
Fault Attack on ACORN v3

Xiaojuan Zhang1,2, Xiutao Feng1,3, Dongdai Lin1,

1State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
3Key Laboratory of Mathematics Mechanization, Academy of Mathematics and

System Science, Chinese Academy of Sciences, Beijing, China
zhangxiaojuan@iie.ac.cn

Abstract. Fault attack is one of the most efficient side channel attacks
and has attracted much attention in recent public cryptographic litera-
tures. In this work we introduce a fault attack on the authenticated ci-
pher ACORN v3. Our attack is done under the assumption that a fault
is injected into an initial state of ACORN v3 randomly, and contains
two main steps: fault locating and equation solving. At the first step, we
introduce concepts of unique set and non-unique set, where differential
strings belonging to unique sets can determine the fault location unique-
ly. For strings belonging to non-unique sets, we use some strategies to
increase the probability of determining the fault location uniquely to al-
most 1. At the second step, we demonstrate several ways of retrieving
equations, and then obtain the initial state by solving equations with the
guess-and-determine method. With n fault experiments, we can recover
the initial state with time complexity c ·2146.5−3.52·n, where c is the time
complexity of solving linear equations and 26 < n < 43. We also apply
the attack to ACORN v2, which shows that, comparing with ACORN
v2, the tweaked version ACORN v3 is more vulnerable against the fault
attack.
Keywords: CAESAR, Authenticated Cipher, Stream Cipher, ACORN,
Fault Attack

1 Introduction

The CAESAR competition [1], launched in 2014, aims to find authenticated
ciphers that offer advantages over AES-GCM and are suitable for widespread
adoption. Totally, 57 candidates have been submitted to the competition. After
two rounds of assessment, only 16 survivors were announced to be included in
the third round. ACORN submitted by Hongjun Wu is one of the 16 proposals.
It contains three versions [2,3,4], and is based on a simple binary feedback shift
register (FSR, for short) of length 293. The third round submission ACORN v3
is different from ACORN v2 in the feedback function and the filter function.

Up to now, there are some cryptographic analyses on ACORN that pro-
vide some insights into the diffusion ability of the cipher. Using the guess-and-
determine and the differential-algebraic techniques, Liu et al. proposed a state
recovering attack on ACORN v1 [5]. But the attack is worse than a brute force



2

attack. Chaigneau et al. showed a key recovery attack on ACORN v1 when
nonce is reused to encrypt a small amount of chosen plaintexts [6]. It is shown
that if one IV is reused seven times, the security of ACORN is lost. Salam et
al. developed cube attacks to the reduced round version of ACORN v1 and v2
[7], which are far from threatening the real-life usage of the cipher. Salam et
al. investigated an attack to find a collision of the state under the assumption
that the key is known [8]. Lafitte et al. described that they develop practical
attacks to recover the state and the key [9]. However, the attacks are much more
expensive than the brute force attack. Josh et al. claimed that the associate data
do not affect any keystream bits if the size of the associated data is small [10].
Dibyendu et al. gave some results on ACORN [12], one of them is that they
find a probabilistic linear relation between plaintext bits and ciphertext bits,
which hold with probability 1

2 + 1
2350 . But the bias is too small to be tested.

Another result is that they could recover the initial state of the cipher with time
complexity approximately equalling to 240, which is done under an impractical
assumption. The designer of ACORN gave the comments on these analysis in
[13], which show that some of the attacks are not really attacks.

Since fault differential attack is one of side channel attacks working on phys-
ical implementations, it is interesting to apply side channel cryptanalysis to a
cryptographic algorithm that is being used or will be used in reality. Due to the
work of Biham et al.[14], fault attack becomes a powerful tool to retrieve the
secret key of many cryptographic primitives. The first fault attack on stream
cipher was introduced by Hoch and Shamir [15]. They showed that a typical
fault attack allows an attacker to inject faults by means of laser shots/clock
glitches[16,17] into a device initialized by a secret key and change one or more
bits of its internal state. Then by analyzing the difference between the faulty
device and the right device, he or she could deduce some information about the
internal state or secret key. Under the assumption that a hard fault is injected
at a certain position, Dey et al. proposed a hard fault attack on ACORN v1 and
v2 in a nonce-respecting scenario in [18]. There are not any results of differen-
tial fault attacks on ACORN v3 under a general fault model of random fault
injection.

In this work we give some results of fault differential attacks on ACORN
v3 under a general fault model of random fault injection into a initial state.
Our attack contains two main steps: fault locating and equation solving. At
the fault locating step, we show that when a fault is injected into a initial
state randomly, we can get a differential string between the error and correct
keystream bits. With the differential string, we aims to identify the fault location.
First, for each fault location, we give a method to obtain the differential set
correspondingly, which contains all possible differential strings. And then sort
the sets into two parts: unique set and non-unique set. We say that a differential
set is a unique set if all the strings belonging to it can determine the fault
locations uniquely. Otherwise, we call it non-unique set. If the differential string
belongs to non-unique sets, we use some strategies including the keystream bits
extension strategy and the high probability priority strategy, to increase the



3

probability of determining the fault location uniquely. We show that when 163-
bit keystream is available, the probability can reach to 99.998%. At the second
step, we first give two algorithms to retrieve equations. Our main idea is based
on the observation that the first 99-bit differential keystream of ACORN v3 can
be expressed as linear or quadratic functions with respect to the initial state,
which helps us to recover the initial state. We also give several methods to
retrieve more linear equations. Then we use the guess-and-determine method
to obtain the initial state. With n fault experiments, we can recover the initial
state with time complexity c · 2146.5−3.52·n, where c is the time complexity of
solving linear equations and 26 < n < 43. We also apply the differential fault
attack to ACORN v2. The initial state of ACORN v2 can be recovered with time
complexity c ·2146.5−1.95·n, where 40 < n < 77. The results show that comparing
with ACORN v2, the tweaked version ACORN v3 is more vulnerable against
the fault attack.

The rest of this paper is organized as follows. In Section 2, a brief description
of ACORN is provided. The fault attacks on ACORN v3 and v2 are introduced
in Section 3 and 4. Finally, we conclude this paper in Section 4.

2 Brief Description of ACORN

ACORN v3 will be restated briefly in this section, for more details one can refer
to [2]. Here we do not intend to introduce the procedures of the initialization,
the process of the associated data and the finalization, because our attack does
not involve them, and just restate the encryption procedure briefly.

Denote by S = (s0, s1, ..., s292) the initial state of ACORN v3 before the
first keystream bit is outputted and p the plaintext. The functions used in the
encryption procedure of ACORN v3 are the feedback function f(S, p), the s-
tate update function F (S, p) and the filter function g(S). The feedback function
f(S, p) mainly involves in the feedback computation of the FSR, defined as

f(S, p) = 1⊕ s0 ⊕ s61 ⊕ s66 ⊕ s107 ⊕ s196 ⊕ s23s160 ⊕ s23s244 ⊕ s160s244 ⊕ p.

Introducing intermediate variables yi (1 ≤ i ≤ 293),

y293 = f(S, p)
y289 = s289 ⊕ s235 ⊕ s230
y230 = s230 ⊕ s196 ⊕ s193
y193 = s193 ⊕ s160 ⊕ s154
y154 = s154 ⊕ s111 ⊕ s107
y107 = s107 ⊕ s66 ⊕ s61
y61 = s61 ⊕ s23 ⊕ s0

yi = si, where 1 ≤ i ≤ 292 and i 6∈ {61, 107, 154, 193, 230, 289},

the state update function F (S, p) can be described as

si = yi+1, where 0 ≤ i ≤ 292.



4

It is easy to check that the state update function F (S, p) is invertible on S when
p is given. The process of introducing intermediate variables can be regarded as
a linear transformation L with respect to the internal state. The keystream z is
generated by the filter function g(S) defined as

g(S) = s12 ⊕ s66 ⊕ s107 ⊕ s111 ⊕ s154 ⊕ (s61 ⊕ s23 ⊕ s0)(s193 ⊕ s160 ⊕ s154)⊕
(s61 ⊕ s23 ⊕ s0 ⊕ s193 ⊕ s160 ⊕ s154)s235 ⊕ (s66 ⊕ s111)(s230 ⊕ s193 ⊕ s196).

At each step i of the encryption procedure, one plaintext bit p is injected
into the state and c is obtained by p⊕ z. The pseudo-code of the generation of
the encryption procedure of ACORN v3 is given as follows.

l← the bit length of the plaintext;
for i from 0 to l − 1 do

zi = g(S);
ci = zi ⊕ pi;
s = F (S, pi);

end for

For ACORN v2, the only difference from ACORN v3 is that a part of the
filter function

s66 ⊕ (s66 ⊕ s111)(s230 ⊕ s193 ⊕ s196)

is moved to the feedback function. Others are the same as those of ACORN v3.
For more details, one can refer to [3].

3 Fault Attack on ACORN v3

We first give an outline of the fault attack model before introducing our fault
attack on ACORN v3. We assume that an attacker can access the physical
device of a stream cipher, and know the IV and the keystream. The attacker
just attempts to exploit a fault and tracks the differential trail of the keystream.
By analyzing the differential trail, one could deduce some information of the
internal state, and then proceed to recover the key or forge a valid tag for any
plaintext. In our fault attack, the following privileges of an attacker are required.

1. The attacker has the ability to reset the physical device with the original
Key-IV and restart the cipher operations multiple times.

2. The attacker can inject a fault into the initial state randomly before the
encryption procedure, but can not choose the location.

Our attack contains two main parts: fault locating and equation solving. At
the first step, we will demonstrate how to determine the fault location, and at
the second step, we will retrieve a system of equations with respect to the initial
state, and exploit how to recover the initial state with this system of equations.
Once the initial state is recovered, the forgery attack can be executed easily.



5

3.1 Fault Locating

In this section, we will present how to identify the fault location after a fault is
injected into the initial state randomly. We first introduce a method to obtain
differential sets, and then provide a fault locating method.

Denote by S = (s0, s1, ..., s292) the initial state of the FSR and P = (p0, p1, ...,
pl−1) the l−bit plaintext. [a, b] denotes the closed interval from a to b for inte-
gers a and b, where a ≤ b. Let z = (z0, z1, ..., zl−1) be the correct keystream
and zi = (zi0, z

i
1, ..., z

i
l ) be the error keystream generated by a faulty initial state

at location i, where i ∈ [0, 292]. We define a l-bit differential string ∆zi. The
jth element ∆zij of ∆zi satisfies ∆zij = zj ⊕ zij . As ∆zij is 0, 1 or a non-zero

function with respect to S, we also denote by ∆zi a differential set that contains
all possible differential strings resulting from the faulty initial state at location
i, where i ∈ [0, 292].

Obtaining differential sets Now, we need to get all differential sets ∆zi,
where i ∈ [0, 292]. We represent ∆zi as a sequence of positions where their
corresponding components are either 1 or non-constant functions with respect
to S by omitting the 0 components. Here, we suppose l = 99, since the first 99 bits
differential keystream can be represented as linear or quadratic functions with
respect to S. These equations can be used to retrieve enough linear equations to
recover the initial state. For example, when s0 is changed, we can get

∆z0 = (∆z00 , 0
37,∆z038, 0

10, 1, 08,∆z058, 0
2,∆z061, 0

14,∆z076, 0
10, 1, 08,∆z096,∆z

0
97, 0)

where 0i(i ∈ {37, 10, 8, 2, 14}) presents i consecutive 0, and∆z0j (j ∈ {0, 38, 58, 61,
76, 96, 97}) are non-constant functions with respect to S. Omitting the 0 com-
ponents, ∆z0 can be represented as

∆z0 = (0, 38,49, 58, 61, 63, 76,87, 96, 97),

where the numbers in bold represent that 1 is always occurring in these positions.
Let A be the set of all locations that can be involved in f(S, p) or g(S) directly,
that is

A = {0, 12, 23, 61, 66, 107, 111, 154, 160, 193, 196, 230, 235, 244}.

By injecting one fault at loction i, we find that the length of ∆zi is at most 25,
where i ∈ A, see Table 1.

For the non-constant function components in each ∆zi, where i ∈ A, we have
checked that at most 4 equal to 1 with probability 1

4 and others equal to 1 with
probability 1

2 . So, for one fault location i ∈ A, it is enough to choose 32 initial
states randomly to get all the positions where 1 may occur. That is because when
32 initial states are chosen, for one position, 1 should occur, but does not occur
with probability less than 2−13. So for 25 positions, the probability that there is
at least one position where 1 may occur, but does not occur, can be neglected.
For other fault locations i, where i ∈ [0, 292] and i /∈ A, the first new differences
that are not the differences caused by shifting, is introduced when ∆si shifts to



6

Table 1. ∆zi, i ∈ A

i ∆zi

0 0 38 49 58 61 63 76 87 96 97
12 0 12 50 61 70 73 75 88
23 0 11 23 38 49 58 63 72 76 81 84 86 87 96 97
61 0 38 41 46 49 58 61 63 76 82 84 87 92 95 96 97
66 0 5 41 43 46 51 54 58 63 66 68 81 82 84 87 89 92 95 97
107 0 41 43 46 47 58 63 82 84 86 87 88 90 92 93 94 95 97
111 0 4 43 45 47 50 51 62 67 88 90 91 92 93 94 96 97 98
154 0 33 39 43 47 66 72 78 82 86 88 90 91 93 94 96
160 0 6 33 39 45 49 53 58 63 66 72 78 82 84 86 88 91 92 94 96 97
193 0 33 34 37 39 66 68 70 71 72 74 76 78 82 86 91 92 96 97
196 0 3 34 36 37 40 42 58 63 68 69 70 71 73 74 75 76 77 79 81 85 89 92 94 95
230 0 34 37 54 59 68 70 71 74 76 92 93 96 97
235 0 5 39 42 54 59 64 73 75 76 79 81 93 96 97 98
244 9 14 48 51 58 63 68 73 82 84 85 88 90 97

The numbers in bold represent the positions of components 1 and others represent
the positions of the non-constant functions with respect to S.

the locations in A. So, the length of ∆zi is at most 25 and 32 random initial
states is enough. Algorithm 1 is used to obtain all differential sets. The main
idea is to fix one fault location i, and choose 32 initial states randomly to get
32 differential strings. And then extract the positions where 1 may occur and 1
is always occurring. Due to the limitation of pages, we list a part of differential
sets ∆zi in Appendix A.

Fault locating method When a fault experiment is carried out, i.e. a fault
is injected into a initial state randomly, we can get a differential string ∆z,
with which we can determine the fault location according to the differential
sets obtained above. The main idea is to compare the 1’s positions in ∆z with
those in strings belonging to ∆zi, where i ∈ [0, 292]. In a very small number of
cases, a single differential string can correspond to more than one fault location.
Because of this, we separate the differential sets into two parts: unique sets and
non-unique sets. We analysis the strings separately is to give a more accurate
assessment about our fault locating method. Because strings belonging to unique
sets, can increase the possibility of determining the fault location. The definition
of unique set is given as follows.

Definition 1. For one differential set ∆zi, if each string belonging to it can
determine only one fault location, we say that ∆zi is a unique set, where i ∈
[0, 292]. Otherwise we say that ∆zi is a non-unique set.

For all 293 fault locations, Algorithm 2 is used to extract unique sets. The major
task is to compare the locations where 1 is always occurring. Running through



7

Algorithm 1 Obtain differential set ∆zi, where i ∈ [0, 292]

Require: fault location i, where i ∈ [0, 292]
Ensure: the position set MQi where 1 occurs with probability less than 1 and the

position set AQi where 1 is always occurring
1: Choose 32 initial states randomly
2: for each initial state do
3: proceed the encryption phase of ACORN v3 to get a l-bit keystream z
4: si ← si ⊕ 1
5: proceed the encryption phase of ACORN v3 to get a l-bit keystream zi, calculate

∆zi

6: for j from 0 to l − 1 do
7: if ∆zij 6= 0 then
8: add j to MQi (repeated j are always reserved)
9: end if

10: end for
11: end for
12: for j from 0 to l − 1 do
13: if there are 32 j in MQi then
14: add j to AQi and delete j in MQi

15: end if
16: end for
17: delate the repeated numbers in MQi

18: return MQi and AQi

Algorithm 2 Find unique set ∆zi, where i ∈ [0, 292]

Require: differential sets ∆zi, MQi and AQi, where i ∈ [0, 292]
Ensure: unique sets and non-unique sets
1: for i from 0 to 291 do
2: for k from i+ 1 to 292 do
3: if MQi ∪AQi ⊆MQk ∪AQk and AQk ⊆MQi ∪AQi then
4: return ∆zi and ∆zk are non-unique set
5: end if
6: end for
7: if there is not any return then
8: return ∆zi is a unique set
9: end if

10: end for



8

all differential sets ∆zi, where i ∈ [0, 292], we find that there are 103 unique sets
which are marked out in Appendix A. The number of unique sets can provide
some insights into the diffusion ability of the cipher to some extent. Given one
differential string, if it belongs to one of the unique set, the unique fault location
is clear. The strings belonging to non-unique sets can also be divided into two
parts. One part can determine the fault locations uniquely and the other part can
not. For the strings that can not determine the fault location uniquely, we adopt
the keystream extension strategy and the high probability priority strategy to
increase the possibility of determining the fault location. The detail process is
shown as follows.

1. Separate strings belonging to non-unique sets into 99 categories denoted
by Bt (t ∈ [0, 98]) according to the subscript t satisfying ∆zit = 1 (t ∈
[0, 98]) and ∆zij = 0 (0 ≤ j < t). For example, B0 contains ∆zi whose first

component ∆zi0 can be 1. It is noticed that for

∆z0 = (0, 38,49, 58, 61, 63, 76,87, 96, 97),

it may occurs in B0, B38 and B49 since its first 1 may occur at position 0, 38
and 49 (∆z149 = 1 always holds).

2. For a given differential string ∆z, we need to determine which category it
belongs to according to the position of its first 1. And then by comparing
other locations of 1 appearing in ∆z, we can determine all possible fault
locations, see Algorithm 3.

Algorithm 3 Fault Locating

Require: a differential string ∆z, MQi and AQi, where i ∈ [0, 292]
Ensure: the set I of possible fault locations
1: Denote by J the set of j satisfying ∆zj = 1, where j ∈ [0, l − 1]
2: Determine the category B∗ that ∆z belongs to, according to the first 1’s position

in ∆z
3: for all ∆zi ∈ B∗ do
4: if J ⊆MQi ∪AQi and AQi ⊆ J then
5: add location i to the set I
6: end if
7: end for
8: return the set I

3. If the number of the optional fault locations is one, it means that the unique
fault location has been determined. Otherwise, we use the keystream bits
extension strategy and the high probability priority strategy to guess the
right fault location.

– Keystream extension strategy. Extending keystream is a very valid
method of increasing the proportion of strings that can determine the
fault location uniquely. The longer the keystream available to us, the
higher probability of determining the unique fault location.



9

– High probability priority strategy. Here we assume that the initial
state of the FSR is random and uniformly distributed. For a given string
∆z, we find that different fault location candidates appear with different
probabilities. For each candidate i, we prefer to choose i with higher
probability, and call it high probability priority strategy. For example,
when we get

∆z = (

57︷ ︸︸ ︷
0, · · ·, 0, 1,

41︷ ︸︸ ︷
0 · ··, 0),

we know each candidate i in B57 needs to satisfy ∆zij = 0, where j ∈
[0, 98] and j 6= 57. According to the expression of ∆zi, i takes 292 with
the highest probability 2−3. The probabilities of all the candidates i are
listed in Table 2.

Table 2. Optional fault locations of ∆zi = (57)

fault location ∆zi probability

233 3 37 40 57 62 71 73 74 77 79 95 96 2−12

238 3 8 42 45 57 62 67 76 78 79 82 84 96 2−13

250 15 20 54 57 64 69 74 79 88 90 91 94 96 2−13

253 18 23 57 60 67 72 77 82 91 93 94 97 2−12

287 52 57 91 94 2−4

292 57 62 96 2−3

Table 3. Determine the Fault Location

220 strings in non-unique sets

keystream
length (bits)

uniquely determine non-uniquely determine total
proportion(%)proportion(% ) proportion(% ) guess probability(% )

99 86.48 13.52 83.01 97.70

109 91.31 8.69 86.21 98.80

119 92.38 7.62 92.82 99.45

129 93.31 6.69 98.11 99.87

139 93.84 6.16 99.07 99.94

149 94.48 5.52 99.59 99.98

159 94.66 5.34 99.80 99.99

169 94.72 5.28 99.96 100.00

179 94.73 5.27 99.98 100.00

uniquely determine proportion(% ): the proportion of strings that can determine the fault location
uniquely

non-uniquely determine: the strings that can not determine the the fault location uniquely
proportion(% ): the proportion of strings that can not determine the fault location uniquely
guess probability(% ): the probability of guessing the right fault location
total proportion(%): the total proportion of strings that can get the right fault location



10

Implementation and verification In ACORN v3, there are at most 2293

initial states and a differential string is dependent on both the initial state and
the fault location. The whole space is beyond our computation capability. We just
choose 220 differential strings belonging to non-unique sets randomly to verify
the validity of the above two strategies. We choose 215 initial states randomly,
and for each initial state, we choose 25 non-unique fault locations randomly to
obtain 220 differential strings. Then we calculate the probability of guessing the
right fault location every time 10-bit keystream is lengthened. The result shows
that when the length of the keystream reaches to 169 bits, we can determine the
right fault location with probability 1, see Table 3. When the keystream length
is 99 bits, the proportion of the strings that can determine the fault location
uniquely is about 86.48%. For the other 13.52% strings, we can guess the right
fault location with probability 83.01%. The total proportion of strings that can
get the right fault location is

86.48% + 13.52% ∗ 83.01% = 97.70%.

When the keystream length reaches to 169 bits, the total proportion is almost
100%.

3.2 Recovering the Initial State

Once several faults are located, we can retrieve enough equations with respect to
the initial state to recover the initial state. In this section, we first give a funda-
mental method to retrieve equations and then give some improvement strategies
to get more linear equations. Last, we use the guess-and-determine method to
obtain the initial state and the time complexity is bounded by the number of
fault experiments.

Fundamental equation retrieving method Here, we just use the first 99-
bit keystream, as the first 99 bits differential keystream can be expressed as
linear or quadratic functions with respect to the initial state. Denote by S =
(s0, s1, · · ·, s292) the initial state of the FSR and s293, · · ·, s391 the 99 feedback
variables. The first 58 feedback variables can be expressed as quadratic functions
with respect to S. We give two algorithms to retrieve equations. In Algorithm
4, we show how to get differential equations when fault is injected in si, where
i ∈ A,

A = {0, 12, 23, 61, 66, 107, 111, 154, 160, 193, 196, 230, 235, 244}.

When i ∈ [0, 292] and i 6∈ A, the main idea to retrieve differential equations

is to shift and act the inversion of the linear transformation L on ∆zi
′

, where
i
′ ∈ A, see Algorithm 5. Note that the inversion of the linear transformation L

will not lead to the transformation of a linear function to a non-linear function,
but increase the number of terms in the function.



11

Algorithm 4 Retrieve Equations 1

Require: the set A of fault locations
Ensure: differential equations
1: proceed the encryption phase of ACORN v3 to represent the 99 feedback variables
s
′
293, · · ·, s

′
391 and keystream z0, z1, · · ·, z98 as functions of S

2: for i ∈ A do
3: si ← si ⊕ 1
4: proceed the encryption phase of ACORN v3 to represent the 99 feedback vari-

ables s
′′
293, · · ·, s

′′
391 as functions of S

5: for j from 293 to 391 do
6: sj ← sj ⊕ s

′
j ⊕ s

′′
j

7: end for
8: Regard S = (s0, s1, · · ·, s292) and s293, · · ·, s391 as the initial state and feedback

variables, proceed the encryption phase of ACORN v3 to represent the keystream
z
′
0, z
′
1, · · ·, z

′
98 as functions of S

9: for j from 0 to 98 do
10: ∆zij ← z

′
j ⊕ zj

11: if ∆zij 6= 0, 1 then
12: return ∆zij is a differential equation
13: end if
14: end for
15: end for

Algorithm 5 Retrieve Equations 2

Require: fault location i ∈ [a, b], where a − 1, b + 1 ∈ A and there is not any c ∈ A
satisfying a < c < b; the components of ∆za−1

Ensure: differential equations
1: for each component ∆za−1

j 6= 0, 1, where j ∈ [0, 98] do

2: ∆zij+a−1−i ← ∆za−1
j

3: for each variable sk in ∆zij+a−1−i, where k ∈ [0, 292] do
4: sk ← sa−1−i

k

5: s0k+a−1−i ← L−1(L−1(· · ·(L−1(L−1︸ ︷︷ ︸
a−1−i

(sa−1−i
k ))) · ··)

6: sa−1−i
k ← s0k+a−1−i

7: return ∆zij+a−1−i is a differential equation
8: end for
9: end for

Statistics show that, on average, we can get 6.38 linear equations and 4.23
non-linear equations with one fault experiment. We choose the quadratic equa-
tions of form xixj as 0.5 linear equations, where xi and xj are linear functions
with respect to the initial state. Because the value of the quadratic equations of
the form xixj equal to 1 with probability 1

4 . If xixj = 1, we know that xi = 1
and xj = 1. Thus it is expected to obtain 0.5 linear equation.



12

Several improvement strategies In order to get more linear equations, two
observations are given.

Observation 1 When i 6∈ A, if we stretch the length of the differential string, we
can get more linear equations. The number of these functions is 0.7 on average.

For example, when s0 is changed, we can get

∆z0 = (∆z00 , 0
37,∆z038, 0

10, 1, 08,∆z058, 0
2,∆z061, 0

14,∆z076, 0
10, 1, 08,∆z096,∆z

0
97, 0)

where 0i, i ∈ {37, 10, 8, 2, 14} presents i consecutive 0, and
∆z00 = s154 ⊕ s160 ⊕ s193 ⊕ s235,
∆z038 = s159 ⊕ s165 ⊕ s192 ⊕ s194 ⊕ s197 ⊕ s198 ⊕ s231 ⊕ s273,
∆z058 = s20⊕ s43⊕ s58⊕ s73⊕ s78⊕ s81⊕ s119⊕ s173⊕ s185⊕ s212⊕ s214⊕ s217⊕
s218 ⊕ s251,
∆z061 = s176 ⊕ s188 ⊕ s215 ⊕ s217 ⊕ s220 ⊕ s221 ⊕ s237 ⊕ s242 ⊕ s254 ⊕ s296,
∆z063 = s83 ⊕ s88 ⊕ s127 ⊕ s129 ⊕ s131 ⊕ s174,
∆z076 = s164⊕ s170⊕ s191⊕ s193⊕ s195⊕ s196⊕ s199⊕ s201⊕ s202⊕ s203⊕⊕s230⊕
s232 ⊕ s235 ⊕ s236 ⊕ s252 ⊕ s257 ⊕ s269 ⊕ s311,
∆z096 = (s159 ⊕ s165 ⊕ s198 ⊕ s282)(s20 ⊕ s35 ⊕ s43 ⊕ s65 ⊕ s73 ⊕ s75 ⊕ s78 ⊕ s81 ⊕
s96⊕s110⊕s111⊕s114⊕s116⊕s119⊕s157⊕s172⊕s178⊕s184⊕s190⊕s211⊕s213⊕
s215⊕s216⊕s219⊕s221⊕s222⊕s223⊕s230⊕s235⊕s250⊕s252⊕s255⊕s256⊕s289),
∆z097 = 1⊕s71⊕s81⊕s114⊕s116⊕s117⊕s120⊕s161⊕s163⊕s165⊕s169⊕s175⊕s208.

∆z096 is of form xixj and can be regard as 0.5 linear equations, where xi =
s159 ⊕ s165 ⊕ s198 ⊕ s282 and
xj = s20 ⊕ s35 ⊕ s43 ⊕ s65 ⊕ s73 ⊕ s75 ⊕ s78 ⊕ s81 ⊕ s96 ⊕ s110 ⊕ s111 ⊕ s114 ⊕
s116 ⊕ s119 ⊕ s157 ⊕ s172 ⊕ s178 ⊕ s184 ⊕ s190 ⊕ s211 ⊕ s213 ⊕ s215 ⊕ s216 ⊕ s219 ⊕
s221 ⊕ s222 ⊕ s223 ⊕ s230 ⊕ s235 ⊕ s250 ⊕ s252 ⊕ s255 ⊕ s256 ⊕ s289.
Note that∆z096 and∆z097 can be regarded as linear functions.∆z399 and∆zi97+i(1 <
i < 12) are also linear functions which will not be used when only 99-bit
keystream is in consideration.

Observation 2 For all equations, we find two features of the equations.

1. For one fault experiment, if the number of quadratic equations xixj is larger
than 1, there would exist equations of forms xixj1 and xixj2 , where xi, xj1
and xj2 are linear functions with respect to the initial state. Then we can
retrieve more linear equations.

2. For one quadratic equation of form xixj, there may exist linear equation of
form xi or xj which can be used to deduce more linear equations, where xi
and xj are linear functions with respect to the initial state.

For two experiments where faults are injected at location i = 0 and i = 23,
we can get

1. In ∆z23, there are four quadratic equations of form xixj , three of which are
∆z2358 = (s160 ⊕ s244)(s20 ⊕ s43 ⊕ s58 ⊕ s73 ⊕ s78 ⊕ s81 ⊕ s119 ⊕ s173 ⊕ s185 ⊕



13

s212 ⊕ s214 ⊕ s217 ⊕ s218 ⊕ s251),
∆z2363 = (s160 ⊕ s244)(s83 ⊕ s88 ⊕ s127 ⊕ s129 ⊕ s131 ⊕ s174),
∆z2397 = (s160 ⊕ s244)(1⊕ s71 ⊕ s81 ⊕ s114 ⊕ s116 ⊕ s117 ⊕ s120 ⊕ s161 ⊕ s163 ⊕
s165 ⊕ s169 ⊕ s175 ⊕ s208).
If at least one of them equal to 1, we can get 4 linear equations.

2. In ∆z0, two equations
∆z058 = s20 ⊕ s43 ⊕ s58 ⊕ s73 ⊕ s78 ⊕ s81 ⊕ s119 ⊕ s173 ⊕ s185 ⊕ s212 ⊕ s214 ⊕
s217 ⊕ s218 ⊕ s251, and ∆z063 = s83 ⊕ s88 ⊕ s127 ⊕ s129 ⊕ s131 ⊕ s174,
are parts of ∆z2358 and ∆z2363 respectively.

Solving equation As shown above, on average, we can get 7.03 linear equa-
tions and 4.23 non-linear equations with one fault experiment. With 27 fault
experiments, we can get 304 equations including 190 linear equations. By guess-
ing 52 bits value, the initial states can be recovered. The time complexity of
recovering the initial state is c · 252, where c is the time complexity of solving
linear equations of 51 variables. Also, we can get 295 linear equations with 42
fault experiments and the time complexity is to solve linear equations of 293
variables.

Let n be the number of fault experiments. We can get 11.26n equations
including 7.03n linear equations. We use the guess-and-determine method to
solve the equations. The time complexity of obtaining the initial state equals to

c · 2
293−7.03n

2 ≈ c · 2146.5−3.52n

approximately, where c is the time complexity of solving linear equations and
26 < n < 43. As there are some relations between the equations in practical
attack as shown in Observation 2, the time complexity can be smaller.

Implementation and verification We verify the validity of our solving e-
quation method on a shrunk cipher with similar structure and properties. More
specifically, we built a small stream cipher according to the design principles
used for ACORN v3 but with a small state of 31 bits. We then implemented our
attack to recover the initial state. The result shows that if the number of linearly
independent equations is larger than 31, we can recover the initial state by guess-
ing some feedback values and a small part of the initial state values involved in
these feedback function. Of course, if the linearly independent equations are not
enough, we need to proceed more fault experiments.

3.3 The Forgery Attack

Once the initial state of ACORN v3 is recovered we can encrypt any message to
generate a valid tag, i.e., we can forge tags for all plaintexts. All the methods
used in this work can be easily applied to ACORN v1 and v2, and for ACORN
v1, we can recover the key by stepping the cipher backward.



14

4 The Fault Attack on ACORN v2

We also apply the above attack to ACORN v2. In the fault locating part, we find
that there are 127 unique sets in ACORN v2 which is larger than that of ACORN
v3. And for strings belonging to non-unique sets, we can also determine the fault
location uniquely with the keystream extension strategy and the high probability
priority strategy. In the initial state recovery part, we can get 3.9 linear equations
and 3.3 non-linear equations, on average, with one fault experiment. And in
ACORN v2, observation 1 is not useful to retrieve more linear equations.

Let n be the number of fault experiments. We can get 7.2n equations with
3.9n linear equations. The time complexity of obtaining the initial state equals
to

c · 2
293−3.9n

2 = c · 2146.5−1.95n,

where c is the time complexity of solving linear equations and 40 < n < 77.

The result shows that comparing with ACORN v2, the tweaked version A-
CORN v3 is more vulnerable against fault attack, see Table 4. The main reason

Table 4. Comparation of ACORN v3 and v2

fault experiments’
number

time complexity
ACORN v3 ACORN v2

n c · 2146.5−3.52n c · 2146.5−1.95n

42 c c · 264.6

27 c · 251.46 impossible

is caused by the tweak that a part of terms in the feedback function are moved
to the output filtering functions. For one experiment, the number of linear e-
quations retrieved from ACORN v3 is larger than that from ACORN v2. The
tweak is to provide large security margin against the guess-and-determine attack.
However, it makes the algorithm more vulnerable against the fault attack.

5 Conclusion

In this paper, we described a fault attack on ACORN v3 which is one of the
third round candidates of CAESAR. We also applied the attack to ACORN v2.
This work shows that comparing with ACORN v2, the tweaked version ACORN
v3 is more vulnerable against fault attack. For ACORN v3, we can recover the
initial state with time complexity c · 2146.5−3.52n, where c is the time complexity
of solving linear equations and 26 < n < 43. However, for ACORN v2, the
time complexity is c · 2146.5−1.95n with 40 < n < 77. The difference between
ACORN v3 and ACORN v2 makes the algorithm small security margin against
the differential fault attack.



15

References

1. CAESAR: http://competitions.cr.yp.to/index.html.
2. Hongjun Wu. ACORN: A Lightweight Authenticated Cipher (v3). Submission to

CAESAR, http://competitions.cr.yp.to/round3/acornv3.pdf, 2016.
3. Hongjun Wu. ACORN: A Lightweight Authenticated Cipher (v2). Submission to

CAESAR, http://competitions.cr.yp.to/round2/acornv2.pdf, 2015.
4. Hongjun Wu. ACORN: A Lightweight Authenticated Cipher (v1). Submission to

CAESAR, http://competitions.cr.yp.to/round1/acornv1.pdf, 2014.
5. Meicheng Liu and Dongdai Lin. Cryptanalysis of Lightweight Authenticated Ci-

pher ACORN. Posed on the crypto-competition mailing list, 2014.
6. Colin Chaigneau, Thomas Fuhr and Henri Gilbert. Full Key-recovery on ACORN

in Nonce-reuse and Decryption-misuse settings. Posed on the crypto-competition
mailing list, 2015.

7. Md Iftekhar Salam, Harry Bartlett, Ed Dawson, Josef Pieprzyk, Leonie Simpson
and Kenneth Koon-Ho Wong. Investigating Cube Attacks on the Authenticated
Encryption Stream Cipher ACORN. International Conference on Applications and
Techniques in Information Security. Springer Singapore, 2016: 15-26.

8. Md Iftekhar Salam, Kenneth Koon-Ho Wong, Harry Bartlett, Leonie Ruth Simp-
son, Ed Dawson and Josef Pieprzyk. Finding state collisions in the authenticated
encryption stream cipher ACORN. Proceedings of the Australasian Computer
Science Week Multiconference. ACM, 2016: 36.

9. Frédéric Lafitte, Liran Lerman, Olivier Markowitch and Dirk Van Heule. SAT-
based cryptanalysis of ACORN. IACR Cryptology ePrint Archive, 2016: 521.

10. Rebhu Johymalyo Josh and Santanu Sarkar. Some observations on ACORN v1
and Trivia-SC. Lightweight Cryptography Workshop, NIST, USA. 2015: 20-21.

11. Pei Zhang, Jie Guan, Junzhi Li and Tairong Shi. Research on State Collisions
of Authenticated Cipher ACORN. 2015 4th International Conference on Sensors,
Measurement and Intelligent Materials. Atlantis Press, 2016.

12. Roy Dibyendu and Sourav Mukhopadhyay. Some results on ACORN. IACR cryp-
tology ePrint Archive, 2016: 1132.

13. https://groups.google.com/forum/#!forum/crypto-competitions/dzzNcybqFP4
14. Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key Cryptosys-

tems. Advances in CryptologyCRYPTO’97, 1997: 513-525.
15. Jonathan J. Hoch and Adi Shamir. Fault Analysis of Stream Ciphers. International

Workshop on Cryptographic Hardware and Embedded Systems. Springer, Berlin,
Heidelberg, 2004: 240-253.

16. Sergei P. Skorobogatov. Optically Enhanced Position-Locked Power Analysis.
CHES. 2006, 4249: 61-75.

17. Sergei P. Skorobogatov and Ross J. Anderson. Optical Fault Induction Attacks.
CHES. 2002, 2523: 2-12.

18. Dey Prakash, Rohit Raghvendra Singh and Adhikari Avishek. Full key recovery
of ACORN with a single fault. Journal of Information Security and Applications,
2016, 29: 57-64.



16

A Appendix

Due to the limitation of pages, we just list the differential sets ∆zi, where i ∈
[0, 168] in Table 5. The first column is fault location, and the second column is
differential set. For each differential set ∆zi, the numbers in the second column
represent the positions where 1 may occur when fault location is i, that is,
fault is injected in si. And the numbers in bold represent the positions where
1 is always occurring. The numbers in the first column are the locations where
fault are injected, and the numbers in bold represent that the corresponding
differential sets are unique sets.

For example, when i = 12, the components of ∆z12 are the positions where
1 may occur when fault is injected in s12, where

∆z12 = (0, 12, 50,61, 70, 73, 75, 88).

The number 0 and 61 represent the positions where 1 is always occurring. Other
numbers represent the positions where 1 may occur with some certain proba-
bility. 12 in the first column means that the differential set ∆z12 is an unique
set.



17

Table 5. ∆zi, i ∈ [0, 168]

i ∆zi

0 0 38 49 58 61 63 76 87 96 97
1 1 39 50 59 62 64 77 88 97 98
2 2 40 51 60 63 65 78 89 98
3 3 41 52 61 64 66 79 90
4 4 42 53 62 65 67 80 91
5 5 43 54 63 66 68 81 92
6 6 44 55 64 67 69 82 93
7 7 45 56 65 68 70 83 94
8 8 46 57 66 69 71 84 95
9 9 47 58 67 70 72 85 96

10 10 48 59 68 71 73 86 97
11 11 49 60 69 72 74 87 98
12 0 12 50 61 70 73 75 88
13 1 13 51 62 71 74 76 89
14 2 14 52 63 72 75 77 90
15 3 15 53 64 73 76 78 91
16 4 16 54 65 74 77 79 92
17 5 17 55 66 75 78 80 93
18 6 18 56 67 76 79 81 94
19 7 19 57 68 77 80 82 95
20 8 20 58 69 78 81 83 96
21 9 21 59 70 79 82 84 97
22 10 22 60 71 80 83 85 98
23 0 11 23 38 49 58 63 72 76 81 84 86 87 96 97
24 1 12 24 39 50 59 64 73 77 82 85 87 88 97 98
25 2 13 25 40 51 60 65 74 78 83 86 88 89 98
26 3 14 26 41 52 61 66 75 79 84 87 89 90
27 4 15 27 42 53 62 67 76 80 85 88 90 91
28 5 16 28 43 54 63 68 77 81 86 89 91 92
29 6 17 29 44 55 64 69 78 82 87 90 92 93
30 7 18 30 45 56 65 70 79 83 88 91 93 94
31 8 19 31 46 57 66 71 80 84 89 92 94 95
32 9 20 32 47 58 67 72 81 85 90 93 95 96
33 10 21 33 48 59 68 73 82 86 91 94 96 97
34 11 22 34 49 60 69 74 83 87 92 95 97 98
35 12 23 35 50 61 70 75 84 88 93 96 98
36 13 24 36 51 62 71 76 85 89 94 97
37 14 25 37 52 63 72 77 86 90 95 98
38 15 26 38 53 64 73 78 87 91 96
39 16 27 39 54 65 74 79 88 92 97
40 17 28 40 55 66 75 80 89 93 98
41 18 29 41 56 67 76 81 90 94
42 19 30 42 57 68 77 82 91 95
43 20 31 43 58 69 78 83 92 96
44 21 32 44 59 70 79 84 93 97
45 22 33 45 60 71 80 85 94 98
46 23 34 46 61 72 81 86 95
47 24 35 47 62 73 82 87 96
48 25 36 48 63 74 83 88 97
49 26 37 49 64 75 84 89 98
50 27 38 50 65 76 85 90
51 28 39 51 66 77 86 91
52 29 40 52 67 78 87 92
53 30 41 53 68 79 88 93
54 31 42 54 69 80 89 94
55 32 43 55 70 81 90 95
56 33 44 56 71 82 91 96
57 34 45 57 72 83 92 97
58 35 46 58 73 84 93 98
59 36 47 59 74 85 94
60 37 48 60 75 86 95
61 0 38 41 46 49 58 61 63 76 82 84 87 92 95 96 97
62 1 39 42 47 50 59 62 64 77 83 85 88 93 96 97 98
63 2 40 43 48 51 60 63 65 78 84 86 89 94 97 98
64 3 41 44 49 52 61 64 66 79 85 87 90 95 98
65 4 42 45 50 53 62 65 67 80 86 88 91 96
66 0 5 41 43 46 51 54 58 63 66 68 81 82 84 87 89 92 95 97
67 1 6 42 44 47 52 55 59 64 67 69 82 83 85 88 90 93 96 98
68 2 7 43 45 48 53 56 60 65 68 70 83 84 86 89 91 94 97
69 3 8 44 46 49 54 57 61 66 69 71 84 85 87 90 92 95 98
70 4 9 45 47 50 55 58 62 67 70 72 85 86 88 91 93 96
71 5 10 46 48 51 56 59 63 68 71 73 86 87 89 92 94 97
72 6 11 47 49 52 57 60 64 69 72 74 87 88 90 93 95 98
73 7 12 48 50 53 58 61 65 70 73 75 88 89 91 94 96
74 8 13 49 51 54 59 62 66 71 74 76 89 90 92 95 97
75 9 14 50 52 55 60 63 67 72 75 77 90 91 93 96 98
76 10 15 51 53 56 61 64 68 73 76 78 91 92 94 97
77 11 16 52 54 57 62 65 69 74 77 79 92 93 95 98
78 12 17 53 55 58 63 66 70 75 78 80 93 94 96
79 13 18 54 56 59 64 67 71 76 79 81 94 95 97
80 14 19 55 57 60 65 68 72 77 80 82 95 96 98
81 15 20 56 58 61 66 69 73 78 81 83 96 97
82 16 21 57 59 62 67 70 74 79 82 84 97 98
83 17 22 58 60 63 68 71 75 80 83 85 98



18

i ∆zi

84 18 23 59 61 64 69 72 76 81 84 86
85 19 24 60 62 65 70 73 77 82 85 87
86 20 25 61 63 66 71 74 78 83 86 88
87 21 26 62 64 67 72 75 79 84 87 89
88 22 27 63 65 68 73 76 80 85 88 90
89 23 28 64 66 69 74 77 81 86 89 91
90 24 29 65 67 70 75 78 82 87 90 92
91 25 30 66 68 71 76 79 83 88 91 93
92 26 31 67 69 72 77 80 84 89 92 94
93 27 32 68 70 73 78 81 85 90 93 95
94 28 33 69 71 74 79 82 86 91 94 96
95 29 34 70 72 75 80 83 87 92 95 97
96 30 35 71 73 76 81 84 88 93 96 98
97 31 36 72 74 77 82 85 89 94 97
98 32 37 73 75 78 83 86 90 95 98
99 33 38 74 76 79 84 87 91 96
100 34 39 75 77 80 85 88 92 97
101 35 40 76 78 81 86 89 93 98
102 36 41 77 79 82 87 90 94
103 37 42 78 80 83 88 91 95
104 38 43 79 81 84 89 92 96
105 39 44 80 82 85 90 93 97
106 40 45 81 83 86 91 94 98
107 0 41 43 46 47 58 63 82 84 86 87 88 90 92 93 94 95 97
108 1 42 44 47 48 59 64 83 85 87 88 89 91 93 94 95 96 98
109 2 43 45 48 49 60 65 84 86 88 89 90 92 94 95 96 97
110 3 44 46 49 50 61 66 85 87 89 90 91 93 95 96 97 98
111 0 4 43 45 47 50 51 62 67 88 90 91 92 93 94 96 97 98
112 1 5 44 46 48 51 52 63 68 89 91 92 93 94 95 97 98
113 2 6 45 47 49 52 53 64 69 90 92 93 94 95 96 98
114 3 7 46 48 50 53 54 65 70 91 93 94 95 96 97
115 4 8 47 49 51 54 55 66 71 92 94 95 96 97 98
116 5 9 48 50 52 55 56 67 72 93 95 96 97 98
117 6 10 49 51 53 56 57 68 73 94 96 97 98
118 7 11 50 52 54 57 58 69 74 95 97 98
119 8 12 51 53 55 58 59 70 75 96 98
120 9 13 52 54 56 59 60 71 76 97
121 10 14 53 55 57 60 61 72 77 98
122 11 15 54 56 58 61 62 73 78
123 12 16 55 57 59 62 63 74 79
124 13 17 56 58 60 63 64 75 80
125 14 18 57 59 61 64 65 76 81
126 15 19 58 60 62 65 66 77 82
127 16 20 59 61 63 66 67 78 83
128 17 21 60 62 64 67 68 79 84
129 18 22 61 63 65 68 69 80 85
130 19 23 62 64 66 69 70 81 86
131 20 24 63 65 67 70 71 82 87
132 21 25 64 66 68 71 72 83 88
133 22 26 65 67 69 72 73 84 89
134 23 27 66 68 70 73 74 85 90
135 24 28 67 69 71 74 75 86 91
136 25 29 68 70 72 75 76 87 92
137 26 30 69 71 73 76 77 88 93
138 27 31 70 72 74 77 78 89 94
139 28 32 71 73 75 78 79 90 95
140 29 33 72 74 76 79 80 91 96
141 30 34 73 75 77 80 81 92 97
142 31 35 74 76 78 81 82 93 98
143 32 36 75 77 79 82 83 94
144 33 37 76 78 80 83 84 95
145 34 38 77 79 81 84 85 96
146 35 39 78 80 82 85 86 97
147 36 40 79 81 83 86 87 98
148 37 41 80 82 84 87 88
149 38 42 81 83 85 88 89
150 39 43 82 84 86 89 90
151 40 44 83 85 87 90 91
152 41 45 84 86 88 91 92
153 42 46 85 87 89 92 93
154 0 33 39 43 47 66 72 78 82 86 88 90 91 93 94 96
155 1 34 40 44 48 67 73 79 83 87 89 91 92 94 95 97
156 2 35 41 45 49 68 74 80 84 88 90 92 93 95 96 98
157 3 36 42 46 50 69 75 81 85 89 91 93 94 96 97
158 4 37 43 47 51 70 76 82 86 90 92 94 95 97 98
159 5 38 44 48 52 71 77 83 87 91 93 95 96 98
160 0 6 33 39 45 49 53 58 63 66 72 78 82 84 86 88 91 92 94 96 97
161 1 7 34 40 46 50 54 59 64 67 73 79 83 85 87 89 92 93 95 97 98
162 2 8 35 41 47 51 55 60 65 68 74 80 84 86 88 90 93 94 96 98
163 3 9 36 42 48 52 56 61 66 69 75 81 85 87 89 91 94 95 97
164 4 10 37 43 49 53 57 62 67 70 76 82 86 88 90 92 95 96 98
165 5 11 38 44 50 54 58 63 68 71 77 83 87 89 91 93 96 97
166 6 12 39 45 51 55 59 64 69 72 78 84 88 90 92 94 97 98
167 7 13 40 46 52 56 60 65 70 73 79 85 89 91 93 95 98
168 8 14 41 47 53 57 61 66 71 74 80 86 90 92 94 96


