
Formal Verification of Side-channel Countermeasures via
Elementary Circuit Transformations

Jean-Sébastien Coron

University of Luxembourg
jean-sebastien.coron@uni.lu

January 23, 2018

Abstract. We describe a technique to formally verify the security of masked implementations
against side-channel attacks, based on elementary circuit transforms. We describe two complemen-
tary approaches: a generic approach for the formal verification of any circuit, but for small attack
orders only, and a specialized approach for the verification of specific circuits, but at any order.
We also show how to generate security proofs automatically, for simple circuits. We describe the
implementation of CheckMasks, a formal verification tool for side-channel countermeasures. Using
this tool, we formally verify the security of the Rivain-Prouff countermeasure for AES, and also
the recent Boolean to arithmetic conversion algorithm from CHES 2017.

1 Introduction

The masking countermeasure. Masking is the most widely used countermeasure against
side-channel attacks for block-ciphers and symmetric-key algorithms. In a first-order coun-
termeasure, all intermediate variables x are masked into x′ = x ⊕ r where r is a randomly
generated value. For such countermeasure, it is usually straightforward to verify its security
against first-order attacks; namely it suffices to check that all intermediate variables have the
uniform distribution, or at least that their distribution is independent from the key; therefore
an attacker processing the side-channel leakage of intermediate variables separately (as in a
first-order attack) does not get useful information.

However second-order attacks combining the leakage on x′ and r can be mounted in practice,
so it makes sense to design masking algorithms resisting higher-order attacks. This is done by
extending Boolean masking to n shares with x = x1 ⊕ · · · ⊕ xn; in that case an implementa-
tion should be resistant against t-th order attacks, in which the adversary combines leakage
information from at most t < n intermediate variables.

Security proofs. In principle any countermeasure against high-order attacks should have a
security proof, but such proof can be either missing, incomplete, or incorrect. In this paper we
describe the construction of a tool, called CheckMasks, to automatically verify the security of
high-order masking schemes.

The first step is to specify what it means for a masking countermeasure to be secure, i.e. what
is the security model. Such formalization was initiated by Ishai, Sahai and Wagner in [ISW03].
In this model, the adversary can probe at most t wires in the circuit, but he should not learn
anything about the secret key. The approach for proving security is based on simulation: one
must show that any set of t wires probed by the adversary can be perfectly simulated without
the knowledge of the secret-key. This shows that the t probes do not bring any useful information
to the attacker, since he could run this simulation by himself.

More precisely, the simulation technique consists in showing that any set of t probes can
be perfectly simulated by the knowledge of only a proper subset of the input shares xi. At the
beginning of the algorithm an original variable x is shared into n shares xi. When x is part of
the secret-key, this pre-sharing cannot be probed by the adversary. Since any subset of at most

n−1 input shares xi are uniformly and independently distributed, the simulation of the probed
variables can be performed without knowing the secret-key.

The main result in [ISW03] is to show that any circuit C can be transformed into a new
circuit C ′ of size O(t2 · |C|) that is resistant against an adversary probing at most t wires in
the circuit. The construction is based on secret-sharing every variable x into n shares with
x = x1 ⊕ · · · ⊕ xn, and processing the shares in a way that prevents a t-limited adversary from
leaning any information about the initial variable x, using n ≥ 2t+ 1 shares.

Formal verification of masking. The formal verification of the masking countermeasure
was initiated by Barthe et al. in [BBD+15]. The authors describe an automated method to
prove the security of masked implementation against t-th order attacks, for small values of
t (in practice, t < 5). The method only works for small values of t because the number of
possible t-uples of intermediate variables grows exponentially with t. To formally prove the
security of a masking algorithm, the authors describe an algorithm to construct a bijection
between the observations of the adversary (corresponding to a t-uple of intermediate variables)
and a distribution that is syntactically independent from the secret inputs; this implies that
the adversary learns nothing from this particular t-uple of intermediate variables. All possible
t-uples of intermediates variables are then examined by exhaustive search.

The authors obtain a formal verification of various masked implementations, up to second
order masked implementation of AES, and up to 5-th order for the masked Rivain-Prouff mul-
tiplication [RP10]. In particular, the authors were able to rediscover some known attacks and
discover new ways of attacking already broken schemes. Their approach is implemented in the
framework of EasyCrypt [BDG+14], and relies on its internal representations of programs and
expressions.

The main drawback of the previous approach is that it can only work for small orders
t, since the running time is exponential in t. To overcome this problem, in a follow-up work
[BBD+16], Barthe et al. studied the composition property of masked algorithms. In particular,
the authors introduce the notion of strong simulatability, a stronger property which requires
that the number of input shares necessary to simulate the observations of the adversary in
a given gadget is independent from the number of observations made on output wires. This
ensures some separation between the input and the output wires: no matter how many output
wires must be simulated (to ensure the composition of gadgets), the number of input wires that
must be known to perform the simulation only depends on the number of internal probes within
the gadget.

The paper [BBD+16] has a number of important contributions that we summarize below.
Firstly, the authors introduce the t-NI and t-SNI definitions. The t-NI security notion corre-
sponds to the original security definition in the ISW probing model [ISW03]; it requires that
any t probes of the gadget circuit can be simulated from at most t of its input shares. The
stronger t-SNI notion corresponds to the strong simulatability property mentioned above, in
which the number of input shares required for the simulation is upper bounded by the number
of probes t in the circuit, and is independent from the number of output variables |O| that must
be simulated (as long as the condition t + |O| < n is satisfied). We recall these definitions in
Section 2, as they are fundamental in our paper.

The authors show that the t-SNI definition allows for securely composing masked algorithms;
i.e. for a construction involving many gadgets, one can prove that the full construction is t-
SNI secure, based on the t-SNI security of its components. The advantages are twofold: firstly
the proof becomes modular and much easier to describe. Secondly as opposed to [ISW03] the
masking order does not need to be doubled throughout the circuit, as one can work with n ≥ t+1
shares, instead of n ≥ 2t + 1 shares. Since most gadgets have complexity O(n2), this usually
gives a factor 4 improvement in efficiency. In [BBD+16], the authors prove the t-SNI property
of several useful gadgets: the multiplication of Rivain-Prouff [RP10], the mask refreshing based

2

on the same multiplication algorithm, and the multiplication between linearly dependent inputs
from [CPRR13].

Moreover, in [BBD+16] the authors also machine-checked the multiplication of Rivain-Prouff
and the multiplication-based mask refreshing in the EasyCrypt framework [BDG+14]. The main
point is that their machine verification works for any order, whereas in [BBD+15] the formal
verification could only be performed at small orders t. However, the approach seems difficult
to understand (at least for a non-expert in formal methods), and when reading [BBD+16] it
is far from obvious how the automated verification of the countermeasure can be implemented
concretely; this seems to require a deep knowledge of the EasyCrypt framework.

Finally, the authors built an automated approach for verifying that an algorithm constructed
by composing provably secure gadgets is itself secure. They also implemented an algorithm
for transforming an input program P into a program P ′ secure at order t; their algorithm
automatically inserts mask refreshing gadgets whenever required.

Our contributions. Our main goal in this paper is to simplify and extend the formal ver-
ification results from [BBD+15] and [BBD+16]. We describe two complementary approaches:
a generic approach for the formal verification of any circuit, but for small attack orders only
(as in [BBD+15]), and a specialized approach for the verification of specific circuits, but at any
order (as in [BBD+16]).

For the generic verification of countermeasures at small orders, we use a different formal
language from [BBD+15]. In particular we represent the underlying circuit as nested lists, which
leads to a simple and concise implementation in Common Lisp, a programming language well
suited to formal manipulations. We are then able to formally verify the security of the Rivain-
Prouff countermeasure with very few lines of code. Our running times for formal verification are
similar to those in [BBD+15]. Thanks to this simpler approach, we could also extend [BBD+15]
to handle a combination of arithmetic and Boolean operations, and we have formally verified
the security of the recent Boolean to arithmetic conversion algorithm from [Cor17b]. To perform
these formal verifications we describe the implementation of CheckMasks, our formal verification
tool for side-channel countermeasures.

For the verification of specific gadgets at any order, our technique is quite different from
[BBD+16] and consists in applying elementary transforms to the circuit, until the t-NI or t-SNI
properties become straightforward to verify. We show that for a set of well-chosen elementary
transforms, the formal verification time becomes polynomial in t (instead of exponential with
the generic approach); this implies that the formal verification can be performed at any order.
Using our CheckMasks tool, we provide a formally verified proof of the t-SNI property of the
multiplication algorithm in the Rivain-Prouff countermeasure, and of the mask refreshing based
on the same multiplication algorithm; in both cases the running time of the formal verification
is polynomial in the number of shares n.

Finally, we show how to get the best of both worlds, at least for simple circuits: we show
how to automatically apply the circuit transforms that lead to a polynomial time verification,
based on a limited set of generic rules. Namely we identify a set of three simple rules that enable
to automatically prove the t-SNI property of the multiplication based mask refreshing, and also
two security properties of mask refreshing considered in [Cor17b].

Source Code. The source code of our CheckMasks verification tool is publicly available at
[Cor17a], under the GPL v2.0 license.

2 Security Properties

In this section we recall the t-NI and t-SNI security definitions from [BBD+16]. For simplicity
we only provide the definitions for a simple gadget taking as input a single variable x (given

3

by n shares xi) and outputting a single variable y (given by n shares yi). Given a vector of n
shares (xi)1≤i≤n, we denote by x|I := (xi)i∈I the sub-vector of shares xi with i ∈ I. In general
we wish to simulate any subset of intermediate variables of a gadget from the knowledge of as
few xi’s as possible.

Definition 1 (t-NI security). Let G be a gadget taking as input (xi)1≤i≤n and outputting the
vector (yi)1≤i≤n. The gadget G is said t-NI secure if for any set of t intermediate variables,
there exists a subset I of input indices with |I| ≤ t, such that the t intermediate variables can
be perfectly simulated from x|I .

Definition 2 (t-SNI security). Let G be a gadget taking as input (xi)1≤i≤n and outputting
(yi)1≤i≤n. The gadget G is said t-SNI secure if for any set of t intermediate variables and any
subset O of output indices such that t + |O| < n, there exists a subset I of input indices with
|I| ≤ t, such that the t intermediate variables and the output variables y|O can be perfectly
simulated from x|I .

The t-NI security notion corresponds to the original security definition in the ISW probing
model, in which n ≥ 2t + 1 shares are required. The stronger t-SNI notion allows for securely
composing masked algorithms, and allows to prove the security with n ≥ t + 1 shares only
[BBD+16]. The difference between the two notions is as follows: in the stronger t-SNI notion,
the size of the input shares subset I can only depend on the number of internal probes t and
is independent of the number of output variables |O| that must be simulated (as long as the
condition t+ |O| < n is satisfied). The t-SNI security notion is very convenient for proving the
security of complex constructions, as one can prove that the t-SNI security of a full construction
based on the t-SNI security of its components.

3 Formal Verification of Generic Circuits for Small Order

In this section, we show that the t-NI and t-SNI properties can be easily verified formally for
any Boolean circuit, using a generic approach. As in [BBD+15] the complexity of the formal
verification is exponential in the number of shares n, so this can only work for small n.

3.1 The RefreshMasks Algorithm

To illustrate our approach we first consider the RefreshMasks algorithm below from [RP10]; see
Figure 1 for an illustration.

Algorithm 1 RefreshMasks

Input: x1, . . . , xn, where xi ∈ {0, 1}k
Output: y1, . . . , yn such that y1 ⊕ · · · ⊕ yn = x1 ⊕ · · · ⊕ xn
1: yn ← xn
2: for i = 1 to n− 1 do
3: ri ← {0, 1}k
4: yi ← xi ⊕ ri
5: yn ← yn ⊕ ri . yn,i = xn ⊕

⊕i
j=1 rj

6: end for
7: return y1, . . . , yn

We first recall a straightforward property of the RefreshMasks algorithm: when the inter-
mediate variables of the algorithm are not probed, any subset of n − 1 output shares yi of
RefreshMasks is uniformly and independently distributed. In the next section, we show how to
formally verify this property.

Lemma 1. Let (yi)1≤i≤n be the output of RefreshMasks. Any subset of n − 1 output shares yi
is uniformly and independently distributed.

4

x1 · · · xi · · · xn−1 xn

r1

...

ri

...

rn−1

y1 · · · yi · · · yn−1 yn

Fig. 1. The RefreshMasks algorithm, with the randoms ri accumulated on the last column.

3.2 Formal Verification of Circuits

Circuit representation. We represent a circuit with nested lists, using the prefix notation.
Consider for example the circuit taking as input x and y and outputting x ⊕ y; we represent
it as (+ X Y). Similarly the circuit computing x · y is represented as (∗ X Y). To represent more
complex circuits the lists are recursively nested. For example, to represent the circuit x · (y⊕ z),
we write (∗ X (+ Y Z)). If a circuit has many outputs, we represent the list of outputs without
any prefix operator; for example, the circuit outputting (x ⊕ y, x · y) can be represented as
((+ X Y) (∗ X Y)).

It is easy to write a program in Common Lisp that generates the circuit corresponding to
RefreshMasks; we refer to [Cor17a] for the source code. For example, we obtain for n = 3 input
shares:

> (RefreshMasks ’ (X1 X2 X3))
((+ R1 X1) (+ R2 X2) (+ R2 (+ R1 X3)))

which corresponds to y1 = r1 ⊕ x1, y2 = r2 ⊕ x2 and y3 = r2 ⊕ (r1 ⊕ x3). Note that the above
RefreshMasks function in Common Lisp takes as input a list of n shares (here n = 3) and outputs
a list of n shares; therefore it can be easily composed with other such Common Lisp functions
to create more complex circuits.

List substitutions. We now explain how to formally verify Lemma 1. Consider for example
the two output variables (+ R1 X1) and (+ R2 (+ R1 X3)) from above. We would like to show that
these two variables are uniformly and independently distributed. Since the random R2 is used
only once in those two outputs, it can play the role of a one-time pad, and we can perform the
following substitution in the second output:

(+ R2 (+ R1 X3)) −→ R2

Namely, since R2 is used only once, the distribution of (+ R2 (+ R1 X3)) is the same as the
distribution of R2. Starting with the above list of two output variables, we can perform the
following sequence of elementary substitutions:

((+ R1 X1) (+ R2 (+ R1 X3))) −→ ((+ R1 X1) R2) −→ (R1 R2)

The first substitution is possible because R2 is used only once, and the second substitution is
possible because R1 is used only once after the first substitution. Since we have obtained two
distinct randoms (R1 R2) at the end, the two output variables are uniformly and independently
distributed, as required.

5

Formal verification. To formally verify Lemma 1, it suffices to consider all possible subsets
of n − 1 output shares yi among n, and check that for every subset, we obtain after a series
of elementary substitutions a list of n − 1 distinct randoms. These substitutions are easy to
implement in Common Lisp. Namely it suffices to perform a tree search to count the number
of times a given random R is used, and if a random R is used only once, we can then perform
the substitution:

(+ R X) −→ R (1)

In the particular case of Lemma 1, there are only n subsets to consider, so the formal
verification is performed in polynomial time. We obtain for example for n = 3:

> (Check−RefreshMasks−Uni 3)
Input : (X0 X1 X2)
Output : ((+ R1 X0) (+ R2 X1) (+ R2 (+ R1 X2)))
Case 0 : ((+ R2 X1) (+ R2 (+ R1 X2))) => ((+ R2 X1) (+ R2 R1))

=> ((+ R2 X1) R1) => (R2 R1)
Case 1 : ((+ R1 X0) (+ R2 (+ R1 X2))) => ((+ R1 X0) R2)

=> (R1 R2)
Case 2 : ((+ R1 X0) (+ R2 X1)) => ((+ R1 X0) R2) => (R1 R2)

The above transcript shows that Lemma 1 is formally verified for n = 3; namely in all 3 possible
cases, after a sequence of elementary substitutions, we obtain a list of 2 distinct randoms,
showing that the two output variables are uniformly and independently distributed; see [Cor17a]
for the source code.

3.3 Security properties of RefreshMasks

In this section we show how to formally verify some existing properties of RefreshMasks. We
first consider the straightforward t-NI property.

Lemma 2 (t-NI of RefreshMasks). Let (xi)1≤i≤n be the input of RefreshMasks and let
(yi)1≤i≤n be the output. For any set of t intermediate variables, there exists a subset I of input
indices such that the t intermediate variables can be perfectly simulated from x|I , with |I| ≤ t.

Formal verification of the t-NI property of RefreshMasks. The t-NI property of Refresh-
Masks is straightforward because in the definition of RefreshMasks, any intermediate variable
depends on at most one input xi; therefore any subset of t probes can be perfectly simulated
from the knowledge of at most t inputs xi. Consider for example RefreshMasks with n = 3 as
previously:

> (RefreshMasks ’ (X1 X2 X3))
((+ R1 X1) (+ R2 X2) (+ R2 (+ R1 X3)))

If we probe the two intermediate variables (+ R1 X1) and (+ R1 X3), then the knowledge of the two
inputs X1 and X2 is sufficient for the simulation; moreover we cannot perform any substitution
because the random R1 is used twice. On the other hand if we probe the two variables (+ R2 X2)

and (+ R1 X3), we can perform the substitution:

((+ R2 X2) (+ R1 X3))→ (R2 (+ R1 X3))→ (R2 R1)

showing that the knowledge of the input variables X2 and X3 is not required for that simulation.

More generally, to verify the t-NI property of any circuit, it suffices to exhaustively consider
all possible t-uples of intermediate variables, and verify that after a set of elementary substitu-
tions the knowledge of at most t input variables is needed for the simulation of the t-uple, for
any 1 ≤ t ≤ n− 1.

6

Other Security Properties of RefreshMasks. In Appendix A, we perform a formal verification
of several non-trivial properties of RefreshMasks that were used to prove the security of the
Boolean to arithmetic conversion algorithm from [Cor17b]. The first property is the following:
if the output yn is among the t probed variables, then we can simulate those t probed variables
with t − 1 input shares xi only, instead of t as in Lemma 2. This property was crucial for
obtaining a provably secure Boolean to arithmetic conversion algorithm in [Cor17b].

Lemma 3 (RefreshMasks [Cor17b]). Let x1, . . . , xn be the input of a RefreshMasks where the
randoms are accumulated on xn, and let y1, . . . , yn be the output. Let t be the number of probed
variables, with t < n. If yn is among the probed variables, then there exists a subset I such that
all probed variables can be perfectly simulated from x|I , with |I| ≤ t− 1.

As previously, to perform a formal verification of Lemma 3, it suffices to consider all possible
t-uples of intermediate variables (where yn is part of the t-uple) and show that after a sequence
of elementary substitutions, there remains at most t − 1 input variables. In Appendix A, we
argue that it is actually sufficient to perform such verification for t = n − 1 only, instead of
all 1 ≤ t ≤ n − 1. The timings of formal verification are summarized in Table 1. Although we
are only able to verify Lemma 3 for small values of n, this still provides some confidence in
the correctness of Lemma 3 for any n. We refer to Appendix A for some other properties of
RefreshMasks and their formal verification for small values of n.

n #variables #tuples Security Time

3 9 36 X ε

4 13 286 X ε

5 17 2,380 X ε

6 21 20,349 X 0.2 s

7 25 177,100 X 1.5 s

8 29 1,560,780 X 17 s

9 33 13,884,156 X 195 s

Table 1. Formal verification of Lemma 3, for small values of n.

3.4 Formal Verification of t-SNI properties: the FullRefresh and SecMult Algorithms

It is easy to see that that the RefreshMasks algorithm from the previous section does not achieve
the stronger t-SNI property, as already observed in [BBD+16]. Namely one can probe the output
y1 = r1⊕x1 and the internal variable yn,1 = r1⊕xn. This gives y1⊕yn,1 = x1⊕xn and therefore
the knowledge of both inputs x1 and xn is required for the simulation, whereas only t = 1 internal
variables has been probed.

The FullRefresh algorithm. We recall below an improved mask refreshing algorithm that does
satisfy the t-SNI property, as shown in [BBD+16]. The algorithm FullRefresh is based on the
masked multiplication from [ISW03] and was already used in [ISW03] and [DDF14]. Note that
the algorithm has complexity O(n2) instead of O(n) for RefreshMasks.

Lemma 4 (t-SNI of FullRefresh [BBD+16]). Let (xi)1≤i≤n be the input shares of the FullRefresh
operation, and let (yi)1≤i≤n be the output shares. For any set of t intermediate variables and
any subset O of output shares such that t + |O| < n, there exists a subset I of indices with
|I| ≤ t, such that the t intermediate variables as well as the output shares y|O can be perfectly
simulated from x|I .

7

Algorithm 2 FullRefresh
Input: x1, . . . , xn
Output: y1, . . . , yn such that

⊕n
i=1 yi =

⊕n
i=1 xi

1: for i = 1 to n do yi ← xi
2: for i = 1 to n do
3: for j = i+ 1 to n do
4: r ← {0, 1}k . Referred by ri,j
5: yi ← yi ⊕ r . Referred by yi,j
6: yj ← yj ⊕ r . Referred by yj,i
7: end for
8: end for
9: return y1, . . . , yn

Formal Verification of FullRefresh. In the following, we describe the formal verification of
Lemma 4 using our CheckMasks tool. As previously we first implement the FullRefresh algorithm
in Common Lisp; for example, we get the following output for n = 3 shares:

> (Fu l lRe f r e sh ’ (X1 X2 X3))
((+ R2 (+ R1 X1)) (+ R3 (+ R1 X2)) (+ R3 (+ R2 X3)))

Using our CheckMasks tool, the t-SNI property in Lemma 4 can be easily verified for small
values of n. Namely it suffices to compute the list of all (n− 1)-uples of intermediate variables
(including the outputs yi) and check that every such (n − 1)-uple can be perfectly simulated
from the knowledge of at most t inputs xi, where t is the number of non-output variables in
the (n − 1)-uple. Consider for example the two variables (+ R2 (+ R1 X1)) and (+ R1 X2) in the
circuit above for n = 3; since (+ R2 (+ R1 X1)) is an output variable, the simulation must be
performed using at most a single input xi. We obtain using elementary substitutions:

((+ R2 (+ R1 X1)) (+ R1 X2))→ (R2 (+ R1 X2))→ (R2 R1)

and therefore no input xi is actually needed to simulate those two variables. However if we
probe the two variables (+ R2 (+ R1 X1)) and X2, we can perform the substitutions:

((+ R2 (+ R1 X1)) X2)→ (R2 X2)

and therefore the knowledge of X2 is required for the simulation.1 Note that the running time to
consider all possible (n− 1)-uples of intermediate variables is exponential in n. We summarize
in Table 2 the running time of the formal verification of FullRefresh, up to n = 6. In Section
5 we will show how to formally verify Lemma 4 in time polynomial in n, so that the formal
verification can be performed for any number of shares n used in practice.

n #variables #tuples Security Time

3 12 66 X ε

4 22 1,540 X 0.02 s

5 35 52,360 X 0.6 s

6 51 2,349,060 X 46 s

Table 2. Formal verification of the t-SNI property of FullRefresh, for small values of n.

1 This is still according to the t-SNI property, because (+ R2 (+ R1 X1)) is an output variable and therefore
t = 1.

8

The Rivain-Prouff Countermeasure. The Rivain-Prouff countermeasure for AES is based
on an extension over F2k of the masked AND gate from [ISW03]. It enables to securely compute
a n-sharing of the product c = a · b over F2k , from an n-sharing of a and b. The algorithm was
proven t-SNI in [BBD+16]. In Appendix B we recall the corresponding SecMult algorithm, and
we show how to formally verify its t-SNI property for small values of n.

4 Formal Verification of Boolean to Arithmetic Conversion

In this section we show how to extend [BBD+15] to handle a combination of arithmetic and
Boolean operations. This enables to formally verify the security of the high-order Boolean to
arithmetic conversion algorithm recently described at CHES 2017 [Cor17b], with a t-SNI security
proof for n ≥ t+1. The algorithm can be seen as a generalization of Goubin’s algorithm [Gou01]
to any order, still with a complexity independent of the register size k. Although the algorithm
has complexity O(2n), instead of O(n2 · k) in [CGV14], for small values of n it is an order of
magnitude more efficient. The algorithm takes as input n Boolean shares xi such that

x = x1 ⊕ · · · ⊕ xn

and using a recursive algorithm computes n arithmetic shares Di such that

x = D1 + · · ·+Dn (mod 2k)

R ψ R F C +

R F C

x D

Fig. 2. Sequence of operations in the Boolean to arithmetic conversion algorithm from [Cor17b].

Boolean to arithmetic conversion. The algorithm is based on the affine property of the
function Ψ(x, r) := (x⊕ r)− r (mod 2k). As illustrated in Fig. 2 the algorithm is recursive and
makes two recursive calls to the same algorithm C with n−1 inputs. For n = 2 one uses a t-SNI
variant of Goubin’s algorithm:

D1 =
(
(x1 ⊕ r1)⊕ Ψ(x1 ⊕ r1, r2 ⊕ (x2 ⊕ r1))

)
⊕ Ψ(x1 ⊕ r1, r2) (2)

D2 = x2 ⊕ r1 (3)

For n ≥ 3 the algorithm works as follows. One first performs a mask refreshing R, while
expanding the xi’s to n+ 1 shares. One obtains, from the definition of the Ψ function:

x = x1 ⊕ x2 ⊕ · · · ⊕ xn+1

= (x1 ⊕ · · · ⊕ xn+1 − x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= Ψ(x1, x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

From the affine property of the Ψ function, the left term can be decomposed into the xor of n
shares Ψ(x1, xi) for 2 ≤ i ≤ n+ 1, where the first share is (n ∧ 1) · x1 ⊕ Ψ(x1, x2):

x = (n ∧ 1) · x1 ⊕ Ψ(x1, x2)⊕ Ψ(x1, x3)⊕ · · · ⊕ Ψ(x1, xn+1) + x2 ⊕ · · · ⊕ xn+1

9

We obtain that x is the arithmetic sum of two terms, each with n Boolean shares; this corre-
sponds to the two branches in Fig. 2. One then performs a mask refreshing R on both branches,
and then a compression function F that simply xors the last two shares, so there remains only
n− 1 shares on both branches. One can then apply the Boolean to arithmetic conversion C re-
cursively on both branches, taking as input n− 1 Boolean shares (instead of n), and outputting
n− 1 arithmetic shares; we obtain:

x =
(
A1 + · · ·+An−1

)
+
(
B1 + · · ·+Bn−1

)
(mod 2k)

Eventually it suffices to do some additive grouping to obtain n arithmetic shares as output, as
required:

x = D1 + · · ·+Dn (mod 2k)

We refer to [Cor17b] for the details of the algorithm. The algorithm in proven t-SNI secure with
n ≥ t+ 1 shares in [Cor17b].

Algorithm representation. In Section 3.3 and Appendix A we have described a formal
verification of the security properties of RefreshMasks that are required for the security proof of
the above Boolean to arithmetic conversion algorithm in [Cor17b]. However this provides only a
partial verification of the algorithm, since in that case the adversary is restricted to only probing
the Boolean operations performed within the RefreshMasks. To obtain a full verification, we must
consider an adversary who can probe any variable in the Boolean to arithmetic algorithm. In
that case the formal verification becomes more complex as we must handle both Boolean and
arithmetic operations.

Since in our nested list representation we have already using the + operator for the xor, we
use the ADD keyword to denote the arithmetic sum. For example, the final additive grouping
can be represented as:

> (addit ive−grouping ’ (A1 A2) ’ (B1 B2))
((ADD A1 B1) A2 B2)

which corresponds to the three arithmetic shares D1 = A1 + B1 (mod 2k), D2 = A2 and
D3 = B2. We also use the PSI operator to denote the application of the Ψ function. For example,
the Boolean to arithmetic conversion algorithm for n = 2 gives from (2) and (3):

> (convba ’ (X1 X2))
((+ (+ (+ X1 R1) (PSI (+ X1 R1) (+ R2 (+ X2 R1))))

(PSI (+ X1 R1) R2))
(+ X2 R1))

Simplification rules. Given a list of intermediate variables that must be simulated, as previ-
ously we must use a set of simplification rules to determine how many inputs xi are required for
the simulation. For the verification of Boolean circuits in the previous section, this was relatively
straightforward as we had essentially a single simplification rule, namely replacing x ⊕ r by r
when the random r appears only once in the intermediate variables. However when combining
arithmetic and Boolean operations the formal verification becomes more complex and we used
the following simplification rules. We illustrate every rule by an example that can be run from
the source code [Cor17a].

• Rule 1: when x1 + x2 mod 2k must be simulated, simulate both x1 and x2.

> (prop−add ’ ((ADD X1 X2)))
(X1 X2)

• Rule 2: from the affine property of the function Ψ , replace Ψ(x, y)⊕Ψ(x, z) by x⊕Ψ(x, y⊕z).

10

> (r ep lace−ps i ’(+ (PSI A B) (PSI A C)))
(+ A (PSI A (+ B C)))

• Rule 3: from the definition of Ψ , replace Ψ(x, y) by (x ⊕ y) − y mod 2k; we denote by SUB
the arithmetic subtraction.

> (replace−psi−sub ’ (PSI A B)
(SUB (+ A B) B)

• Rule 4: when a random r is used only once, replace x⊕r by r, and similarly for x+r mod 2k

and x− r mod 2k. This is an extension of the rule given by (1).

> (i t e r− s i m p l i f y ’((+ X1 R1) (ADD X2 R2) (SUB X3 R3)))
(R1 R2 R3)

• Rule 5: when a random r is not used in two intermediate variables e1 and e2, replace the
simulation of (e1 ⊕ r, e1 ⊕ r) by the simulation of (r, (e1 ⊕ r)⊕ e2); this corresponds to the
change of variable r′ = e1 ⊕ r.
> (s impl i fy−x ’((+ R1 X1) (+ R1 X2)))
(R1 (+ (+ R1 X1) X2))

• Rule 6: when Ψ(x1, x2) must be simulated, simulate both x1 and x2.

> (prop−psi ’ ((PSI A B)))
(A B)

We note that the order in which the rules are applied matters. For example, once Rule 3
has been applied, Rule 2 cannot be applied to the same expression, because the PSI operator
has been replaced by SUB. One must therefore use the right strategy for the application of the
rules; an overview is provided in Figure 3. In particular, we only apply Rule 3 if subsequently
applying Rule 4 enables to eliminate the SUB operator, and Rule 6 is only applied as a last
resort, when other rules have failed.

R1 R2 R4 R3+R4 R5 R6
no

yes yes
no no

yes yes

no

Fig. 3. The rule application strategy for the formal verification of Boolean to arithmetic conversion.

Formal verification. In order to verify the t-SNI property of the Boolean to arithmetic algo-
rithm, as previously we must check that for all possible (n− 1)-uples of intermediate variables
(including the outputs Di), the number of input variables xi’s that remain after the application
of the above rules is always ≤ t, where t is the number of non-output variables in the (n−1)-uple.

We summarize in Table 3 the timings of formal verification. Note that the Boolean to
arithmetic conversion algorithm has complexity O(2n), and therefore the number of possible
(n− 1)-uples of intermediate variables is O(2n

2
); that is why we could only perform the formal

verification up to n = 5.

5 Formal Verification in Polynomial Time

The main drawback of the previous approach is that it has exponential complexity in the number
of shares n, because the number of t-uples to consider grows exponentially with n. In this section

11

n #variables #tuples Security Time

2 11 11 X ε

3 48 1,128 X 0.08 s

4 133 383,306 X 85 s

5 312 387,278,970 X 88 h

Table 3. Formal verification of the t-SNI property of the Boolean to arithmetic conversion algorithm from
[Cor17b].

we describe a new approach for proving the security of a side-channel countermeasure. Instead of
performing a simulation of the probed variables as in [ISW03], our approach consists in applying
a sequence of elementary circuit transforms, until the transformed circuit becomes so simple
that the security property becomes straightforward to verify. The main advantage is that in the
context of formal verification, our new approach seems much easier to verify formally than the
classical simulation-based approach from [ISW03]. For Boolean circuits our technique is based
on the following two elementary transforms:

• The Random-zero transform: we set to 0 a subset of the randoms ri used in the circuit.

• The One-time-pad transform: if a random r appears only once in a circuit, and moreover r
is not probed, we can replace any variable x⊕ r by r.

The Random-zero Transform. Our first circuit transformation consists in setting to 0 a
subset of the randoms ri used in the circuit. The transform only applies to additively masked
circuits.

Definition 3 (Additive masking). Let C be a circuit taking as input x1, . . . , xn. We say
that C is additively masked if every intermediate variable y in the circuit can be written as
y = f(x1, . . . , xn) + g(r1, . . . , rn), where g is a linear function.

For example, the circuit computing y = x1 · x2 + r1 + r2 is additively masked, while the
circuit computing y = x1 · r1 is not. Most side-channel countermeasures for block-ciphers are
additively masked. In particular, this holds for the RefreshMasks, FullRefresh and SecMult al-
gorithms considered in the previous sections. The following lemma shows that it is sufficient
to consider the security of a simpler circuit C0 where a subset of the randoms are fixed to 0.
Namely if there is an attack against the original circuit C, then the same attack applies against
C0; see Appendix C for the proof.

Lemma 5 (Random-zero transform). Let C be an additively masked circuit and let C0 be
the same circuit as C but with a subset of the randoms fixed to 0. Anything an adversary can
compute from a set of probes in C, he can compute from the same set of probes in the circuit
C0.

Remark 1. Lemma 5 does not hold for general circuits; consider for example the circuit taking
as input sk and outputting (sk · r, r); when considering the output only, the circuit would be
secure when r is fixed to 0, but the output leaks the secret sk whenever r 6= 0.

Application: t-NI of RefreshMasks. The t-NI property of RefreshMasks, as stated in Lemma
2, is easily verified formally using the Random-zero transform. Namely, if we fix all randoms
of RefreshMasks to 0, we obtain the identity function, which is trivially t-NI. For example, we
obtain for n = 4:

> (check−refreshmasks−tni−poly 4)
Input : (X1 X2 X3 X4)

12

Output : ((+ R1 X1) (+ R2 X2) (+ R3 X3) (+ R3 (+ R2 (+ R1 X4))))
Random zero => (X1 X2 X3 X4)
I d e n t i t y func t i on : T

Note that the verification is performed in polynomial time in n, while in the generic approach
the complexity would be exponential in n when examining all possible t-uples.

The One-time Pad Transform. The One-time Pad transform is defined as follows: if a
random r is used only once in a circuit, and moreover r is not probed, then we can replace the
variable x⊕ r by r. Note that in principle the variable x can still be probed, so it must not be
removed from the circuit.

We can assume that a certain random r has not been probed when we have an upper bound
on the number of probes in the circuit, as it is the case for the t-NI and t-SNI properties. For
example, if a circuit contains n randoms ri but the adversary has only access to t = n − 1
probes, then we are guaranteed that at least one of the random ri has not been probed, and we
can apply the One-time Pad transform on this random. The proof technique then consists in
considering all possible n cases separately (corresponding to the non-probed ri, for 1 ≤ i ≤ n),
and then applying the admissible One-time Pad transform in each case.

Formal verification in polynomial-time. More generally, the proof strategy is to perform
a sequence of elementary circuit transforms until we obtain a simple circuit C for which the
t-NI or t-SNI properties is straightforward to verify. In appendices D, E and F we illustrate this
approach by providing a formal verification of the same security properties of the RefreshMasks,
FullRefresh and SecMult algorithms as considered in Section 3, but this time with complexity
polynomial in n, instead of exponential. This implies that the security of these algorithms can
be formally verified for any value of n for which the countermeasure would be used in practice.
We refer to [Cor17a] for the source code of the formal verification.

6 Towards Automatic Generation of Security Proofs

The drawback of the previous approach is that for the security verification to happen in polyno-
mial time, we must select ourselves the right sequence of circuit transforms. Instead we would
like to have the circuit transforms being selected automatically by our verification tool, based
on a limited set of elementary rules, and still in polynomial-time.

In the following, we show that this can be achieved for simple circuits based on the three
following rules. We denote by P the property that must be checked; for example, for t-NI
security, the property P would require that any t-uple of intermediate variables is simulatable
from a subset of the inputs x|I , with |I| ≤ t. Below we denote by Cotp the circuit yi = xi ⊕ ri
for 1 ≤ i ≤ n (see Appendix D). We assume that the property P is already verified by Cotp, so
that P does not need to be verified explicitly for Cotp.

(R1) Perform a loop to select and remove the subset of the circuit that is unprobed.

(R2) Apply the random-zero transform, except on randoms used only once in the circuit.

(R3) Check whether the resulting circuit is equal to Cotp. Otherwise check the property P for all
possible t-uple of probes.

We show in Table 4 that from the three above rules, we can formally verify in polynomial
time the main properties of RefreshMasks and FullRefresh considered in this paper; we refer to
Appendix G for the details, and to [Cor17a] for the source code of the formal verification.

13

Algorithm Property Lemma Rules Final circuit

RefreshMasks t-NI Lemma 2 R2, R3 (x1, . . . , xn)

FullRefresh t-SNI Lemma 4 R1, R2, R3 Cotp

RefreshMasks |I| ≤ t− 1 with probed yn Lemma 3 R1, R2, R3 (x1, . . . , xn−1, xn ⊕ ri)
RefreshMasks |I| ≤ t− 1 with xn+1 = 0 Lemma 6 R1, R2, R3 (x1, . . . , xn−1, xn ⊕ ri) or Cotp

Table 4. Rules and final circuit to verify a security property in polynomial-time in n.

References

[BBD+15] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, and Pierre-
Yves Strub. Verified proofs of higher-order masking. In Advances in Cryptology - EUROCRYPT 2015
- 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 457–485, 2015. Publicly available at
https://eprint.iacr.org/2015/060.

[BBD+16] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-
Yves Strub, and Rébecca Zucchini. Strong non-interference and type-directed higher-order mask-
ing. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016, pages 116–129, 2016. Publicly available at
https://eprint.iacr.org/2015/506.pdf. See also a preliminary version, under the title “Compositional
Verification of Higher-Order Masking: Application to a Verifying Masking Compiler”, publicly avail-
able at https://eprint.iacr.org/2015/506/20150527:192221.

[BDG+14] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt, and Pierre-
Yves Strub. EasyCrypt: A Tutorial, pages 146–166. Springer International Publishing, Cham, 2014.

[CGPZ16] Jean-Sébastien Coron, Aurélien Greuet, Emmanuel Prouff, and Rina Zeitoun. Faster evaluation of
sboxes via common shares. In Cryptographic Hardware and Embedded Systems - CHES 2016 - 18th
International Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings, pages 498–514,
2016.

[CGV14] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala. Secure conversion between
boolean and arithmetic masking of any order. In Cryptographic Hardware and Embedded Systems -
CHES 2014 - 16th International Workshop, Busan, South Korea, September 23-26, 2014. Proceedings,
pages 188–205, 2014.

[Cor17a] Jean-Sébastien Coron. CheckMasks: formal verification of side-channel countermeasures, 2017. Publicly
available at https://github.com/coron/checkmasks.

[Cor17b] Jean-Sébastien Coron. High-order conversion from boolean to arithmetic masking. In Cryptographic
Hardware and Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings, pages 93–114, 2017.

[CPRR13] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. Higher-order side
channel security and mask refreshing. In Fast Software Encryption - 20th International Workshop,
FSE 2013, Singapore, March 11-13, 2013. Revised Selected Papers, pages 410–424, 2013.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models: From probing
attacks to noisy leakage. In Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May
11-15, 2014. Proceedings, pages 423–440, 2014.

[Gou01] Louis Goubin. A sound method for switching between Boolean and arithmetic masking. In CHES,
pages 3–15, 2001.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against probing at-
tacks. In Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings, pages 463–481, 2003.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of AES. In CHES,
pages 413–427, 2010.

A Other Security Properties of RefreshMasks

A.1 Formal Verification of Lemma 3

We provide a formal verification of a non-trivial property of RefreshMasks from [Cor17b, Lemma
6] mentioned in Section 3.3: if the output yn is among the t probed variables, then we can
simulate those t probed variables with t− 1 input shares only, instead of t as in Lemma 2.

14

Lemma 3 (RefreshMasks [Cor17b]). Let x1, . . . , xn be the input of a RefreshMasks where
the randoms are accumulated on xn, and let y1, . . . , yn be the output. Let t be the number of
probed variables, with t < n. If yn is among the probed variables, then there exists a subset I
such that all probed variables can be perfectly simulated from x|I , with |I| ≤ t− 1.

Remark 2. The lemma does not hold for other output variables. For example the adversary can
probe both y1 = x1 ⊕ r1 and yn,1 = xn ⊕ r1. Since y1 ⊕ yn,1 = x1 ⊕ xn, both x1 and xn are
required for the simulation, which contradicts the bound |I| ≤ t− 1.

Using our CheckMasks formal tool, Lemma 3 can be easily verified for small values of n.
Namely we can check that all t-uples of probes containing yn require at most t− 1 inputs xi to
be simulated. We first claim that it is sufficient to check this property for t = n−1 only, instead
of all 1 ≤ t ≤ n − 1. Namely, assume that the property is not satisfied for some t < n − 1; we
show that it will not be satisfied for t = n− 1. More precisely, assume that there exists a set of
t probes which can only be simulated by a subset I of inputs with |I| ≥ t, for some t < n− 1. If
|I| ≥ n−1, then we can take any superset of t′ = n−1 probes and we get |I| ≥ t′. If |I| < n−1,
then we can complement the set of t probes with n − 1 − t additional probes, among which
n− 1− |I| are directly on some input shares xi for i /∈ I. We obtain a set of t′ = n− 1 probes
which can only be simulated by a subset I ′ of the inputs, with |I ′| = n − 1. In both cases this
would contradict Lemma 3 for t = n− 1.

> (Check−RefreshMasks−L2 4)
Input : (X0 X1 X2 X3)
Output : ((+ R1 X0) (+ R2 X1) (+ R3 X2) (+ R3 (+ R2 (+ R1 X3))))
(X0 X1 X2)
(X0 X1 X3)
(X0 X2 X3)
((+ R1 X0) X1 (+ R1 X3))
((+ R1 X0) (+ R2 X1) (+ R2 (+ R1 X3)))
((+ R1 X0) X2 (+ R1 X3))
(X1 X2 X3)

Fig. 4. Formal verification of Lemma 3 for n = 4. We compute the list of 3-uples of probes whose simulation
require the knowledge of at least 3 inputs; none of these 3-uples contains the last output (+ R3 (+ R2 (+ R1 X3)))
of the circuit.

We provide in Figure 4 the transcript of the formal verification for n = 4 input shares,
using our CheckMasks tool. More precisely, we compute the list of 3-uples that require at least 3
inputs xi to be simulated. We see that as required none of these 3-uples include the output yn;
therefore Lemma 3 is formally verified for n = 4. Note that since the number of intermediate
variables in RefreshMasks is 4n− 3 and we must consider all possible subsets of n− 1 variables,
the formal verification of Lemma 3 takes

(
4n−3
n−1

)
' 23.2n time and is therefore exponential in n.

We summarize the observed running times in Table 1 in Section 3.3, up to n = 9. We refer to
[Cor17a] for the source code.

A.2 Formal Verification of [Cor17b, Lemma 5]

We consider the RefreshMasks algorithm taking as input n+ 1 shares (instead of n), but we fix
xn+1 = 0. In that case, any t probes in the circuit can be simulated from t − 1 input shares
(instead of t), except in the trivial case of the adversary probing the input xi’s only.

Lemma 6 (RefreshMasks [Cor17b]). Let x1, . . . , xn be n inputs shares, and let xn+1 = 0.
Consider the circuit y1, . . . , yn+1 ← RefreshMasksn+1(x1, . . . , xn, xn+1), where the randoms are

15

accumulated on xn+1. Let t be the number of probed variables. There exists a subset I such that
all probed variables can be perfectly simulated from x|I , with |I| ≤ t− 1, except if only the input
xi’s are probed.

From the previous reasoning, we only have to verify Lemma 6 for t = n; we summarize the
timings in Table 5.

n #variables #tuples Security Time

3 12 220 X ε

4 16 1,820 X ε

5 20 15,504 X 0.3 s

6 24 134,596 X 2.9 s

7 28 1,184,040 X 34 s

Table 5. Formal verification of Lemma 6, for small values of n.

A.3 Formal Verification of [Cor17b, Lemma 7]

Lemma 7 (RefreshMasks [Cor17b]). Let x1, . . . , xn be the input of a RefreshMasks where the
randoms are accumulated on xn, and let y1, . . . , yn be the output. Let t be the number of probed
variables, with t = n. If yn is among the probed variables, then either all probed variables can
be perfectly simulated from x1 ⊕ · · · ⊕ xn, or there exists a subset I with |I| ≤ n − 1 such that
they can be perfectly simulated from x|I .

Using our CheckMasks formal tool, Lemma 7 can be easily verified for small values of n.
In the proof of the lemma in [Cor17b], it appears that the knowledge of x1 ⊕ · · · ⊕ xn is only
necessary when the n probes are the n outputs y1, . . . , yn of RefreshMasks. This case is already
covered by the following straightforward lemma recalled in [Cor17b].

Lemma 8. Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be the output of RefreshMasks. The
distribution of (yi)1≤i≤n can be perfectly simulated from x1 ⊕ · · · ⊕ xn.

Therefore, to formally verify Lemma 7, we can exclude the previous case; one must then verify
that the n probes can always be perfectly simulated from the knowledge of at most n − 1
variables. We obtain the following timings:

n #variables #tuples Security Time

3 9 84 X ε

4 13 715 X ε

5 17 6,188 X ε

6 21 54,264 X 0.4 s

7 25 480,700 X 4.3 s

Table 6. Formal verification of Lemma 7, for small values of n.

A.4 Formal Verification of [Cor17b, Lemma 8]

We also formally verify [Cor17b, Lemma 8], showing that if we xor the last two output variables
yn−1 and yn of RefreshMasks, then the circuit is t-NI for all t ≤ n − 1; as previously, for
t = n − 1 we must exclude the case of all n − 1 output variables being probed. The proof is a

16

straightforward application of Lemma 3 and Lemma 7. Using our CheckMasks tool, we obtain
the timings from Table 7. As explained previously, it suffices to check the t-NI property for
t = n− 1.

Lemma 9 (RefreshMasks [Cor17b]). Consider the circuit y1, . . . , yn ← RefreshMasks(x1, . . . , xn),
zi ← yi for all 1 ≤ i ≤ n − 2 and zn−1 ← yn−1 ⊕ yn. Let t be the number of probed variables.
If t < n − 1, there exists a subset I with |I| ≤ t such that all probed variables can be perfectly
simulated from x|I . If t = n− 1, then either all probed variables can be perfectly simulated from
x1⊕· · ·⊕xn, or there exists a subset I with |I| ≤ n−1 such that they can be perfectly simulated
from x|I .

n #variables #tuples Security Time

3 10 45 X ε

4 14 364 X ε

5 18 3,060 X ε

6 22 26,334 X 0.5 s

7 26 230,230 X 5.7 s

Table 7. Formal verification of Lemma 9, for small values of n.

B The Rivain-Prouff Countermeasure

The Rivain-Prouff countermeasure for the AES block-cipher is based on the SecMult algorithm
below [RP10]; it is an extension over F2k of the masked AND gate from [ISW03]. It enables to
securely compute a n-sharing of the product c = a · b over F2k , from an n-sharing of a and b.

Algorithm 3 SecMult
Require: shares ai satisfying

⊕n
i=1 ai = a, shares bi satisfying

⊕n
i=1 bi = b

Ensure: shares ci satisfying
⊕n

i=1 ci = a · b
1: for i = 1 to n do
2: ci ← ai · bi
3: end for
4: for i = 1 to n do
5: for j = i+ 1 to n do
6: r ← F2k . referred by ri,j
7: ci ← ci ⊕ r . referred by ci,j
8: r ← (ai · bj + r) + aj · bi . referred by rj,i
9: cj ← cj ⊕ r . referred by cj,i

10: end for
11: end for
12: return (c1, . . . , cn)

It was shown in [BBD+16] that the SecMult algorithm is t-SNI secure for any t < n; see also
[CGPZ16] for a slightly more detailed security proof.

Lemma 10 (t-SNI of SecMult [BBD+16]). Let (ai)1≤i≤n and (bi)1≤i≤n be the input shares
of the SecMult operation, and let (ci)1≤i<n be the output shares. For any set of t intermediate
variables and any subset O of output shares such that t+O < n, there exist two subsets I and
J of indices with |I| ≤ t and |J | ≤ t, such that those t intermediate variables as well as the
output shares c|O can be perfectly simulated from a|I and b|J .

17

Formal verification of SecMult. As previously, the first step is to implement the SecMult
algorithm in Common Lisp; this requires only 12 lines of Common Lisp (see [Cor17a] for the
source code). For n = 3, we obtain:

> (SecMult ’ (a1 a2 a3) ’ (b1 b2 b3))
((+ R2 (+ R1 (∗ A1 B1)))
(+ R3 (+ (∗ A2 B2) (+ (+ (∗ A1 B2) R1) (∗ A2 B1))))
(+ (∗ A3 B3) (+ (+ (+ (∗ A2 B3) R3) (∗ A3 B2))

(+ (+ (∗ A1 B3) R2) (∗ A3 B1)))))

As previously, to formally verify the t-SNI property of SecMult as stated in Lemma 10, it
suffices to compute the list of all (n − 1)-uples of intermediate variables (including the output
ci’s) and check that every such (n − 1)-uple can be perfectly simulated from the knowledge of
at most t inputs ai and at most t inputs bj , where t is the number of non-output variables
in the (n − 1)-uple. For example, if we probe the non-output variables (+ R1 (∗ A1 B1)) and
(+ (+ (∗ A1 B2) R1) (∗ A2 B1)) from above, we cannot perform any substitution because the ran-
dom R1 is used twice, so we must know the inputs (A1 A2) and (B1 B2), which gives |I| = |J | = 2.
On the other hand, if we consider the first two outputs, we have the substitutions:

((+ R2 (+ R1 (∗ A1 B1)))
(+ R3 (+ (∗ A2 B2) (+ (+ (∗ A1 B2) R1) (∗ A2 B1)))))

=> ((+ R2 (+ R1 (∗ A1 B1))) R3) => (R2 R3)

and therefore no inputs ai or bi is needed, as required for the t-SNI property (since we have
considered output variables only). We obtain the following timings for the formal verification
of SecMult using our CheckMasks tool:

n #variables #tuples Security Time

3 30 435 X ε

4 54 24,804 X 0.5 s

5 85 2,024,785 X 80 s

Table 8. Formal verification of the t-SNI property of SecMult, for small values of n.

C The Random-zero Transform: Proof of Lemma 5

Let y be a vector of probed intermediate variables. Let x be the vector of inputs of the circuit
and let r be the vector of randoms used in the circuit. Since the circuit is additively masked,
we can write:

y = h(x, r) = f(x) + g(r)

for some functions h, f and g, where g is linear.
We write r = r′ + r′′ where the randoms corresponding to r′ are distributed as in the real

circuit, while the randoms corresponding to r′′ are distributed as in the real circuit in C and
set to 0 in C0. Since g is a linear function, we have:

h(x, r) = h(x, r′ + r′′) = f(x) + g(r′ + r′′) = f(x) + g(r′) + g(r′′)

which gives:
h(x, r) = h(x, r′) + g(r′′) (4)

In the circuit C, the adversary obtain the probes y = h(x, r), while in the circuit C0 the
adversary obtains the probes y0 = h(x, r′). From (4), we have that anything the adversary can
compute from y = h(x, r), he can compute from y0 = h(x, r′), simply by first computing

y ← y0 + g(r′′)

using for r′′ the same distribution as in the real circuit. This proves Lemma 5. ut

18

D Formal Verification of Lemma 4 for FullRefresh

In this section we provide a formal proof of Lemma 4 for the t-SNI property of FullRefresh (see
Alg. 2 in Section 3.4); as opposed to Section 3.4 the formal verification time is now polynomial in
n. The proof strategy is to perform a sequence of elementary circuit transforms until we obtain
a simple circuit C for which the t-SNI property is straightforward to verify. The proof can then
be formally verified by computing those circuit transforms in Common Lisp and checking that
we indeed obtain this simple circuit C. In the case of FullRefresh we obtain the following simple
circuit Cotp, which is t-SNI.

Lemma 11 (t-SNI of Cotp). Let Cotp be the circuit taking as input as input x1, . . . , xn and
outputting yi = xi⊕ ri for all 1 ≤ i ≤ n, where the randoms ri are uniformly and independently
distributed. The circuit C is t-SNI for any t ≤ n.

Proof. The proof is straightforward. If xi or ri or yi = xi⊕ri is probed, we put i in I. We obtain
|I| ≤ t. From the knowledge of x|I we can simulate any probed variable xi, ri and yi = xi ⊕ ri
since in that case i ∈ I. Consider now any i ∈ O \ I; in that case yi = xi ⊕ ri can be simulated
by a random value since ri is not probed, because i ∈ O \ I. ut

We recall the t-SNI property of FullRefresh below from Section 3.4; this t-SNI property was
already proven in [BBD+16]. Below we provide an alternative proof of Lemma 4, based on
elementary circuit transforms, so that the proof can be formally verified in our CheckMasks
tool.

Lemma 4 (t-SNI of FullRefresh). Let (xi)1≤i≤n be the input shares of the FullRefresh operation,
and let (yi)1≤i≤n be the output shares. For any set of t intermediate variables and any subset O
of output shares such that t+ |O| < n, there exists a subset I of indices with |I| ≤ t, such that
the t intermediate variables as well as the output shares y|O can be perfectly simulated from x|I .

x1 0 · · · r1,i? · · · r1,n y1 x1 0 r1,i? 0 y1

...
...

. . .
...

...

...
...

...
...

xi?−1 0 ri?−1,i? 0 yi?−1

xi? (r1,i? · · · 0 · · · ri?,n) yi? −→ ()...
...

. . .
...

...

xi?+1 0 ri?,i?+1 0 yi?+1

...
...

...
...

xn r1,n · · · ri?,n · · · 0 yn xn 0 ri?,n 0 yn

Fig. 5. Proof of Lemma 4: after removing the row i? and setting all randoms to 0 except on the column i?, there
remains only a one-time pad of the n− 1 inputs xi for i 6= i?, corresponding to the circuit Cotp from Lemma 11.

Proof. We first construct a subset I of indices as follows. We refer to the definition of Alg.
2 for the notations. If xi or any intermediate variable yi,j is probed (including yi), we add
the i to I. Since we have considered at most t probes, we obtain |I| ≤ t. Moreover we have
|I ∪ O| ≤ |I|+ |O| ≤ t+ |O| < n, therefore there exists some 1 ≤ i? ≤ n such that i? /∈ I ∪ O.
Since neither xi? nor any intermediate variable yi?,j has been probed on the row i?, and moreover
yi? must not be simulated (since i? /∈ O), we can remove the row i? from the circuit; see Fig 5
for an illustration.

We obtain a circuit with n − 1 inputs xi for 1 ≤ i ≤ n and i 6= i?. We now apply the
Random-zero transform and set to 0 all randoms rij in the circuit, except the randoms on the
column i?, namely ri,i? for i 6= i?. We obtain a circuit taking as input xi and outputting xi⊕ri,i?
for all i 6= i?; see Fig 5 for an illustration. This is exactly the circuit Cotp from Lemma 11 with
n − 1 inputs. Since from Lemma 11 this circuit is t-SNI for all t ≤ n − 1, using Lemma 5 the
FullRefresh circuit is also t-SNI for all t < n, which proves the lemma. ut

19

Note that the main difference with the original proof of Lemma 4 in [BBD+16] is that we
have not performed an explicit simulation of the probed variables; instead we have performed
a sequence of elementary circuit transforms (conditioned on some of the intermediate variables
being probed or not) until we have obtained a trivial circuit.

The above proof can be formally verified by performing a loop over all possible 1 ≤ i? ≤ n.
For each i? we first remove the row i? from the circuit, and then we set to 0 all randoms in the
circuit, except the randoms ri,i? for i 6= i?. For any given n, we can check formally that this leads
to a circuit equivalent to taking a1, . . . , an−1 as input and outputting a1 ⊕ r1, . . . , an−1 ⊕ rn−1,
namely the Cotp circuit. Since such circuit is t-SNI from Lemma 11, the original circuit is t-SNI.
We illustrate in Fig. 6 the formal verification for n = 3. Note that the formal verification has
a running time polynomial in n (as opposed to exponential in Section 3.4); therefore it can be
performed for any n for which the countermeasure is used in practice.

> (check− f u l l r e f r e sh− t sn i−po ly 3)
Input : (X1 X2 X3)
Output : ((+ R2 (+ R1 X1)) (+ R3 (+ R1 X2)) (+ R3 (+ R2 X3)))
Case 0 : no output , no probe in (+ R2 (+ R1 X1))

S u b c i r c u i t : ((+ R3 (+ R1 X2)) (+ R3 (+ R2 X3)))
Set a l l randoms to 0 except (R1 R2) => ((+ R1 X2) (+ R2 X3))

Case 1 : no output , no probe in (+ R3 (+ R1 X2))
S u b c i r c u i t : ((+ R2 (+ R1 X1)) (+ R3 (+ R2 X3)))
Set a l l randoms to 0 except (R1 R3) => ((+ R1 X1) (+ R3 X3))

Case 2 : no output , no probe in (+ R3 (+ R2 X3))
S u b c i r c u i t : ((+ R2 (+ R1 X1)) (+ R3 (+ R1 X2)))
Set a l l randoms to 0 except (R2 R3) => ((+ R2 X1) (+ R3 X2))

Fig. 6. Formal verification of the FullRefresh circuit for n = 3.

E Formal Verification of lemmas 3 and 6 for RefreshMasks in Polynomial
Time

E.1 Formal Verification of Lemma 3 for RefreshMasks

We now consider the RefreshMasks algorithm (see Fig. 1), and we recall the security property of
RefreshMasks considered in Section 3.3: if the output yn is among the t probed variables, then
we can simulate any t probed variables with t − 1 input shares only, instead of t in the basic
t-NI property in Lemma 2. The lemma below was already proven in [Cor17b]. In this section
we provide an alternative proof based on elementary circuit transforms that can be formally
verified in time polynomial in n, using our CheckMasks tool.

Lemma 3. Let x1, . . . , xn be the input of a RefreshMasks where the randoms are accumulated
on xn, and let y1, . . . , yn be the output. Let t be the number of probed variables, with t < n. If
yn is among the probed variables, then there exists a subset I such that all probed variables can
be perfectly simulated from x|I , with |I| ≤ t− 1.

Proof. Without loss of generality, we can consider t = n − 1 probes (see Section 3.3). We first
construct a subset I of indices as follows. For any 1 ≤ i ≤ n − 1, if xi or ri or yi = xi ⊕ ri is
probed, then we put i in I. Since by assumption yn has been probed, we have considered at
most n− 2 probes in the construction of I, and therefore we have |I| ≤ n− 2. Therefore there
must be some 1 ≤ i? ≤ n − 1 such that there was no probe in the subcircuit yi? = xi? ⊕ ri? ,
that is neither yi? nor xi? nor ri? have been probed.

For a given i?, we can remove the subcircuit yi? = xi? ⊕ ri? from the original circuit, since
there are no probes in it. Note that ri? is still used in the computation of yn. We then apply

20

x1 · · · xi? · · · xn−1 xn

r1

...

ri?

...

rn−1

y1 · · · yi? · · · yn−1 yn

−→

x1 · · · xi?−1 xi?+1 · · · xn−1 xn

ri?

y1 · · · yi?−1 yi?+1 · · · yn−1 yn

Fig. 7. Proof of Lemma 3: after removing the sub-circuit corresponding to i? and setting to zero all randoms
except i?, the remaining circuit is the identity circuit except yn = xn ⊕ ri? .

the Random-zero transform to all randoms except ri? . As illustrated in Figure 7, we obtain a
circuit taking as input the xi’s for 1 ≤ i ≤ n and i 6= i?, and outputting yi = xi for 1 ≤ i ≤ n−1
and i 6= i?, and yn = xn ⊕ ri? .

It is easy to see that the transformed circuit satisfies the required property from Lemma 3.
This could be proved using the classical simulation-based approach, but we can also continue
with elementary transforms, as follows. Since by assumption ri? has not been probed, we can
apply the One-time-pad transform to ri? , and we obtain yn = ri? (and we also keep xn in the
circuit). Finally, we apply the Random-zero transform to ri? , and we obtain yn = 0. There-
fore we have obtained a final circuit taking as input (x1, . . . , xn) except xi? and outputting
(x1, . . . , xn−1, 0). Moreover we have a set of n − 1 probes, one of which is 0 (corresponding to
yn), and the remaining n− 2 probes are on the inputs xi and can therefore be simulated from
the knowledge of at most n− 2 inputs. This proves Lemma 3. ut

It is easy to verify the above proof with a formal tool, since it consists in elementary circuit
transforms conditioned on the value of 1 ≤ i? ≤ n− 1; we provide the transcript of the formal
proof for n = 4 in Fig. 8; see [Cor17a] for the source code.

> (check−refreshmasks− last−poly 4)
Input : (X1 X2 X3 X4)
Output : ((+ R1 X1) (+ R2 X2) (+ R3 X3) (+ R3 (+ R2 (+ R1 X4))))
F i r s t probe : ((+ R3 (+ R2 (+ R1 X4))))
Case 0 : no probe in (+ R1 X1)

S u b c i r c u i t : ((+ R2 X2) (+ R3 X3) (+ R3 (+ R2 (+ R1 X4))))
Set a l l randoms to 0 except R1 => (X2 X3 (+ R1 X4))
One−time pad : (X2 X3 R1 X4) . Random zero : (X2 X3 0 X4)
F i r s t probe : 0 . Other 2 probes in (X2 X3 X4)

Case 1 : no probe in (+ R2 X2)
S u b c i r c u i t : ((+ R1 X1) (+ R3 X3) (+ R3 (+ R2 (+ R1 X4))))
Set a l l randoms to 0 except R2 => (X1 X3 (+ R2 X4))
One−time pad : (X1 X3 R2 X4) . Random zero : (X1 X3 0 X4)
F i r s t probe : 0 . Other 2 probes in (X1 X3 X4)

Case 2 : no probe in (+ R3 X3)
S u b c i r c u i t : ((+ R1 X1) (+ R2 X2) (+ R3 (+ R2 (+ R1 X4))))
Set a l l randoms to 0 except R3 => (X1 X2 (+ R3 X4))
One−time pad : (X1 X2 R3 X4) . Random zero : (X1 X2 0 X4)
F i r s t probe : 0 . Other 2 probes in (X1 X2 X4)

Fig. 8. Formal verification of Lemma 3 for n = 4, using our CheckMasks tool for performing the sequence of
elementary transforms.

Remark 3. The above formal verification of Lemma 3 has time complexity polynomial in n, so
we can perform the verification for any n. For example, generating the transcript of the formal

21

proof for n = 50 takes only a few seconds (since there are only n−1 cases to consider), while this
would be completely unfeasible with the generic technique of Section 3.3, which has complexity
23.2n (see Table 1 for the corresponding timings).

E.2 Formal Verification of Lemma 6 for RefreshMasks

We consider the RefreshMasks algorithm, and we recall the other security property of Refresh-
Masks considered in Appendix A.2; see [Cor17b, Lemma 5] for the pen-and-paper proof.

Lemma 6 (RefreshMasks) [Cor17b]. Let x1, . . . , xn be n inputs shares, and let xn+1 = 0.
Consider the circuit y1, . . . , yn+1 ← RefreshMasksn+1(x1, . . . , xn, xn+1), where the randoms are
accumulated on xn+1. Let t be the number of probed variables. There exists a subset I such that
all probed variables can be perfectly simulated from x|I , with |I| ≤ t− 1, except if only the input
xi’s are probed.

Below we provide an alternative proof that can be formally verified in time polynomial in n,
using our CheckMasks tool. We first prove the following simple lemma, on the same Cotp circuit
as considered in Appendix D.

Lemma 12. Let Cotp be the circuit taking as input as input x1, . . . , xn and outputting yi = xi⊕ri
for all 1 ≤ i ≤ n, where the randoms ri are uniformly and independently distributed. For any
set of t intermediate variables, there exists a subset I of indices with |I| ≤ t− 1, such that the t
intermediate variables can be perfectly simulated from x|I , except if only the input shares xi are
probed.

Proof. By assumption, there exists an index i? such that ri? or yi? or both have been probed,
with 1 ≤ i? ≤ n. We construct the set I as follows. For any i 6= i?, if xi or ri or yi has been
probed, we add i to I; moreover if xi? has been probed, or if both ri? and yi? have been probed,
we add i? to I. We first show that we must have |I| ≤ t− 1 as required. Namely either a single
variable among ri? and yi? has been probed, and this probe does not contribute to I, or both
ri? and yi? have been probed, and these two probes contribute to only one index in I.

One can then simulate any probed variable xi, yi and ri for i 6= i? from i ∈ I. If i? ∈ I, then
xi? , yi? and ri? can also be simulated. Finally, if i? /∈ I, then either ri? or yi? has been probed
(but not both); in both cases such variable can be perfectly simulated. ut

We now proceed with the proof of Lemma 6. As previously, the proof strategy is to perform
a sequence of elementary circuit transforms until we obtain the above circuit Cotp on which the
property is proven by Lemma 12.

x1 · · · xi · · · xn 0

r1

...

ri

...

rn

y1 · · · yi · · · yn yn+1

Fig. 9. The RefreshMasks circuit with n+ 1 inputs, with xn+1 = 0.

22

Proof. From the reasoning of Section 3.3, we only have to prove the lemma for t = n. We
distinguish two cases; see Figure 9 for an illustration. If none of the intermediate variables
yn+1,j has been probed nor yn+1, we remove the corresponding subcircuit, and there remains
the circuit Cotp for which the property is proven by Lemma 12. In the second case, if one of
the intermediate variables yn+1,j or yn+1 has been probed, we apply the random-zero transform
to all ri’s. There remains a circuit outputting (x1, . . . , xn, 0), where one of the probe is now 0.
Therefore the remaining n− 1 probes can be simulated by x|I with |I| ≤ n− 1. ut

We provide in Figure 10 the transcript of the formal proof for n = 4; see [Cor17a] for the
source code.

> (check−refreshmasks−zero−poly 4)
Input : (X1 X2 X3 X4 0)
Output : ((+ R1 X1) (+ R2 X2) (+ R3 X3) (+ R4 X4)

(+ R4 (+ R3 (+ R2 R1))))
Excluded : (X1 X2 X3 X4)
Case 1 : one probe in ((+ R4 (+ R3 (+ R2 R1))))

Random zero : (X1 X2 X3 X4 0)
F i r s t probe : 0
Other 3 probes in : (X1 X2 X3 X4 0)

Case 2 : no probe in ((+ R4 (+ R3 (+ R2 R1))))
S u b c i r c u i t : ((+ R1 X1) (+ R2 X2) (+ R3 X3) (+ R4 X4))

Fig. 10. Formal verification of Lemma 6 for n = 4, using our CheckMasks tool for performing the sequence of
elementary transforms.

F Formal Verification of SecMult in Polynomial-Time

In this section our goal is to provide a proof of the t-SNI property of SecMult from the Rivain-
Prouff countermeasure [RP10], that can be formally verified in polynomial time; this corresponds
to Lemma 10 from Appendix B.

F.1 Formal Verification of the t-NI Property in Polynomial Time

As a warm-up we consider the weaker t-NI security property, for which a pen-and-paper proof
was already given in [ISW03]; below we provide a proof that can be formally verified in our
CheckMasks tool, based on circuit transforms.

Lemma 13 (t-NI of SecMult). Let (ai)1≤i≤n and (bi)1≤i≤n be the input shares of the SecMult
circuit, and let (ci)1≤i<n be the output shares. For any set of t intermediate variables and any
subset O of output shares, there exists a subset I of indices such that I = J ∪O where |J | ≤ 2t,
such that those t intermediate variables as well as the output shares c|O can be perfectly simulated
from a|I and b|I .

Proof. We prove the result recursively on n. The property holds for n = 1. We now assume
that it holds for n − 1, and we prove that it must hold for n. We construct a set of indices U
as follows, starting from U = O. If one the variables {ai, bi, ai · bi, ci,j} is probed, we add i to
U . If one of the variables {ai · bj , ri,j , aibj + ri,j} is probed (for any i 6= j), we add both i and j
to U . We obtain |U | ≤ 2t+ |O|. We distinguish two cases. If |U | = n, we can perfectly simulate
all variables in the circuit by letting I = U = [1, n], and we have |I| ≤ 2t+ |O| as required.

We now consider the case |U | < n, so we can let 1 ≤ i? ≤ n such that i? /∈ U . Since none of
the variables ci?,j has been probed, we can remove them from the circuit. We now consider the

23

0 · · · r1,i? · · · r1,n c1

...
. . .

...
...(ri?,1 · · · 0 · · · ri?,n) ci?

...
. . .

...
...

rn,1 · · · rn,i? · · · 0 cn

−→

0 · · · r1,i? · · · r1,n c1
...

...
...

...
ri?−1,1 · · · ri?−1,i? · · · ri?−1,n ci?−1()ri?+1,1 · · · ri?+1,i? · · · ri?+1,n ci?+1

...
...

...
...

rn,1 · · · rn,i? · · · 0 cn

−→

0 · · · 0 · · · r1,n c1
...

...
...

...
ri?−1,1 · · · 0 · · · ri?−1,n ci?−1()ri?+1,1 · · · 0 · · · ri?+1,n ci?+1

...
...

...
...

rn,1 · · · 0 · · · 0 cn

Fig. 11. After removing the i?-th row and applying the one-time pad transform, we obtain a column i? in which
all variables rj,i? are independent randoms. One can then apply the random-zero transform, and eventually
remove the column i?.

ri?,j variables; none of these variables has been probed. On the row i? and before the diagonal
(j < i?), the ri?,j = (ajbi? + rj,i?) + ai?bj variables are only used in the ci?,j variables on the
same row (see Fig. 11). Since we have already removed the ci?,j variables, we can also remove
those ri?,j variables for j < i? from the circuit. Moreover, since ajbi? +rj,i? has not been probed,
we can also remove the corresponding variables from the circuit. Therefore we can remove the
row i? from the circuit.

As illustrated in Figure 11, there remains a circuit in which the original randoms ri?,j for
j > i? (after the diagonal) are used only once, namely in the variable rj,i? = (ai?bj+ri?,j)+ajbi? .
Since ri?,j is not probed, and moreover ai?bj+ri?,j is not probed, we can apply the One-time-pad
transform twice and replace the variables rj,i? below the diagonal by an independently generated
random value, which we still denote by rj,i? . We obtain a circuit in which on the column i?,
all rj,i? for j 6= i? are independently generated random values, which are used only once in the
circuit. We can therefore apply the Random-zero transform to these randoms, i.e. we set to 0
all the randoms rj,i? on the i? column; see Figure 11 for an illustration.

Since all elements on the i? column are now zero, we can remove the i? column and eventually
obtain a circuit with n − 1 inputs ai and bi that is equivalent to the original SecMult circuit,
but with n − 1 inputs instead of n, and still the same value of t. We can therefore apply the
recursive hypothesis: there exists a subset I of indices such that I = J ∪O where |J | ≤ 2t, such
that those t intermediate variables as well as the output shares c|O can be perfectly simulated
from a|I and b|I . This implies that the same property holds for the original circuit with n inputs;
this proves the lemma. ut

To verify the above proof formally, as previously it suffices to do a loop on all possible values
of 1 ≤ i? ≤ n. We provide in Figure 14 in Appendix H the transcript of the formal verification
for n = 3; we refer to [Cor17a] for the source code. We see that in each case, one obtains after
a sequence of elementary transforms a circuit that is equivalent to the original circuit but with
n− 1 input shares; therefore one can apply the recursive hypothesis.

F.2 Proof of Lemma 10 via Circuit Transforms

The proof of the t-SNI property of SecMult proceeds in two steps. In the first step, we define an
index i? and we show that we can remove the row i? from the circuit; we obtain a transformed
circuit C in which all the variables rj,i? on the column i? are independent randoms (see Fig.

24

12). We then show recursively that the resulting circuit C is t-SNI. For this, in the second
step, we define another index k? 6= i?, and we show that we can remove the row and column
corresponding to k?. We then obtain a circuit similar to C but with n− 1 inputs instead of n;
one can then apply the recursive hypothesis.

0 · · · r1,i? · · · r1,n c1
...

. . .
...

...(ri?,1 · · · 0 · · · ri?,n) ci?
...

. . .
...

...

rn,1 · · · rn,i? · · · 0 cn

−→

0 · · · r1,i? · · · r1,n c1
...

...
...

...
ri?−1,1 · · · ri?−1,i? · · · ri?−1,n ci?−1()ri?+1,1 · · · ri?+1,i? · · · ri?+1,n ci?+1

...
...

...
...

rn,1 · · · rn,i? · · · 0 cn

Fig. 12. In the first step, we remove the i?-th row, and we obtain a transformed circuit in which the variables
rj,i? on the column i? are all independent randoms.

First step. We let U be the set of of indices i such that ri,j or ci,j has been probed (for any
j). We also construct a set V using the following rule:

If aibj + rij has been probed: put j in V if i ∈ O or i ∈ U , otherwise put i in V . (5)

Since we have considered at most t probes in the definition of U and V , we must have |U |+|V | ≤
t, which gives |U | + |V | + |O| ≤ t + |O| < n. Therefore we can let 1 ≤ i? ≤ n such that
i? /∈ U ∪ V ∪O.

By definition of i?, none of the ri?,j or ci?,j variables has been probed. In particular, on the
row i? and before the diagonal (j < i?), the variable ri?,j = (ajbi? + rj,i?) + ai?,j has not been
probed. Therefore we can remove these variables from the circuit. This implies that we can
remove the row corresponding to i? from the circuit; however the variables ai?bj or ajbi? can
still be probed, so we must keep them in a separate list L of variables that can be probed. On
the row i? and after the diagonal (j > i?) the variable ri?,j is not probed; it is used only in the
variable ai?bj +ri?,j , which is used in rj,i? = (ai?bj +ri?,j)+ajbi? . We claim that the ai?bj +ri?,j
variable is also not probed; namely, if it had been probed, since i? /∈ O and i? /∈ U , from Rule
(5) we would have i? ∈ V , a contradiction. We can therefore apply the one-time pad transform
twice on ri?,j , and consider a modified circuit in which rj,i? for j > i? (below the diagonal) is
an independent random. In summary, we obtain a transformed circuit in which on the column
i?, the variables rj,i? are independent randoms for all j 6= i?; see Figure 12 for an illustration.
Moreover, above the diagonal (j < i?), the variables ajbi? + rj,i? can still be probed; we note
that for such j, we must have j /∈ U ∪ O (otherwise, from Rule (5) we would have i? ∈ V , a
contradiction).

Second step. We consider the transformed circuit from the first step and taking as input
n shares. We show recursively that the circuit is t-SNI. We still define the sets U and V as
previously. We must have |U | ≤ n− 1. We distinguish two cases. If |U | = n− 1, we must have
t ≥ n− 1. We again distinguish two cases. If none of the variables ajbi? + rj,i? has been probed,
then neither ai? nor bi? is required for the simulation; we can therefore let I = [1, n] \ {i?} for
the simulation of the full circuit. If at least one of the variables ajbi? + rj,i? has been probed,
we must have t ≥ n and therefore we can let I = [1, n] for the simulation of the full circuit. In
both cases we have |I| ≤ t as required.

We now consider the second case, namely |U | < n− 1. In that case we can let k? /∈ U ∪{i?}.
Recall that on the i? column, all variables rj,i? are independent randoms (see Fig. 13), and

25

0 · · · r1,k? · · · r1,i? · · · r1,n c1
...

. . .
...

...
...

...
rk?,1 · · · 0 · · · rk?,i? · · · rk?,n ck?

...
...

...
...

...(ri?−1,1 · · · ri?−1,k? · · · ri?−1,i? · · · ri?−1,n) ci?−1
ri?+1,1 · · · ri?+1,k? · · · ri?+1,i? · · · ri?+1,n ci?+1

...
...

...
...

...

rn,1 · · · rn,k? · · · rn,i? · · · 0 cn

Fig. 13. In the second step, we define a second index k? 6= i?. Thanks to the random rk?,i? , we can perfectly
simulate the output ck? , and then remove the row and column corresponding to k?.

moreover above the diagonal (j < i?), the variables ajbi? + rj,i? can be probed. We distinguish
two cases. If the variable ak?bi? + rk?,i? has been probed, from Rule (5) we must have k? ∈ V
and k? /∈ O. Since k? /∈ U ∪ O, the random rk?,i? has not been probed and is used only once,
in the computation of the previous variable ak?bi? + rk?,i? . Therefore we can perfectly simulate
the previous variable, without knowing ak? and bi? .

We now consider the second case, in which the variable ak?bi? + rk?,i? has not been probed.
Since in that case the random rk?,i? is used only once and in the computation of ck? , the ck?

output variable can be perfectly simulated if k? ∈ O, without knowing ak? and bk? .
In both cases, on the row k?, none of the variables ck?,j has been probed, so they can be

removed from the circuit. Moreover, on the row k?, before the diagonal (j < k?), the variables
rk?,j = (ajbk? + rj,k?) + ak?bj are also not probed, so they can also be removed from the circuit.
After the diagonal (j > k?), the randoms rk?,j are not probed and are used only in the variable
ak?bj + rk?,j , which are used in the variables rj,k? = (ak?bj + rk?,j) + ajbk? . Therefore, we can
replace the variable rj,k? by an independent random, and replace the variable ak?bj + rk?,j
by the identical variable ajbk? + rj,k? . Therefore, on the column k?, all the variables ri,k? are
independent randoms; moreover the variables aibk? + ri,k? can possibly be probed. We apply
the Random-zero transform to all these randoms on the k? column; the variables aibk? are put
in a separate list of variables that can be probed. We can then remove the column and row
corresponding to k?. Therefore, for the simulation of the resulting circuit, the knowledge of ak?

and bk? is not necessary anymore. After removing the k? row and column, we obtain a circuit
with n − 1 inputs, with the same structure as in the beginning of the second step. We can
therefore apply the recursive hypothesis: all t probes and all output variables ci for i ∈ O can
be perfectly simulated from a|I and b|J , where |I| ≤ t and |J | ≤ t. This implies that the same
property holds for the original circuit; this proves the lemma. ut

Formal verification. The above proof can be formally verified by performing the elementary
circuit transforms for all possible indices i? 6= k?. We refer to [Cor17a] for the source code to
generate a proof transcript, for any value of n.

G Automatic Verification for Simple Circuits

In this section, we show that by applying the rules R1, R2 and R3 from Section 6, the security
properties of RefreshMasks from lemma 2, 3 and 6 can be formally verified in polynomial time,
as well as Lemma 4 for FullRefresh; see Table 4.

Namely, for verifying the t-NI property of RefreshMasks, as explained in Section 5, it suffices
to apply the Random-zero transform to all randoms ri of the circuit, and one obtains the identity

26

circuit which is trivially t-NI. More precisely, we can apply rule R2 which sets all randoms to
0, since all randoms are used twice in the circuit. Then the t-NI property for t = n − 1 is
immediately verified, since there are

(
n

n−1
)

= n uples of n−1 probes; for this we use the generic
technique from Section 3, and in this case it works in polynomial time. Alternatively one can first
apply Rule R1 and then rules R2 and R3 on each subcircuit, and the complexity of verification
is still polynomial-time.

For the t-SNI property of FullRefresh, the successive application of rules R1, R2 and R3 is
exactly what is done in the proof of Lemma 4 in Section D. Namely for each subcircuit obtained
by removing the subcircuit corresponding to the output yi, after applying the random-zero
transform to all rij except those used only once, we obtain the Cotp circuit whose t-SNI property
is proven in Lemma 11.

For the property of RefreshMasks proven in Lemma 3, the successive application of rules R1,
R2 and R3 also leads to a polynomial-time verification. Namely, since yn is probed, rule R1 is
applied by performing a loop on 1 ≤ i ≤ n− 1 and removing the subcircuit corresponding to yi.
In the resulting subcircuit, the only random that is used only once is ri. Therefore by applying
rule R2, one obtains the final circuit (x1, . . . , xi−1, xi+1, . . . xn−1, xn ⊕ ri) where the last output
yn = xn ⊕ ri is probed. The final circuit above has now n+ 2 intermediate variables, and since
yn is already probed, the number of (n − 1)-uples to consider is

(
n+1
n−2

)
≤ n3. Therefore the

property can be verified using the generic technique from Section 3, and in this case it works in
polynomial time.

Finally, for the property of RefreshMasks from Lemma 6, the successive application of rules
R1, R2 and R3 also leads to a polynomial-time verification. Recall that in Lemma 6 the Refresh-
Masks circuit takes as input n+1 shares with xn+1 = 0, and outputs n+1 shares yi. Firstly, rule
R1 is applied by performing a loop on 1 ≤ i ≤ n+ 1 and removing the subcircuit corresponding
to yi. When the subcircuit corresponding to yn+1 has been removed, the resulting circuit is
exactly the Cotp circuit; since all randoms are used once, the rule R2 does nothing, and even-
tually the rule R3 applies, and the required property is proved in Lemma 12. Moreover, when
the subcircuit corresponding to yi has been removed for 1 ≤ i ≤ n, all randoms are used twice
except ri. By applying Rule R2, one obtains the final circuit (x1, . . . , xi−1, xi+1, . . . xn, ri). As
previously, the required property can therefore be verified by rule R3 using the generic technique
from Section 3, and in this case it also works in polynomial time.

For the automatic verification of the four above properties, we refer to [Cor17a] for the
source code, and to Appendix I for the transcript of the proof for n = 3.

27

H Transcript of Lemma 13 Formal Verification

> (check−secmult−ni−poly 3)
Input : (X1 X2 X3) (Y1 Y2 Y3)
Output : (M 1 1) R1 R2

(M 1 2 R1) (M 2 2) R3
(M 1 3 R2) (M 2 3 R3) (M 3 3)

Case 0 : no probe in (M 1 1) R1 R2
New c i r c u i t : (M 1 2 R1) (M 2 2) R3

(M 1 3 R2) (M 2 3 R3) (M 3 3)
S imp l i f y : R1 (M 2 2) R3

R2 (M 2 3 R3) (M 3 3)
Random zero : (M 2 2) R3

(M 2 3 R3) (M 3 3)
Case 1 : no probe in (M 1 2 R1) (M 2 2) R3

New c i r c u i t : (M 1 1) R1 R2
(M 1 3 R2) (M 2 3 R3) (M 3 3)

S imp l i f y : (M 1 1) R1 R2
(M 1 3 R2) R3 (M 3 3)

Random zero : (M 1 1) R2
(M 1 3 R2) (M 3 3)

Case 2 : no probe in (M 1 3 R2) (M 2 3 R3) (M 3 3)
New c i r c u i t : (M 1 1) R1 R2

(M 1 2 R1) (M 2 2) R3
S imp l i f y : (M 1 1) R1 R2

(M 1 2 R1) (M 2 2) R3
Random zero : (M 1 1) R1

(M 1 2 R1) (M 2 2)

Fig. 14. Formal verification of the t-NI property of the SecMult circuit for n = 3. For simplicity we use a
different notation to represent the aibj and rij variables, namely we write (M i j) for aibj and (M i j R) for
rij = (ajbi + rji) + aibj where R corresponds to rji, for j < i.

28

I Transcript of Automatic Verification

> (check− c i r cu i t s 3)
Refreshmasks : t−NI property :
Input : (X1 X2 X3)
C i r c u i t : ((+ R1 X1) (+ R2 X2) (+ R2 (+ R1 X3)))

R1 : ((+ R2 X2) (+ R2 (+ R1 X3))) R2 : (X2 (+ R1 X3)) R3 : i s OTP: NIL
R3 : check : T

R1 : ((+ R1 X1) (+ R2 (+ R1 X3))) R2 : (X1 (+ R2 X3)) R3 : i s OTP: NIL
R3 : check : T

R1 : ((+ R1 X1) (+ R2 X2)) R2 : ((+ R1 X1) (+ R2 X2)) R3 : i s OTP: T
Ve r i f : T

Fu l lRe f r e sh : t−SNI property :
Input : (X1 X2 X3)
C i r c u i t : ((+ R2 (+ R1 X1)) (+ R3 (+ R1 X2)) (+ R3 (+ R2 X3)))

R1 : ((+ R3 (+ R1 X2)) (+ R3 (+ R2 X3))) R2 : ((+ R1 X2) (+ R2 X3))
R3 : i s OTP: T

R1 : ((+ R2 (+ R1 X1)) (+ R3 (+ R2 X3))) R2 : ((+ R1 X1) (+ R3 X3))
R3 : i s OTP: T

R1 : ((+ R2 (+ R1 X1)) (+ R3 (+ R1 X2))) R2 : ((+ R2 X1) (+ R3 X2))
R3 : i s OTP: T

Ve r i f : T

Refreshmasks : with probed yn :
Input : (X1 X2 X3)
C i r c u i t : ((+ R1 X1) (+ R2 X2) (+ R2 (+ R1 X3)))

R1 : ((+ R2 X2) (+ R2 (+ R1 X3))) R2 : (X2 (+ R1 X3)) R3 : i s OTP: NIL
R3 : check : T

R1 : ((+ R1 X1) (+ R2 (+ R1 X3))) R2 : (X1 (+ R2 X3)) R3 : i s OTP: NIL
R3 : check : T

R1 : ((+ R1 X1) (+ R2 X2)) R2 : ((+ R1 X1) (+ R2 X2)) R3 : i s OTP: T
Ve r i f : T

Refreshmasks : with probed x {n+1}=0:
Input : (X1 X2 X3 0)
C i r c u i t : ((+ R1 X1) (+ R2 X2) (+ R3 X3) (+ R3 (+ R2 (+ R1 0))))

R1 : ((+ R2 X2) (+ R3 X3) (+ R3 (+ R2 (+ R1 0)))) R2 : (X2 X3 R1)
R3 : i s OTP: NIL R3 : check : T

R1 : ((+ R1 X1) (+ R3 X3) (+ R3 (+ R2 (+ R1 0)))) R2 : (X1 X3 R2)
R3 : i s OTP: NIL R3 : check : T

R1 : ((+ R1 X1) (+ R2 X2) (+ R3 (+ R2 (+ R1 0)))) R2 : (X1 X2 R3)
R3 : i s OTP: NIL R3 : check : T

R1 : ((+ R1 X1) (+ R2 X2) (+ R3 X3)) R2 : ((+ R1 X1) (+ R2 X2)
(+ R3 X3)) R3 : i s OTP: T

Ve r i f : T

Fig. 15. Automatic verification of lemmas 2, 4, 3 and 6 for n = 3, based on rules R1, R2 and R3.

29

