, and authenticated, key agreement.

Informally, a key agreement protocol is a set of instructions, executed by two par-
ties involved in a conversation, which leads to both of them computing identical session
keys. These keys are then usually used to authenticate or encrypt further communi-
cation. The most basic security notion expected of such a protocol is that an adversary
who has access to the transcript of a conversation is incapable of obtaining any informa-
tion regarding the final session key. Our formalisation below is inspired by the original
definition of such protocols by Bellare and Rogaway [4].

Definition 1 (Unauthenticated Key Agreement Protocol). An unauthenticated key
agreement protocol is a pair of probabilisitc poly(λ)-time algorithms (Setup, Π) such
that:

1. The setup algorithm Setup takes as input the security parameter 1λ and outputs
a tuple of public parameters, params, required by the key agreement protocol.
Amongst other information params specifies a message spaceM and a key space
K. We assume for convenience that λ is implicit in params.
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2. The protocol function Π is a function that dictates which messages the participat-
ing entities should compute and send to one another. Its input and output are of the
form (ε′,m, δ, κ)← Π(params, ρ, τ, ε; $) where the inputs are defined by:

– params are the system parameters.
– ρ ∈ {init, resp} is the role of the entity running the function.
– τ ∈ {0, 1}∗ is a transcript of the conversation so far.
– ε ∈ {0, 1}∗ ∪ {⊥} is ephemeral state information which needs to be passed

from one party’s invocation of Π to the next.
– $ is some randomness.

And the outputs of Π are given by
– ε′ ∈ {0, 1}∗ ∪ {⊥} is updated state ephemeral information, if any.
– m ∈ M ∪ {⊥,a} is the next message to be sent in the conversation, where a

signifies that no further message needs to be sent.
– δ ∈ {accept, reject, ∗} indicates U ’s decision in the current conversation. The

symbol ∗ signifies a decision has not yet been made. If δ = reject is returned
then ε′ and m are set to ⊥ and κ must be equal to ∗.

– κ ∈ K∪{∗} is the secret session key computed, where ∗ denotes that it has not
been computed yet.

We often abuse notation and use the symbol Π to denote both the protocol function and
the entire protocol (Setup, Π) and we assume that params is made implicit in the use
of Π . See Figure 1 for a two round example; which will be the focus of this paper.

An unauthenciated key agreement protocol is said to be correct if when the mes-
sages are relayed faithfully, i.e. unmodified and in the correct order, between two partic-
ipants, then they both accept and compute identical session keys, except with negligible
probability over the randomness used in the algorithms.

In practice one defines a specific key agreement protocol by defining how each new
input message is responded to, given the current player state ε. We implicitly assume
that if the input state is ⊥, then the output state and message are also ⊥ and δ will be
reject.

For such unauthenticated key agreement protocol the best security guarantee we
can obtain is that of passive security. Such a protocol is said to be passively secure if
a single session of the protocol does not leak any information regarding the computed
session key to an arbitrary poly(λ)-time adversary A that only eavesdrops on the con-
versation. For an unauthenticated key agreement protocolΠ and an adversaryA, this is
formalised in the EAV-KA experiment described in Figure 3. We denote A’s advantage
in the EAV-KA game as AdvEAV-KA

A,Π (λ) =
∣∣∣ 12 − Pr

[
ExpEAV-KA

A,Π (λ) = 1
]∣∣∣.

Definition 2 (Passive KA Security). A key agreement protocol Π is passively secure
in the presence of an eavesdropper if for all probabilistic poly(λ)-time adversaries A,
the following conditions hold.

1. If messages are relayed faithfully by a benign adversary between two participant
oracles, then both oracles accept holding identical session keys, and each partici-
pant’s key is distributed uniformly at random over K.

2. There exists a negligible function negl(λ) such that AdvEAV-KA
A,Π (λ) ≤ negl(λ).
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1. Two parties holding 1λ execute protocolΠ with one another. This results in a transcript tran
of the entire conversation, and a key κ output by each of the parties.

2. A uniform bit b ∈ {0, 1} is chosen. If b = 0, set κ̂ := κ, and if b = 1 then sample κ̂←$K
uniformly at random.

3. A is given tran and κ̂, and outputs a guess bit b′.
4. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

Fig. 3: The EAV-KA Security Experiment ExpEAV-KA
A,Π (λ).

It is an easy exercise to see that our syntax captures the syntax of Diffie–Hellman,
Frodo and NewHope. In addition it is another easy exercise to show that the standard
unauthenticated Diffie–Hellman protocol meets our Passive KA Security defnition, as-
suming the Decision Diffie–Hellman problem is hard. In addition it is relatively easy to
check that the proofs of security of the Frodo and NewHope key agreement schemes,
given in [7,1], also imply security for our Passive KA definition.

Minor Active Security Properties We also introduce two simple active security no-
tions relevant to KA protocols. Most well designed passive KA schemes are implicitly
understood to satisfy these two notions, but we choose to make them explicit (with the
definition of two new security experiments) as we shall require them later on.

The first of these formalises the notion of the first protocol message being suffi-
ciently “unpredictable”; i.e. the adversary is not able to guess what the first message
m1 of the transcript tran is going to be. We define the M1-GUESS experiment in Fig-
ure 4 and denote an arbitrary adversary A’s advantage in that game as

AdvM1-GUESS
A,Π (λ) = Pr

[
ExpM1-GUESS

A,Π (λ) = 1
]
.

1. One party holding 1λ computes (ε′,m1, ∗, ∗)← Π(params, init, ∅,⊥; $).
2. A is given 1λ and params and outputs a guess message m′

1.
3. The output of the experiment is defined to be 1 if m′

1 = m1, and 0 otherwise.

Fig. 4: The M1-GUESS Security Experiment ExpM1-GUESS
A,Π (λ).

The second security notion models the property that an adversary should not be
able to obtain information about the final key κ even if it may choose the first protocol
message. This definition applies only to two-messages KA protocols. To this intent, we
define the experiment KEY-FORCE in Figure 5 and denote an arbitrary adversary A’s
advantage as

AdvKEY-FORCE
A,Π (λ) = Pr

[
ExpKEY-FORCE

A,Π (λ) = 1
]
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1. The challenger sets 1λ and runs Setup to obain params.
2. A is given 1λ and params and ouputs a first message m1.
3. Ifm1 6∈ M the experiment outputs 0. Otherwise, the challenger computes (⊥,m2, δ, κ0)←
Π(params, resp, {m1},⊥; $), together with sampling κ1 ←$K, from the KE key space.

4. A bit b←$ {0, 1} is chosen uniformly at random.
5. A is given κb and returns a guess b̃.
6. The experiment outputs 1 if and only if b̃ = b, and 0 otherwise.

Fig. 5: The KEY-FORCE Security Experiment ExpKEY-FORCE
A,Π (λ).

3 Forward-secure Authenticated Key Agreement Protocols and
Security Model

In this section, we focus on the formal definition of Authenticated Key Agreement
(AKA) protocols and the security model which we will use. For our purposes, we re-
formulate slightly Kudla’s BJM and mBJM models [23] which were themselves an
elaboration of Bellare and Rogaway’s original model [4] and of Blake-Wilson et al.’s
formulation for the public-key setting [6]. In particular, we add the appropriate elements
so that forward secrecy is captured by our model.

First we present the definition of a general authenticated key agreement protocol.
Then we describe the execution environment of our security model which is the first step
in capturing forward secrecy. Next we present the security experiment and definition for
mutual authentication. Finally, we present the security experiment and definition for a
secure authenticated key agreement protocol which combines both mutual authentica-
tion and secrecy of session keys. We also include a discussion regarding the security
notions, including forward secrecy, that this definition of security guarantees.

3.1 AKA Protocol Definition

The key difference, between the AKA protocol we will discuss in this section and the
definition of a simpler key agreement protocol from Section 2.2, lies in the fact that
AKA protocols hope to achieve entity authentication. That is, the parties seek to confirm
each other’s identities as well as establish a secret session key. To do so, we require the
introduction of long-term keying material that belongs to specific entities which we then
use in the computation of the protocol messages. We therefore modify Definition 1 as
follows.

Definition 3 (AKA Protocol). An authenticated key agreement (AKA) protocol is a
triple of probabilistic poly(λ)-time algorithms (Setup,KGen, Π) such that:

1. The setup algorithm Setup functions similarly to the eponymous algorithm of a key
agreement protocol.

2. The key-generation algorithm KGen takes as input the public parameters params
and an entity identifier U and outputs an entity-specific public/ private key pair
(pkU , skU ).
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3. The protocol function Π functions similarly to the function of a key agree-ment
protocol with the following differences. It is of the form (ε′,m, δ, κ)← Π(params,
(U, pkU , skU ), ρ, (V, pkV ), τ, ε; $) where:

– U is the identifier of a participating entity and is the sender of a message. We
write (pkU , skU ) for the public/private key pair of entity U .

– V is the identifier of a participating entity and is the intended recipient of U ’s
message. We write pkV for the public key ofV .

– All other elements are as in Definition 1.

Again correctness requires that whenever messages are relayed faithfully between two
participants, then they both accept and compute identical session keys (except with
negligible probability over the randomness used in the algorithms).

Similarly to key agreement protocols, we will usually present protocols by giving
the flows of a single run. A description of the function Π can be easily inferred. Also,
we will use abuse notation and writeΠ (or sometimesΣ) both for the protocol function
and the entire protocol which includes key generation, i.e. for (Setup,KGen, Π) (or
sometimes (Setup,KGen, Σ)).

3.2 Execution Environment

In the BJM model, the challenger simulates to the adversary an execution environment
which constitutes of several participants. We wish to obtain “active” security, and so
we allow the adversary to be active in the running of the protocol between the different
entities In particular communication between protocol participants, modelled as ora-
cles, which are controlled by the adversary, i.e. it can choose to invoke oracles to send
legitimate messages or to insert is own, as well as modify, redirect, delay or erase mes-
sages. Each oracle, at the command of the adversary, may engage in several concurrent
sessions of the protocol, with the same partner or not.

Oracle Participants: As mentioned above, we model protocol participants as oracles
which we assume run as probabilistic poly(λ)-time algorithms. More precisely, all par-
ticipating entities are grouped in a set U of identifiers (IDs), and each session (or “run”)
of the protocol is modelled by an oracle Πs

U,V . This represents a participant U ∈ U
believing it is engaging in a protocol session with V ∈ U for the s-th time; we say that
V is U ’s intended partner. Each participant U ∈ U possesses a public and private key
pair (pkU , skU ), generated by KGen, and which we assume is authenticated by some
public-key infrastructure (PKI). Each oracle instance of U has access to both keys, and
every oracle in the model has access to every other user’s public key.

Each individual oracle Πs
U,V maintains a public transcript T sU,V which it updates as

follows. When it recieves a message m, it records it on T sU,V and then invokes the pro-
tocol function on the corresponding input. When the function produces an output, this
is also recorded on T sU,V before being returned to the adversary. Each oracle Πs

U,V also
maintains an internal decision state δsU,V . This decision may take one of four values:

– ∗: the initial state of the oracle which indicates it has not yet reached a decision.
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– accept: the oracle has successfully terminated this run of the protocol after having
computed some session key ksU,V .

– reject: the oracle has terminated without computing a session key.
– revealed: the oracle had previously accepted and has since been revealed by the

adversary, as is described below.

As indicated above, each oracle Πs
U,V maintains a variable ksU,V which holds the

value ∗ until the protocol returns a computed session key. Finally, each oracle is also
associated a role ρsU,V ∈ {init, resp} depending on its function in the protocol session.
Within this model, the adversary A is represented as a poly (λ)-time algorithm that
interacts with the oracles via specific queries; in addition, it also has access to the public
key of each participant together with the transcript of each oracle.

Oracle Queries: During a security experiment for AKA security, run by a challenger
C simulating protocol participants as oracles to an adversaryA, the adversary can make
various queries of the oracles, to which the challenger simulates the responses.

At the beginning of the experiment, C generates protocol-specific parameters params
by running Setup(1λ), C is also responsible for generating a set of participant IDs
U , where |U| = nP and nP = poly (λ). For each participant U ∈ U , C then runs
KGen(params) in order to generate a key pair (pkU , skU ). The challenger C also im-
poses the constraint that a given participant U ∈ U can engage in at most nS sessions
with another given participant V ∈ U , where nS = poly (λ). Therefore, the model
composes of the following set of oracles

{
Πs
U,V | U, V ∈ U , s ∈ [nS ]

}
. Finally, C ini-

tialises an empty list Γ ← ∅which he will use to keep track of which participant oracles
have been corrupted by the adversary as is explained below. The adversary A is then
given params, U and {pkU}U∈U , and proceeds by making the following queries:

– Send(Πs
U,V ,m): The requests C to send the message m to Πs

U,V . The message is
recorded on T sU,V and C responds to the message according to the protocol, simu-
lating user U interacting with V for the s-th time. If m = `, then Πs

U,V initiates
a new protocol run, and its role is set as ρsU,V ← init. If an oracle’s first recieved
message is any message other than `, then it sets ρsU,V ← resp.
Once the response to m is computed according to the protocol, it is added to T sU,V
before being returned to the adversary. If this response is a, this is also recorded on
the transcript.

– Reveal(Πs
U,V ): This query is used by A to request the session key computed by

Πs
U,V . If δsU,V = accept, and hence ksU,V exists, then this is output and returned

to A. Otherwise, this query returns ⊥. If the query is successful, δsU,V ← revealed
and we say that this session has been revealed.

– Corrupt(U, pk′U , sk
′
U ): This allows A to request the long-term secret key of par-

ticipant U and is able to replace U ’s key pair with one of its choice. The chal-
lenger C returns skU to A and replaces (pkU , skU ) with (pk′U , sk

′
U ). All oracles in

the simulation are updated with the new public key, and secret key for the oracles
representing U . Such a participant U is called corrupted and C updates the set
Γ ← Γ ∪ {U}.
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3.3 Secure Mutual Authentication

Now that we have described the execution envrionment, we are able to define the first
goal of an authenticated key exchange protocol, namely mutual authentication. This
notion was first defined in the original BR model [4] using the concept of matching
conversations. The concept of matching conversations is used to determine whether or
not two oracles have engaged in a protocol session together (by means of the adversary
relaying messages from one to the other).

Definition 4 (Matching conversation). Suppose we are given the transcripts T sU,U ′ =

{`, r1,m2, r2, . . . ,mj , rj} and T s
′

V,V ′ = {m′1, r′1,m′2, r′2, . . . ,mk, rk} such that
– m′i = ri for i ≥ 1,
– mi = r′i−1 for i ≥ 2,
– for j even: rj = a and k = j − 1,
– for j odd: rk = a and k = j,
– U = V ′ and U ′ = V ,

then we say that the oraclesΠs
U,U ′ andΠs′

V,V ′ have engaged in a matching conversation.
We also sometimes say that Πs

U,U ′ and Πs′

V,V ′ are matching (oracles).

Entity authentication is captured in the BR model using the No-Matching event
which is triggered if an adversary manages to make an oracle accept without a matching
oracle. Here we reformulate this as a security experiment to be consistent with the more
modern way of defining security.

For an AKA protocolΠ and an arbitrary poly(λ)-time adversaryA, the AKA-AUTH
experiment is defined in Figure 6. The intuition behind this experiment is the same as the
one behind the No-Matching event; the aim of A is to make an oracle accept without
having perfectly relayed the messages to and from its intended partner, and to do so
without corrupting either parties.We denote A’s advantage in the AKA-AUTH security
game as

AdvAKA-AUTH
A,Π (λ) = Pr

[
ExpAKA-AUTH

A,Π (λ) = 1
]
.

1. Setup(1λ) is run to obtain params.
2. The challenger C generates U and runs KGen(params, U) for every U ∈ U to obtain key

pairs (pkU , skU ).
3. A is given params and {pkU}U∈U and access to the participant oracles via the Send, Reveal

and Corrupt queries. Eventually, A outputs a chosen session Πs
U,V .

4. The output of the experiment is defined to be 1 if δsU,V = accept, U, V 6∈ Γ and there does
not exists another oracle Πs′

U′,V ′ which has had a matching converstation with Πs
U,V .

Fig. 6: The AKA-AUTH Security Experiment ExpAKA-AUTH
A,Π (λ).

Definition 5 (Secure Mutual Authentication). We say that an AKA protocol Π =
(Setup,KGen, Π) is a secure mutual authentication protocol if, for any poly(λ)-time
adversary A, the following hold.
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– (Matching Conversations ⇒ Acceptance.) If two oracles Πs
U,V and Πs′

U ′,V ′

have matching conversation, then both oracles accept.
– (Acceptance ⇒ Matching Conversations.) For all probabilistic poly(λ)-time

adversariesA, there exists a negligible function negl(λ) such that AdvAKA-AUTH
A,Π (λ)

≤ negl(λ).

3.4 Session Key Secrecy and Forward Secrecy

Given a definition for mutual authentication, we now need to provide a security defini-
tion for the main purpose of key agreement; namely agreeing a private key. The secrecy
game we present in Figure 7 can be seen as an extension of the AKA-AUTH experi-
ment used to define mutual authentication. This is a natural progression as intuitively, it
makes sense for an AKA protocol to first authenticate the entity it is conversing with be-
fore establishing a shared secret session key. The game is played between a challenger
simulating the AKA protocol Π and an arbitrary poly(λ)-time adversary A.

Before we formally define the secrecy game, we will describe it briefly here so
that the following definition may be placed into some context. As explained above,
the simulator C first sets up the participants and then allows A to interact with them
using some of the three queries. At some point in the simulation, A then has to select
a session on which it wishes to be tested. At that point, the simulator flips a coin and
either returns to the adversary that session’s true key or a newly randomly sampled one.
The adversary then continues the game, with further access to the oracles as before.
Eventually the adversary has to guess which key the simulator returned; the real one or
a random one. If it guesses correctly, it wins the security game.

We allow the adversary to reveal keys of completed sessions as well as corrupt
participants and therefore we must make sure that it does not ask to be tested on a
session for which it could have trivially obtained the key. Sessions on which we allow
the adversary to request a test are those which are called fresh as defined below.

Definition 6 (Fresh Session). A protocol session, represented by an oracle Πs
U,V is

called fresh if the following conditions hold:

– Πs
U,V has accepted, and therefore holds a computed session key, but has not been

revealed; i.e. δsU,V = accept and ksU,V 6= ∗.
– Neither U nor his intended partner V has been corrupted by A; i.e. U, V 6∈ Γ .
– There does not exist an oracle Πs′

U ′,V ′ which matches Πs
U,V and has been revealed.

Note that this definition does not require Πs
U,V to have a matching partner. The

session is still considered to be fresh even if the adversary has managed to make Πs
U,V

accept by generating and sending its own message. In addition an oracle only needs
to be fresh at the point of it being tested; after testing the adversary can corrupt the
parties in a test session; thus capturing forward secrecy. The only restriction on future
operations is that it may not pass a reveal query to a test session (or an oracle with a
matching conversation).
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The Secrecy Experiment: Security for AKA protocols in the BJM model is defined
in terms of the experiment shown in Figure 7, run with an AKA protocol Π and an
arbitrary poly(λ)-time adversaryA. We denoteA’s advantage in the AKA-SEC security
game as

AdvAKA-SEC
A,Π (λ) =

∣∣∣∣12 − Pr
[
ExpAKA-SEC

A,Π (λ) = 1
]∣∣∣∣

1. Setup(1λ) is run to obtain params.
2. The challenger C generates U and runs KGen(params, U) for every U ∈ U to obtain key

pairs (pkU , skU ).
3. A is given params and {pkU}U∈U and access to the participant oracles via the Send, Reveal

and Corrupt queries. Eventually, A outputs a chosen session Πs
U,V .

4. If Πs
U,V is not fresh, it is rejected and A must submit a new one. If it is, C selects a bit

b ∈ {0, 1} at random. If b = 0, set k̂ = ksU,V , and if b = 1, then sample k̂←$K uniformly
at random.

5. A is given k̂, as well the same information as before, and it may continue to interact via the
Send, Reveal and Corrupt queries with the exception that it may not reveal the session on
which it chose to be tested, nor any session with a matching conversation. It may however
corrupt either of the participants that took part in that session. Eventually,A outputs a guess
bit b′.

6. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

Fig. 7: The AKA-SEC Security Experiment ExpAKA-SEC
A,Π (λ).

3.5 Full Security Definition

We finally combine both the notions of mutual authentication and session key secrecy
into a single security definition. As mentioned briefly above, the most notable character-
istic of our security defintion for AKA protocols is that it captures the property known as
forward secrecy. This property requires that the compromise of long-term secret keying
information of entities does not allow an adversary to obtain any information regarding
past session keys that these entities might have established.

This is captured in our model since the adversary is allowed, before it makes its final
guess, to submit a Corrupt query on the entities that took part in the test session. With
that possibility in mind, we still require that its advantage in the AKA-SEC experiment
remains negligible. Thus, proving that an AKA protocol satisfies our deifnition of secu-
rity also proves that it possesses forward secrecy, in which case we say it is a forward
secure AKA protocol. Additionally, our definition also captures the usual security prop-
erties of AKA protocol such as session-key reveal secrecy and third-party compromise
security.

Definition 7 (Active AKA Security). An authenticated key agreement protocol Π is
actively secure if for all probablisitic poly(λ)-time adversariesA, the following condi-
tions hold.
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1. If messages are relayed faithfully (by a benign or an active adversary) between two
participant oracles, then both oracles accept holding identical session keys, and
each participant’s key is distributed uniformly at random over K.

2. Π is a secure mutual authentication protocol.
3. There exists a negligible function negl(λ) such that AdvAKA-SEC

A,Π (λ) ≤ negl(λ).

4 A New AKA Protocol Construction

We now present in more detail our new construction of a secure AKA protocol. We also
state the theorems that establish secrecy for keys and the level of authentication that our
protocol offers. The detailed proofs are in the full version of the paper.
The construction: Let E = (SetupE ,KGenE ,Enc,Dec) be a public-key encryption
scheme. Let M = (KGenM ,Mac,Vrfy) be a message authentication code such that its
key space is KM = {0, 1}l(λ) for some polynomial function l, and its KGenM algo-
rithm simply selects a key from KM uniformly at random. Let Π = (SetupΠ , Π) be a
two-round key agreement protocol and finally, let H1 : {0, 1}∗ → {0, 1}l(λ) and H2 :
{0, 1}∗ → {0, 1}h(λ), where h is a polynomial function, be two key derivation func-
tions. Using these elements, we construct the AKA protocolΣ = (SetupΣ ,KGenΣ , Σ)
where:

1. SetupΣ takes as input the security paramter 1λ and outputs public parameters
paramsΣ which contain the parameters of the encryption scheme E output by
SetupE(1

λ) and the parameters of the KA protocol Π output by SetupΠ(1λ).
2. KGenΣ takes as input paramsΣ and an indentifierU . It then outputs a public/private

key pair forU by setting (pkU , skU )← KGenE(paramsE), i.e. a normal public-key
encryption scheme key pair.

3. Σ functions as specified by the protcol run described in Figure 2. The protocol
works by first wrapping the message flows, m1 and m2, of the unauthenticated
key agreement in encryptions to each party and then sending a MAC tag on the
identities under a key derived from the key agreement session key using the KDF
H1. The final AKA session key is derived from the underlying agreed key and the
party identities, using a different KDF H2.

Security of our scheme: Authentication of Bob to Alice is obtained by Bob prefixing
the plaintext m1 to his response m2 in the second message flow m2. In this way Alice
can verify that the message m′1 that she receives is identical to the one she sent out,
i.e. m1, and therefore Bob must have decrypted it; since only Bob has Bob’s decryp-
tion key. Authentication of Alice to Bob is obtained by Alice sending a valid MAC on
the identities under a key derived from the underlying unauthenticated key agreement
scheme. Since only Alice can decrypt Bob’s message m2, only Alice could compute
the underlying key agreement session key and therefore the associated MAC key. No-
tice that the these forms of authentication also imply liveness of the parties. The above
intuition is formalized by the following theorem.

Theorem 1. If Π is M1-GUESS-secure and KEY-FORCE-secure, E is 2-IND-CCA-
secure and M is MAC-sFORGE-secure, then Σ is a secure mutual authentication pro-
tocol.
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Finally, we show that our construction yields a protocol that guarantee key secrecy.

Theorem 2. If Π is EAV-KA-secure, M1-GUESS-secure and KEY-FORCE-secure, E is
2-IND-CCA-secure and M is MAC-sFORGE-secure, then Σ is AKA-SEC- secure.
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24. Yong Li, Sven Schäge, Zheng Yang, Christoph Bader, and Jörg Schwenk. New Modular
Compilers for Authenticated Key Exchange, pages 1–18. Springer International Publishing,
Cham, 2014.

25. Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption.
In Aggelos Kiayias, editor, CT-RSA 2011, volume 6558 of LNCS, pages 319–339. Springer,
Heidelberg, February 2011.

26. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
1–23. Springer, Heidelberg, May 2010.

27. Nikos Mavrogiannopoulos, Frederik Vercauteren, Vesselin Velichkov, and Bart Preneel. A
cross-protocol attack on the TLS protocol. In Ting Yu, George Danezis, and Virgil D. Gligor,
editors, ACM CCS 12, pages 62–72. ACM Press, October 2012.

28. Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi. The TLS handshake protocol: A
modular analysis. Journal of Cryptology, 23(2):187–223, April 2010.

29. Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of GGH and
NTRU signatures. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 271–288. Springer, Heidelberg, May / June 2006.


	Generic Forward-Secure Key Agreement Without Signatures

