
Raziel:
Private and Verifiable Smart Contracts on

Blockchains

David Cerezo Sánchez∗
Calctopia*

david@calctopia.com*

(This paper is a first implementation of PCT/IB2015/055776)

December 19, 2017

Abstract

Raziel combines secure multi-party computation and proof-carrying
code to provide privacy, correctness and verifiability guarantees for smart
contracts on blockchains. Effectively solving DAO and Gyges attacks, this
paper describes an implementation and presents examples to demonstrate
its practical viability (e.g., private and verifiable crowdfundings and invest-
ment funds, double auctions for decentralized exchanges). Additionally,
we show how to use Zero-Knowledge Proofs of Proofs (i.e., Proof-Carrying
Code certificates) to prove the validity of smart contracts to third parties
before their execution without revealing anything else. Finally, we show
how miners could get rewarded for generating pre-processing data for
secure multi-party computation.

∗Corresponding author

1

https://www.calctopia.com/papers/csfi.pdf

1 Introduction
The growing demand for blockchain and smart contract[Sza97, BP17, CBB16,
JE03, Hvi14, STM16] technologies sets the challenge of protecting them from
intellectual property theft and other attacks[ABC16]: security, confidentiality
and privacy are the key issues holding back their adoption[Mac16]. As shown
in this paper, the solution must be inter-disciplinary (i.e., cryptography and
formal verification techniques): code from smart contracts cannot be formally-
verified before its execution with cryptographic techniques and conversely, formal
verification techniques keep track of information flows to guarantee confidentiality
but they don’t provide privacy on their own[FLGR09, FPR11].

The availability of the proposed technical solution and its broad adoption
is ultimately a common good: it’s in the public interest to use smart contracts
that respect the confidentiality and privacy of the processed data and that
can be efficiently verified. Smart contracts have recently been heralded as
“cryptocurrency’s killer app”[Cas14], but to develop the next digital businesses
based on the blockchain (e.g., the equivalents of Paypal, Visa, Western Union,
NYSE) there is an urgent need for better protected smart contracts, a gap solved
on this publication.

Contributions We propose a system for securely computing smart contracts
guaranteeing their privacy, correctness and verifiability. Our main and novel
contributions are:

• Practical formal verification of smart contracts: the proofs accompanying
the smart contracts can be used to prove functional correctness of a
computation as well as other properties including termination, security,
pre-conditions and post-conditions, invariants and any other requirements
for well-behaved code. A smart contract that has been fully formally verified
protects against the subtle bugs such as the one that enabled millions to
be stolen from the DAO[Dai16]. And when signed proofs conform to the
specifications of a trusted organization, Raziel also prevents the execution
of criminal smart contracts (i.e., Gyges attacks[JKS16]) solving this kind
of attacks for the first time.

• A practical use of Non-Interactive Zero-Knowledge proofs of proofs/certifiable
certificates is proposed (see section §5.3): the code producer can convince
the executing party of the smart contract of the existence and validity of
proofs about the code without revealing any actual information about the
proofs themselves or the code of the smart contract. Although the concept
of zero-knowledge proofs of proofs is not new[Blu87, BOGG+90, Pop04],
it can now be realised in practice for general properties of code.

• An outsourcing protocol for secure computation that allows offline parties
and private parameter reuse is presented (see section §4.6): previous
approaches don’t allow all the parties to be offline[MGBF14, CMTB13,
CLT14, CT16, BS14] or reusing encrypted values[KMR11, KMR12].

2

• We propose that miners should get rewarded for generating pre-processing
data for secure multi-party computation (see section §4.7), in line with ear-
lier attempts to replace wasteful PoWs[Kin13, MJS+14, BRSV17, ORP17].

Minimal set of functionalities We argue that the combined features here
described are indeed the minimal set of functionalities that must be offered by a
secure solution to protect computations on blockchains:

• A pervasive goal of blockchain technologies is the removal of trusted
third parties: towards this end, the preferred solution in cryptography is
secure multi-party computation, which covers much more than transactions.
Moreover, public permissionless blockchains are executing smart contracts
out in the open and any curious party is able to inspect the input parameters
and detailed execution of any on-chain smart contract: again, MPC is the
best cryptographic solution to protect the privacy of the computation of
said smart contracts.

– Since carrying out encrypted computations has a high cost, we intro-
duce two improvements to reduce that cost: outsourcing for cloud-
based blockchains (see section §4.6) and mining pre-processing data
for secure multi-party computation (see section §4.7).

• Once encrypted smart contracts are being considered, a moral hazard
arises: why should anyone execute a potentially-malicious encrypted smart
contract from an anonymous party? Formal verification techniques such
as proof-carrying code provide an answer to this dilemma: mathematical
proofs about many desirable properties (termination, correctness, security,
resource consumption, legal/regulatory, economic and functional, among
others) can be offered before carrying out any encrypted execution.

– To prevent that said proofs leak too much information about the
smart contracts, a novel solution for zero-knowledge proofs of proofs
is proposed (see section §5.3).

This paper describes an implementation discussing cryptographic and technical
trade-offs.

2 Background
This section provides a brief introduction to the main technologies that un-
derpin Raziel: blockchains, secure multi-party computation[Gol97] and formal
verification.

3

Blockchains A blockchain is a distributed ledger that stores a growing list of
unmodifiable records called blocks that are linked to previous blocks. Blockchains
can be used to make online secure transactions, authenticated by the col-
laboration of the P2P nodes allowing participants to verify and audit trans-
actions. Blockchains can be classified according to their openness. Open,
permissionless networks don’t have access controls (e.g., Bitcoin[Nak08] and
Ethereum[But14a, Woo14]) and reach decentralized consensus through costly
Proof-of-Work calculations over the most recently appended data by miners.
Permissioned blockchains have identity systems to limit participation (e.g., Hy-
perledger Fabric[Cac16]) and do not depend on proofs-of-work. Blockchain-based
smart contracts are computer programs executed by the nodes and implementing
self-enforced contracts. They are usually executed by all or many nodes (on-chain
smart contracts), thus their code must be designed to minimize execution costs.
Lately, off-chain smart contracts frameworks are being developed that allow the
execution of more complex computational processes.

Secure Multi-Party Computation Protocols for secure multi-party compu-
tation (MPC) enable multiple parties to jointly compute a function over inputs
without disclosing said inputs (i.e., secure distributed computation). MPC
protocols usually aim to at least satisfy the conditions of inputs privacy (i.e., the
only information that can be inferred about private inputs is whatever can be in-
ferred from the output of the function alone) and correctness (adversarial parties
should not be able to force honest parties to output an incorrect result). Multiple
security models are available: semi-honest, where corrupted parties are passive
adversaries that do not deviate from the protocol; covert, where adversaries may
deviate arbitrarily from the protocol specification in an attempt to cheat, but
do not wish to be “caught” doing so ; and malicious security, where corrupted
parties may arbitrarily deviate from the protocol. Multiple related cryptographic
techniques (including secret sharing[Sha79], oblivious transfer[Rab05], garbled
circuits, oblivious random access machines[Gol87]) and MPC protocols (e.g.,
Yao[Yao82, Yao86, LP04], GMW[GMW87], BMR[BMR90], BGW[BGW88] and
others) have been developed since MPC was originally envisioned by Andrew
Yao in the early 1980s.

Formal verification Formal verification uses formal methods of mathematics
on software to prove or disprove its correctness with respect to certain formal
specifications. Deductive verification is the preferred approach: smart contracts
are annotated to generate proof obligations that are proved using theorem
provers or satisfiability modulo theories solvers. In the software industry, formal
verification is hardly used, but in hardware the high costs of recalling defective
products explain their greater use: analogously, it’s expected a higher use of
formal verification methods applied to smart contracts compared to the general
rate of use on the software industry given the losses in case of errors and
exploitation[Dai16].

4

3 Model and Goals
Parties executing smart contracts need to protect their private financial informa-
tion and obtain formal guarantees regarding their execution. The central goal
for Raziel is to offer a programming framework to facilitate the development of
formally-verified, privacy-preserving smart contracts with secure computation.

3.1 Threat Model and Assumptions
A conservative threat model assumes that parties wish to execute smart contracts
but mutually distrust each another. Each party is potentially malicious and
the smart contract is developed by one of the parties or externally developed.
We assume that each party trusts its own environment and the blockchain; the
rest of the system is untrusted. The threat model does not include side channel
attacks or denial of service attacks.

3.2 Goals
A secure smart contract system should operate as follows: a restricted set of par-
ties willing to execute a smart contract check the accompanying proofs/certificates
to verify it before its execution. Then these parties send their private inputs
to the nodes at the start of the execution of the smart contract; after that, the
nodes run the smart contract carrying out the secure computation. Alternatively,
the same parties may run the secure computation between themselves without
the use of external executing nodes. Finally, the restricted set of parties obtain
the results from the secure computation, which could be stored on the blockchain
according to the rules of some consensus protocol.

4 Private Smart Contracts
Enabling smart contracts with secure computation techniques (e.g., secure
multi-party computation, homomorphic encryption[RAD78], indistinguishability
obfuscation[BV15]) is a key-step to the global adoption of blockchain technologies:
encrypted transactions could be stored on the blockchain; secure computations
could be carried out between distrustful parties; even the contract’s code on the
blockchain could be kept private.

Although it would be very profitable to sell/acquire smart contracts based
on the value of their secret algorithms (see Markets for Smart Contracts) using
homomorphic encryption (bootstrapping being a costly operation that can
only be minimized[PV16, BLMZ16] and not avoided) and indistinguishability
obfuscation (polynomial-time computable, but with constant factors ≥ 2100), are
both considered currently infeasible due to concrete efficiency issues. In spite of
impressive progress towards making these techniques practical[LMA+16, CMR17,
CGGI17], they appear to be a long way from suitability for our purposes (i.e.,
Obfustopia is still a very expensive place, Cryptomania is much more affordable).

5

Another possible approach, which is being adopted by some blockchains and
related technologies, is to rely on a trusted execution environment (most notably
Intel’s SGX[CD16]). Relying on trusted hardware is a risky bet and assumes a
high level of trust in the hardware vendor. Several severe attacks have exposed
vulnerabilities of SGX[BMD+17, SWG+17, MIE17, WKPK16, XCP15, SLKP17,
LSG+16, BCLK17, Swa17, LJJ+17, Cor17, BWK+17, JLLK17, XLCZ17b, XLCZ17a,
JVBS17]: all the current proposed and existing blockchains whose security rest
on SGX aren’t providing detailed explanations and proofs on how they are
defending against these attacks. Unlike software bugs, new hardware would
have to be deployed to fix these kinds of bugs, sometimes re-architecting the full
solution.

Hence, our design employs secure multi-party computation. Secure multi-
party computation is more mature than the fully homomorphic methods, and has
a less trusting threat model than trusted execution approaches. MPC protocols
have solid security proofs based on standard assumptions and efficient imple-
mentation. Current MPC technologies that can be used in production[ABPP15]
include: secret sharing, garbled circuits, oblivious transfer and ORAMs. Secret
sharing based schemes (i.e., many-round, dependent on the depth of the circuit)
can be faster than garbled circuits/BMR (i.e., constant-round) in low-latency set-
tings (LANs): when latency is large or unknown, it’s better to use constant-round
protocols[SZ13, BELO16].

A preferred approach is to use modular secure computation frameworks: for
security reasons, at least two secure computation frameworks should be available,
offering different cryptographic and security assumptions; in case the security of
one of them is compromised, there will be a second option.

4.1 Off-chain computation
Even when using the fastest available secure multi-party computation tech-
niques, the overhead would be very significant if secure computations would
have to be executed on every full node of a blockchain, as have been previously
proposed[But14b]. In Ethereum, at current prices (380 $/ETH, 21 Gwei/gas,
30/August/2017), multiplying or dividing 2 plaintext integers 10 million times
costs:

5
Gas
ops
· 10000000 ops · 0.000000001

ETH
Gwei

· 21
Gwei
Gas

· 380
$

ETH
= $399

and to store 32768 words of 256 bits (i.e. 1 megabit), it costs:

2000
Gas

SSTORE
· 32768 ops · 0.000000001

ETH
Gwei

· 21
Gwei
gas

· 380
$

ETH
= $523

However, multiplying 2 plaintext integers 10 million times on a modern
computer takes 0.02 seconds: since it costs $0.004/hour (Amazon EC2 t2.nano
1-year Reserved Instance), the same multiplications cost

$0.004 hour
3600 seconds/hour

· 0.02 seconds = $0.000000022

6

It’s order of magnitude more expensive, concretely

$399

$0.000000022
= 18136363636.363636364

That is, more than 18 billions times more expensive: and as the price of Ether
keeps rising, the costs of computation will also rise. On another note, current
state-of-the-art secure computation executes 7 billion AND gates per second
on a LAN setting [AFL+16], but an 8-core processor executes 316 GIPS at the
Dhrystone Integer Native benchmark (Intel Core i7-5960X), an approximate
slowdown of

316GIPS
7Billion gates/second

= 45.142857143 x

which must not be additionally imposed to the overhead/overcost of a public
permissionless distributed ledger: on the hand, it also means that there are
overheads/overcosts being accepted which are higher than those imposed by
secure computation or verifiable computation (105 − 107 for proving correctness
of the execution [WB15]).

We address on-chain and off-chain secure computations separately:

• For on-chain secure computations, the validation of transactions happens
through the replicated execution of the smart contract and given the
fault assumption underlying the consensus algorithm. Because privacy-
preserving smart contracts introduce a significant resource consumption
overhead, it is important to prevent the execution of the same privacy-
preserving smart contract on every node. We relax the full-replication
requirement for PBFT consensus: a “query” command could be executed
on a restricted set of nodes (large enough to provide consensus), and then
an “invoke” store the result in the distributed ledger. Finally, achieving
consensus is a completely deterministic procedure, with no possible way
for differences.

• Regarding off-chain secure computations, simple oracle-like calls could
be considered or other more complex protocols[HMP17, TR17, iEx17] for
scalable off-chain computation.

4.1.1 Latency and its impact

As previously mentioned, MPC protocols can be roughly divided into two classes:
constant-round protocols, ideal for high latency settings; and protocols with
rounds dependent on the depth of the evaluated circuit, usually faster but only
on very low latency settings. The present paper proposes the use of two protocol
suites to get the maximum performance, independent of the latency:

• if all parties are on a low latency setting, they could use a very fast
secret-shared protocol[AFL+16, BLW08]

7

• but if parties are on a high latency setting, they must use a constant-
round protocol[KRW17, WMK16a, BELO16, HSSV17, BELO17, BEO17].
Alternatively, they could outsource the secure computation to a cloud
setting (see section §A), to use a faster secret-shared protocol.

4.2 Blockchain Solutions
The guarantees of privacy, correctness and verifiability are designed for the more
threatening setting of public permissionless blockchains, although the smart
contracts can also be used on private permissioned blockchains: it’s also preferred
that private blockchains keep their communications open to public blockchains
to allow the use of smart contracts of public utility.

We considered two blockchains solutions:

• Hyperledger Fabric[Cac16] is a good fit for executing complex computa-
tional procedures like secure multi-party computation and formal verifica-
tion techniques: including such complex procedures on its chaincodes (i.e.
smart contracts) requires no special design considerations.

• Ethereum[But14a] is a public permissionless blockchain and integrating
complex procedures on its smart contracts is much trickier: executed code
consumes gas, thus the general pursuit to minimize the number of executed
instructions. For complex procedures, oracles are the best option (external
data providers, not to be confused with random oracles in cryptography
or oracle machines in complexity theory). The initial purpose of oracles
is to provide data that didn’t belong in the blockchain (e.g., web pages)
because decentralized applications that achieve consensus shouldn’t rely
on off-chain sources of information. But the mechanism can also be used
for off-chain execution of complex code. The steps to incorporate an oracle
are:

1. Contract call to on-chain contract that executes complex computa-
tional procedures (e.g., secure multi-party computation). Said call
must include enough gas and the correct parameters:

(a) Parameters should be encrypted to prevent that other participants
of the blockchain inspect them: a public key should be available
for this purpose; only the executing oracle should be able to
decrypt the parameters using the corresponding private key. Said
executing oracle must be implemented as a trusted server of
the calling party; otherwise, a more complex protocol involving
outsourced oblivious transfer must be used.

(b) Contributed gas is used to cover the costs of returning results to
the calling contract.

2. The executing oracle receives the contract call, decrypts the data
and proceeds to the off-chain execution of the complex computational
procedure.

8

3. The executing oracle returns back the results to the calling contract
address.

4. Calling contract obtains the results: if large results are expected
(e.g., some few kilobytes) it’s better to store them on IPFS[Ben14] to
prevent gas costs, and what would be returned is a pointer to said
results.

Regarding Bitcoin[Nak08], although it would be possible to use oracles[Ori14]
similar to the ones used for Ethereum, these are hardly used due to a combination
of high transaction fees, high confirmation time and low transaction rate.

4.2.1 Alternative Protocols and Standards

Although this paper is focused on blockchains, it could be adopted to other
financial standards such as:

• Financial Information eXchange[Com16]: messaging standard for trade
communication in the equity markets, with presence in the foreign exchange,
fixed income and derivatives market.

• Financial Products Markup Language (FpML)[SA17]: XML messaging
standard for the Over-The-Counter derivatives industry.

4.3 Functionality and Protocol
The functionalities and protocols of this sub-section and section 6 constitute an
open framework on which to instantiate different secure multi-party computation
protocols, thus benefiting from upcoming research advances.

In this sub-section we present our secure protocol for private smart contracts,
consisting of the following standard functionality:

Functionality 4.1: Secure computation of smart contracts

• Parties: E1, ..., EN , set of nodes Ni of a blockchain B

• Inputs: smart contract SC, private inputs from parties E1 : −→x ,E2 :
−→y , ..., EN : −→z

• The functionality:

1. Secure computation of smart contract SC

2. Results are returned and/or saved on the blockchain B

• Output: results from the secure computation E1 : −→r1 , E2 : −→r2 , ..., EN : −→rN .
Functionality 4.1 (Secure computation of smart contracts) is implemented by

the following protocol:

9

Protocol 4.2: Realising Functionality 4.1 (Secure computation of
smart contracts)

• Parties: E1, ..., EN , set of nodes Ni of a blockchain B

• Inputs: smart contract SC, private inputs from parties E1 : −→x ,E2 :
−→y , ..., EN : −→z

• The protocol:

1. Parties E1, ..., EN proceed to execute the smart contract SC:

(a) The private inputs −→x ,−→y , ...,−→z and non-private inputs are sent
to nodes Ni:
i. Technically, this could be a HTTPS/REST call or an oracle

call to executing nodes Ni.
ii. The number of executing nodes Ni depends on the

setting of the blockchain B (public/private permission-
less/permissioned): that is, it could range from every node
of the blockchain B to just a subset of nodes under PBFT
consensus.

iii. On permissioned blockchains, each executing node Ni should
be a server owned/operated by the corresponding calling
party Ei (i.e., the servers are assumed to be trusted and the
adversary is on the network); but if the nodes are being run on
a public cloud or any other server outside the full control of the
corresponding calling party Ei, then a protocol for outsourcing
secure computations must be used (see section §A).

(b) The executing nodes Ni proceed to execute the smart contract
SC: the execution command from parties E1, E2, ..., EN contains
the preferred secure computation engine to be used (i.e., there
could be multiple execution engines with different protocols under
various security assumptions; if the parties don’t agree, the secure
computation will not be carried out).

2. If consensus on the results of the previous computation is reached,
then said results −→r1 ,−→r2 , ...,−→rN could be returned to executing parties
E1, E2, ..., EN and/or written on the blockchain B.

• Output: results from the secure computation E1 : −→r1 , E2 : −→r2 , ..., EN : −→rN .

The security of the protocol is proved on section §6.3.

4.4 Experimental Results
Table 1 summarizes the execution cost for several example applications, chosen
for their economic significance:

10

1. Millionaire’s Problem (i.e., determining who’s got the bigger number with-
out revealing anything else)

2. Second-price auction: sealed-bid auction not revealing the bids between
the participants and without an auctioneer. The highest bidder wins, but
the price paid is the second-highest bid[Vic61].

3. European Exchange Options: valuation of an option (the right, but not
the obligation) using Margrabe’s formula[Mar78] to exchange one risky
asset for another risky asset at the time of maturity; this example is useful
to hedge private portfolios of volatile crypto-tokens of physical assets.
Suppose two risky assets with prices S1 (t) and S2 (t) at time t and each
with a constant dividend yield qi: we calculate the option to exchange
asset 2 for asset 1 has a payoff max (0, S1 (t)− S2 (t)),

Price option = S1e
−q1tN (d1)− S2e

−q2tN (d2)

σ =
√
σ2
1 + σ2

2 − 2ρσ1σ2

d1 =
ln
(
S1

S2

)
+
(
q2 − q1 + σ2

2

)
t

σ
√
t

d2 = d1 − σ
√
t

where ρ is the Pearson’s correlation coefficient of the Brownian motion of
Si and σi are the volatilies of Si. Private inputs are σi, Si and qi.

4. Currency Exchange Options: valuation of an option (the right, but not the
obligation) using the model of Garman-Kohlhagen[GK83] to exchange one
currency for another at a fixed price; this example is useful to hedge private
portfolios of volatile crypto-currencies. Suppose two risky currencies with
different interest rates but constant exchange rate: we calculate the calls
and puts with the following equations,

Call = S0e
−ρtN (d1)−X−rtN (d2)

Put = Xe−rtN (−d2)− S0e
−ρtN (−d1)

d1 =
ln
(
S0

X

)
+
(
r − ρ+ σ2

2

)
t

σ
√
t

d2 = d1 − σ
√
t

where r is the continuously compounded domestic interest rate, ρ is the
continuously compounded foreign interest rate, S0 is the spot rate, X is
the strike price, t is the time to maturity and σ is the foreign exchange rate
volatility. Private inputs are r, ρ and S0 (with constant exchange rate).

5. Crowdfunding smart contract: a simple crowdfunding smart contract is
considered, that checks if the minimum contribution target is reached and

11

then returns the raised amount, or 0 otherwise.

Algorithm 1 Crowdfunding smart contract
int crowdfund(int inputX, int inputY) {
int ret;
int sum = inputX + inputY;
int minimum = 1000;

if (sum >= minimum) ret = sum; else ret = 0;

return ret;
}

6. DAO-like Investment Fund: a simple emulation of an investment fund is
considered, that check if the minimum contribution target is reached and
then returns the principal compounded after a number of years.

Algorithm 2 DAO-like Investment Fund
float daoInvestFund(int inputX, int inputY) {
float ret;
int sum = inputX + inputY;
int minimum = 1000;

if (sum >= minimum) ret = sum * (1 + (0.04/4))^(4*5); else ret = 0;

return ret;
}

7. Double auction for decentralized exchanges: the secrecy of the prices and
quantities is maintained during the off-chain secure computation and the
settlement is finally done on-chain. Secure computation is very useful in
these settings because it enables secret order books, increasing liquidity
and price discovery under specially designed mechanisms[Jut15].

12

Example AND Gates Time A Time B Time C
Millionaire (int) 96 1 1 0.485

Second-price Auction (int) 192 1.1 1 0.862
European Exchange Options (float) 267507 810 1273.8 1185.49

Currency Call Options (float) 323529 979.6 1540.6 957.77
Crowdfunding smart contract(int) 128 1 1 0.458
DAO-like Investment Fund(int) 2144 6.5 10.2 0.458

Double auction (int) 567829 1419 2552.2 2137.2

Table 1: Execution times for application experiments. The times shown are the
wall clock time in millisecond to complete the secure multi-party computation
(i.e., from the initial oblivious transfers to the final reveling of the results) for
various secure multi-party computation engines (A: semi-honest; B:malicious
security; C: secret-sharing (Sharemind[BLW08] estimation)).

4.5 Modes of Interaction

Figure 4.1: Supported modes of interaction

Secure computation can be carried on the nodes of the blockchain or on the
parties themselves. Additionally, said secure computations can be outsourced

13

to the cloud (see section §4.6) or use mined pre-processing data for secure
multi-party computation (see section §4.7).

4.6 Outsourcing Secure Computations for Cloud-based Blockchains
The following scheme makes use of a multi-party non-interactive key exchange[BZ13,
MZ17] to establish a shared secret between the computing parties and the exe-
cuting nodes of the blockchain: replacing the NIKE protocol would require a
PKI infrastructure between the computing parties and the executing nodes that
will be used to establish shared secrets between them; it’s viable but also more
cumbersome within the context of public permissionless ledgers. A multiparty
non-interactive key exchange (NIKE) scheme consists of the following algorithms:

• Setup(M,N, λ): this algorithm outputs public parameters params, taking
as input M , the maximum number of parties that can derive a shared
key, N , the maximum number of parties in the scheme, and the security
parameter λ.

• Publish(params, i): this algorithm outputs the party’s secret key ski, and
a public key pki which the party publishes; inputs are public parameters
params and the party’s index i.

• KeyGen(params, i, ski, S, {pkj}j∈S): this algorithm outputs a shared key
kS ; inputs are public parameters params, the party’s index i, the set
S ⊆ [N] of size at most M and the set of public keys {pkj}j∈S of the
parties in S.

As specified below, the functionality for outsourcing secure computations satisfies
the following requirements:

• offline parties: no parties need to be involved when the outsourced secure
computation is executed.

• private parameters reuse: parties don’t need to re-upload their private
parameters.

• restricted collusion: an adversary may corrupt a subset of the parties or
the nodes of the blockchain, but not both[KMR11].

14

Functionality B.1: Outsourcing for Cloud-based Blockchains

• Parties: E1, E2, ..., EN , set of nodes Ni of a blockchain B (NG being the
garbling node and NE being the evaluator node)

• Inputs: smart contract SC, private inputs from parties E1 : −→xi , E2 :
−→xi , ..., EN : −→xi

• The functionality:

1. KeyExchange: run a multi-party NIKE between parties
E1, E2, ..., EN and nodes Ni and publish their public keys pki; from
said public keys, a secret key kS is derived.

2. SendPrivateParameters(Ei): send (SendPrivateParameters, Ei)
to NE .

3. SECCOMP (SC): upon the reception of a computation re-
quest from party Ek for a function in smart contract SC, com-
pute y = SC (xk, {xj |∀j ∈ N : Ej}); send (result, y) to Ek and
(SECCOMP,SC,Ek) to NE .

Let Enc be a symmetric-key encryption algorithm secure against Chosen-
Plaintext Attacks. The following protocol uses a pivot table during the secure
computation, allowing the evaluator node to obliviously map the encoded in-
puts by the parties to the encoding expected by the circuit created by the
garbling node. To implement Functionality B.1 (Outsourcing for Cloud-based
Blockchains), the following protocol is proposed:

15

Protocol B.2: Realising Functionality B.1 (Outsourcing for Cloud-
based Blockchains)

• Parties: E1, E2, ..., EN , set of nodes Ni of a blockchain B (NG being the
garbling node and NE being the evaluator node)

• Inputs: smart contract SC, private inputs from parties E1 : −→xi , E2 :
−→xi , ..., EN : −→xi

• The protocol:

1. KeyExchange: run a multi-party NIKE between parties
E1, E2, ..., EN and nodes Ni and publish their public keys pki; from
said public keys, a secret key kS is derived.

(a) The setup phase is executed: params := Setup(M,N, λ)

(b) Each party i runs pki, ski := Publish(params, i) and publish pki
(c) Each party i runs kS := KeyGen(params, i, ski, S, {pkj}j∈S) to

obtain the shared secret key

2. SendPrivateParameters(Ei : −→xi , kS): party Ei chooses nonce
ni and for every bit of −→xi computes X

−→xi[l]
il = PRFkS (−→xi , l, ni);

then, party Ei sends these to NE and also sends ni. NE stores((
X
xi[1]
i1 , ..., X

xi[l]
il

)
, ni

)
.

3. SECCOMP (SC):

(a) Secure computation at node NG: the garbling node NG compiles
and garbles smart contract SC into the garbled circuit GCSC .
Then, for each party Ej and index l of the length of −→xi :
i. Compute pivot keys: generate s0jl = PRFkS (0, l, nj) , s

1
jl =

PRFkS (1, l, nj).
ii. Compute and save garbled inputs: using the pivot keys,

encrypt Encs0jl
(
w0
jl

)
and Encs1jl

(
w1
jl

)
; then save them into

pivot table Pq [j, l] in random order.
(b) Secure computation at node NE : for every bit of xj and using

the encoding Xxj [l]
jl , decrypt the correct garbled values of each Ej

from Pq; evaluate the garbled circuit GCSC and send the output
to NG.

(c) Result at NG: decode the output to obtain the results
−→r1 ,−→r2 , ...,−→rN .

• Output: results from the secure computation E1 : −→r1 , E2 : −→r2 , ..., EN : −→rN .

Theorem 1. (Outsourcing for Cloud-Based Blockchains). Assuming secure
channels between the parties E1, E2, ..., EN and the nodes Ni of the blockchain
B, Protocol B.2 securely realises Functionality B.1 against static corruptions

16

in the semi-honest security model with the garbling scheme satisfying privacy,
obliviousness and correctness.

Proof. See Appendix A.

4.7 Mining pre-processing data for Secure Multi-Party
Computation

The Proof-of-Work of crypto-currencies consumes great amounts of compu-
tational power and electricity: 14TWh for Bitcoin[Dig17a] and 4.25TWh for
Ethereum[Dig17b] just calculating hash functions. Miners could create pre-
processing data for secure multi-party computation and be incentivised with
crypto-tokens: 50-80% of total execution time is spent on pre-processing depend-
ing on the function/protocol, thus they would be profiting from “renting” their
computational power to save significant amounts of computational time.

A recent paper considers the case of outsourcing MPC-Preprocessing[SSW17]
to third parties and then computing parties reusing the pre-processed data (i.e.,
SPDZ-style authenticated shares) in the online phase: it’s especially efficient
if there is a subset of parties trusted by all the computing parties which can
do all of the pre-processing and then distribute it to the computing parties.
It’s based on the re-sharing technique of [BGW88], but without using zero-
knowledge proofs: it also fits into another recent protocol for secure multi-party
computation[KRW17, WMK16a] that is much more efficient for WAN networks
than SPDZ derivatives, except that [KRW17] uses BDOZ-style authenticated
shares instead of SPDZ-style authenticated shares:

• BDOZ-style[BDOZ10] authenticated shares: for each secret bit x, each
party holds a share of x; for each ordered pair of parties (Pi, Pj), Pi
authenticates its own share to Pj . Specifically, when party Pi holds a
bit x authenticated by Pj , this means that Pj is given a random key
Kj [x] ∈ {0, 1}k and Pi is given the MAC tag Mj [x] := Kj [x] ⊕ x4j ,
where 4i ∈ {0, 1}k is a global MAC key held by each party. Let [x]

i

denote an authenticated bit where the value of x is known to Pi and is
authenticated to all other parties: that is,

(
x, {Mk [x]}k 6=i

)
is given to

Pi and Kj [x] is given to Pj for j 6= i. An authenticated shared bit x is
generated by XOR-sharing x and then distributing the authenticated bits{[
xi
]i}: let 〈x〉 :=

(
xi,
{
Mj

[
xi
]
,Ki

[
xj
]}
j 6=i

)
denote the collection of

these authenticated shares for x.

• SPDZ-style[DPSZ11] authenticated shares: each party holds a share of
a global MAC key; for a secret bit x, each party holds a share x and a
share of the MAC on x. Specifically, a value x ∈ Fq is secret shared among
parties P by sampling (xi)i∈P ← F|P |q subject to x =

∑
i∈P xi with a party

i holding the value xi; the MAC is obtained by sampling (γ (x)i)i∈P ← F|P |q
subject to

∑
i∈P γ (x)i = α · x and party i holding the share γ (x)i: let

17

〈x〉 :=
(
(xi)i∈P , (γ (x)i)i∈P

)
to denote that x is an authenticated secret

share value, where party i ∈ P holds xi and γ (x)i, under a global MAC
key α =

∑
i∈P αi.

It’s straightforward to adapt the protocol ΠR→Q,A
Prep from [SSW17] to process

BDOZ-style authenticated shares instead of SPDZ-style authenticated shares:
thus, the authenticated shares generated by the offline pre-processing parties
would be reshared amongst the computing parties as required before executing
any secure multi-party computation and the pre-processing parties would be
incentivised with crypto-tokens. Another recent paper[ZHC17] concurrently
considered the generation of a pool of garbled gates to provide on-demand secure
computation services between two parties, a similar concept except that it doesn’t
include outsourcing from third parties.

4.7.1 Security setting

Let E denote the set of nE parties who are to run the online phase and O the
set of nO outsourcing parties that run the pre-preprocessing for the executing
parties E (respectively Q and R in [SSW17]). Adversaries can corrupt a majority
of parties in E and in O, but not all parties in E nor all parties in O: that is,
each honest party in E believes that there is at least one honest party in O, but
they may not know which one is honest. Let tE denote the number of parties
in E that are corrupt (resp. tO in O): the associated ratios are denoted by
εE = tE/nE and εO = tO/nO. The executing parties E are divided into subsets
{Ei}i∈O forming a cover, with a party in O associated with each subset: a cover
is defined to be secure if at least one honest party in O is associated to one
honest party in E.

In public permissionless blockchains, it’s expected that there is no prior trust
relation between parties in E and O: an efficient algorithm is offered in [SSW17]
for assigning a cover to the network of parties so that the adversary can only
win with negligible probability in the security parameter λ in the case where
the covers are randomly assigned, and working out the associated probability
of obtaining a secure cover. It assumes that each party in O sends to the same
number of parties l ≥ dnE/nOe in E. The high-level idea of the algorithm is the
following:

1. For each party in E, we assign a random party in O, until each party in O
has dnE/nOe parties in O assigned to it

2. For each party in O, we assign random parties in E until each party in O
has l total parties which it sends to.

The probability to obtain a secure cover is given by

1− tE ! · (nE − (nO − tO − 1) dnE/nOe)!
nE ! · (tE − (nO − tO − 1) dnE/nOe)!

·

(
tE − dnE/nOe
l − dnE/nOe

)
(
nE − dnE/nOe
l − dnE/nOe

)

nO−tO−1

18

In case where all but one party is corrupt in each E and O, then the probability
to obtain a secure cover is given by l/nE .

4.7.2 Preventing Sybil attacks

In the context of blockchains, Sybil attacks in which an attacker creates a large
number of pseudonymous identities can easily be prevented: before running
secure computations, any party could be required to deposit some arbitrarily
high amount of money on a smart contract that would be confiscated in case any
abnormal behaviour is detected (e.g., selective failure attacks, aborts, ...). Note
that this simple technique maintains the anonymity of the parties and prevents
that the computed pre-processing data gets intentionally wasted.

4.8 Other Applications
Applications of this technology can be found on many commercial/financial
settings. Some of the most noteworthy are as follows:

• the most immediate application of secure multi-party computation is the
removal of third parties and the financial industry has plenty of them:
market makers, escrows, custodians, brokers, even banks themselves are
intermediaries between savers and borrowers.

• crypto-banks: all the financial information contained within bank’s databases
could be encrypted with secure computation techniques. Users could make
deposits, take loans and trade financial instruments without ever revealing
their financial positions/transactions to inquiring third-parties.

Other applications mentioned in literature:

• economic/financial applications: financial exposures could be shared be-
tween mutually distrusting parties without revealing any confidential infor-
mation to better control financial risks[EAA11]; credit scoring[DDN+15,
Lie13]; facilitate the work of financial supervisors[FKOS13] without compro-
mising confidentiality; protect the privacy of data in online marketplaces[CHK+11];
re-implement the stock market [Jut15] without a trusted auctioneer and no
party learning the order book; remove escrows[Kum16] with claim-or-refund
transactions and secure computation.

• game theory/mechanism design: remove trusted third-parties in tâton-
nement algorithms[WC14] for one-time markets, allowing to privately share
the utility function of the involved parties without revealing it and ob-
taining an incentive compatible protocol in the process; privacy-preserving
auctions[AACM16, AV17]; more generally, implement mechanisms re-
specting privacy to obtain incentive-compatibility (e.g., auctions[NPS99,
EL03]) or that incentivise data-driven collaboration among competing
parties[AGP15].

19

• statistics: benchmark the performance of companies within the same
sector[BTW11]; establish correlation and causation[BKK+15] between
confidential datasets.

5 Verifiable Smart Contracts
After the DAO attack, there has been some work ([Hir17, BDLF+16, Fro16,
PE16, HSR+17]) to include formal methods in the development of smart con-
tracts: unfortunately, current solutions are very complex and cumbersome[Hir17,
BDLF+16, PE16, HSR+17], almost equivalent to formally verifying assembly
code. Only very high-level languages should be used to write smart contracts,
not assembly-like ones (EVM): even the C language should be considered too
low-level for these purposes because the required proofs must contain all kind of
details about memory management and pointers.

Not all smart contracts need to be formally verified, and not even every
part of their code should be. On permissioned blockchains, non-verified smart
contracts will be much more accepted than on public permissionless blockchains.

Unlike other works that only consider the correctness of the computed out-
put and resort to resource-consuming zero-knowledge proofs [BCG+14], the
mathematical proofs considered here are multi-purpose: invariants, pre- and
post-conditions, termination, correctness, security, resource consumption, le-
gal/regulatory (e.g., self-enforcement), economic (e.g., fairness, double-entry
consistency, equity), functional and any other desirable property that can be
mathematically expressed.

Figure 5.1: Proof-Carrying Code infrastructure

The solution of how to execute untrusted code from potentially malicious
sources is not new, said problem was already considered for mobile code: Proof-
Carrying Code[NL98b] prescribes accompanying the untrusted code with proofs
(certifiable certificates) that can be checked before execution to verify their
validity and compare the conclusions of the proofs to the security policy of the
code consumer to determine whether the untrusted code is safe to execute. On

20

the positive side, no trust is required on the code producer and there is no runtime
overhead during execution, but the code must be annotated (e.g., see pseudo-
code annotation of the Program Listing below) and detailed proofs generated, a
process which can be complex and costly. A novel variant combining PCC with
Non-Interactive Zero-Knowledge proofs is proposed in the next sub-section 5.3.

Algorithm 3 Example pseudo-code with annotations
class Account {
int balance; // invariant balance >= 0;
// requires amt >= 0
// ensures balance == amount
Account(int amount) { balance = amount; }

// ensures balance == acc.balance
Account(Account _account) { balance = _account.balance(); }

// requires amount > 0 && amount <= _account.balance()
// ensures balance == \old(balance) + amount
// && _account.balance == \old(_account.balance - amount);
transfer(int amount, Account _account)
{ _account.withdraw(amount); deposit(amount); }

// requires amount > 0 && amount <= balance
// ensures balance == \old(balance) - amount
void withdraw(int amount) { balance -= amount; }

// requires amount > 0;
// ensures balance == \old(balance) + amount
void deposit(int amount) { balance += amount; }

// ensures \result == balance
int balance() { return balance; }

}

The verification of a program typically requires many annotations, at least
a 1:1 ratio of lines of code against specifications: tools have been developed
to automatically generate said annotations and are very useful in this setting.
In case of using an interactive theorem prover, an extensive library of tactics
must help to handle complex cases. Smart contracts must be written with the
specific purpose of verification in mind, otherwise it becomes extremely complex
to generate complete proofs[WSC+07]; regarding the size, effort and duration of
the verification process, there is a strong linear relationship between effort and
proof size[SJA+14] and a quadratic relationship between the size of the formal
statement and the final size of its formal proof[MMA+15].

The most cost-effective option in some settings (e.g., permissioned blockchains)

21

could be the publication of the annotated smart contracts to the blockchain and
not using some of the more advanced options like the PCC toolchain or any kind
of theorem prover, reversing the burden of proof to code consumers but in some
sense helping them with the provided annotations. Therefore, there is a scale of
Verification Levels when publishing smart contracts on blockchains:

1. Annotated smart contracts

2. Annotated smart contracts automatically tested using heuristics/concolic
execution

3. Annotated smart contracts with full/partial proofs

4. Annotated smart contracts with certifiable certificates (Proof Carrying
Code)

Ultimately, as an example of their applicability, the use of the proposed annotated
smart contracts in combination with the zero-knowledge proofs of section §5.3
allows for an alternative way to implement the proofs of assets, liabilities and
solvency of exchanges of [DBB+15].

5.1 Case Study

Algorithm 4 Crowdfund example processed with PCC toolchain
class Crowdfunding {

int minimum = 1000;
// requires 0 < n
// ensures \result >= minimum
public int crowdfund(int n, int[] inputs) {
int sum = 0;
// invariant 0 <= i && i <= n
for (int i = 0; i < n; i++) {
sum += inputs[i];

}
return sum;

}
}

Proofs are written in Coq: the following execution statistics of the PCC toolchain
are reported,

• Proof-generation time overhead: directly correlated to the size of the
compiled program being analysed. It follows approximately the following
formula on a modern laptop (Intel® Core™ i7-7500U 2.7Ghz):

time(bytecode size bs) = 1.5 +

(
bs

1500

)
secs

22

• Proof-verification time overhead: (less) correlated to the size of the compiled
program being analysed. It follows approximately the following formula
on a modern laptop (Intel® Core™ i7-7500U 2.7Ghz):

time(bytecode size bs) = 0.25 +

(
bs

6000

)
secs

• Certificate size overhead: 30%

Figure 5.2: Secure spreadsheet[Cal17] enabled for privacy-preserving computation
displaying the result of private and verifiable smart contracts (e.g., cryptograph-
ically secure financial instruments and their derivatives)

Not much thought has been given to the rather practical question of what user
interface should smart contracts use: calculations will be done on the returned
values of smart contracts, even encrypted ones; and nested calculations on their
inputs/outputs is also required. A spreadsheet enabled for secure computation
fits all the given requirements, especially given that it’s well accepted on the
financial industry and many are trained on its use.

5.2 On the Size of Certifiable Certificates
Since the invention of Proof Carrying Code[Nec97], the question of how to
efficiently represent and validate proofs[NL98a] has been a focus of much research.
Different techniques are considered in this work to reduce the size of certificates:

23

1. The reflection technique[ACHA90]. This technique decreases the size of
the proof using the reduction offered by a proof assistant: multiple explicit
rewriting steps are replaced by implicit reductions. In other words, implicit
computation replaces explicit deduction, achieving a reduction of proof
size of orders of magnitude.

2. Deep embedding of the verification condition generator reduces the size
of proof terms due to the use of reflective tactics with the subsequent
reduction in the time needed to check the proofs.

3. Using hybrid methods that include static analysis: using the information
provided by type systems to eliminate unreachable paths reduces the
number of proof obligations. For example, null-pointer analysis is used to
prove that most accesses are safe and this information is then employed to
reduce the number of proof obligations.

4. Partitioning the certificate to reduce the memory required to check it by
running an interactive protocol between the code consumer and producer.

5. Abstract interpretation is used to verify safety policies that reduce the
control flow graph. A fixed-point abstract model accompanies the code
whose validity implies compliance with safety policies: then, the code
consumer checks its validity in a single pass. Note that there’s an inherent
tradeoff between certificate size and checking time: in order to reduce the
size of the certificate, the code consumer could generate the fixpoint but
that would also increase the checking time. Thus, it’s important to send
the smallest subset of the abstract model while maintaining an efficient
single-pass check: that is, to only store the information that the code
consumer is not able to reproduce by itself.

6. The size of certificates using proofs in sequent calculus is reduced since it
can be reconstructed from the used lemmas (i.e., using the cut-inference
rule). Proofs are represented in tables that a proof engine will check[LM07]:
in order to reduce the size of the table, some atomic formulas can be omitted
if the code consumer will be able to easily reprove them.

Other approaches that could be considered in order to reduce the size of the proof
include transmitting a proof generator[PDH10] to the code consumer instead
of the proof itself, and executing the proof generator on the consumer side to
re-generate the proof using a virtual machine.

5.3 Zero-Knowledge Proofs of Proofs
Although it’s possible to obfuscate certifiable certificates in such a way that
de-obfuscation wouldn’t be any easier[Dup08] while keeping the certifiable cer-
tificate sound and complete, this level of security isn’t acceptable in a formal
cryptographic model. When smart contracts are fully encrypted with homomor-
phic encryption/IO, certifiable certificates reveal too much information about the

24

code and additional cryptographic protection is absolutely necessary: it’s possible
to generate zero-knowledge proofs of proofs[Blu87] (or certifiable certificates,
which are shorter), in such a way that the code producer can convince the code
consumer of the existence and validity of proofs about the code without revealing
any actual information about the proofs themselves or the code of the smart
contract.

Classically, this would require to come by an interactive proof system[GMR85]
were the code consumer is convinced, with overwhelming probability, of the
existence and validity of proofs of the code through interaction with a code
producer; then, a zero-knowledge proof system will be obtained using the methods
of [BOGG+90, IY88]: for a more detailed description on how to prove a theorem
in zero-knowledge, see [Pop04]. Lately, advances in verifiable computation
have produced advanced zero-knowledge proof systems to prove correctness of
remote execution: although many of these results could theoretically be extended
to prove general assertions about the code, the slowdowns for proving would
be higher than the current 105 − 107 for the very optimized case of proving
correctness of executions[WB15].

Until the advent of methods to obtain zero-knowledge proofs from garbled
circuits[JKO13] (i.e., general purpose ZK), zero-knowledge proofs have been
difficult to come by. ZKBoo[GMO16], a later development of [JKO13], creates
non-interactive zero-knowledge proofs for boolean circuits: this line of work is the
preferred choice to obtain NIZK-proofs of the validity of certifiable certificates
of smart contracts, because zk-SNARKs[BCCT12] would be very succinct, but
with setup assumptions and much slower to proof (e.g., the circuit C_POUR from
Zerocash[BCG+14] has 4.109.330 gates and a reported execution time of 2 min).
Lately, ZKB++[CDG+17] provides proofs that are less than half the size than
ZKBoo and Ligero[AHIV17] four time shorter than ZKB++.

Using ZKBoo, the statement to be proved would be “I know a certifiable cer-
tificate such that φ (certificate) = true” for a certificate validation circuit φ and
Lφ the language {true|∃certificate s.t. φ (certificate) = true} with soundness
error 2−80: minimizing the certificate validation circuit φ as much as possible
would be the most important optimization.

Proof-Carrying Data A conceptually related technique to Proof-Carrying
Code is Proof-Carrying Data[CT10]: in a distributed computation setting, PCD
allows messages to be accompanied by proofs that said messages and the history
leading to them follow a compliance predicate, in such a way that verifiers can
be convinced that the compliance predicate held throughout the computation,
even in the presence of malicious parties. PCC and PCD are complimentary
since PCD can enforce properties expressed via PCC: interestingly, PCD could
enable zero-knowledge privacy for PCC[CTV13], but at a greater efficiency cost.

25

6 Functionalities and Protocols

6.1 General Overview

Figure 6.1: General overview of the functionalities (top) and realised protocols
(bottom) described in this paper

6.2 Detailed Description
In this section we present our secure protocol for private and verifiable smart
contracts, specified in the Functionality below:

Functionality 6.1: Private and Verifiable Smart Contracts

• Parties: E1, ..., EN , set of nodes Ni of a blockchain B

• Inputs: smart contract SC, private inputs from parties E1 : −→x ,E2 :
−→y , ..., EN : −→z

• The functionality:

1. Parties E1, ..., EN verify the smart contract SC

2. Parties E1, ..., EN securely execute the smart contract SC on nodes
Ni

• Outputs: results from the secure computation E1 : −→r1 , E2 : −→r2 , ..., EN :
−→rN .

Our protocols for realising Functionality 6.1 consists of a standard verification
functionality and a secure computation functionality (Functionality 4.1):

26

Functionality 6.2: Standard verification of smart contracts

• Parties: E1, ..., EN

• Inputs: smart contract SC

• The functionality:

1. Parties E1, ..., EN obtain the annotations/proofs/certificates of smart
contract SC

2. Verify the annotations, proofs and/or certificates available on the
smart contract SC

3. Check if the verified annotations, proofs and/or certificates are suffi-
cient for the smart contract SC to be declared correct, according to
the local policies of each party

• Output: true if the verification was correct, false otherwise.
To implement Functionality 6.2 (Standard verification of smart contracts),

the following protocol is used:

Protocol 6.3: Realising Functionality 6.2 (Standard verification of
smart contracts)

• Parties: E1, ..., EN

• Inputs: smart contract SC

• The protocol:

1. Parties E1, ..., EN download the annotations/proofs/certificates of
smart contract SC and check their digital signatures.

(a) If annotated smart contracts do not contain any kind of proofs or
certificates, the annotations of the smart contract are automati-
cally tested using an heuristic/concolic execution engine.

(b) If annotated smart contracts contain full/partial proofs, they are
locally regenerated and compared to the embedded ones.

(c) If annotated smart contracts contain certifiable certificates, said
certificates are checked.

2. This step could be computationally expensive, so it only needs to be
done the first time if the smart contract SC is not modified.

3. Check if the verified annotations, proofs and/or certificates are suffi-
cient for the smart contract SC to be declared correct, according to
the local policies of each party

• Output: true if the verification was correct, false otherwise.

27

The previous protocols are combined in the following general execution pro-
tocol for private and verifiable smart contracts:

Protocol 6.4: Realising Functionality 6.1 (Private and Verifiable
Smart Contracts)

• Parties: E1, E2, ..., EN , set of nodes Ni of a blockchain B

• Inputs: smart contract SC, private inputs from parties E1 : −→x ,E2 :
−→y , ..., EN : −→z

• The protocol:

1. The parties invoke Functionality 6.2 (Standard verification of smart
contracts), implemented using Protocol 6.3, and obtain the verification
status of the smart contract SC.

2. The parties invoke Functionality 4.1 (Secure computation of smart
contracts), implemented using Protocol 4.2 where party E1 inputs −→x ,
party E2 inputs −→y and the rest of parties EN their corresponding
inputs. Parties receive results E1 : −→r1 , E2 : −→r2 and the rest of parties
their corresponding outputs EN : −→rN .

• Outputs: results from the secure computation E1 : −→r1 , E2 : −→r2 , ..., EN :
−→rN .

6.3 Security Analysis
The security analysis follows the standard definition of static semi-honest security
in the standalone setting[Gol04] and assumes semi-honest security of basic
building blocks: Yao’s protocol[LP04] and oblivious transfer accelerated with
OT-extension[ALSZ13, IKNP03], implying the security for the Protocol 4.2
realising Functionality 4.1. Additionally, ORAMs[Gol87] could also be used to
speed up dynamic memory accesses: also note that when the number of parties
is huge, communication locality plays a central role and may be better achieved
with ORAMs[BCP14, LO15]. The following theorem proves the general protocol
6.3:

Theorem 2. (General Protocol). Protocol 6.4 realises Functionality 6.1 against
static corruptions in the semi-honest security model augmented with verifiability
of the code.

Proof. Correctness and privacy of Protocol 4.2 (1.b) follows from Yao’s protocol[LP04]
and oblivious transfer accelerated with OT-extension[ALSZ13, IKNP03]; in case
of a multi-party setting, correctness and privacy follows from one of the multi-
party protocols (GMW[GMW87], BMR[BMR90], BGW[BGW88, AL11]); when
using ORAMs, the security proof comes from the specific security proof of the
chosen ORAM scheme (Circuit ORAM[WCS14]; Square-Root ORAM[ZWR+16,
GO96]); when using TLS, we make use of the composability of the security

28

proofs of said protocols[GMP+08, KMO+14, BFK+14]. Regarding verifiability,
it follows from Protocol 6.3 realising Functionality 6.2.

6.4 Extended verification of smart contracts
Trusted third parties (e.g., governments, central banks, regulating bodies) may
provide specifications against which proofs must be generated. Thus, Gyges
attacks[JKS16] can be prevented if parties and executing nodes require that all
the executed smart contracts must adhere to said specifications and be digitally
signed by trusted third parties: that is, prevent them from malicious hackers
and others engaged in unlawful business practices while being compliant with
certain regulations and laws (e.g., anti-money laundering laws). Comparing the
next two diagrams provides a better understanding of the introduced differences:

Figure 6.2: Standard verification of smart contracts

29

Figure 6.3: Extended verification of smart contracts

To formalize this concept, the following Functionality 6.5 is introduced:
Functionality 6.5: Extended verification of smart contracts

• Parties: E1, E2, ..., EN , trusted third parties Ti

• Inputs: smart contract SC

• The functionality:

1. Parties E1, E2, ..., EN obtain the annotations/proofs/certificates of
smart contract SC

2. Check digital signatures from trusted third parties Ti and verify
conformance to their specifications: verify annotations, proofs and/or
certificates available on the smart contract SC

3. Check if the verified annotations, proofs and/or certificates are suffi-
cient for the smart contract SC to be declared correct, according to
the local policies of each party

• Output: true if the verification was correct, false otherwise.

The following Protocol 6.6 implements Functionality 6.5:

30

Protocol 6.6: Realising Functionality 6.5 (Extended verification of
smart contracts)

• Parties: E1, E2, ..., EN , trusted third parties Ti

• Inputs: smart contract SC

• The protocol:

1. Parties E1, E2, ..., EN download the annotations/proofs/certificates
of smart contract SC and check their digital signatures. Digital
signatures from trusted third parties Ti are checked and conformance
to specifications from said third parties Ti is tested: every party Ei
has a security profile that specifies the mandatory/optional trusted
signing parties and specifications that every smart contract must
adhere to.

(a) If annotated smart contracts do not contain any kind of proofs
or certificates, the annotations of the smart contract are auto-
matically tested using an heuristic/concolic execution engine. At
least, it should be digitally signed by a trusted third party.

(b) If annotated smart contracts contain full/partial proofs, they are
locally regenerated and compared to the embedded ones. Some
of said proofs must conform to specifications from third parties.

(c) If annotated smart contracts contain certifiable certificates, said
certificates are checked. Some of said certifiable certificates must
conform to specifications from third parties.

2. This step could be computationally expensive, so it only needs to be
done the first time if the smart contract SC is not modified.

3. Check if the verified annotations, proofs and/or certificates are suffi-
cient for the smart contract SC to be declared correct, according to
the local policies of each party.

• Output: true if the verification was correct, false otherwise.

Finally, the general Protocol 6.4 is reviewed with the new Protocol 6.6 for
the extended verification of smart contracts:

31

Protocol 6.7: Realising Functionality 6.1 (Private and Extended Ver-
ifiable Smart Contracts)

• Parties: E1, E2, ..., EN , set of nodes Ni of a blockchain B, trusted third
parties Ti

• Inputs: smart contract SC, private inputs from parties E1 : −→x ,E2 :
−→y , ..., EN : −→z

• The protocol:

1. The parties invoke Functionality 6.5 (Extended verification of smart
contracts), implemented using Protocol 6.6, and obtain the extended
verification status of the smart contract SC.

2. The parties invoke Functionality 4.1 (Secure computation of smart
contracts), implemented using Protocol 4.2 where party E1 inputs −→x ,
party E2 inputs −→y and the rest of parties EN their corresponding
inputs. Parties receive results E1 : −→r1 , E2 : −→r2 , ..., EN : −→rN .

• Outputs: results from the secure computation E1 : −→r1 , E2 : −→r2 , ..., EN :
−→rN .

The following theorem finally proves the extended general protocol 6.7:

Theorem 3. (Extended General Protocol). Protocol 6.7 realises Functionality
6.1 against static corruptions in the semi-honest security model augmented with
extended verifiability of the code.

Proof. Correctness and privacy of Protocol 4.2 (1.b) follows from Yao’s protocol[LP04]
and oblivious transfer accelerated with OT-extension[ALSZ13, IKNP03]; in case
of a multi-party setting, correctness and privacy follows from one of the multi-
party protocols (GMW[GMW87], BMR[BMR90], BGW[BGW88, AL11]); when
using ORAMs, the security proof comes from the specific security proof of the
chosen ORAM scheme (Circuit ORAM[WCS14]; Square-Root ORAM[ZWR+16,
GO96]); when using TLS, we make use of the composability of the security
proofs of said protocols[GMP+08, KMO+14, BFK+14]. Regarding verifiability
against Gyges attacks[JKS16], it follows from Protocol 6.6 realising Functionality
6.5.

6.5 Malicious security
Smart contracts are compiled to efficient Boolean circuits that could be executed
on multiple secure computation frameworks with the added benefit of obtaining
malicious security[WMK16b, WRK17, KRW17, WMK16a, HSSV17]: protocols
and theorems above can trivially be updated with their security definitions and
proofs. In case of using ORAMs, security against malicious adversaries comes
from specialized versions of said protocols [AHMR14, Mia16, HY16].

32

6.6 Private Function Evaluation
In this setting, the smart contract itself is kept secret: that is, only one of
the parties knows the function f (x) computed by the smart contract, whereas
other parties provide the input to the private function without learning about f
besides the size of the circuit defining the function and the number of inputs and
outputs. Private function evaluation can be implemented using secure function
evaluation[AF90, KS08] by securely evaluating a Universal Circuit[Val76] that is
programmed by the party knowing the function f (x) to evaluate it on the other
parties’ inputs: the security follows from that of the secure function evaluation
protocol that is used to evaluate the Universal Circuit.

Recently, Valiant’s Universal Circuit has been implemented and proven
practical[KS16, GKS17]: its optimal size was proven to be Ω (k log k)[Val76]
and its recent implementation further improved it by (at least) 2k. Although
it’s a considerable blowup in size, late MPC protocols provide very efficient
pre-processing phases that could ameliorate execution times: online times are
only 1-4% of the total execution time in the WAN setting[KRW17, WMK16a,
BELO16], and 2-5% in the LAN setting[HSSV17, BEO17]. Since the generated
universal circuit description UCu,v,k∗ is public to all parties[KS16, GKS17], both
function-dependent and function-independent pre-processing[KRW17, WMK16a,
BELO16, HSSV17, BELO17, BEO17] could be used in the setting of private
function evaluation for maximum speedup.

7 Economic Impact and Legal Analysis
Previous legal analysis[Dam16] has considered how secure computation fits
current legal frameworks, although it’s much more interesting to evaluate how it
could alter legal frameworks and its economic impact.

7.1 Data Privacy as Quasi-Property
Quasi-property interests[Alg12] refer to situations in which the law seeks to sim-
ulate the functioning of property’s exclusionary apparatus, through a relational
entitlement mechanism, by focusing on the nature and circumstances of the
interaction in question, which is thought to merit a highly circumscribed form
of exclusion. The term first appeared in a SCOTUS decision in International
News Service v. Associated Press[SCO18], in which Justice Pitney recognized
the right of an information gatherer to prevent a competitor from free riding on
the original gatherer’s labor for a limited period of time: more specifically, it’s
limited in that it would only ever exist between the two parties in question and
never in the abstract against the world at large.

Quasi-property allows to effectively treat data privacy as a property right[Sch12]
and it’s the closest analogue in American law that grants individuals a prop-
erty right in their personal data, as privacy has always been considered in the
privacy-preserving literature in cryptography: in fact, the quasi-property view of
privacy-preserving computation has stronger grounding than European database

33

rights[RS97]. This approach provides a common framework that underlies all of
the privacy torts, while avoiding the need to define privacy in such a way that
it describes every injury that the law recognizes as an invasion of privacy and
that can be generally categorized in four harms: (1) information collection; (2)
information processing; (3) information dissemination, and (4) invasion.

7.2 A Solution to Arrow’s Paradox
Arrow’s Paradox[Arr62] states that “there is a fundamental paradox in the
determination of demand for information; its value for the purchaser is not
known until he knows the information, but then he has in effect acquired it
without cost”. Ex-ante, the purchaser cannot value the original information
since it can only be known after it has been revealed; ex-post, the purchaser
could not compensate the seller and disseminate it for free. Due to the inherent
properties of information (non-excludable, non-rivalrous), markets for information
cannot exist in the absence of intellectual property rights[GS03] because the
original producer/inventor of any information loses the monopoly on it after the
information is revealed; regarding financial information, the finance literature
generally agrees in that the troubles in informational trading explain financial
intermediation[LP77, RT84, All90, AP90].

Secure computation techniques offer a practical solution to Arrow’s Paradox:
distrustful third-parties can compute on private information without disclosing it,
allowing its valuation while preventing intellectual property theft; this is signifi-
cantly better than previously known methods based on partial the revelation of
information[AY94, AY02, AY05]. More generally, secure computation techniques
make information excludable while maintaining its non-rivalrousness: that is,
the original producer/inventor of the information retains market power over
it while maintaining its costless resale (i.e., the marginal cost of an additional
digital copy is zero), theoretically allowing for digital goods of infinite value
that bypass Coase conjecture[Coa72] since it’s also possible to prevent that first
time purchasers resell the information they have queried/acquired[Mut90, NQ91],
although in practice having to account for the costs of the slowdown introduced
by secure computation techniques.

7.3 Expansion of Trade Secrecy
While software copyright and patentability protection have been weakened, trade
secrecy stands firm. As defined in the United States’ Uniform Trade Secrets
Act[Com85]: “Trade secret means information, including a formula, pattern,
compilation, program, device, method, technique, or process, that: (i) derives
independent economic value, actual or potential, from not being generally known
to, and not being readily ascertainable by proper means by, other persons who
can obtain economic value from its disclosure or use, and (ii) is the subject of
efforts that are reasonable under the circumstances to maintain its secrecy”. The
definition on the European Union’s Trade Secrets Directive[Com85] implicitly

34

includes computer programs, financial innovations, lists of customers, business
statistics and many other types of secret information.

There is no definitional uncertainty in trade secret law: unlike copyright, there
is no exclusion for functionality; unlike patents, there is no exclusion for abstract
ideas[Ris16]. There isn’t any uncertainty about the exact contours of their
extension either, such as in the debate of the mutual exclusivity of copyright
and patents protections[UU91]. In some cases, widely distributed software
may remain a trade secret if the license agreement requires confidentiality and
return upon non-use (see Data Gen. Corp. v. Grumman Systems Support
Corp.[USCoA94]).

Although software might be reverse engineered (i.e., an acceptable way to
discover a trade secret that prevents its general use for protecting software),
secure computation techniques effectively hinder and/or completely forbid re-
verse engineering. Trade secrets can be justified as a form, not of traditional
property, but of intellectual property in which secrecy is central[Lem08] and may
serve the purposes of IP law better than more traditional IP rights. Stronger
trade secrecy law increases R&D in high technology industries[Png12], reduces
patenting[Png15] and increases trade flows[LS14]: similar effects are expected
from the utilisation of the technologies described in the present publication.

7.4 Verifiability and Self-Enforcement
The term Lex Cryptographia[WF15] designates a new body/subset of law, contain-
ing rules administered through smart contracts and decentralized autonomous
organizations: this concept is inspired on Lex Mercatoria, an old subset of
customs that became recognized as a customary body of law for international
commerce. Smart contracts are just software programs with very specialized
functionalities intended to replace paper contracts: the practice of law could
thus follow the path of software, with smart contract programming languages
becoming more powerful and easier to develop, transforming the legal profession
with more technical lawyers. By design, smart contract cannot be breached: once
contracting parties have agreed to be bound by a particular clause, the code’s
immutability binds them to that clause without leaving them the possibility of a
breach; that is, the code defines its own interpretation and enforces the defined
rules contained on it without the need of third parties (i.e., self-enforcement).
The only way to escape from contractual obligations that the parties no longer
want to honor is by including legal provisions into smart contract’s code. Over
time, law and code may converge, so that infringing the law will be effectively
breaking the code: that is, Lex Cryptographia is stronger than Lex Posita and
will become more prevalent.

The strictness of self-enforcement has been much criticized[Lev17, O’H17]:
it could be misused and turned against the contracting parties and it doesn’t
represent the realities of real-world enforcement of contracts. Adding verifiability
to smart contracts as proposed in this work prevents all these problems as
it allows to check conformity to the specifications from third parties (e.g.,
governments, regulating bodies, standards). In sum, contracting parties are

35

private lawmakers[Sur12] in control of both the substance and the form of
their contractual obligations (i.e., pacta sunt servanda), but third parties could
intervene to regulate said private agreements by redacting specifications that
smart contracts must formally verify against.

7.5 Markets for Smart Contracts
Paradoxically, smart contracts are hardly bought/sold: the inexistence of strong
property rights hampers the development of markets on smart contracts; actually,
not even companies developing and operating them are being acquired/merged
based on the value of their smart contracts since they can easily be reverse
engineered and cloned.

Private smart contracts provide strong property rights based on cryptographic
techniques which allow for the emergence of markets to trade them. Depending
on the cryptographic techniques employed, the following advantageous situations
could be considered:

1. The algorithms contained within smart contracts could be traded without
disclosing their details when using private function evaluation, homomor-
phic encryption and/or indistinguishability obfuscation.

2. More practically, when using garbled circuits or secret sharing techniques
the source of value will reside on encrypted data processed by the algorithms
of private smart contracts, these cryptographic techniques being much
more efficient than homomorphic encryption/IO; said encrypted data could
be stored on the blockchain, easing the transfer of property of the smart
contract.

Traditionally, binary compilation and obfuscation have been used to safeguard
the value of software: secure computation techniques offer a provably-secure way
to protect the value of even purely open-source software. Furthermore, the ability
to safely trade private smart contracts will justify their higher development costs.

7.6 Effects on Currency Competition
Latest analysis on the monetary policy of cryptocurrencies[FVS17] provide
insights on the effects of currency competition:

• Monetary equilibrium between private cryptocurrencies will not deliver
price stability: profit-maximizing entrepreneurs issuing cryptocurrencies
do not have real incentives to provide stable currencies, only to maximise
their seigniorage.

• Monetary systems consisting of only private cryptocurrencies in the equi-
librium with stable prices do not provide the socially optimum quantity
of money: competition between cryptocurrencies is not enough to provide
optimal outcomes since entrepreneurs do not internalise the pecuniary
externalities by minting additional tokens.

36

• Unlike private money, government money has fiscal backing because it can
tax agents in the economy. But in competition with people willing to hold
cryptocurrencies, the implementation of monetary policy in deflationary
settings will be significantly impaired since profit-maximizing entrepreneurs
will be unwilling to retire their private currencies and instead choose to
increase their issued money.

• Government money could co-exist without intervention in a unique equilib-
rium with cryptocurrencies if the minted cryptocurrency growths following
a predetermined algorithm (e.g., Bitcoin) and the proceedings are used to
buy/finance sufficiently productive capital.

Additionally, social efficiency may also be achieved with different cryptocurrencies
featuring diverse functionalities that provide market power to their issuers and
users: particularly, this is the case of the private and verifiable smart contracts
of this paper, since they could be used to provide natural monopolies on the
encrypted programs stored on them.

7.7 Token vs. Account-based Cryptocurrencies
Most cryptocurrencies are based on the model of issuing and transacting tokens,
using some form of distributed ledger to keep track of the ownership of said
tokens (e.g., Bitcoin, Ethereum and Zcash): they’re the digital equivalents of
cash.

Another unexplored model of cryptocurrency is that of holding funds in
accounts at the central bank or in depository institutions, resembling debit cards:
in fact, users of Digital Currency Exchanges maintain accounts holding substan-
tial amounts of wealth, but in the form of token-based cryptocurrencies. There
are many efficiency gains to be expected from account-based cryptocurrencies:
latest macroeconomic models[BK16] show that they would permanently raise
GDP by as much a 3% in the USA due to lower bank funding costs, lower
monetary transaction costs and lower distortionary taxes; additionally, they
would introduce new tools for the central bank to stabilise the business cycle.

The technology required to implement account-based cryptocurrencies is
different and more complex than the required for token-based cryptocurrencies:
the smart contracts proposed in this paper are a perfect fit for this task, due
to their ability to maintain privacy and guarantee their perfect functionality
through formal verification techniques.

7.8 Impact on Market Structures
Although disintermediation will be one of the first consequences of the appli-
cation of cryptographic smart contracts to financial markets, as happened in
the past with the introduction of the Internet[CH00], bank and fund concen-
trations may also increase: information asymmetry is associated with more
concentration[Suf07] and information production and its hiding is a valuable
activity of banks, that is, opacity has value in itself[DGHO17]. Ceteris paribus,

37

it’s difficult to estimate the resulting equilibria of the impact of this technology
on the level of concentration in the financial industry, given the high number
of inter-related variables; nonetheless it’s easier to predict that practices like
shadow banking[PAAB13] will increase, as new financial technology accounts for
35% of their growth[BMPS17].

8 Related work
A number of related works using cryptographic techniques are as follows:

• Enigma[ZNP15, Zys16] is coded in Python, a language lacking verification
libraries/toolkits and formal semantics so it can’t be used for proof-carrying
code; its cryptographic protocols are not constant-round, thus settings
with some latency will be it excruciatingly slow (i.e., Internet); finally, the
only supported distributed ledger is Bitcoin. Later developments show that
Enigma is pivoting to a decentralized data marketplace using deterministic
and order-preserving encryption[Pro17].

• WYS*[Ras16] offers an elegant solution for verifiable and and secure multi-
party computation based on the dependently typed feature of the F*
language. Unfortunately, the use of said research language also compromises
its real-world adoption; additionally, it’s not integrated on any blockchain
and does not offer proof-carrying code. Another similar work[ABB+14]
uses EasyCrypt to verify Yao’s garbled circuits.

• Hawk[KMS+15] focuses on protecting the privacy of transactions using zk-
SNARKs: later works like [Solidus[CZJ+17], Confidential Transactions[Gib16],
Bolt[GM16]] provide secure transactions at the protocol level with more
efficient techniques. It only mentions secure multi-party computation as
a tentative way to replace the trusted auction manager, rejecting it as
impractical.

• Chainspace[ABSB+17] is a sharded smart contract platform that includes
some examples of private smart contracts based on the PETlib library
using homomorphic encryption, and zero-knowledge proofs only after the
execution of the smart contract.

• ZeroCash[BCG+14] and Monero[Noe15] provide security for transactions,
not smart contracts. Note that secure transactions on blockchains are just
a special restricted case of smart contracts enabled with cryptography, but
not the other way around.

• Oyente[LCO+16], a symbolic execution tool to formally verify Ethereum
smart contracts (EVM).

• Accountable algorithms[KHB+16] propose a commit-and-prove protocol
with zk-SNARKs to provide accountability proofs of compliance to legal
standards without revealing key attributes of computerized decisions after

38

said decisions have been taken, but not before their execution as is done
in the present paper.

• Previous works on combining MPC with Bitcoin[ADMM13b, ADMM13a]
use it as support to obtain fairness in MPC, and not better smart contracts.

• Previous projects[MEK+12, ABB+10] designed high-level languages for
Zero-Knowledge Proofs of Knowledge but not for Zero-Knowledge Proofs
of Proofs, and their languages were restricted and not general purpose.

9 Conclusions, subsequent and future work
The present paper has tackled and successfully solved the problem of improving
the privacy, correctness and verifiability of smart contracts, resolving the DAO
and Gyges attacks. Examples have been shown to demonstrate its practical
viability.

9.1 Subsequent work
The ability to save the state of garbled circuits and restore them at later times
is a major improvement, bringing them closer to secret sharing techniques:

• partial garbled circuits[MGBF14]: for each wire value, the generator sends
two values to the evaluator, transforming the wire labels of the evaluator
to another garbled circuit; depending on its point and permute bit, the
value from a previous garbled circuit computation is mapped to a valid
wire label in the next computation.

• reactive garbled circuits[NR15]: a generalization of garbled circuits which
allows for partial evaluation and dynamic input selection based on partial
outputs.

• reusable garbled circuits[GKP+12, Agr16] allow for token-based obfusca-
tion where the code producer provides tokens to code consumers represent-
ing rights to execute garbled smart contracts: later constructions[Wan17]
improve their concrete efficiency.

Raziel is ongoing development and subject to improvements.

9.2 Future work
Some encrypted smart contracts will be perpetual (e.g., consols): if they ever
store any kind of encrypted secure computation (e.g., secret shares, garbled
circuits, homomorphic encryptions, IO) eventually there will be the need to
update their encrypted contents to upgrade their security level, a concept that
has already been considered[LCL+13, ACJ16, GRY17].

MPC and SGX are not mutually exclusive and they will be used jointly
to obtain better performance[BBB+16, GMF+16, PST16]. On the other hand,

39

it’s difficult to derive realistic threat models and abstractions[BPSW16, PST16,
SSL+17] that withstand the latest attacks against SGX [BMD+17, SWG+17,
MIE17, WKPK16, XCP15, SLKP17, LSG+16, BCLK17, Swa17, LJJ+17, Cor17,
BWK+17, JLLK17, XLCZ17b, XLCZ17a, JVBS17].

Acknowledgments
I would like to thank David Evans and Jonathan Katz for helpful comments on
the paper.

References
[AACM16] Aysajan Abidin, Abdelrahaman Aly, Sara Cleemput, and Mustafa A. Mustafa.

An MPC-based Privacy-Preserving Protocol for a Local Electricity Trading
Market. Cryptology ePrint Archive, Report 2016/797, 2016. http://eprint.
iacr.org/2016/797.pdf.

[ABB+10] Jose Bacelar Almeida, Endre Bangerter, Manuel Barbosa, Stephan Krenn,
Ahmad-Reza Sadeghi, and Thomas Schneider. A certifying compiler for zero-
knowledge proofs of knowledge based on σ-protocols. Cryptology ePrint Archive,
Report 2010/339, 2010. http://eprint.iacr.org/2010/339.

[ABB+14] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Guillaume Davy, François
Dupressoir, Benjamin Grégoire, and Pierre-Yves Strub. Verified implementa-
tions for secure and verifiable computation. Cryptology ePrint Archive, Report
2014/456, 2014. http://eprint.iacr.org/2014/456.

[ABC16] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on
Ethereum smart contracts. Cryptology ePrint Archive, Report 2016/1007, 2016.
http://eprint.iacr.org/2016/1007.pdf.

[ABPP15] David W. Archer, Dan Bogdanov, Benny Pinkas, and Pille Pullonen. Maturity
and performance of programmable secure computation. Cryptology ePrint
Archive, Report 2015/1039, 2015. http://eprint.iacr.org/2015/1039.

[ABSB+17] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and
George Danezis. Chainspace: A Sharded Smart Contracts Platform. Network
and Distributed System Security Symposium (NDSS), 2018, 2017. https://
arxiv.org/pdf/1708.03778.pdf.

[ACHA90] Stuart Allen, Robert L. Constable, Douglas J. Howe, and William E. Aitken.
The Semantics of Reflected Proof. In IN PROC. OF FIFTH SYMP. ON
LOGIC IN COMP. SCI, pages 95–197. IEEE Computer Society Press, 1990.
https://www.cs.cornell.edu/home/sfa/papers/pfreflEmended.ps.

[ACJ16] Prabhanjan Ananth, Aloni Cohen, and Abhishek Jain. Cryptography with
updates. Cryptology ePrint Archive, Report 2016/934, 2016. http://eprint.
iacr.org/2016/934.

[ADMM13a] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Fair two-party computations via the Bitcoin deposits. Cryptology
ePrint Archive, Report 2013/837, 2013. http://eprint.iacr.org/2013/837.

[ADMM13b] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Secure Multiparty Computations on Bitcoin. Cryptology ePrint
Archive, Report 2013/784, 2013. http://eprint.iacr.org/2013/784.pdf.

[AF90] Martín Abadi and Joan Feigenbaum. Secure Circuit Evaluation, 1990.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.1130&rep=
rep1&type=pdf.

40

http://eprint.iacr.org/2016/797.pdf
http://eprint.iacr.org/2016/797.pdf
http://eprint.iacr.org/2010/339
http://eprint.iacr.org/2014/456
http://eprint.iacr.org/2016/1007.pdf
http://eprint.iacr.org/2015/1039
https://arxiv.org/pdf/1708.03778.pdf
https://arxiv.org/pdf/1708.03778.pdf
https://www.cs.cornell.edu/home/sfa/papers/pfreflEmended.ps
http://eprint.iacr.org/2016/934
http://eprint.iacr.org/2016/934
http://eprint.iacr.org/2013/837
http://eprint.iacr.org/2013/784.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.1130&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.1130&rep=rep1&type=pdf

[AFL+16] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.
High-throughput semi-honest secure three-party computation with an honest
majority. Cryptology ePrint Archive, Report 2016/768, 2016. http://eprint.
iacr.org/2016/768.

[AGP15] Pablo Daniel Azar, Shafi Goldwasser, and Sunoo Park. How to incentivize
data-driven collaboration among competing parties. Cryptology ePrint Archive,
Report 2015/178, 2015. http://eprint.iacr.org/2015/178.

[Agr16] Shweta Agrawal. Stronger Security for Reusable Garbled Circuits, General
Definitions and Attacks. Cryptology ePrint Archive, Report 2016/654, 2016.
http://eprint.iacr.org/2016/654.pdf.

[AHIV17] Scott Ames, Carmit Hazy, Yuval Ishai, and Muthu Venkitasubramaniam. Ligero:
Lightweight Sublinear Arguments Without a Trusted Setup, 2017. https://
acmccs.github.io/papers/p2087-amesA.pdf.

[AHMR14] Arash Afshar, Zhangxiang Hu, Payman Mohassel, and Mike Rosulek. How to
efficiently evaluate RAM programs with malicious security. Cryptology ePrint
Archive, Report 2014/759, 2014. http://eprint.iacr.org/2014/759.

[AL11] Gilad Asharov and Yehuda Lindell. A full proof of the BGW protocol for
perfectly-secure multiparty computation. Cryptology ePrint Archive, Report
2011/136, 2011. http://eprint.iacr.org/2011/136.

[Alg12] Shyamkrishna B. Alganesh. Quasi-Property: Like, But Not Quite Property,
2012. https://www.law.upenn.edu/journals/lawreview/articles/volume160/
issue7/Balganesh160U.Pa.L.Rev.1889(2012).pdf.

[All90] Franklin Allen. The market for information and the origin of financial inter-
mediation. Journal of Financial Intermediation, 1(1):3–30, March 1990. http:
//www.sciencedirect.com/science/article/pii/1042-9573(90)90006-2.

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More ef-
ficient oblivious transfer and extensions for faster secure computation. Cryptology
ePrint Archive, Report 2013/552, 2013. http://eprint.iacr.org/2013/552.

[AP90] Anat R Admati and Paul Pfleiderer. Direct and Indirect Sale of Informa-
tion. Econometrica, 58(4):901–928, July 1990. https://www.jstor.org/stable/
2938355.

[Arr62] Kenneth Arrow. Economic Welfare and the Allocation of Resources for Invention.
In The Rate and Direction of Inventive Activity: Economic and Social Factors,
NBER Chapters, pages 609–626. National Bureau of Economic Research, Inc,
December 1962. https://www.nber.org/chapters/c2144.pdf.

[AV17] Abdelrahaman Aly and Mathieu Van Vyve. Practically Efficient Secure Single-
Commodity Multi-Market Auctions. Cryptology ePrint Archive, Report 2017/439,
2017. http://eprint.iacr.org/2017/439.pdf.

[AY94] James J Anton and Dennis A Yao. Expropriation and Inventions: Appropriable
Rents in the Absence of Property Rights. American Economic Review, 84(1):190–
209, March 1994. https://www.jstor.org/stable/2117978.

[AY02] James J. Anton and Dennis A. Yao. The Sale of Ideas: Strategic Disclosure,
Property Rights, and Contracting. Review of Economic Studies, 69(3):513–531,
2002. http://hdl.handle.net/10.1111/1467-937X.t01-1-00020.

[AY05] James J. Anton and Dennis A. Yao. Markets For Partially Contractible Knowl-
edge: Bootstrapping Versus Bundling. Journal of the European Economic Asso-
ciation, 3(2-3):745–754, 04/05 2005. https://www.jstor.org/stable/40005016.

[BBB+16] Raad Bahmani, Manuel Barbosa, Ferdinand Brasser, Bernardo Portela, Ahmad-
Reza Sadeghi, Guillaume Scerri, and Bogdan Warinschi. Secure Multiparty
Computation from SGX. Cryptology ePrint Archive, Report 2016/1057, 2016.
http://eprint.iacr.org/2016/1057.pdf.

41

http://eprint.iacr.org/2016/768
http://eprint.iacr.org/2016/768
http://eprint.iacr.org/2015/178
http://eprint.iacr.org/2016/654.pdf
https://acmccs.github.io/papers/p2087-amesA.pdf
https://acmccs.github.io/papers/p2087-amesA.pdf
http://eprint.iacr.org/2014/759
http://eprint.iacr.org/2011/136
https://www.law.upenn.edu/journals/lawreview/articles/volume160/issue7/Balganesh160U.Pa.L.Rev.1889(2012).pdf
https://www.law.upenn.edu/journals/lawreview/articles/volume160/issue7/Balganesh160U.Pa.L.Rev.1889(2012).pdf
http://www.sciencedirect.com/science/article/pii/1042-9573(90)90006-2
http://www.sciencedirect.com/science/article/pii/1042-9573(90)90006-2
http://eprint.iacr.org/2013/552
https://www.jstor.org/stable/2938355
https://www.jstor.org/stable/2938355
https://www.nber.org/chapters/c2144.pdf
http://eprint.iacr.org/2017/439.pdf
https://www.jstor.org/stable/2117978
http://hdl.handle.net/10.1111/1467-937X.t01-1-00020
https://www.jstor.org/stable/40005016
http://eprint.iacr.org/2016/1057.pdf

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive
composition and bootstrapping for SNARKs and proof-carrying data. Cryptology
ePrint Archive, Report 2012/095, 2012. http://eprint.iacr.org/2012/095.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from Bitcoin. Cryptology ePrint Archive, Report 2014/349, 2014.
http://eprint.iacr.org/2014/349.

[BCLK17] Marcus Brandenburger, Christian Cachin, Matthias Lorenz, and Rüdiger Kapitza.
Rollback and Forking Detection for Trusted Execution Environments using
Lightweight Collective Memory, 2017. https://www.ibr.cs.tu-bs.de/users/
brandenb/papers/brandenburger_17_dsn.pdf.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. Large-scale secure computation.
Cryptology ePrint Archive, Report 2014/404, 2014. http://eprint.iacr.org/
2014/404.

[BDLF+16] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-
lamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Ras-
togi, Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin.
Formal Verification of Smart Contracts: Short Paper. In Proceedings of
the 2016 ACM Workshop on Programming Languages and Analysis for Se-
curity, PLAS ’16, pages 91–96, New York, NY, USA, 2016. ACM. http:
//www.cs.umd.edu/%7Easeem/solidetherplas.pdf.

[BDOZ10] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. Cryptology ePrint
Archive, Report 2010/514, 2010. http://eprint.iacr.org/2010/514.

[BELO16] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing Semi-Honest
Secure Multiparty Computation for the Internet. Cryptology ePrint Archive,
Report 2016/1066, 2016. http://eprint.iacr.org/2016/1066.

[BELO17] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Efficient Scalable Constant-
Round MPC via Garbled Circuits. Cryptology ePrint Archive, Report 2017/862,
2017. https://eprint.iacr.org/2017/862.

[Ben14] Juan Benet. IPFS - Content Addressed, Versioned, P2P File System, 2014.
https://arxiv.org/abs/1407.3561.

[BEO17] Aner Ben-Efraim and Eran Omri. Concrete Efficiency Improvements for Mul-
tiparty Garbling with an Honest Majority. LatinCrypt 2017, 2017. http:
//cs.haifa.ac.il/~orrd/LC17/paper31.pdf.

[BFK+14] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti,
Pierre-Yves Strub, and Santiago Zanella-Béguelin. Proving the TLS handshake
secure (as it is). Cryptology ePrint Archive, Report 2014/182, 2014. http:
//eprint.iacr.org/2014/182.

[BGW88] Michael BenOr, Shafi Goldwasser, and Avi Wigderson. Completeness The-
orems for Non-Cryptographic Fault-Tolerant Distributed Computation (Ex-
tended Abstract), 1988. https://groups.csail.mit.edu/cis/pubs/shafi/1988-
stoc.pdf.

[BK16] John Barrdear and Michael Kumhof. The Macroeconomics of Central Bank
Issued Digital Currencies. Bank of England working papers 605, Bank of England,
2016. http://www.bankofengland.co.uk/research/Documents/workingpapers/
2016/swp605.pdf.

[BKK+15] Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Rebane, Ville Sokk, and
Riivo Talviste. Students and taxes: a privacy-preserving social study using
secure computation. Cryptology ePrint Archive, Report 2015/1159, 2015. http:
//eprint.iacr.org/2015/1159.

42

http://eprint.iacr.org/2012/095
http://eprint.iacr.org/2014/349
https://www.ibr.cs.tu-bs.de/users/brandenb/papers/brandenburger_17_dsn.pdf
https://www.ibr.cs.tu-bs.de/users/brandenb/papers/brandenburger_17_dsn.pdf
http://eprint.iacr.org/2014/404
http://eprint.iacr.org/2014/404
http://www.cs.umd.edu/%7Easeem/solidetherplas.pdf
http://www.cs.umd.edu/%7Easeem/solidetherplas.pdf
http://eprint.iacr.org/2010/514
http://eprint.iacr.org/2016/1066
https://eprint.iacr.org/2017/862
https://arxiv.org/abs/1407.3561
http://cs.haifa.ac.il/~orrd/LC17/paper31.pdf
http://cs.haifa.ac.il/~orrd/LC17/paper31.pdf
http://eprint.iacr.org/2014/182
http://eprint.iacr.org/2014/182
https://groups.csail.mit.edu/cis/pubs/shafi/1988-stoc.pdf
https://groups.csail.mit.edu/cis/pubs/shafi/1988-stoc.pdf
http://www.bankofengland.co.uk/research/Documents/workingpapers/2016/swp605.pdf
http://www.bankofengland.co.uk/research/Documents/workingpapers/2016/swp605.pdf
http://eprint.iacr.org/2015/1159
http://eprint.iacr.org/2015/1159

[BLMZ16] Fabrice Benhamouda, Tancrède Lepoint, Claire Mathieu, and Hang Zhou. Op-
timization of bootstrapping in circuits. Cryptology ePrint Archive, Report
2016/785, 2016. http://eprint.iacr.org/2016/785.

[Blu87] Manuel Blum. How to Prove a Theorem So No One Else Can Claim It. In In:
Proceedings of the International Congress of Mathematicians, pages 1444–1451,
1987. http://www.mathunion.org/ICM/ICM1986.2/Main/icm1986.2.1444.1451.
ocr.pdf.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: a framework for fast
privacy-preserving computations. Cryptology ePrint Archive, Report 2008/289,
2008. http://eprint.iacr.org/2008/289.

[BMD+17] Ferdinand Brasser, Urs Muller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. Software Grand Exposure: SGX Cache
Attacks Are Practical, 2017. https://arxiv.org/pdf/1702.07521.

[BMPS17] Greg Buchak, Gregor Matvos, Tomasz Piskorski, and Amit Seru. Fin-
tech, Regulatory Arbitrage, and the Rise of Shadow Banks, 2017.
https://www.gsb.stanford.edu/faculty-research/working-papers/fintech-
regulatory-arbitrage-rise-shadow-banks.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The Round Complexity of
Secure Protocols, 1990. http://web.cs.ucdavis.edu/~rogaway/papers/bmr90.

[BOGG+90] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan Håstad, Joe Kil-
ian, Silvio Micali, and Phillip Rogaway. Everything Provable is Provable in
Zero-Knowledge, 1990. http://crypto.cs.mcgill.ca/~crepeau/COMP647/2007/
TOPIC04/BGGHKMR89.pdf.

[BP17] Massimo Bartoletti and Livio Pompianu. An empirical analysis of smart contracts:
platforms, applications, and design patterns, 2017. https://arxiv.org/abs/
1703.06322.

[BPSW16] Manuel Barbosa, Bernardo Portela, Guillaume Scerri, and Bogdan Warinschi.
Foundations of Hardware-Based Attested Computation and Application to SGX.
Cryptology ePrint Archive, Report 2016/014, 2016. http://eprint.iacr.org/
2016/014.pdf.

[BRSV17] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan.
Proofs of Useful Work. Cryptology ePrint Archive, Report 2017/203, 2017.
http://eprint.iacr.org/2017/203.pdf.

[BS14] Marina Blanton and Siddharth Saraph. Secure and Oblivious Maximum Bipartite
Matching Size Algorithm with Applications to Secure Fingerprint Identification.
Cryptology ePrint Archive, Report 2014/596, 2014. http://eprint.iacr.org/
2014/596.pdf.

[BTW11] Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure multi-party
computation for financial data analysis. Cryptology ePrint Archive, Report
2011/662, 2011. http://eprint.iacr.org/2011/662.

[But14a] Vitalik Buterin. A Next-Generation Smart Contract and Decentralized Ap-
plication Platform. Cryptology ePrint Archive, Report 2015/1006, 2014.
https://github.com/ethereum/wiki/wiki/White-Paper.

[But14b] Vitalik Buterin. Secret Sharing DAOs: The Other Crypto 2.0, 2014. https:
//blog.ethereum.org/2014/12/26/secret-sharing-daos-crypto-2-0/.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. Cryptology ePrint Archive, Report 2015/163, 2015. http:
//eprint.iacr.org/2015/163.

[BWK+17] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. Telling Your Secrets without Page Faults: Stealthy Page Table-
Based Attacks on Enclaved Execution. In 26th USENIX Security Symposium
(USENIX Security 17), pages 1041–1056, Vancouver, BC, 2017. USENIX Associa-
tion. https://www.usenix.org/system/files/conference/usenixsecurity17/
sec17-van_bulck.pdf.

43

http://eprint.iacr.org/2016/785
http://www.mathunion.org/ICM/ICM1986.2/Main/icm1986.2.1444.1451.ocr.pdf
http://www.mathunion.org/ICM/ICM1986.2/Main/icm1986.2.1444.1451.ocr.pdf
http://eprint.iacr.org/2008/289
https://arxiv.org/pdf/1702.07521
https://www.gsb.stanford.edu/faculty-research/working-papers/fintech-regulatory-arbitrage-rise-shadow-banks
https://www.gsb.stanford.edu/faculty-research/working-papers/fintech-regulatory-arbitrage-rise-shadow-banks
http://web.cs.ucdavis.edu/~rogaway/papers/bmr90
http://crypto.cs.mcgill.ca/~crepeau/COMP647/2007/TOPIC04/BGGHKMR89.pdf
http://crypto.cs.mcgill.ca/~crepeau/COMP647/2007/TOPIC04/BGGHKMR89.pdf
https://arxiv.org/abs/1703.06322
https://arxiv.org/abs/1703.06322
http://eprint.iacr.org/2016/014.pdf
http://eprint.iacr.org/2016/014.pdf
http://eprint.iacr.org/2017/203.pdf
http://eprint.iacr.org/2014/596.pdf
http://eprint.iacr.org/2014/596.pdf
http://eprint.iacr.org/2011/662
https://github.com/ethereum/wiki/wiki/White-Paper
https://blog.ethereum.org/2014/12/26/secret-sharing-daos-crypto-2-0/
https://blog.ethereum.org/2014/12/26/secret-sharing-daos-crypto-2-0/
http://eprint.iacr.org/2015/163
http://eprint.iacr.org/2015/163
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-van_bulck.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-van_bulck.pdf

[BZ13] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. Cryptology ePrint Archive,
Report 2013/642, 2013. http://eprint.iacr.org/2013/642.

[Cac16] Christian Cachin. Architecture of the Hyperledger Blockchain Fabric. https:
//www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf, 2016. https://www.
zurich.ibm.com/dccl/papers/cachin_dccl.pdf.

[Cal17] Calctopia. SECCOMP - The Secure Spreadsheet, 2017. https://www.calctopia.
com.

[Cas14] Jay Cassano. What are Smart Contracts? Cryptocurrency’s Killer App,
2014. http://www.fastcolabs.com/3035723/app-economy/smart-contracts-
could-be-cryptocurrencys-killer-app.

[CBB16] Christopher D. Clack, Vikram A. Bakshi, and Lee Braine. Smart Contract
Templates: foundations, design landscape and research directions, 2016. https:
//arxiv.org/pdf/1608.00771.pdf.

[CD16] Victor Costan and Srinivas Devadas. Intel SGX Explained. Cryptology ePrint
Archive, Report 2016/086, 2016. http://eprint.iacr.org/2016/086.pdf.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-
Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives. Cryp-
tology ePrint Archive, Report 2017/279, 2017. http://eprint.iacr.org/2017/
279.pdf.

[CGGI17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Im-
proving TFHE: faster packed homomorphic operations and efficient circuit
bootstrapping. Cryptology ePrint Archive, Report 2017/430, 2017. http:
//eprint.iacr.org/2017/430.pdf.

[CH00] Eric K. Clemons and Lorin M. Hitt. The Internet and the Future of Financial
Services: Transparency, Differential Pricing and Disintermediation. Center
for Financial Institutions Working Papers 00-35, Wharton School Center for
Financial Institutions, University of Pennsylvania, September 2000. https:
//ideas.repec.org/p/wop/pennin/00-35.html.

[CHK+11] Seung Geol Choi, Kyung-Wook Hwang, Jonathan Katz, Tal Malkin, and Dan
Rubenstein. Secure Multi-Party Computation of Boolean Circuits with Applica-
tions to Privacy in On-Line Marketplaces. Cryptology ePrint Archive, Report
2011/257, 2011. http://eprint.iacr.org/2011/257.pdf.

[CLT14] Henry Carter, Charles Lever, and Patrick Traynor. Whitewash: Outsourcing
garbled circuit generation for mobile devices. Cryptology ePrint Archive, Report
2014/224, 2014. http://eprint.iacr.org/2014/224.

[CMR17] Brent Carmer, Alex J. Malozemoff, and Mariana Raykova. 5Gen-C: Multi-
input Functional Encryption and Program Obfuscation for Arithmetic Circuits.
Cryptology ePrint Archive, Report 2017/826, 2017. http://eprint.iacr.org/
2017/826.pdf.

[CMTB13] Henry Carter, Benjamin Mood, Patrick Traynor, and Kevin Butler. Secure
Outsourced Garbled Circuit Evaluation for Mobile Devices. In Presented as part
of the 22nd USENIX Security Symposium (USENIX Security 13), pages 289–
304, Washington, D.C., 2013. USENIX. https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/paper/carter.

[Coa72] Ronald H Coase. Durability and Monopoly. Journal of Law and Economics,
15(1):143–149, April 1972. http://dx.doi.org/10.1086/466731.

[Com85] Uniform Law Commission. Uniform Trade Secrets Act with 1985 Amend-
ments, 1985. http://www.uniformlaws.org/shared/docs/trade%20secrets/
utsa_final_85.pdf.

44

http://eprint.iacr.org/2013/642
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
https://www.calctopia.com
https://www.calctopia.com
http://www.fastcolabs.com/3035723/app-economy/smart-contracts-could-be-cryptocurrencys-killer-app
http://www.fastcolabs.com/3035723/app-economy/smart-contracts-could-be-cryptocurrencys-killer-app
https://arxiv.org/pdf/1608.00771.pdf
https://arxiv.org/pdf/1608.00771.pdf
http://eprint.iacr.org/2016/086.pdf
http://eprint.iacr.org/2017/279.pdf
http://eprint.iacr.org/2017/279.pdf
http://eprint.iacr.org/2017/430.pdf
http://eprint.iacr.org/2017/430.pdf
https://ideas.repec.org/p/wop/pennin/00-35.html
https://ideas.repec.org/p/wop/pennin/00-35.html
http://eprint.iacr.org/2011/257.pdf
http://eprint.iacr.org/2014/224
http://eprint.iacr.org/2017/826.pdf
http://eprint.iacr.org/2017/826.pdf
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/carter
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/carter
http://dx.doi.org/10.1086/466731
http://www.uniformlaws.org/shared/docs/trade%20secrets/utsa_final_85.pdf
http://www.uniformlaws.org/shared/docs/trade%20secrets/utsa_final_85.pdf

[Com16] FIX Trading Community. FIX Protocol Application Layer, 2016. http://www.
fixtradingcommunity.org/pg/structure/tech-specs/fix-protocol.

[Cor17] Intel Corp. INTEL-SA-00076: Intel SGX Elevation of Privilege,
2017. https://security-center.intel.com/advisory.aspx?intelid=INTEL-
SA-00076&languageid=en-fr.

[CT10] Alessandro Chiesa and Eran Tromer. Proof-Carrying Data and Hearsay Ar-
guments from Signature Cards, 2010. https://people.eecs.berkeley.edu/
~alexch/docs/CT10.pdf.

[CT16] Henry Carter and Patrick Traynor. OPFE: Outsourcing computation for private
function evaluation. Cryptology ePrint Archive, Report 2016/067, 2016. http:
//eprint.iacr.org/2016/067.

[CTV13] Stephen Chong, Eran Tromer, and Jeffrey A. Vaughan. Enforcing language
semantics using proof-carrying data. Cryptology ePrint Archive, Report 2013/513,
2013. http://eprint.iacr.org/2013/513.

[CZJ+17] Ethan Cecchetti, Fan Zhang, Yan Ji, Ahmed Kosba, Ari Juels, and Elaine Shi.
Solidus: Confidential Distributed Ledger Transactions via PVORM. Cryptology
ePrint Archive, Report 2017/317, 2017. http://eprint.iacr.org/2017/317.
pdf.

[Dai16] Phil Daian. Analysis of the DAO exploit. Hacking Distributed, 2016. http:
//hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit.

[Dam16] Ernesto Damiani. Evaluation and integration and final report on le-
gal aspects of data protection, 2016. https://practice-project.eu/
downloads/publications/year3/D31.3-Evaluation-and-integration-and-
final-report-on-PU-M36.pdf.

[DBB+15] Gaby G. Dagher, Benedikt Buenz, Joseph Bonneau, Jeremy Clark, and Dan
Boneh. Provisions: Privacy-preserving proofs of solvency for bitcoin exchanges.
Cryptology ePrint Archive, Report 2015/1008, 2015. http://eprint.iacr.org/
2015/1008.

[DDN+15] Ivan Damgård, Kasper Damgård, Kurt Nielsen, Peter Sebastian Nordholt, and
Tomas Toft. Confidential benchmarking based on multiparty computation.
Cryptology ePrint Archive, Report 2015/1006, 2015. http://eprint.iacr.org/
2015/1006.

[DGHO17] Tri Vi Dang, Gary Gorton, Bengt Holmstrom, and Guillermo Ordonez. Banks
as Secret Keepers. American Economic Review, 107(4):1005–1029, April 2017.
https://ideas.repec.org/a/aea/aecrev/v107y2017i4p1005-29.html.

[Dig17a] Digiconomist. Bitcoin Energy Consumption Index, 2017. http://digiconomist.
net/bitcoin-energy-consumption.

[Dig17b] Digiconomist. Ethereum Energy Consumption Index, 2017. http://
digiconomist.net/ethereum-energy-consumption.

[DPSZ11] I. Damgard, V. Pastro, N.P. Smart, and S. Zakarias. Multiparty computation
from somewhat homomorphic encryption. Cryptology ePrint Archive, Report
2011/535, 2011. http://eprint.iacr.org/2011/535.

[Dup08] François Dupressoir. Code and Proof Obfuscation, 2008. http://fdupress.net/
files/m2-material/report.pdf.

[EAA11] Andrew W. Lo Emmanuel A. Abbe, Amir Khandani. Privacy-Preserving Methods
for Sharing Financial Risk Exposures, 2011. https://papers.ssrn.com/sol3/
papers.cfm?abstract_id=1962090.

[EL03] Edith Elkind and Helger Lipmaa. Interleaving cryptography and mechanism
design: The case of online auctions. Cryptology ePrint Archive, Report 2003/021,
2003. http://eprint.iacr.org/2003/021.

45

http://www.fixtradingcommunity.org/pg/structure/tech-specs/fix-protocol
http://www.fixtradingcommunity.org/pg/structure/tech-specs/fix-protocol
https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00076&languageid=en-fr
https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00076&languageid=en-fr
https://people.eecs.berkeley.edu/~alexch/docs/CT10.pdf
https://people.eecs.berkeley.edu/~alexch/docs/CT10.pdf
http://eprint.iacr.org/2016/067
http://eprint.iacr.org/2016/067
http://eprint.iacr.org/2013/513
http://eprint.iacr.org/2017/317.pdf
http://eprint.iacr.org/2017/317.pdf
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit
https://practice-project.eu/downloads/publications/year3/D31.3-Evaluation-and-integration-and-final-report-on-PU-M36.pdf
https://practice-project.eu/downloads/publications/year3/D31.3-Evaluation-and-integration-and-final-report-on-PU-M36.pdf
https://practice-project.eu/downloads/publications/year3/D31.3-Evaluation-and-integration-and-final-report-on-PU-M36.pdf
http://eprint.iacr.org/2015/1008
http://eprint.iacr.org/2015/1008
http://eprint.iacr.org/2015/1006
http://eprint.iacr.org/2015/1006
https://ideas.repec.org/a/aea/aecrev/v107y2017i4p1005-29.html
http://digiconomist.net/bitcoin-energy-consumption
http://digiconomist.net/bitcoin-energy-consumption
http://digiconomist.net/ethereum-energy-consumption
http://digiconomist.net/ethereum-energy-consumption
http://eprint.iacr.org/2011/535
http://fdupress.net/files/m2-material/report.pdf
http://fdupress.net/files/m2-material/report.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1962090
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1962090
http://eprint.iacr.org/2003/021

[FKOS13] Mark D. Flood, Jonathan Katz, Stephen J. Ong, and Adam D. Smith. Cryptogra-
phy and the economics of supervisory information: Balancing transparency and
confidentiality, 2013. https://papers.ssrn.com/sol3/papers.cfm?abstract_
id=2354038.

[FLGR09] Cédric Fournet, Gurvan Le Guernic, and Tamara Rezk. A Security-
Preserving Compiler for Distributed Programs: From Information-flow
Policies to Cryptographic Mechanisms. In Proceedings of the 16th ACM
Conference on Computer and Communications Security, CCS ’09, pages 432–
441, New York, NY, USA, 2009. ACM. https://www.microsoft.com/en-
us/research/wp-content/uploads/2017/01/a-security-preserving-
compiler-for-distributed-programs-ccs09.pdf.

[FPR11] Cédric Fournet, Jérémy Planul, and Tamara Rezk. Information-flow
Types for Homomorphic Encryptions. In Proceedings of the 18th ACM
Conference on Computer and Communications Security, CCS ’11, pages
351–360, New York, NY, USA, 2011. ACM. https://www.microsoft.com/en-
us/research/wp-content/uploads/2017/01/information-flow-types-for-
homomorphic-encryptions-ccs11.pdf.

[Fro16] Aymeric Fromherz. Fromherz’s smart contracts formalized in Coq. GitHub, 2016.
https://github.com/sunblaze-ucb/coq-smart-contract.

[FVS17] Jesús Fernández-Villaverde and Daniel Sanches. Can Currency Compe-
tition Work?, 2017. http://economics.sas.upenn.edu/~jesusfv/currency_
competition.pdf.

[Gib16] Adam Gibson. An investigation into Confidential Transactions. The Elements
Project, 2016. https://github.com/AdamISZ/ConfidentialTransactionsDoc/
blob/master/essayonCT.pdf.

[GK83] Mark B. Garman and Steven W. Kohlhagen. Foreign currency option values.
Journal of International Money and Finance, 2(3):231–237, 1983. https://www.
sciencedirect.com/science/article/pii/S0261560683800011.

[GKP+12] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption.
Cryptology ePrint Archive, Report 2012/733, 2012. http://eprint.iacr.org/
2012/733.

[GKS17] Daniel Günther, Ágnes Kiss, and Thomas Schneider. More Efficient Universal
Circuit Constructions. Cryptology ePrint Archive, Report 2017/798, 2017.
http://eprint.iacr.org/2017/798.pdf.

[GM16] Matthew Green and Ian Miers. Bolt: Anonymous payment channels for de-
centralized currencies. Cryptology ePrint Archive, Report 2016/701, 2016.
http://eprint.iacr.org/2016/701.

[GMF+16] Debayan Gupta, Benjamin Mood, Joan Feigenbaum, Kevin Butler, and Patrick
Traynor. Using Intel Software Guard Extensions for Efficient Two-Party Se-
cure Function Evaluation, pages 302–318. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2016. http://www.cs.yale.edu/homes/jf/GMFBT-WAHC2016.pdf.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster zero-
knowledge for boolean circuits. Cryptology ePrint Archive, Report 2016/163,
2016. http://eprint.iacr.org/2016/163.

[GMP+08] Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-Reza Sadeghi, and Jörg
Schwenk. Universally composable security analysis of TLS—Secure sessions
with handshake and record layer protocols. Cryptology ePrint Archive, Report
2008/251, 2008. http://eprint.iacr.org/2008/251.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity
of Interactive Proof-Systems (Extended Abstract), 1985. https://groups.csail.
mit.edu/cis/pubs/shafi/1985-stoc.pdf.

46

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2354038
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2354038
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/a-security-preserving-compiler-for-distributed-programs-ccs09.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/a-security-preserving-compiler-for-distributed-programs-ccs09.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/a-security-preserving-compiler-for-distributed-programs-ccs09.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/information-flow-types-for-homomorphic-encryptions-ccs11.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/information-flow-types-for-homomorphic-encryptions-ccs11.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/information-flow-types-for-homomorphic-encryptions-ccs11.pdf
https://github.com/sunblaze-ucb/coq-smart-contract
http://economics.sas.upenn.edu/~jesusfv/currency_competition.pdf
http://economics.sas.upenn.edu/~jesusfv/currency_competition.pdf
https://github.com/AdamISZ/ConfidentialTransactionsDoc/blob/master/essayonCT.pdf
https://github.com/AdamISZ/ConfidentialTransactionsDoc/blob/master/essayonCT.pdf
https://www.sciencedirect.com/science/article/pii/S0261560683800011
https://www.sciencedirect.com/science/article/pii/S0261560683800011
http://eprint.iacr.org/2012/733
http://eprint.iacr.org/2012/733
http://eprint.iacr.org/2017/798.pdf
http://eprint.iacr.org/2016/701
http://www.cs.yale.edu/homes/jf/GMFBT-WAHC2016.pdf
http://eprint.iacr.org/2016/163
http://eprint.iacr.org/2008/251
https://groups.csail.mit.edu/cis/pubs/shafi/1985-stoc.pdf
https://groups.csail.mit.edu/cis/pubs/shafi/1985-stoc.pdf

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to Play ANY Mental Game or
A Completeness Theorem for Protocols with Honest Majority. In Proceedings
of the Nineteenth Annual ACM Symposium on Theory of Computing, New
York, NY, USA, 1987. ACM, ACM. https://gnunet.org/sites/default/files/
PlayMentalGame1987Goldreich.pdf.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software Protection and Simulation
on Oblivious RAMs, 1996. http://class.ece.iastate.edu/tyagi/cpre681/
papers/p431-goldreich.pdf.

[Gol87] O. Goldreich. Towards a Theory of Software Protection and Simulation by
Oblivious RAMs. In Proceedings of the Nineteenth Annual ACM Symposium
on Theory of Computing, STOC ’87, pages 182–194, New York, NY, USA, 1987.
ACM. http://doi.acm.org/10.1145/28395.28416.

[Gol97] Shafi Goldwasser. Multi-Party Computations: Past and Present, 1997. https:
//groups.csail.mit.edu/cis/pubs/shafi/1997-podc.pdf.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2.
Cambridge University Press, Cambridge, UK, 2004.

[GRY17] Paul Grubbs, Thomas Ristenpart, and Yuval Yarom. Modifying an Enciphering
Scheme after Deployment. Cryptology ePrint Archive, Report 2017/137, 2017.
http://eprint.iacr.org/2017/137.pdf.

[GS03] Joshua S. Gans and Scott Stern. The product market and the market for
ideas: commercialization strategies for technology entrepreneurs. Research
Policy, 32(2):333–350, February 2003. http://www.sciencedirect.com/science/
article/pii/S0048-7333(02)00103-8.

[Hir17] Yoichi Hirai. A Next-Generation Smart Contract and Decentralized Application
Platform, 2017. https://yoichihirai.com/malta-paper.pdf.

[HMP17] Zackary Hess, Yanislav Malahov, and Jack Petterson. Aeternity blockchain:
The trustless, decentralized and purely functional oracle machine, 2017. https:
//blockchain.aeternity.com/%C3%A6ternity-blockchain-whitepaper.pdf.

[HSR+17] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Deepak Kumar, and
Dwight Guth. K Semantics of the Ethereum Virtual Machine (EVM). GitHub,
2017. https://github.com/kframework/evm-semantics.

[HSSV17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low Cost Constant
Round MPC Combining BMR and Oblivious Transfer. Cryptology ePrint Archive,
Report 2017/214, 2017. https://eprint.iacr.org/2017/214.

[Hvi14] Tom Hvitved. A Survey of Formal Languages for Contracts, 2014. https://pdfs.
semanticscholar.org/5002/76c957028a65503c4b13214515c07abd5d93.pdf.

[HY16] Carmit Hazay and Avishay Yanai. Constant-round maliciously secure two-party
computation in the RAM model. Cryptology ePrint Archive, Report 2016/805,
2016. http://eprint.iacr.org/2016/805.

[iEx17] iEx.ec. The iEx.ec project: blueprint for a Blockchain-based fully dis-
tributed cloud infrastructure, 2017. http://iex.ec/wp-content/uploads/2017/
04/iExec-WPv2.0-English.pdf.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending Oblivi-
ous Transfers Efficiently, 2003. https://www.iacr.org/cryptodb/archive/2003/
CRYPTO/1432/1432.pdf.

[IY88] Russell Impagliazzo and Moti Yung. Direct Minimum-Knowledge Computa-
tions, 1988. http://crypto.cs.mcgill.ca/~crepeau/COMP647/2007/TOPIC04/
IY89.pdf.

[JE03] S. L. Peyton Jones and J-M. Eber. How to Write a Financial Con-
tract, 2003. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
14.7885&rep=rep1&type=pdf.

47

https://gnunet.org/sites/default/files/PlayMentalGame1987Goldreich.pdf
https://gnunet.org/sites/default/files/PlayMentalGame1987Goldreich.pdf
http://class.ece.iastate.edu/tyagi/cpre681/papers/p431-goldreich.pdf
http://class.ece.iastate.edu/tyagi/cpre681/papers/p431-goldreich.pdf
http://doi.acm.org/10.1145/28395.28416
https://groups.csail.mit.edu/cis/pubs/shafi/1997-podc.pdf
https://groups.csail.mit.edu/cis/pubs/shafi/1997-podc.pdf
http://eprint.iacr.org/2017/137.pdf
http://www.sciencedirect.com/science/article/pii/S0048-7333(02)00103-8
http://www.sciencedirect.com/science/article/pii/S0048-7333(02)00103-8
https://yoichihirai.com/malta-paper.pdf
https://blockchain.aeternity.com/%C3%A6ternity-blockchain-whitepaper.pdf
https://blockchain.aeternity.com/%C3%A6ternity-blockchain-whitepaper.pdf
https://github.com/kframework/evm-semantics
https://eprint.iacr.org/2017/214
https://pdfs.semanticscholar.org/5002/76c957028a65503c4b13214515c07abd5d93.pdf
https://pdfs.semanticscholar.org/5002/76c957028a65503c4b13214515c07abd5d93.pdf
http://eprint.iacr.org/2016/805
http://iex.ec/wp-content/uploads/2017/04/iExec-WPv2.0-English.pdf
http://iex.ec/wp-content/uploads/2017/04/iExec-WPv2.0-English.pdf
https://www.iacr.org/cryptodb/archive/2003/CRYPTO/1432/1432.pdf
https://www.iacr.org/cryptodb/archive/2003/CRYPTO/1432/1432.pdf
http://crypto.cs.mcgill.ca/~crepeau/COMP647/2007/TOPIC04/IY89.pdf
http://crypto.cs.mcgill.ca/~crepeau/COMP647/2007/TOPIC04/IY89.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.7885&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.7885&rep=rep1&type=pdf

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using
garbled circuits: How to prove non-algebraic statements efficiently. Cryptology
ePrint Archive, Report 2013/073, 2013. http://eprint.iacr.org/2013/073.

[JKS16] Ari Juels, Ahmed Kosba, and Elaine Shi. The ring of gyges: Investigating the
future of criminal smart contracts. Cryptology ePrint Archive, Report 2016/358,
2016. http://eprint.iacr.org/2016/358.

[JLLK17] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. SGX-Bomb: Locking
Down the Processor via Rowhammer Attack. In Proceedings of the 2nd Workshop
on System Software for Trusted Execution (SysTEX), Shanghai, China, October
2017. http://dx.doi.org/10.1787/5jxzl5w3j3s6-en.

[Jut15] Charanjit S. Jutla. Upending stock market structure using secure multi-party
computation. Cryptology ePrint Archive, Report 2015/550, 2015. http://
eprint.iacr.org/2015/550.

[JVBS17] Frank Piessens Jo Van Bulck and Raoul Strackx. SGX-Step: A Practical Attack
Framework for Precise Enclave Execution Control. In In Proceedings of the
2nd Workshop on System Software for Trusted Execution (SysTEX ’17), 2017.
https://github.com/jovanbulck/sgx-step/blob/master/systex17.pdf.

[KHB+16] Joshua A. Kroll, Joanna Huey, Solon Barocas, Edward W. Felten, Joel R.
Reidenberg, David G. Robinson, and Harlan Yu. Accountable Algorithms, 2016.
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2765268.

[Kin13] Sunny King. Primecoin: Cryptocurrency with prime number proof-of-work),
2013. http://primecoin.io/bin/primecoin-paper.pdf.

[KMO+14] Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Bjoern Tackmann, and Daniele
Venturi. (De-)constructing TLS. Cryptology ePrint Archive, Report 2014/020,
2014. http://eprint.iacr.org/2014/020.

[KMR11] Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing multi-
party computation. Cryptology ePrint Archive, Report 2011/272, 2011. http:
//eprint.iacr.org/2011/272.

[KMR12] Seny Kamara, Payman Mohassel, and Ben Riva. Salus: A system for server-aided
secure function evaluation. Cryptology ePrint Archive, Report 2012/542, 2012.
http://eprint.iacr.org/2012/542.

[KMS+15] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts. Cryptology ePrint Archive, Report 2015/675, 2015.
http://eprint.iacr.org/2015/675.

[KRW17] Jonathan Katz, Samuel Ranellucci, and Xiao Wang. Global-Scale Secure Mul-
tiparty Computation. Cryptology ePrint Archive, Report 2017/189, 2017.
http://eprint.iacr.org/2017/189.pdf.

[KS08] Vladimir Kolesnikov and Thomas Schneider. A Practical Universal Circuit
Construction and Secure Evaluation of Private Functions, 2008. http://ect.
bell-labs.com/who/kolesnikov/papers/UC_FC08.pdf.

[KS16] Ágnes Kiss and Thomas Schneider. Valiant’s universal circuit is practical.
Cryptology ePrint Archive, Report 2016/093, 2016. http://eprint.iacr.org/
2016/093.

[Kum16] Ranjit Kumaresan. Privacy-Preserving Smart Contracts, 2016. https://cyber.
stanford.edu/sites/default/files/ranjitkumaresan.pdf.

[LCL+13] Kwangsu Lee, Seung Geol Choi, Dong Hoon Lee, Jong Hwan Park, and Moti
Yung. Self-updatable encryption: Time constrained access control with hidden
attributes and better efficiency. Cryptology ePrint Archive, Report 2013/762,
2013. http://eprint.iacr.org/2013/762.

48

http://eprint.iacr.org/2013/073
http://eprint.iacr.org/2016/358
http://dx.doi.org/10.1787/5jxzl5w3j3s6-en
http://eprint.iacr.org/2015/550
http://eprint.iacr.org/2015/550
https://github.com/jovanbulck/sgx-step/blob/master/systex17.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2765268
http://primecoin.io/bin/primecoin-paper.pdf
http://eprint.iacr.org/2014/020
http://eprint.iacr.org/2011/272
http://eprint.iacr.org/2011/272
http://eprint.iacr.org/2012/542
http://eprint.iacr.org/2015/675
http://eprint.iacr.org/2017/189.pdf
http://ect.bell-labs.com/who/kolesnikov/papers/UC_FC08.pdf
http://ect.bell-labs.com/who/kolesnikov/papers/UC_FC08.pdf
http://eprint.iacr.org/2016/093
http://eprint.iacr.org/2016/093
https://cyber.stanford.edu/sites/default/files/ranjitkumaresan.pdf
https://cyber.stanford.edu/sites/default/files/ranjitkumaresan.pdf
http://eprint.iacr.org/2013/762

[LCO+16] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
Making smart contracts smarter. Cryptology ePrint Archive, Report 2016/633,
2016. http://eprint.iacr.org/2016/633.

[Lem08] Mark A. Lemley. The Surprising Virtues of Treating Trade Secrets as IP Rights,
2008. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1155167.

[Lev17] Karen EC Levy. Book-Smart, Not Street-Smart: Blockchain-Based Smart
Contracts and The Social Workings of Law. In Engaging Science, Technology,
and Society, volume 3, pages 1–15, 2017. http://estsjournal.org/article/
download/107/61.pdf.

[Lie13] Manuel Liedel. Sichere Mehrparteienberechnungen und datenschutzfreundliche
Klassifikation auf Basis horizontal partitionierter Datenbanken, February 2013.
https://epub.uni-regensburg.de/27630/.

[LJJ+17] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho
Choi, Taesoo Kim, Marcus Peinado, and Brent ByungHoon Kang. Hacking
in Darkness: Return-oriented Programming against Secure Enclaves. In 26th
USENIX Security Symposium (USENIX Security 17), pages 523–539, Vancou-
ver, BC, 2017. USENIX Association. https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/lee-jaehyuk.

[LM07] Chuck Liang and Dale Miller. Focusing and polarization in intuitionistic logic.
CoRR, abs/0708.2252, 2007. http://www.lix.polytechnique.fr/Labo/Dale.
Miller/papers/csl07liang.pdf.

[LMA+16] Kevin Lewi, Alex J. Malozemoff, Daniel Apon, Brent Carmer, Adam Foltzer,
Daniel Wagner, David W. Archer, Dan Boneh, Jonathan Katz, and Mariana
Raykova. 5Gen: A framework for prototyping applications using multilinear maps
and matrix branching programs. Cryptology ePrint Archive, Report 2016/619,
2016. http://eprint.iacr.org/2016/619.

[LO15] Steve Lu and Rafail Ostrovsky. Black-box parallel garbled RAM. Cryptology
ePrint Archive, Report 2015/1068, 2015. http://eprint.iacr.org/2015/1068.

[LP77] Hayne E Leland and David H Pyle. Informational Asymmetries, Financial
Structure, and Financial Intermediation. Journal of Finance, 32(2):371–387,
May 1977. https://www.jstor.org/stable/2326770.

[LP04] Yehuda Lindell and Benny Pinkas. A Proof of Yao’s Protocol for Secure Two-
Party Computation. Cryptology ePrint Archive, Report 2004/175, 2004. http:
//eprint.iacr.org/2004/175.pdf.

[LS14] D. Lippoldt and M. Schultz. Uncovering Trade Secrets - An Empirical Assessment
of Economic Implications of Protection for Undisclosed Data. 2014. http:
//dx.doi.org/10.1787/5jxzl5w3j3s6-en.

[LSG+16] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and
Marcus Peinado. Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing, 2016. https://arxiv.org/abs/1611.06952.

[Mac16] Tanaya Macheel. Banks’ Privacy Concerns Shaping Blockchain Vendors’ Strate-
gies. American Banker, 2016. https://www.americanbanker.com/news/banks-
privacy-concerns-shaping-blockchain-vendors-strategies.

[Mar78] William Margrabe. The Value of an Option to Exchange One Asset for Another.
Journal of Finance, 33(1):177–186, March 1978. http://onlinelibrary.wiley.
com/doi/10.1111/j.1540-6261.1978.tb03397.x/abstract.

[MEK+12] Sarah Meiklejohn, C. Chris Erway, Alptekin Küpçü, Theodora Hinkle, and Anna
Lysyanskaya. ZKPDL: A language-based system for efficient zero-knowledge
proofs and electronic cash. Cryptology ePrint Archive, Report 2012/226, 2012.
http://eprint.iacr.org/2012/226.

[MGBF14] Benjamin Mood, Debayan Gupta, Kevin R. B. Butler, and Joan Feigenbaum.
Reuse It Or Lose It: More Efficient Secure Computation Through Reuse Of
Encrypted Values, 2014. http://www.cs.yale.edu/homes/jf/MGBF-CCS14.pdf.

49

http://eprint.iacr.org/2016/633
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1155167
http://estsjournal.org/article/download/107/61.pdf
http://estsjournal.org/article/download/107/61.pdf
https://epub.uni-regensburg.de/27630/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/csl07liang.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/csl07liang.pdf
http://eprint.iacr.org/2016/619
http://eprint.iacr.org/2015/1068
https://www.jstor.org/stable/2326770
http://eprint.iacr.org/2004/175.pdf
http://eprint.iacr.org/2004/175.pdf
http://dx.doi.org/10.1787/5jxzl5w3j3s6-en
http://dx.doi.org/10.1787/5jxzl5w3j3s6-en
https://arxiv.org/abs/1611.06952
https://www.americanbanker.com/news/banks-privacy-concerns-shaping-blockchain-vendors-strategies
https://www.americanbanker.com/news/banks-privacy-concerns-shaping-blockchain-vendors-strategies
http://onlinelibrary.wiley.com/doi/10.1111/j.1540-6261.1978.tb03397.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1540-6261.1978.tb03397.x/abstract
http://eprint.iacr.org/2012/226
http://www.cs.yale.edu/homes/jf/MGBF-CCS14.pdf

[Mia16] Peihan Miao. Cut-and-choose for garbled RAM. Cryptology ePrint Archive,
Report 2016/907, 2016. http://eprint.iacr.org/2016/907.

[MIE17] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. CacheZoom: How
SGX Amplifies The Power of Cache Attacks, 2017. https://arxiv.org/abs/
1703.06986.

[MJS+14] Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan Katz.
Permacoin: Repurposing Bitcoin Work for Data Preservation, 2014. http:
//cs.umd.edu/~amiller/permacoin.pdf.

[MMA+15] Daniel Matichuk, Toby Murray, June Andronick, Ross Jeffery, Gerwin Klein, and
Mark Staples. Empirical Study Towards a Leading Indicator for Cost of Formal
Software Verification. In Proceedings of the 37th International Conference on
Software Engineering - Volume 1, ICSE ’15, pages 722–732, Piscataway, NJ,
USA, 2015. IEEE Press. https://ts.data61.csiro.au/publications/nicta_
full_text/8318.pdf.

[Mut90] Shigeo Muto. Resale-proofness and coalition-proof Nash equilibria. Games and
Economic Behavior, 2(4):337–361, December 1990. http://www.sciencedirect.
com/science/article/pii/089982569090004E.

[MZ17] Fermi Ma and Mark Zhandry. Encryptor Combiners: A Unified Approach
to Multiparty NIKE, (H)IBE, and Broadcast Encryption. Cryptology ePrint
Archive, Report 2017/152, 2017. http://eprint.iacr.org/2017/152.pdf.

[Nak08] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.
https://bitcoin.org/bitcoin.pdf.

[Nec97] George C. Necula. Proof-carrying Code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’97, pages 106–119, New York, NY, USA, 1997. ACM. http://www.
cs.jhu.edu/~fabian/courses/CS600.624/proof-carrying-code.pdf.

[NL98a] G. C. Necula and P. Lee. Efficient Representation and Validation of
Proofs. In Proceedings of the 13th Annual IEEE Symposium on Logic
in Computer Science, LICS ’98, pages 93–, Washington, DC, USA,
1998. IEEE Computer Society. https://pdfs.semanticscholar.org/c5d3/
9ff717e91a586cd0f7b764ad8bc5e782de7e.pdf.

[NL98b] George C. Necula and Peter Lee. Safe, Untrusted Agents Using Proof-Carrying
Code. In Mobile Agents and Security, pages 61–91, London, UK, UK, 1998.
Springer-Verlag. http://dl.acm.org/citation.cfm?id=648051.746192.

[Noe15] Shen Noether. Ring signature confidential transactions for monero. Cryptology
ePrint Archive, Report 2015/1098, 2015. http://eprint.iacr.org/2015/1098.

[NPS99] Moni Naor, Benny Pinkas, and Reuben Sumner. Privacy Preserving Auctions
and Mechanism Design. pages 129–139. ACM Press, 1999. http://www.wisdom.
weizmann.ac.il/%7Enaor/PAPERS/nps.ps.gz.

[NQ91] Mikio Nakayama and Luis Quintas. Stable payoffs in resale-proof trades of
information. Games and Economic Behavior, 3(3):339–349, August 1991. http:
//www.sciencedirect.com/science/article/pii/0899-8256(91)90032-A.

[NR15] Jesper Buus Nielsen and Samuel Ranellucci. Foundations of reactive garbling
schemes. Cryptology ePrint Archive, Report 2015/693, 2015. http://eprint.
iacr.org/2015/693.

[O’H17] Kieron O’Hara. Smart Contracts-Dumb Idea. In IEEE Internet Computing,
volume 21, pages 97–101. IEEE, 2017. http://ieeexplore.ieee.org/iel7/4236/
7867713/07867719.pdf.

[Ori14] Orisi. Orisi - Distributed Bitcoin Oracles, 2014. http://orisi.org/.

[ORP17] Carlos G. Oliver, Alessandro Ricottone, and Pericles Philippopoulos. Proposal
for a fully decentralized blockchain and proof-of-work algorithm for solving
NP-complete problems, 2017. https://arxiv.org/pdf/1708.09419.

50

http://eprint.iacr.org/2016/907
https://arxiv.org/abs/1703.06986
https://arxiv.org/abs/1703.06986
http://cs.umd.edu/~amiller/permacoin.pdf
http://cs.umd.edu/~amiller/permacoin.pdf
https://ts.data61.csiro.au/publications/nicta_full_text/8318.pdf
https://ts.data61.csiro.au/publications/nicta_full_text/8318.pdf
http://www.sciencedirect.com/science/article/pii/089982569090004E
http://www.sciencedirect.com/science/article/pii/089982569090004E
http://eprint.iacr.org/2017/152.pdf
https://bitcoin.org/bitcoin.pdf
http://www.cs.jhu.edu/~fabian/courses/CS600.624/proof-carrying-code.pdf
http://www.cs.jhu.edu/~fabian/courses/CS600.624/proof-carrying-code.pdf
https://pdfs.semanticscholar.org/c5d3/9ff717e91a586cd0f7b764ad8bc5e782de7e.pdf
https://pdfs.semanticscholar.org/c5d3/9ff717e91a586cd0f7b764ad8bc5e782de7e.pdf
http://dl.acm.org/citation.cfm?id=648051.746192
http://eprint.iacr.org/2015/1098
http://www.wisdom.weizmann.ac.il/%7Enaor/PAPERS/nps.ps.gz
http://www.wisdom.weizmann.ac.il/%7Enaor/PAPERS/nps.ps.gz
http://www.sciencedirect.com/science/article/pii/0899-8256(91)90032-A
http://www.sciencedirect.com/science/article/pii/0899-8256(91)90032-A
http://eprint.iacr.org/2015/693
http://eprint.iacr.org/2015/693
http://ieeexplore.ieee.org/iel7/4236/7867713/07867719.pdf
http://ieeexplore.ieee.org/iel7/4236/7867713/07867719.pdf
http://orisi.org/
https://arxiv.org/pdf/1708.09419

[PAAB13] Zoltan Pozsar, Tobias Adrian, Adam B. Ashcraft, and Hayley Boesky. Shadow
Banking, 2013. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=
2378449.

[PDH10] H. Pirzadeh, D. Dubé, and A. Hamou-Lhadj. An Extended Proof-Carrying
Code Framework for Security Enforcement. Lecture Notes in Computer Sci-
ence, 6480:249, 2010. https://users.encs.concordia.ca/~abdelw/sba/papers/
Elsevier-ProofCarryingCode.pdf.

[PE16] Jack Pettersson and Robert Edström. Safer smart contracts through type-
driven development, 2016. http://publications.lib.chalmers.se/records/
fulltext/234939/234939.pdf.

[Png12] Ivan P. L. Png. Law and Innovation: Evidence from State Trade Secrets Laws,
2012. http://dx.doi.org/10.2139/ssrn.1755284.

[Png15] Ivan P. L. Png. Secrecy and Patents: Theory and Evidence from the Uniform
Trade Secrets Act, 2015. http://dx.doi.org/10.2139/ssrn.2617266.

[Pop04] J. W. Pope. Proving a Theorem in Zero-Knowledge, 2004. http://euler.nmt.
edu/%7Ebrian/students/pope.pdf.

[Pro17] Enigma Project. Towards a Decentralized Data Marketplace - Part 2,
2017. https://blog.enigma.co/towards-a-decentralized-data-marketplace-
part-2-1362c8e11094.

[PST16] Rafael Pass, Elaine Shi, and Florian Tramer. Formal Abstractions for Attested
Execution Secure Processors. Cryptology ePrint Archive, Report 2016/1027,
2016. http://eprint.iacr.org/2016/1027.pdf.

[PV16] Marie Paindavoine and Bastien Vialla. Minimizing the Number of Bootstrappings
in Fully Homomorphic Encryption, 2016. https://pdfs.semanticscholar.org/
aaff/0e7673183181c7f4a241d31f7079da1a9573.pdf.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology
ePrint Archive, Report 2005/187, 2005. http://eprint.iacr.org/2005/187.

[RAD78] R L Rivest, L Adleman, and M L Dertouzos. On Data Banks and Pri-
vacy Homomorphisms. Foundations of Secure Computation, Academia Press,
pages 169–179, 1978. people.csail.mit.edu/rivest/RivestAdlemanDertouzos-
OnDataBanksAndPrivacyHomomorphisms.pdf.

[Ras16] Aseem Rastogi. Language-based Techniques for Practical and Trustworthy
Secure Multi-party Computations, 2016. http://drum.lib.umd.edu/bitstream/
handle/1903/18541/Rastogi_umd_0117E_17248.pdf?sequence=1&isAllowed=y.

[Ris16] Michael Risch. Hidden in Plain Sight, 2016. https://papers.ssrn.com/sol3/
papers.cfm?abstract_id=2761100.

[RS97] Jerome H. Reichman and Pamela Samuelson. Intellectual Property Rights
in Data?, 1997. https://www.law.berkeley.edu/php-programs/faculty/
facultyPubsPDF.php?facID=346&pubID=66.

[RT84] Ram T. S. Ramakrishnan and Anjan V. Thakor. Information Reliability and a
Theory of Financial Intermediation. Review of Economic Studies, 51(3):415–432,
1984. http://hdl.handle.net/10.2307/2297431.

[SA17] International Swaps and Derivatives Association. FpML Standard, 2017. http:
//www.fpml.org/the_standard/current/.

[Sch12] Lauren Henry Scholz. Privacy as Quasi-Property, 2012. https://ilr.law.uiowa.
edu/print/volume-101-issue-3/privacy-as-quasi-property/.

[SCO18] SCOTUS. International News Service v. Associated Press, 248 U.S. 215 (1918),
1918. https://supreme.justia.com/us/248/215/case.html.

[Sha79] Adi Shamir. How to Share a Secret, 1979. https://cs.jhu.edu/~sdoshi/crypto/
papers/shamirturing.pdf.

51

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2378449
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2378449
https://users.encs.concordia.ca/~abdelw/sba/papers/Elsevier-ProofCarryingCode.pdf
https://users.encs.concordia.ca/~abdelw/sba/papers/Elsevier-ProofCarryingCode.pdf
http://publications.lib.chalmers.se/records/fulltext/234939/234939.pdf
http://publications.lib.chalmers.se/records/fulltext/234939/234939.pdf
http://dx.doi.org/10.2139/ssrn.1755284
http://dx.doi.org/10.2139/ssrn.2617266
http://euler.nmt.edu/%7Ebrian/students/pope.pdf
http://euler.nmt.edu/%7Ebrian/students/pope.pdf
https://blog.enigma.co/towards-a-decentralized-data-marketplace-part-2-1362c8e11094
https://blog.enigma.co/towards-a-decentralized-data-marketplace-part-2-1362c8e11094
http://eprint.iacr.org/2016/1027.pdf
https://pdfs.semanticscholar.org/aaff/0e7673183181c7f4a241d31f7079da1a9573.pdf
https://pdfs.semanticscholar.org/aaff/0e7673183181c7f4a241d31f7079da1a9573.pdf
http://eprint.iacr.org/2005/187
people.csail.mit.edu/rivest/RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf
people.csail.mit.edu/rivest/RivestAdlemanDertouzos-OnDataBanksAndPrivacyHomomorphisms.pdf
http://drum.lib.umd.edu/bitstream/handle/1903/18541/Rastogi_umd_0117E_17248.pdf?sequence=1&isAllowed=y
http://drum.lib.umd.edu/bitstream/handle/1903/18541/Rastogi_umd_0117E_17248.pdf?sequence=1&isAllowed=y
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2761100
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2761100
https://www.law.berkeley.edu/php-programs/faculty/facultyPubsPDF.php?facID=346&pubID=66
https://www.law.berkeley.edu/php-programs/faculty/facultyPubsPDF.php?facID=346&pubID=66
http://hdl.handle.net/10.2307/2297431
http://www.fpml.org/the_standard/current/
http://www.fpml.org/the_standard/current/
https://ilr.law.uiowa.edu/print/volume-101-issue-3/privacy-as-quasi-property/
https://ilr.law.uiowa.edu/print/volume-101-issue-3/privacy-as-quasi-property/
https://supreme.justia.com/us/248/215/case.html
https://cs.jhu.edu/~sdoshi/crypto/papers/shamirturing.pdf
https://cs.jhu.edu/~sdoshi/crypto/papers/shamirturing.pdf

[SJA+14] Mark Staples, Ross Jeffery, June Andronick, Toby Murray, Gerwin Klein, and
Rafal Kolanski. Productivity for Proof Engineering. In Proceedings of the 8th
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM ’14, pages 15:1–15:4, New York, NY, USA, 2014. ACM.
http://dl.acm.org/citation.cfm?id=2652551.

[SLKP17] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-SGX: Eradicat-
ing Controlled-Channel Attacks Against Enclave Programs, 2017. https://www.
internetsociety.org/sites/default/files/ndss2017_07-2_Shih_paper.pdf.

[SSL+17] Pramod Subramanyan, Rohit Sinha, Ilia Lebedev, Srinivas Devadas, and Sanjit
Seshia. A Formal Foundation for Secure Remote Execution of Enclaves. Cryp-
tology ePrint Archive, Report 2017/565, 2017. http://eprint.iacr.org/2017/
565.pdf.

[SSW17] Peter Scholl, Nigel P. Smart, and Tim Wood. When It’s All Just Too Much:
Outsourcing MPC-Preprocessing. Cryptology ePrint Archive, Report 2017/262,
2017. http://eprint.iacr.org/2017/262.pdf.

[STM16] Pablo Lamela Seijas, Simon Thompson, and Darryl McAdams. Scripting smart
contracts for distributed ledger technology. Cryptology ePrint Archive, Report
2016/1156, 2016. http://eprint.iacr.org/2016/1156.pdf.

[Suf07] Amir Sufi. Information Asymmetry and Financing Arrangements: Evidence
from Syndicated Loans. The Journal of Finance, 62(2):629–668, 2007. http:
//dx.doi.org/10.1111/j.1540-6261.2007.01219.x.

[Sur12] Harry Surden. Computable Contracts, 2012. http://lawreview.law.ucdavis.
edu/issues/46/2/Articles/46-2_Surden.pdf.

[Swa17] Yogesh Swami. SGX Remote Attestation is not Sufficient. Cryptology ePrint
Archive, Report 2017/736, 2017. http://eprint.iacr.org/2017/736.pdf.

[SWG+17] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clementine Maurice, and Stefan
Mangard. Malware Guard Extension: Using SGX to Conceal Cache Attacks,
2017. https://arxiv.org/abs/1702.08719.

[SZ13] Thomas Schneider and Michael Zohner. GMW vs. Yao? Efficient secure two-
party computation with low depth circuits. Financial Cryptography 2013, 2013.
http://fc13.ifca.ai/proc/8-3.pdf.

[Sza97] Nick Szabo. The Idea of Smart Contracts. Nick Szabo’s Papers and Concise
Tutorials, 1997. https://web.archive.org/web/20150812055200/http://szabo.
best.vwh.net/idea.html.

[TR17] Jason Teutsch and Christian Reitwiessner. TrueBit: a scalable verification
solution for blockchains, 2017. https://people.cs.uchicago.edu/~teutsch/
papers/truebit.pdf.

[USCoA94] First Circuit. United States Court of Appeals. Data Gen. Corp. v. Grumman
Systems Support Corp., 1994. www.leagle.com/decision/1994118336F3d1147_
11018.

[UU91] USPTO and USCO. Patent-Copyright Laws Overlap Study, 1991. https://cdn.
patentlyo.com/media/2017/05/1991-Patent-Copyright-Overlap-Study.pdf.

[Val76] Leslie G. Valiant. Universal Circuits (Preliminary Report). In Proceedings of
the Eighth Annual ACM Symposium on Theory of Computing, STOC ’76, pages
196–203, New York, NY, USA, 1976. ACM.

[Vic61] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders.
The Journal of Finance, 16(1):8–37, 1961. http://dx.doi.org/10.1111/j.1540-
6261.1961.tb02789.x.

[Wan17] Xu An Wang. Toward Construction of Efficient Privacy Preserving Reusable
Garbled Circuits, pages 81–92. Springer International Publishing, Cham, 2017.
http://dx.doi.org/10.1007/978-3-319-49109-7_8.

52

http://dl.acm.org/citation.cfm?id=2652551
https://www.internetsociety.org/sites/default/files/ndss2017_07-2_Shih_paper.pdf
https://www.internetsociety.org/sites/default/files/ndss2017_07-2_Shih_paper.pdf
http://eprint.iacr.org/2017/565.pdf
http://eprint.iacr.org/2017/565.pdf
http://eprint.iacr.org/2017/262.pdf
http://eprint.iacr.org/2016/1156.pdf
http://dx.doi.org/10.1111/j.1540-6261.2007.01219.x
http://dx.doi.org/10.1111/j.1540-6261.2007.01219.x
http://lawreview.law.ucdavis.edu/issues/46/2/Articles/46-2_Surden.pdf
http://lawreview.law.ucdavis.edu/issues/46/2/Articles/46-2_Surden.pdf
http://eprint.iacr.org/2017/736.pdf
https://arxiv.org/abs/1702.08719
http://fc13.ifca.ai/proc/8-3.pdf
https://web.archive.org/web/20150812055200/http://szabo.best.vwh.net/idea.html
https://web.archive.org/web/20150812055200/http://szabo.best.vwh.net/idea.html
https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf
https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf
www.leagle.com/decision/1994118336F3d1147_11018
www.leagle.com/decision/1994118336F3d1147_11018
https://cdn.patentlyo.com/media/2017/05/1991-Patent-Copyright-Overlap-Study.pdf
https://cdn.patentlyo.com/media/2017/05/1991-Patent-Copyright-Overlap-Study.pdf
http://dx.doi.org/10.1111/j.1540-6261.1961.tb02789.x
http://dx.doi.org/10.1111/j.1540-6261.1961.tb02789.x
http://dx.doi.org/10.1007/978-3-319-49109-7_8

[WB15] Michael Walfish and Andrew J. Blumberg. Verifying Computations Without
Reexecuting Them. Commun. ACM, 58(2):74–84, January 2015. http://doi.
acm.org/10.1145/2641562.

[WC14] John Ross Wallrabenstein and Chris Clifton. Privacy Preserving Tâtonnement -
A Cryptographic Construction of an Incentive Compatible Market, 2014. http:
//fc14.ifca.ai/papers/fc14_submission_2.pdf.

[WCS14] Xiao Wang, Hubert Chan, and Elaine Shi. Circuit ORAM: On tightness of the
goldreich-ostrovsky lower bound. Cryptology ePrint Archive, Report 2014/672,
2014. http://eprint.iacr.org/2014/672.

[WF15] Aaron Wright and Primavera De Filippi. Decentralized Blockchain
Technology and the Rise of Lex Cryptographia, 2015. http://www.the-
blockchain.com/docs/Decentralized%20Blockchain%20Technology%20And%
20The%20Rise%20Of%20Lex%20Cryptographia.pdf.

[WKPK16] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. Async-
Shock: Exploiting Synchronisation Bugs in Intel SGX Enclaves, 2016. https:
//www.ibr.cs.tu-bs.de/users/weichbr/papers/esorics2016.pdf.

[WMK16a] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Effi-
cient MultiParty computation toolkit. https://github.com/emp-toolkit, 2016.
https://github.com/emp-toolkit.

[WMK16b] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. Faster Secure Two-Party
Computation in the Single-Execution Setting. Cryptology ePrint Archive, Report
2016/762, 2016. http://eprint.iacr.org/2016/762.pdf.

[Woo14] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger,
2014. http://gavwood.com/paper.pdf.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated Garbling
and Efficient Maliciously Secure Two-Party Computation. Cryptology ePrint
Archive, Report 2017/030, 2017. http://eprint.iacr.org/2017/030.pdf.

[WSC+07] Jim Woodcock, Susan Stepney, David Cooper, John Clark, and Jeremy Jacob.
The Certification of the Mondex Electronic Purse to ITSEC Level E6. Form.
Asp. Comput., 20(1):5–19, December 2007. http://www-users.cs.york.ac.uk/
~jac/PublishedPapers/TheCertificationOfMondex2007.pdf.

[XCP15] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems. In Proceedings
of the 2015 IEEE Symposium on Security and Privacy, SP ’15, pages 640–656,
Washington, DC, USA, 2015. IEEE Computer Society. https://www.cs.utexas.
edu/~yxu/files/xu15oakland.pdf.

[XLCZ17a] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang. Leaky Cauldron
on the Dark Land: Understanding Memory Side-Channel Hazards in SGX. CoRR,
abs/1705.07289, 2017. https://arxiv.org/pdf/1705.07289.

[XLCZ17b] Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang. Stacco: Differ-
entially Analyzing Side-Channel Traces for Detecting SSL/TLS Vulnerabilities
in Secure Enclaves. CoRR, abs/1707.03473, 2017. http://arxiv.org/pdf/1707.
03473.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract),
1982. https://research.cs.wisc.edu/areas/sec/yao1982-ocr.pdf.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets
(extended abstract), 1986. https://pdfs.semanticscholar.org/7bef/
c5470606b8ca8e959db4f97daba127c411dd.pdf.

[ZHC17] Ruiyu Zhu, Yan Huang, and Darion Cassel. Pool: Scalable On-Demand Secure
Computation Service Against Malicious Adversaries. ACM CCS 2017, 2017.
https://acmccs.github.io/papers/p245-zhuA.pdf.

53

http://doi.acm.org/10.1145/2641562
http://doi.acm.org/10.1145/2641562
http://fc14.ifca.ai/papers/fc14_submission_2.pdf
http://fc14.ifca.ai/papers/fc14_submission_2.pdf
http://eprint.iacr.org/2014/672
http://www.the-blockchain.com/docs/Decentralized%20Blockchain%20Technology%20And%20The%20Rise%20Of%20Lex%20Cryptographia.pdf
http://www.the-blockchain.com/docs/Decentralized%20Blockchain%20Technology%20And%20The%20Rise%20Of%20Lex%20Cryptographia.pdf
http://www.the-blockchain.com/docs/Decentralized%20Blockchain%20Technology%20And%20The%20Rise%20Of%20Lex%20Cryptographia.pdf
https://www.ibr.cs.tu-bs.de/users/weichbr/papers/esorics2016.pdf
https://www.ibr.cs.tu-bs.de/users/weichbr/papers/esorics2016.pdf
https://github.com/emp-toolkit
https://github.com/emp-toolkit
http://eprint.iacr.org/2016/762.pdf
http://gavwood.com/paper.pdf
http://eprint.iacr.org/2017/030.pdf
http://www-users.cs.york.ac.uk/~jac/PublishedPapers/TheCertificationOfMondex2007.pdf
http://www-users.cs.york.ac.uk/~jac/PublishedPapers/TheCertificationOfMondex2007.pdf
https://www.cs.utexas.edu/~yxu/files/xu15oakland.pdf
https://www.cs.utexas.edu/~yxu/files/xu15oakland.pdf
https://arxiv.org/pdf/1705.07289
http://arxiv.org/pdf/1707.03473
http://arxiv.org/pdf/1707.03473
https://research.cs.wisc.edu/areas/sec/yao1982-ocr.pdf
https://pdfs.semanticscholar.org/7bef/c5470606b8ca8e959db4f97daba127c411dd.pdf
https://pdfs.semanticscholar.org/7bef/c5470606b8ca8e959db4f97daba127c411dd.pdf
https://acmccs.github.io/papers/p245-zhuA.pdf

[ZNP15] Guy Zyskind, Oz Nathan, and Alex Pentland. Enigma: Decentralized Computa-
tion Platform with Guaranteed Privacy, 2015. http://www.enigma.co/enigma_
full.pdf.

[ZWR+16] Samee Zahur, Xiao Shaun Wang, Mariana Raykova, Adria Gascón, Jack Doerner,
David Evans, and Jonathan Katz. Revisiting Square-Root ORAM: Efficient
Random Access in Multi-Party Computation, 2016. http://oblivc.org/docs/
sqoram.pdf.

[Zys16] Guy Zyskind. Efficient secure computation enabled by blockchain technology,
2016. https://dspace.mit.edu/bitstream/handle/1721.1/105933/964695278-
MIT.pdf.

A Outsourcing Secure Computations for Cloud-
based Blockchains

Theorem 4. (Outsourcing for Cloud-Based Blockchains). Assuming secure
channels between the parties E1, E2, ..., EN and the nodes Ni of the blockchain
B, Protocol B.2 securely realises Functionality B.1 against static corruptions
in the semi-honest security model with the garbling scheme satisfying privacy,
obliviousness and correctness.

Proof. Two cases must be analyzed: corruption at the node NE executing the
secure computation and corruption of the parties.

Corruption at node NE. The simulator SimulNE

(
1λ, resultNE

)
, where

resultNE
stores the KeyExchange, SendPrivateParameters and SECCOMP

run by each party E1, E2, ..., EN :

• KeyExchange
〈
Ei
(
1λ
)
, NE

〉
: sample a public key pki for party Ei.

• SendPrivateParameters 〈Ei, NE〉: sample a vector of random values ci =((
X
xi[1]
i1 , ..., X

xi[l]
il

)
, ni

)
.

• SECCOMP 〈Ek, NE〉 (SC): a simulated garbled circuit and garbled val-
ues are computed. Then, the simulator computes one entry of the pivot
tables by encrypting random values and the other entry by encrypting each
garbled value with the random values generated in the SendPrivateParameters
phase:

– A simulator of garbled circuits generates a simulated garbled circuit
GCSC and garbled values wjl for each party Ej and index l of the
length of −→xi .

– Compute Encsjl (0) with random key sjl and Enc
X

xj [l]

jl

(wjl) and save

them into pivot table Pq [j, l] in random order.

– Return the pivot tables Pq for each Ej , the garbled circuit GCSC and
values wjl.

54

http://www.enigma.co/enigma_full.pdf
http://www.enigma.co/enigma_full.pdf
http://oblivc.org/docs/sqoram.pdf
http://oblivc.org/docs/sqoram.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/105933/964695278-MIT.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/105933/964695278-MIT.pdf

We prove using hybrid arguments that the view generated by SimulNE
is indis-

tinguishable from the view obtained by NE in the real world:

H0. The real world view is computed using the real inputs of the parties and
according to the original protocol.

Hi
1. What is different between Hi

1 and Hi+1
1 is that for each Ei in Hi

1 the
inputs are encoded using random values: that is, Xxi[l]

il = randil. It would be
possible to obtain a distinguisher for the pseudorandomness of PRF assuming a
distinguisher between Hi

1 and Hi+1
1 . The values Xxi[l]

il will be computed with an
oracle by the reduction: the view will be distributed as in game Hi

1 if the oracle
is using a random function; otherwise, it will be distributed as in game Hi+1

1 if
the oracle is a pseudo-random function. Thus, a contradiction will be reached
since any adversary distinguishing Hi

1 from Hi+1
1 with non-negligible probability

will be able to break the pseudo-randomness with the same probability.
The sequence of hybrid games starts with H1

1 where random values encode inputs
of party Ei, to Hn

1 where random values from parties E1...EN encode inputs of
the parties.
Finally, note that the hybrid H0 = H0

1 corresponds to the case where all inputs
are pseudo-random values, while the last game Hn

1 corresponds to the case in
which random values encode all inputs.

Hi,j,l
2 . In this hybrid, the call SECCOMP by party Ei computes the pivot ta-

ble Pq [j, l] = Enc
s
xj [l]

jl

(0) , Enc
s
xj [l]

jl

(
w
xj [l]
jl

)
, that is, only one garbled value per

wire is encrypted: therefore, a contradiction will be reached since an adversary
distinguishing between Hi,j,l

2 and Hi,j,l+1
2 with non-negligible probability can

be reduced to a distinguisher for the indistinguishability under chosen-plaintext
attacks (IND-CPA) of the encryption scheme.
The sequence of hybrid games starts with H1,1,l

2 where the pivot table of party
Ei is encoded with only one garbled value per wire, to Hn,n,l

2 where all pivot
tables of parties E1...EN are encoded with only on garbled value per wire.

Hj
3 . The simulator SimulNE

computes the pivot tables and a simulator of
garbled circuits is used instead of the real garbling scheme. It would be possible
to obtain a distinguisher for garbled circuits assuming a distinguisher between
Hn,n,l

2 and Hj
3 : the inputs to the garbled circuits circuit will be computed by an

oracle by the reduction as in Hn,n,l
2 , to get garbled values and garbled circuits.

Finally, we reach the ideal world with hybrid Hn
3 , finishing the proof that started

with the real world game H0.

Corruption of the parties. Assuming a single party Ei is corrupted and
secure channels between the parties and NE , the simulator SimulEi

is defined
as:

• KeyExchange
〈
Ei
(
1λ
)
, NE

〉
: a public key pki is chosen by party Ui.

55

• SendPrivateParameters 〈Ei, NE〉: using the honest version for −→xi , hon-
estly compute values X

−→xi[l]
il = PRFkS (−→xi , l, ni).

• SECCOMP 〈Ek, NE〉 (SC): honestly compute garbled circuit and pivot
tables. For the result, select the garbled values according to Functionality
B.1 called with value xi.

Note that the method to compute the result is the only difference in computing
the view of Ei: while the evaluation of the garbled circuit is required in the
real world, in the ideal world the correct resulting garbled values are chosen
by the simulator SimulEi

using the result of Functionality B.1. Therefore, the
indistinguishability of the view of Ei is due to the secure channels: the case for
more corrupted parties trivially follows from this argument.

56

	Introduction
	Background
	Model and Goals
	Threat Model and Assumptions
	Goals

	Private Smart Contracts
	Off-chain computation
	Latency and its impact

	Blockchain Solutions
	Alternative Protocols and Standards

	Functionality and Protocol
	Experimental Results
	Modes of Interaction
	Outsourcing Secure Computations for Cloud-based Blockchains
	Mining pre-processing data for Secure Multi-Party Computation
	Security setting
	Preventing Sybil attacks

	Other Applications

	Verifiable Smart Contracts
	Case Study
	On the Size of Certifiable Certificates
	Zero-Knowledge Proofs of Proofs

	Functionalities and Protocols
	General Overview
	Detailed Description
	Security Analysis
	Extended verification of smart contracts
	Malicious security
	Private Function Evaluation

	Economic Impact and Legal Analysis
	Data Privacy as Quasi-Property
	A Solution to Arrow's Paradox
	Expansion of Trade Secrecy
	Verifiability and Self-Enforcement
	Markets for Smart Contracts
	Effects on Currency Competition
	Token vs. Account-based Cryptocurrencies
	Impact on Market Structures

	Related work
	Conclusions, subsequent and future work
	Subsequent work
	Future work

	Outsourcing Secure Computations for Cloud-based Blockchains

