
Strengthening the Security of Encrypted Databases:

Non-Transitive JOINs

Ilya Mironov∗† Gil Segev‡† Ido Shahaf‡

Abstract

Database management systems operating over encrypted data are gaining signi�cant com-
mercial interest. CryptDB is one such notable system supporting a variety SQL queries over
encrypted data (Popa et al., SOSP '11). It is a practical system obtained by utilizing a number
of encryption schemes, together with a new cryptographic primitive for supporting SQL's join
operator.

This new primitive, an adjustable join scheme, is an encoding scheme that enables to gen-
erate tokens corresponding to any two database columns for computing their join given only
their encodings. Popa et al. presented a framework for modeling the security of adjustable join
schemes, but it is not completely clear what types of potential adversarial behavior it captures.
Most notably, CryptDB's join operator is transitive, and this may reveal a signi�cant amount of
sensitive information.

In this work we put forward a strong and intuitive notion of security for adjustable join
schemes, and argue that it indeed captures the security of such schemes: We introduce, in ad-
dition, natural simulation-based and indistinguishability-based notions (capturing the �minimal
leakage� of such schemes), and prove that our notion is positioned between their adaptive and
non-adaptive variants.

Then, we construct an adjustable join scheme that satis�es our notion of security based on
the linear assumption (or on the seemingly stronger matrix-DDH assumption for improved e�-
ciency) in bilinear groups. Instantiating CryptDB with our scheme strengthens its security by
providing a non-transitive join operator, while increasing the size of CryptDB's encodings from
one group element to four group elements based on the linear assumption (or two group elements
based on the matrix-DDH assumption), and increasing the running time of the adjustment oper-
ation from that of computing one group exponentiation to that of computing four bilinear maps
based on the linear assumption (or two bilinear maps based on the matrix-DDH assumption).
Most importantly, however, the most critical and frequent operation underlying our scheme is
comparison of single group elements as in CryptDB's join scheme.

∗Google. Email: mironov@google.com.
†Work initiated in Microsoft Research Silicon Valley.
‡School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel. Email:

{segev,ido.shahaf}@cs.huji.ac.il. Supported by the European Union's 7th Framework Program (FP7) via a Marie
Curie Career Integration Grant (Grant No. 618094), by the European Union's Horizon 2020 Framework Program
(H2020) via an ERC Grant (Grant No. 714253), by the Israel Science Foundation (Grant No. 483/13), by the Israeli
Centers of Research Excellence (I-CORE) Program (Center No. 4/11), by the US-Israel Binational Science Foundation
(Grant No. 2014632), and by a Google Faculty Research Award.

Contents

1 Introduction 1
1.1 Our Contributions . 3
1.2 Overview of Our Contributions . 4
1.3 Additional Related Work . 7
1.4 Extensions and Open Problems . 8
1.5 Paper Organization . 9

2 Preliminaries 10
2.1 Pseudorandom Functions . 10
2.2 Computational Assumptions . 11

3 Adjustable Join Schemes and Their Security 11
3.1 Adjustable Join Schemes . 11
3.2 The 2Partition Security Notion and its Weakness . 12

4 Strengthening the De�nitional Framework 13
4.1 The 3Partition Security Notion . 14
4.2 Indistinguishability-Based Security Notions . 15
4.3 Simulation-Based Security Notions . 17
4.4 Additional Remarks . 18

5 Our Adjustable Join Scheme 19
5.1 The Scheme . 19
5.2 Proof of Security . 20

References 23

A Additional Proofs 26
A.1 Proof of Claim 2.5 . 26
A.2 Tools for Proving Claims 4.3 and 4.7 . 27
A.3 Proof of Claim 4.3 . 29
A.4 Proof of Claim 4.7 . 31

1 Introduction

Database management systems operating over encrypted data are gaining signi�cant commercial
interest. CryptDB, designed by Popa et al. [PRZ+11, PZ12, PRZ+12, Pop14], is one such notable
system that supports a variety of SQL queries over encrypted databases. It is a practical system
o�ering a throughput loss of only 26% as compared to MySQL. We refer the reader to CryptDB's
project page for the growing list of companies and organizations that have already either adopted
CryptDB or designed similar systems directly inspired by CryptDB.1

CryptDB operates in a setting that consists of two main parties, a proxy and a server, with the
goal of enabling the server to execute SQL queries on encrypted data almost as if it were executing
the same queries on the data itself. The only di�erence is that the operators corresponding to the
SQL queries, such as selections, projections, joins, aggregates, and orderings, are performed using
possibly modi�ed operators (see, for example, [HIL+02, HIM04, FI12, HKD15, KM16, FVY+17] and
the references therein, as well as our discussion in Section 1.3, for additional approaches and systems
for executing SQL queries on encrypted data).

Speci�cally, for our purposes it is su�cient to consider a proxy that holds a secret key sk, and a
server that holds a database encrypted using sk. Such a database consists of a number of tables, where
each table consists of several data records that are vertically-partitioned into columns. Whenever
the proxy would like the server to execute an SQL query, it uses its secret key sk for generating a
token allowing the server to execute the given query over the encrypted database. This is realized in
CryptDB by utilizing a number of existing encryption schemes, together with a new cryptographic
primitive for supporting SQL's join operator (see Figure 1 for a simpli�ed description of SQL's join
operator2).

Name DoB

Alice 05/02/1995

Bob 31/01/1997

Carol 10/03/1989

David 27/01/1996

Name Address

Alice Apple St.

Erin Eagle Ave.

Tom Trees Blvd.

Name Purchase Date

David 08/10/2013

Alice 21/10/2013

Frank 21/03/2015

Erin 17/06/2015

David 21/11/2015

Erin 30/12/2017

Name DoB Address

Alice 05/02/1995 Apple St.

Students Table Terrorists Table Firearm Holders Table

Name Address Purchase Date

Alice Apple St. 21/10/2013

Erin Eagle Ave. 17/06/2015

Erin Eagle Ave. 30/12/2017

Figure 1: SQL's join operator takes as input two tables, and one or more column labels, and outputs all
records that have matching values with respect to the given column labels. There are di�erent types of join
operators, depending on the subset of the data records one would like to select from the two given tables. The
above example shows the result of joining the �Students� and �Terrorists� tables via their �Name� column,
and joining the �Terrorists� and �Firearm Holders� tables via their �Name� column.

1CryptDB's project page is available at css.csail.mit.edu/cryptdb.
2The example described in Figure 1 considers the inner join operator, and we note that all of our contributions in

this work equally apply to various other join operators, such as right join, left join, full join, and self join.

1

css.csail.mit.edu/cryptdb

Adjustable join schemes. Supporting SQL's join operator within CryptDB is essentially equiv-
alent to identifying the matching pairs of values for two encrypted columns, and this has motivated
Popa et al. to introduce the notion of an adjustable join scheme. This is a symmetric-key encoding
scheme supporting the following two operations: (1) Given the secret key sk it is possible to generate
an encoding Encsk(m, col) of any message m relative to any column label col, and (2) given the secret
key sk it is possible to generate a token TokenGensk(col, col

′) enabling to compute the join of any
two given columns labeled by col and col′ (we refer the reader to Section 3 for the formal de�nition
of such schemes). Popa and Zeldovich initiated the study of adjustable join schemes, and presented
the �rst construction of such a scheme, which they have incorporated into the design of CryptDB.

The security of CryptDB's adjustable join. In terms of functionality, a server that is given an
encrypted database and a token for computing the join of two columns, should be able to identify all
pairs of encodings from these two columns that correspond to identical messages. At the same time,
in terms of security, we would like the server not to learn any additional information. Generally
speaking, this intuitive requirement can be viewed as a speci�c instantiation of the security require-
ment underlying private-key two-input functional encryption (e.g, [GGG+14, BLR+15, BKS16]):
Encryption of messages m1, . . . ,mk and functional keys corresponding to functions f1, . . . , fn should
not reveal any information other than the values {f`(mi,mj)}i,j∈[k],`∈[n].

Popa and Zeldovich [PZ12] formalized a speci�c notion of security for adjustable join schemes,
aiming to capture the above intuitive requirement, and proved that CryptDB's adjustable join scheme
indeed satis�es their notion. However, unlike the recently-introduced security notions for private-
key functional encryption, it is not completely clear what types of potential adversarial behavior it
actually captures.

Most notably, due to e�ciency considerations, Popa et al. have chosen to consider a notion
of security that does not capture transitivity: For any three columns coli, colj and colk, tokens
for computing the joins between coli and colk and between colk and colj should ideally not allow
computing the join between coli and colj . Moreover, it is not only that their notion does not capture
transitivity, but in fact CryptDB's adjustable join scheme is indeed transitive by design due to
e�ciency considerations: Given tokens for computing the joins between coli and colk and between
colk and colj , it is easy to compute the join between columns coli and colj .

Using our example from Figure 1, this means that given a token for computing the join between
the �Students� and �Terrorists� tables (via their �Name� column), and a token for computing the join
between the �Terrorists� and �Firearm Holders� tables (again via their �Name� column), the CryptDB
server learns that the �Students� and �Firearm Holders� tables have matching records which were

not included in the results of these two join operations (those matching records belong to David �
who is not a terrorist). This may leak signi�cantly more information than one would expect when
executing SQL queries over encrypted databases (speci�cally, in our example, this leaks the fact that
among the non-terrorist students there is a student that has two �rearms in his or her possession).

In light of the growing commercial interest in CryptDB and in various other similar systems,
this state of a�airs suggests that a more in-depth security treatment of adjustable join schemes is
required, and raises the concrete goal of strengthening the security of CryptDB's adjustable join
scheme. O�ering a new trade-o� between the security of CryptDB and its e�ciency is of signi�cant
importance especially given the various recent attacks on CryptDB and other similar systems (see,
for example, [NKW15, PZB15, GSB+16, KKN+16]).

2

1.1 Our Contributions

In this work we �rst put forward a �ne-grained de�nitional framework for adjustable join schemes.
Then, we design a new adjustable join scheme for CryptDB that satis�es our strong notions of
security, thus o�ering a new trade-o� between the security of CryptDB and its e�ciency. In addition,
we discusses various extensions of our scheme (e.g., supporting multi-column joins), which can be
used for �ne-tuning its e�ciency, while providing di�erent levels of security, ranging from the security
guarantees of CryptDB's join scheme to the stronger security guarantees of our new scheme.

Although our strengthening of CryptDB's security does not directly mitigate the recent attacks on
CryptDB (e.g., [NKW15, PZB15]), our new trade-o� constitutes a �rst step towards demonstrating
that the security of CryptDB (and, potentially, of other similar systems) can be gradually improved
in various aspects. Given the promising applications of such systems and the growing commercial
interest in such systems, obtaining a better understanding of such potential trade-o�s is an important
goal.

We emphasize that an adjustable join scheme is general and system-independent cryptographic
primitive. Although our work is motivated by CryptDB, adjustable join schemes can be used by
any database system that would like to support join queries over encrypted data, and not only by
CryptDB (see, for example, [FI12, HKD15, KM16, FVY+17] and the references therein). Moreover,
while our speci�c construction is designed to be compatible with that of CryptDB, our framework
for modeling and de�ning the security of adjustable join schemes is completely system-independent
and is rather likely to �nd additional applications in various other database systems.

Strengthening the de�nitional framework. We put forward strong and realistic notions of
security for adjustable join schemes, identify the relations among them, and their relations to the
notion of security suggested by Popa and Zeldovich [PZ12].

Speci�cally, we �rst extend the notion of security considered by Popa and Zeldovich (which
we denote by 2Partition) that does not capture transitivity due to e�ciency considerations, into a
new notion (which we denote by 3Partition) that does capture transitivity. At a �rst glance, our
new notion may still seem rather arbitrary, and it is not immediately clear what types of potential
adversarial behaviour it actually captures.

Then, we show that our new notion indeed captures the security of adjustable join schemes: We
formalize new simulation-based and indistinguishability-based notions of security, capturing the �min-
imal leakage� of adjustable join schemes, and prove that 3Partition is positioned between their adap-
tive variants and non-adaptive variants (i.e., we prove that their adaptive variants imply 3Partition,
and that 3Partition implies their non-adaptive variants). We refer the reader to Figure 2 for an illus-
tration of our notions of security and the relations among them, and to Section 1.2 for an overview
of our new de�nitional framework.

Constructing a non-transitive adjustable join scheme. We construct an adjustable join
scheme that satis�es our strong notions of security based on the linear assumption [BBS04]. In-
stantiating CryptDB with our scheme strengthens its security by providing a non-transitive join

operator, at the expense of increasing the size of CryptDB's encodings from one group element to
four group elements, and increasing the running time of the adjustment operation from that of
computing one group exponentiation to that of computing four bilinear maps. Most importantly,
however, our join operation (which is typically much more frequent than the adjust operation) relies
on one comparison of single group elements as in CryptDB.

Moreover, by relying on the seemingly stronger matrix-DDH assumption due to Escala et al.
[EHK+17], we obtain a signi�cant improvement to the e�ciency of our scheme while still satisfying

3

our strong notion of security. Speci�cally, basing our scheme on the matrix-DDH assumption results
in increasing the size of CryptDB's encodings from one group element to only two group elements,
and increasing the running time of the adjustment operation from that of computing one group
exponentiation to that of computing only two bilinear maps (see Section 1.4).

Adaptive SIM
Claim 4.9 //

))

Adaptive IND

Claim 4.5vv
3Partition

Claim 4.3

))vv
Non-Adaptive SIM oo

Claim 4.7 // Non-Adaptive IND

Figure 2: An illustration of our notions of security for adjustable join schemes. Solid arrows represent our
claims, and dashed arrows follow by transitivity.

1.2 Overview of Our Contributions

In this section we provide a high-level overview of our contributions. First, we brie�y describe the
notion of an adjustable join scheme. Then, we discuss the notion of security considered by Popa
and Zeldovich [PZ12] for such schemes, and CryptDB's transitive join scheme. Finally, we turn to
describe our strengthened de�nitional framework, and the main technical ideas underlying our new
scheme.

Adjustable join schemes. As discussed above, an adjustable join scheme [PZ12] is a symmetric-
key encoding scheme that enables to generate an encoding c ← Encsk(m, col) of any message m
relative to any column label col, and to generate a pair of tokens (τ, τ ′) ← TokenGensk(col, col

′)
enabling to compute the join of any two given columns labeled by col and col′. The join is computed
publicly via an adjustment algorithm Adj with the following guarantee: For any two column labels
col and col′ with corresponding tokens (τ, τ ′) ← TokenGensk(col, col

′), and for any two messages m
and m′, it holds that

m = m′ ⇐⇒ Adj (τ,Encsk (m, col)) = Adj
(
τ ′,Encsk

(
m′, col′

))
.

That is, the scheme adjusts each encoding using its corresponding part of the token, and compares
the resulting encodings. It should be noted that we consider schemes that may adjust both columns,
whereas CryptDB's scheme adjusts only one of the columns. As far as we can tell, adjusting both
columns is fully compatible with the design of CryptDB, and allows for more �exibility when de-
signing adjustable join schemes. We refer the reader to Section 3.1 for a more detailed description
of adjustable join schemes.

The security of CryptDB's join scheme. The adjustable join scheme proposed by Popa and
Zeldovich [PZ12], as well as the scheme that we proposed in this work, are based on a deterministic
encoding algorithm. Clearly, whenever a deterministic encoding algorithm is used, an unavoidable
leakage is the equality pattern within each column. When considering, in addition, the functionality
of a join scheme, an additional unavoidable leakage is the equality pattern between each pair of
columns for which a join token was provided (and this leakage is inherent due to the functionality of

4

the scheme even if the encoding is randomized). However, CryptDB's join scheme leaks signi�cantly
more information than the minimal leakage, and our goal is to avoid any unnecessary leakage (as
will be formally captured by our notions of security).

Speci�cally, the notion of security introduced by Popa and Zeldovich, that we denote by 2Partition,
considers an experiment in which an adversary may adaptively de�ne two disjoint sets of columns,
which we refer to as a �left� set L and a �right� set R. The adversary is given the ability to compute
joins inside L and joins inside R, but it should not be able to compute the join between any column
in L and any column in R.

However, this intuitive requirement does not capture transitivity: Assume that there is a certain
column col∗ that does not belong to either L or R, then the ability to compute the join between col∗

and columns in L, and to compute the join between col∗ and columns in R, may imply the ability to
compute the join between columns in L and columns in R. Moreover, it is not only that 2Partition
does not capture transitivity, but in fact the adjustable join scheme of Popa and Zeldovich (that
satis�es 2Partition) is indeed transitive due to e�ciency considerations (recall our example based on
Figure 1). We refer the reader to Section 3.2 for a more detailed discussion of the 2Partition notion
and of the adjustable join scheme of Popa and Zeldovich.

Our de�nitional framework. As our �rst step, we introduce a new notion of security, denoted
3Partition, which strictly extends 2Partition. Our notion considers a partitioning of the columns into
three disjoint sets in a manner that enables it to properly model non-transitive joins. Speci�cally, we
consider adversaries that may adaptively de�ne three disjoint sets of columns, which we refer to as
a �left� set L, a �right� set R, and a �middle� set M . The adversary is given the ability to compute
joins inside L, inside M , and inside R, as well as joins between L and M and between R and M ,
but it should not be able to compute the join between any column in L and any column in R.

Intuitively, partitioning the columns into three disjoint sets is inherent when attacking an ad-
justable join scheme. Consider, for example, a natural security notion asking that an adversary
should not be able to distinguish encodings of two databases even when given tokens for computing
joins (clearly, this only makes sense as long as the actual results of the join operations do not trivially
distinguish the two databases). Then, we claim that the di�erence between the two databases can be
gradually divided into small �changes�, each of them implicitly de�nes a partition into three disjoint
sets: There is the set of columns that contain this change, the set of columns that are joined with
those columns (and are thus limited to not reveal the di�erence), and the set of all other columns
(which are not subject to any restrictions).

At this point one may ask whether partitioning the columns into three disjoint sets is su�cient
for capturing the security of adjustable join schemes, or whether we should also consider partitioning
the columns into more than three sets. We show that partitioning the columns into three disjoint sets
is su�cient, and that 3Partition indeed captures the security of adjustable join schemes: We formal-
ize new simulation-based and indistinguishability-based notions of security, capturing the �minimal
leakage� of adjustable join schemes, and prove that 3Partition in positioned between their adaptive
variants and non-adaptive variants (recall Figure 2 for an illustration of our notions of security and
the relations among them). We refer the reader to Section 4 for a detailed description and analysis
of our de�nitional framework.

Our adjustable join scheme. Our scheme is inspired by that of Popa et al. [PRZ+11, PZ12,
PRZ+12, Pop14]. Their scheme uses a group G of prime order p that is generated by an element
g ∈ G, and a pseudorandom function for identifying messages and column labels as pseudorandom
Zp elements. The encoding of a message m for a column col is the group element gacol·xm ∈ G, where

5

acol and xm are the pseudorandom Zp elements corresponding to col and m, respectively. A token
for computing the join between columns coli and colj is the element τi,j = acoli · a

−1
colj
∈ Zp, and

thus it is clear that such tokens enable transitive joins: Given the tokens τi,k = acoli · a
−1
colk
∈ Zp and

τk,j = acolk · a
−1
colj
∈ Zp, one can e�ciently compute the token τi,j = τi,k · τ−1

k,j .
The main idea underlying our scheme is to introduce additional structure into both the encodings

and the tokens, and to rely on a bilinear map ê : G×G→ GT for computing the adjusted encodings.
First, instead of applying a pseudorandom function for identifying messages and column labels as
pseudorandom Zp elements, we apply a pseudorandom function for identifying messages as pseudo-
random Z4

p vectors, and column labels as pseudorandom invertible Z4×4
p matrices. In what follows,

for a matrix A = [aij] ∈ Za×bp we de�ne gA = [gaij]ij ∈ Ga×b, and for matrices H = [hij] ∈ Ga×b and

H ′ = [h′ij] ∈ Gb×c we de�ne ê(H,H ′) = [
∏b
k=1 ê(hik, h

′
kj)]ij ∈ Ga×c

T (thus, for matrices A and B of

appropriate dimensions it holds that ê(gA, gB) = ê(g, g)AB).
Equipped with this notation, the encoding of a message m for a column label col is de�ned

as c = gAcolxm ∈ G4, where xm ∈ Z4
p and Acol ∈ Rk4(Z4×4

p) are the pseudorandom vector and
matrix associated with m and col, respectively. Our token-generation algorithm takes as input two
column labels, coli and colj , uniformly samples a vector v ← Z4

p, and outputs the adjustment tokens

g
vTA−1

coli ∈ G4 and g
vTA−1

colj ∈ G4. Adjusting an encoding c ∈ G4 using a token τ ∈ G4 is computed
as ê(τT, c) ∈ GT , and we prove that correctness holds with an overwhelming probability: For any
two column labels coli and colj , and for any two messages mi and mj , it holds that mi = mj if and

only if ê(g
vTA−1

coli , gAcoli
xmi) = ê(g

vTA−1
colj , g

Acolj
xmj) with all but a negligible probability. We refer the

reader to Section 5.1 for the formal description of our scheme.
One may wonder why we use matrices and vectors instead of scalars (as in [PZ12], as well as

in [FI12, HKD15]). Otherwise, the scheme is trivially broken, because of the presence of a bilinear
map unless rather non-standard assumptions are made (such as the new assumption introduced by
Furukawa and Isshiki [FI12] for the purpose of their analysis). In particular, for distinct messages
m,m′,m′′ and columns coli, colj , an adversary can distinguish between (gacolixm , gacolixm′ , g

acoljxm , g
acoljxm′)

and (gacolixm , gacolixm′ , g
acoljxm , g

acoljxm′′) by comparing the bilinear image of the �rst and fourth ele-
ments to the bilinear image of the second and third elements.

Our proof of security. For proving the security of our scheme, we �rst observe that the linear
assumption [BBS04] implies that the two distributions (gA, gAx, gB, gBy) and (gA, gAx, gB, gBx) are
computationally indistinguishable, where A,B ← Z4×4

p and x, y ← Z4
p. Intuitively, this enables

us to view A and B as Z4×4
p matrices corresponding to two di�erent column labels, and x and y

as Z4
p vectors corresponding to two di�erent messages. Without being explicitly given a token for

computing the join between the columns A and B, an adversary should not be able to distinguish
between an encoding gBx of x to the column B and an encoding gBy of y to the column B, even
when given an encoding gAx of x to the column A in both cases.

Our proof of security realizes this intuition, showing that given (gA, gAx, gB, gBy) or (gA, gAx, gB,
gBx) as input we can essentially generate an entire encoding of an adversarially-chosen database, as
well as generate all join tokens of the adversary's choice, as long as no token is requested for the join
of A and B. Most importantly, although we do not explicitly know either A or B, for any column
C we can generate tokens for computing the join between A and C, and the join between C and B.
The main challenge, however, is that in our 3Partition notion, the adversary is not limited to only
one such pair A and B, and more generally, we do not know in advance the entire structure of the
database or the pairs of columns for which the adversary will request join tokens.

Recall that our 3Partition notion considers adversaries that may adaptively de�ne three disjoint

6

sets of columns, which we refer to as a �left� set L, a �right� set R, and a �middle� set M . The
adversary is given the ability to compute joins inside L, inside M , and inside R, as well as joins
between L andM and between R andM , but it is not given the ability to compute the join between
any column in L and any column in R. We rely on this structure for reusing the matrix A for all
columns in L and for reusing the matrix B for all columns in R, where in both cases this is done via
an appropriate re-randomization. The fact that the adversary is not allowed to request join tokens
between L and R guarantees that we are able to generate all required join tokens. We refer the
reader to Section 5.2 for our proof of security.

1.3 Additional Related Work

Supporting join queries over encrypted data. Additional approaches for supporting join
queries over encrypted data include those of Furukawa and Isshiki [FI12], Hang, Kerschbaum and
Damiani [HKD15], and Kamara and Moataz [KM16] which we now discuss.

Furukawa and Isshiki [FI12] consider a notion of security for join schemes which is seemingly
weaker compared to our 3Partition notion, and captures non-transitivity to a certain extent (it is
essentially equivalent to a non-adaptive variant of our 3Partition notion). However, as we pointed out
in Section 1.1, without also including more standard indistinguishability-based and simulation-based
notions (as we do in our work), it is far from being clear that such a notion indeed captures the
security of join schemes. Furukawa and Isshiki also propose a speci�c scheme that can be viewed as
based on a simpli�ed variant of our scheme where scalars are used instead of matrices and vectors.
As discussed in Section 1.2, such a scheme is trivially insecure with respect to our notions of security
unless rather non-standard assumptions are made (speci�cally, Furukawa and Isshiki introduced a
new and non-standard assumption for the purpose of their analysis).

Hang, Kerschbaum and Damiani [HKD15] frame their approach in terms of deterministic proxy
re-encryption. However, they propose a weak notion of security which does not seem to capture
non-transitivity, and their proposed scheme does not satisfy any of our notions of security (or even
the notion of security considered by Popa and Zeldovich [PZ12]) under any assumption. As far as
we can tell, our scheme is fully compatible with their approach and design goals.

Kamara and Moataz [KM16] recently proposed the �rst solution for supporting SQL queries on
encrypted databases that does not make use of deterministic encodings of the data. Their approach
avoids the usage of property-preserving encryption techniques (that are known to be susceptible
to various attacks [NKW15, GSB+16, KKN+16]) and of general-purpose primitives such as fully-
homomorphic encryption or oblivious RAM (that are currently somewhat unlikely to lead to practical
schemes). Their scheme provides strong security guarantees, and in particular a non-transitive join
operator. However, their scheme is based on essentially computing all possible joins in advance,
and then the problem can be solved via symmetric searchable encryption techniques. Thus, their
approach both requires a signi�cant amount of storage (may be quadratic in the size of the database
� and thus potentially impractical), and does not seem to support dynamic updates to either the
structure or the content of the database.

Proxy re-encryption schemes. Proxy re-encryption schemes (e.g., [BBS98, ID03, AFG+06])
have various applications to distributed storage systems. However, the known constructions and
notions of security for proxy re-encryption typically focus on randomized schemes, and therefore
(in general) even after invoking the re-encryption algorithm it is not directly clear how to compare
two encrypted messages without providing a decryption key � which results in a transitive scheme.
Deterministic variants of proxy re-encryption may support such comparisons, as suggested by Hang,
Kerschbaum and Damiani [HKD15] and discussed above.

7

Private set intersection. Adjustable join schemes are somewhat related to the classic problem
of designing private set-intersection protocols both in terms of techniques and in terms of security
notions. However, in the setting of adjustable join schemes all elements are encoded using a shared
secret key sk, whereas in the setting of private set-intersection protocols the parties are not assumed
to share any secrets. Moreover, the approach underlying the existing practical protocols does not
seem to rely on establishing shared secrets as part of the protocol (see, for example, [HEK12, PSS+15,
FHN+16] and the references therein).

Searchable encryption. Adjustable join schemes may also seem somewhat related to symmetric
searchable encryption [SWP00, Goh03, CM05, CGK+06, CK10, vLSD+10, CGK+11, KO12, KPR12,
CJJ+13, KO13, KP13, BHJ+14, CJJ+14, CT14, CGP+15, ANS+16]. However, in the setting of
symmetric searchable encryption a search token is associated with a speci�c message and enables to
identify encryptions of that message, whereas in an adjustable join schemes a join token enables to
reveal the equality pattern between two sets of encryptions. As a result, both our notions of security
and our techniques are signi�cantly di�erent from those of symmetric searchable encryption. Never-
theless, it would be intriguing to explore any potential applications of our techniques to symmetric
searchable encryption.

1.4 Extensions and Open Problems

Multi-column joins. Following the work of Popa et al. [PRZ+11, PRZ+12, Pop14] we have con-
sidered joins according to two columns (and thus two tables). Our adjustable join scheme can in
fact be extended to support multi-column joins by modifying its token-generation algorithm (and
without modifying its encoding or adjustment algorithms). This enables to join multiple tables more
e�ciently (compared to successively applying two-column joins), and leads to reducing the space
overhead by using a smaller number of adjusted encodings.

Speci�cally, our token-generation algorithm can be modi�ed as follows. On input params =
(G,GT , g, p, ê), sk = (K1,K2) and an arbitrary number k = k(λ) column labels col1, . . . , colk ∈ Lλ,
the modi�ed token-generation algorithm uniformly samples v ← Z4

p \ {(0, 0, 0, 0)}, computes Acoli =

PRFK2(coli) ∈ Rk4(Z4×4
p) for every i ∈ [k], and outputs the tuple

(
g
vTA−1

col1 , . . . , g
vTA−1

colk

)
∈
(
G4
)k

of

adjustment tokens. Moreover, we can generate such a multi-join adjustment tokens even when not
all k columns are known in advance, as long as we securely store the value v (or, possibly, regenerate

it using a pseudorandom function), then compute the value g
vTA−1

coli only when coli is determined.
This allows to reduce space usage (and time as well), by storing adjusted encodings for cliques of

joined columns, instead of storing adjusted encodings for each pair of them. Moreover, this allows
tuning a trade-o� between privacy and e�ciency in space and time, by using multiple-column join
encodings for the less sensitive data. At the extreme end, one can store only one column of adjusted
encodings for each column, by using multiple-column encodings for disjoint sets of columns, and
obtain security guarantees that are similar to the 2Partition-security of [PZ12]. Overall, our support
for multi-column joins enables to �ne-tune the e�ciency of our scheme, while providing di�erent
levels of security, ranging from the security guarantees of CryptDB's join scheme to the stronger
security guarantees of our new scheme.

Improved e�ciency via the matrix-DDH assumption. The security of our adjustable join
scheme is based on the assumption the two distributions (params, gA, gAx, gB, gBy) and (params,
gA, gAx, gB, gBx) are computationally indistinguishable, where params = (G,GT , g, p, ê) ← G(1λ),
A,B ← Rk4(Z4×4

p) and x, y ← Z4
p. This assumption is the reason that we increase the size of

8

CryptDB's encodings from one group element to four group elements, and increase the running time
of the adjustment operation from that of computing one group exponentiation to that of computing
four bilinear maps.

Claim 2.5 (which we prove in Appendix A.1) states that this assumption is implied by the linear
assumption [BBS04]. The seemingly stronger U4,2-MDDH assumption due to Escala et al. [EHK+17],
states that our underlying assumption holds already for 2 × 2 matrices instead of 4 × 4 matrices.
In turn, based on the U4,2-MDDH assumption we obtain a more e�cient scheme, increasing the
size of CryptDB's encodings from one group element to two group elements, and increasing the
running time of the adjustment operation from that of computing one group exponentiation to that
of computing two bilinear maps. This more e�cient scheme is directly obtained from our scheme
by simply modifying the dimensions of all 4× 4 matrices and 4× 1 vectors to dimensions 2× 2 and
2× 1, respectively (and without any additional modi�cation to either the construction or the proof
of security).

Adaptive security. Our adjustable join scheme satis�es our strong 3Partition notion, which con-
siders adversaries that may determine databases of any polynomial size (i.e., databases containing
any polynomial number columns and records). When considering databases with a logarithmic num-
ber of columns (but still allowing any polynomial number of records!), it is possible to prove that
our scheme satis�es our even stronger, adaptive, indistinguishability-based notion.

This is done by �guessing� the partitioning of the columns into three disjoint sets, as implicitly
de�ned by the adversary's token-generation queries within our adaptive indistinguishability experi-
ment � thus leading to only a polynomial security loss as the number of such partitions is polynomial
assuming that the number of columns is logarithmic (a rather standard argument shows that the
notion of security obtained from 3Partition by not asking the adversary to explicitly partition the
columns into three sets, is equivalent to our adaptive indistinguishability-based notion). Similarly,
by relying on the standard sub-exponential variant of the linear assumption, we can prove adaptive
indistinguishability-based security for databases with any a-priori bounded polynomial number of
columns (without requiring any a-priori bound on the polynomial number of records). We leave the
task of formalizing these intuitions to future work. An intriguing open problem is to achieve such
a level of security without relying on sub-exponential assumptions or without an a-priori bound on
the number of columns.

Deterministic vs. randomized encodings. Our encoding algorithm is deterministic similarly
and in compatibility with that of CryptDB. An intriguing open problem is to explore the possibility
and the potential advantages of join schemes that are based on a randomized encoding algorithm.
Given the inherent leakage of the join operation itself, it is not immediately clear that using a ran-
domized encoding algorithm may o�er any clear advantage except for avoiding the inherent leakage
of deterministic encoding (i.e., the equality pattern within each column).

1.5 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we introduce the basic tools and
computational assumptions underlying our contributions. In Section 3 we present the notion of an
adjustable join scheme, and discuss the weakness of the notion of security for such schemes that was
put forward by Popa and Zeldovich [PZ12]. In Section 4 we introduce our new and re�ned framework
for capturing the security of adjustable join schemes. In Section 5 we present our new adjustable
join scheme and prove its security.

9

2 Preliminaries

In this section we present the notation and basic de�nitions that are used in this work. For a
distribution X we denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x from the uniform
distribution over X . For an integer n ∈ N we denote by [n] the set {1, . . . , n}, and for two random
variables X and Y we denote by ∆(X,Y) their statistical distance. The following two facts follow
directly from notion of statistical distance:

Fact 2.1. Let X and Y be two random variables over Ω. Then, for any (possibly randomized)

function f : Ω→ Ω′ it holds that ∆(f(X), f(Y)) ≤ ∆(X,Y).

Fact 2.2. Let X and Y be a random variables over Ω such that Pr[Y = ω] = Pr[X = ω | Ac] for
some event A and for all ω ∈ Ω. Then, it holds that ∆(X,Y) ≤ Pr[A].

Throughout the paper, we denote by λ ∈ N the security parameter. A function ν : N → R+ is
negligible if for every constant c > 0 there exists an integer Nc such that ν(λ) < λ−c for all λ > Nc.
Two sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are statistically indistinguishable
(denoted X≈sY) if ∆(Xλ, Yλ) is negligible in λ. Two sequences of random variables X = {Xλ}λ∈N
and Y = {Yλ}λ∈N are computationally indistinguishable (denoted X≈cY) if for any probabilistic
polynomial-time algorithm A it holds that

∣∣Prx←Xλ [A(1λ, x) = 1]− Pry←Yλ [A(1λ, y) = 1]
∣∣ is negli-

gible in λ. The following fact follows directly from notion of computational indistinguishability:

Fact 2.3. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be computationally indistinguishable. Then, for

any probabilistic polynomial-time algorithm A it holds that A(X) and A(Y) are computationally

indistinguishable.

2.1 Pseudorandom Functions

Let {Kλ,Xλ,Yλ}λ∈N be a sequence of sets and let PRF = (PRF.Gen,PRF.Eval) be a function family
with the following syntax:

• PRF.Gen is a probabilistic polynomial-time algorithm that takes as input the unary represen-
tation of the security parameter λ, and outputs a key K ∈ Kλ.
• PRF.Eval is a deterministic polynomial-time algorithm that takes as input a key K ∈ Kλ and
a value x ∈ Xλ, and outputs a value y ∈ Yλ.

The sets Kλ, Xλ, and Yλ are referred to as the key space, domain, and range of the function fam-
ily, respectively. For ease of notation we may denote by PRF.EvalK(·) or PRFK(·) the function
PRF.Eval(K, ·) for K ∈ Kλ. The following is the standard de�nition of a pseudorandom function
family.

De�nition 2.4. A function family PRF = (PRF.Gen,PRF.Eval) is pseudorandom if for every proba-
bilistic algorithm A there exists a negligible function ν(·) such that

AdvPRF,A(λ)
def
=

∣∣∣∣ Pr
K←PRF.Gen(1λ)

[
APRF.EvalK(·)(1λ) = 1

]
− Pr
f←Fλ

[
Af(·)(1λ) = 1

]∣∣∣∣
≤ ν(λ),

for all su�ciently large λ ∈ N, where Fλ is the set of all functions that map Xλ into Yλ.

10

2.2 Computational Assumptions

Let G be a probabilistic polynomial-time algorithm that takes as input the security parameter 1λ,
and outputs a tuple (G,GT , g, p, ê), where p is a λ-bit prime number, G and GT are groups of order
p, g is a generator of G, and ê : G × G → GT is a non-degenerate e�ciently-computable bilinear
map.

For a matrix A = [aij] ∈ Za×bp we de�ne gA = [gaij]ij ∈ Ga×b, and for matrices H = [hij] ∈ Ga×b

and H ′ = [h′ij] ∈ Gb×c we de�ne ê(H,H ′) = [
∏b
k=1 ê(hik, h

′
kj)]ij ∈ Ga×c

T (thus, for matrices A and B

of appropriate dimensions it holds that ê(gA, gB) = ê(g, g)AB). We denote by Rkr(Za×bp) the set of
all a× b matrices over Zp of rank r.

The linear assumption [BBS04] states that for params ← G(1λ), g1, g2, g3 ← G and r1, r2, r3 ←
Zp, the two distributions (params, g1, g2, g3, g

r1
1 , g

r2
2 , g

r3
3) and (params, g1, g2, g3, g

r1
1 , g

r2
2 , g

r1+r2
3) are

computationally indistinguishable. The security of our scheme relies on the following assumption �
which we prove to follow from the linear assumption (see Appendix A.1):

Claim 2.5. The linear assumption implies that the two distributions (params, gA, gAx, gB, gBy) and
(params, gA, gAx, gB, gBx) are computationally indistinguishable, where params = (G,GT , g, p, ê) ←
G(1λ), A,B ← Rk4(Z4×4

p) and x, y ← Z4
p.

As discussed in Section 1.4, a variant of the above claim for 2 × 2 matrices is implied by the
matrix-DDH assumption due to Escala et al. [EHK+17]. Speci�cally, their U4,2-MDDH assumption
states that the two distributions (params, gC , gCv) and (params, gC , gu) are computationally indis-
tinguishable, where params = (G,GT , g, p, ê)← G(1λ), C ← Z4×2

p , v ← Z2
p and u← Z4

p.

Claim 2.6. The U4,2-MDDH assumption implies that the two distributions (params, gA, gAx, gB, gBy)
and (params, gA, gAx, gB, gBx) are computationally indistinguishable, where params = (G,GT , g, p, ê)
← G(1λ), A,B ← Rk2(Z2×2

p) and x, y ← Z2
p.

The proof of Claim 2.6 is rather straightforward. Given (params, gC , gu), where either u ← Z4
p

or u = Cv where v ← Z2
p, we view C and u as consisting of two equal-sized matrices and vectors,

respectively,

C =

[
A
B

]
, u =

[
w
z

]
,

and rearrange the tuple as (params, gA, gw, gB, gz). Since the probability that A or B are not in-
vertible is negligible, by Fact 2.2 we may assume that they are invertible. Now, for x, y ← Z2

p, it
holds that Ax and By are independent, uniformly distributed, and independent of A and B. So, if
u← Z4

p, then w and z are distributed as Ax and By. On the other hand, if u = Cv where v ← Z2
p,

then w = Av and z = Bv. So, distinguishing between the two ensembles in Claim 2.6 would result
in contradicting the U4,2-MDDH assumption.

3 Adjustable Join Schemes and Their Security

In this section we �rst present the notion of an adjustable join scheme [PRZ+11, PZ12, PRZ+12,
Pop14]. Then, we present the notion of security introduced by Popa and Zeldovich [PZ12] for such
schemes, that we denote by 2Partition, and observe that it does not guarantee non-transitive joins.

3.1 Adjustable Join Schemes

An adjustable join scheme for a message spaceM = {Mλ}λ∈N, an encoding space C = {Cλ}λ∈N and
a column label space L = {Lλ}λ∈N, is a 4-tuple Π = (KeyGen,Enc,TokenGen,Adj) of polynomial-time
algorithms with the following properties:

11

• The key-generation algorithm, KeyGen, is a probabilistic algorithm that takes as input a unary
representation 1λ of the security parameter λ ∈ N, and outputs a secret key sk and public
parameters params.

• The encoding algorithm, Enc, is a deterministic algorithm that takes as input a secret key sk,
a message m ∈Mλ and a column label col ∈ Lλ, and outputs an encoding c ∈ Cλ.
• The token-generation algorithm, TokenGen, is a probabilistic algorithm that takes as input a
secret key sk and two column labels coli, colj ∈ Lλ, and outputs a pair (τi, τj) of adjustment
tokens.

• The adjustment algorithm, Adj, is a deterministic algorithm that takes as input the public
parameters params, an encoding c ∈ Cλ and an adjustment token τ , and outputs an encoding
c′ ∈ Cλ.

Correctness. In terms of correctness, we require that for all su�ciently large λ ∈ N, and for any
two column labels coli, colj ∈ Lλ and two messages mi,mj ∈Mλ, it holds that

mi = mj ⇐⇒ Adj (params, τi,Encsk (mi, coli)) = Adj (params, τj ,Encsk (mj , colj))

with an overwhelming probability over the choice of (sk, params) ← KeyGen(1λ) and (τi, τj) ←
TokenGensk(coli, colj).

A comparison with the notion of Popa and Zeldovich [PZ12]. The above notion of an
adjustable join scheme is essentially identical to the one originally formalized by Popa and Zeldovich
[PZ12] except for the following minor di�erence: When computing the join of columns i and j, we
allow the scheme to apply the adjustment algorithm to the encodings of column i and to the encodings
of column j, whereas Popa and Zeldovich allow the scheme to apply the adjustment algorithm only to
the encodings of column j. As far as we can tell, applying the adjustment algorithm to the encodings
of both columns is fully compatible with the design of CryptDB.

3.2 The 2Partition Security Notion and its Weakness

The notion of security introduced by Popa and Zeldovich [PZ12], that we denote by 2Partition,
considers an experiment in which an adversary may adaptively de�ne two disjoint sets of columns,
which we refer to as a �left� set L and a �right� set R. The adversary is given the ability to compute
joins inside L and joins inside R, but it should not be able to compute the join between any column
in L and any column in R. Speci�cally, at any point in time the adversary can insert any column to
either L or R, and to obtain encodings of messages of her choice relative to any of these columns. In
addition, the adversary may obtain tokens for computing the join of all columns coli and colj such
that coli, colj ∈ L or coli, colj ∈ R.

The 2Partition notion of security asks that such an adversary should not be able to compute the
join of any two columns coli ∈ L and colj ∈ R. This is modeled in the experiment by enabling the
adversary to output a pair of messages, m0 and m1, and providing the adversary either with the
encodings of m0 for all columns in R or with the encodings of m1 for all columns in R. The adversary
should not be able to distinguish these two cases with a non-negligible advantage (of course, as long
as the adversary did not explicitly ask for an encoding of m0 or m1 relative to some column label in
R).

A comparison with the notion of Popa and Zeldovich [PZ12]. The above informal de-
scription is in fact a simpli�cation of the notion considered by Popa and Zeldovich [PZ12], but a

12

straightforward hybrid argument shows that the two are in fact equivalent (whenever the message
space is not too small). Speci�cally, whereas in the above description the adversary obtains either
encodings of m0 for all columns in R or encodings of m1 for all columns in R, Popa and Zeldovich
provide the adversary with encodings of both m0 and m1 for all columns in R but in a shu�ed order.
We refer the reader to [PZ12, Sec. 3.1] for a more formal description of their notion.

2Partition does not capture transitivity. Intuitively, the 2Partition notion guarantees that for
any two disjoint sets of columns, L and R, the ability to compute joins inside L and joins inside
R, does not imply the ability to compute the join between any column in L and any column in R.
However, this does not capture transitivity: Assume that there is a certain column col∗ that does
not belong to either L or R, then the ability to compute the join between col∗ and columns in L,
and to compute the join between col∗ and columns in R, may imply the ability to compute the join
between columns in L and columns in R.

Moreover, it is not only that 2Partition does not capture transitivity, but in fact the adjustable
join scheme of Popa and Zeldovich [PZ12] is completely transitive (due to e�ciency considerations)
although it satis�es 2Partition: For any three columns coli, colj and colk, given tokens for computing
the joins between coli and colk and between colk and colj , it is easy to e�ciently construct a token
for computing the join between coli and colj .

Speci�cally, as pointed out in Section 1.2, their scheme uses a group G of prime order p that
is generated by an element g ∈ G, and a pseudorandom function PRF mapping column labels and
messages into Z∗p with keys skcol and skmsg, respectively (Popa et al. use a pseudorandom permutation,
but in fact any pseudorandom function su�ces as any speci�c collision occurs with only a negligible
probability whenever the range of the function is of size super-polynomial in the security parameter).
The encoding of a message m for a column coli is the group element gPRFskcol

(coli)·PRFskmsg (m) ∈ G, and
a token for computing the join between columns coli and colj is the element τi,j = PRFskcol(coli) ·
PRFskcol(colj)

−1 ∈ Zp. Thus, it is clear that given the tokens τi,k = PRFskcol(coli) · PRFskcol(colk)−1 ∈
Zp and τk,j = PRFskcol(colk) · PRFskcol(colj)−1 ∈ Zp, one can e�ciently compute the token τi,j =
τi,k · τk,j .

4 Strengthening the De�nitional Framework

In this section we introduce our new and re�ned framework for capturing the security of adjustable
join schemes. First, in Section 4.1, we introduce a new notion of security, denoted 3Partition, which
strictly strengthens 2Partition. Our notion considers a partitioning of the columns into three disjoint
sets (instead of two disjoint sets as in the 2Partition notion) in a manner that enables it to properly
model non-transitive joins.

As discussed in Section 1.2, partitioning the columns into three disjoint sets is intuitively inherent
for capturing the security of adjustable join schemes. In Sections 4.2 and 4.3 we show that partitioning
the columns into three sets is indeed su�cient and captures the security of adjustable join schemes
in a natural manner: We formalize natural simulation-based and indistinguishability-based security
notion, capturing the �minimal leakage� of join schemes without any explicit partitioning of the
columns, and prove that 3Partition in positioned between their adaptive variants and their non-
adaptive variant. Finally, in Section 4.4 we include some additional remarks regarding the standard
aspects of column privacy and leakage of frequency characteristics that arise in our notions of security.

13

4.1 The 3Partition Security Notion

Our 3Partition notion of security considers an adversary that may adaptively de�ne three disjoint
sets of columns, which we refer to as a �left� set L, a �right� set R, and a �middle� set M . The
adversary is given the ability to compute joins inside L, inside M , and inside R, as well as joins
between L and M and between R and M , but it should not be able to compute the join between
any column in L and any column in R. Speci�cally, at any point in time the adversary can insert
any column to either L, R orM , and to obtain encodings of messages of her choice relative to any of
these columns. In addition, the adversary may obtain tokens for computing the join of all columns
coli and colj such that coli, colj ∈ L ∪M or coli, colj ∈ R ∪M .

The 3Partition notion of security asks that such an adversary should not be able to compute the
join of any two columns coli ∈ L and colj ∈ R. This is modeled by enabling the adversary to output
a pair of messages, m0 and m1, and providing the adversary either with the encodings of m0 for all
columns in R or with the encodings of m1 for all columns in R. The adversary should not be able
to distinguish these two cases with a non-negligible advantage (of course, as long as the adversary
did not explicitly ask for an encoding of m0 or m1 relative to some column label in R ∪M).

De�nition 4.1. A join scheme Π = (KeyGen,Enc,TokenGen,Adj) is 3Partition-secure if for any
probabilistic polynomial-time adversary A there exists a negligible function ν(·) such that

Adv3ParΠ,A (λ)
def
=
∣∣∣Pr
[
Exp3ParΠ,A (λ, 0) = 1

]
− Pr

[
Exp3ParΠ,A (λ, 1) = 1

]∣∣∣ ≤ ν(λ)

for all su�ciently large λ ∈ N, where for each b ∈ {0, 1} the experiment Exp3ParΠ,A (λ, b) is de�ned as
follows:

1. Setup phase: Sample (sk, params) ← KeyGen(1λ), and initialize L = R = M = ∅. The public
parameters params are given as input to the adversary A.

2. Pre-challenge query phase: A may adaptively issue AddColumn, Enc and TokenGen queries,
which are de�ned as follows.

• AddColumn(col, S): Adds the column label col to the set S, where S ∈ {�L�, �R�, �M �}.
A is not allowed to add a column label into more than one set (i.e., the sets L, R and M
must always be pairwise disjoint).

• Enc(m, col): Computes and returns to A an encoding c ← Encsk(m, col), where col ∈
L ∪R ∪M .

• TokenGen(coli, colj): Computes and returns toA a pair of tokens (τi, τj)← TokenGensk(coli,
colj), where coli, colj ∈ L ∪M or coli, colj ∈ R ∪M .

3. Challenge phase: A chooses messages m0 and m1 subject to the constraint that A did not
previously issue a query of the form Enc(m, col) where m ∈ {m0,m1} and col ∈ R ∪M . As a
response, A obtains an encoding c← Encsk(mb, col) for every col ∈ R.

4. Post-challenge query phase: As in the pre-challenge query phase, with the restriction that A
is not allowed to issue a query of the form Enc(m, col) where m ∈ {m0,m1} and col ∈ R ∪M .
In addition, for each AddColumn(col, �R�) query, A is also provided with c← Encsk(mb, col).

5. Output phase: A outputs a value σ ∈ {0, 1} which is de�ned as the value of the experiment.

Our 3Partition notion clearly strengthens the 2Partition notion of Popa and Zeldovich [PZ12] by
considering a partitioning of the column labels into three sets instead of two sets. Moreover, as
shown in Section 3.2, the adjustable join scheme of Popa and Zeldovich is not a 3Partition-secure
scheme, although they proved it to be a 2Partition-secure scheme, and thus our 3Partition notion
strictly strengthens the 2Partition notion.

14

4.2 Indistinguishability-Based Security Notions

We �rst introduce some basic notation that will be helpful in formalizing our indistinguishability-
based security notions. A database DB of dimensions dim = dim(DB) = (t, (ni)

t
i=1) consists of a

list of distinct column labels, denoted Cols = Cols(DB) = (col1, . . . , colt), and of a list of distinct
messages Li = (mi

1, . . . ,m
i
ni) for each column label coli ∈ Cols. The size of a database is de�ned as

size(DB) =
∑t

i=1 ni (i.e., the total number of messages in DB). We let

V = V (dim) = {(i, k)|i ∈ [t], k ∈ [ni]}

and view the messages of the database as a map m = m(DB) : V →Mλ by setting m(i, k) = mi
k. A

map m is �valid� (i.e., can be a part of a description of a database) if and only if m(i, k) 6= m(i, `)
for all i ∈ [t] and k 6= ` ∈ [ni].

Given an adjustable join scheme Π = (KeyGen,Enc,TokenGen,Adj) we extend its encoding al-
gorithm from encoding single messages to encoding a complete database by de�ning Encsk(DB) =
{(i, k,Encsk(m(i, k), coli))}i∈[t],k∈[ni]. Similarly, given a list of pairs of indices I = ((i1, j1), . . . , (is, js))
∈ ([t]× [t])∗, we extend its token-generation algorithm by de�ning

TokenGensk(DB, I) = {(i, j,TokenGensk(coli, colj))}(i,j)∈I .

In addition, for such a list I and a database DB we de�ne

JoinDB(i, j) = {(k, `) ∈ [ni]× [nj] : m(i, k) = m(j, `)} ,

and we de�ne the leakage of (DB, I) to be

L(DB, I) =
(
dim(DB),Cols(DB), I, {(i, j, JoinDB(i, j))}(i,j)∈I

)
.

Non-adaptive IND security. Our non-adaptive indistinguishability-based notion is perhaps the
most simplistic and natural notion: It considers an adversary that obtains the public parameters
of the scheme, and then chooses two databases, DB0 and DB1, and a list I of pairs of indices
such that L(DB0, I) = L(DB1, I) (i.e., the functionality of the scheme does not trivially distinguish
DB0 and DB1). We ask that such an adversary has only a negligible advantage in distinguishing
between (Encsk(DB0),TokenGensk(DB0, I)) and (Encsk(DB1),TokenGensk(DB1, I)). That is, the ad-
versary should essentially not be able to distinguish between an encoding of DB0 and an encoding
of DB1, where in both cases she is given tokens for computing the joins of all column label pairs
corresponding to the pair of indices in I.

De�nition 4.2 (Non-adaptive IND security). A join scheme Π = (KeyGen,Enc,TokenGen,Adj)
is non-adaptively IND-secure if for any probabilistic polynomial-time adversary A there exists a
negligible function ν(·) such that

AdvnaINDΠ,A (λ)
def
=
∣∣∣Pr
[
ExpnaINDΠ,A (λ, 0) = 1

]
− Pr

[
ExpnaINDΠ,A (λ, 1) = 1

]∣∣∣ ≤ ν(λ)

for all su�ciently large λ ∈ N, where for each b ∈ {0, 1} the experiment ExpnaINDΠ,A (λ, b) is de�ned as
follows:

1. Setup phase: Sample (sk, params) ← KeyGen(1λ). The public parameters params are given as
input to the adversary A.

2. Challenge phase: A chooses two databases, DB0 and DB1, and a list I of column label pairs such
that L(DB0, I) = L(DB1, I). As a response, A obtains Encsk(DBb) and TokenGensk(DBb, I).

15

3. Output phase: A outputs a value σ ∈ {0, 1} which is de�ned as the value of the experiment.

The following claim, which is proved in Appendix A, states that non-adaptive IND security is
implied by 3Partition security.

Claim 4.3. Any 3Partition-secure join scheme that supports a message space of super-polynomial

size (in the security parameter λ ∈ N) is a non-adaptively IND-secure join scheme.

Adaptive IND security. We consider an adaptive �avor of De�nition 4.2 by considering adver-
saries that can adaptively issue encoding queries and token-generation queries. Each encoding query
consists of a pair of messages, m0 and m1, and a column label col, and the adversary obtains an
encoding Encsk(mb, col) (where b ∈ {0, 1} is �xed throughout the experiment). The adversary's en-
coding queries de�ne two databases, DB0 and DB1, of the same dimension that have the same column
label set. Each token-generation query consists of a pair of column labels, and the adversary obtains
a token for computing the join of these columns. The adversary's token-generation queries de�ne a
set I of all column label pairs for which the adversary has obtained tokens. Such an adversary is
called �valid� if at the end of the experiment it holds that L(DB0, I) = L(DB1, I).

De�nition 4.4 (Adaptive IND security). A join scheme Π = (KeyGen,Enc,TokenGen,Adj) is IND-
secure if for any probabilistic polynomial-time valid adversary A there exists a negligible function
ν(·) such that

AdvINDΠ,A(λ)
def
=
∣∣∣Pr
[
ExpIND

Π,A(λ, 0) = 1
]
− Pr

[
ExpINDΠ,A(λ, 1) = 1

]∣∣∣ ≤ ν(λ)

for all su�ciently large λ ∈ N, where for each b ∈ {0, 1} the experiment ExpINDΠ,A(λ, b) is de�ned as
follows:

1. Setup phase: Sample (sk, params) ← KeyGen(1λ). The public parameters params are given as
input to the adversary A.

2. Query phase: A may adaptively issue Enc and TokenGen queries, which are de�ned as follows.

• Enc(m0,m1, col): Computes an encoding c← Encsk(mb, col), and returns c to A.
• TokenGen(coli, colj): Computes a token (τi, τj) ← TokenGensk(coli, colj), and returns

(τi, τj) to A.
3. Output phase: A outputs a value σ ∈ {0, 1} which is de�ned as the value of the experiment.

The following claim states that adaptive IND security implies 3Partition security.

Claim 4.5. Any adaptively IND-secure join scheme is a 3Partition-secure join scheme.

The proof of Claim 4.5 is straightforward, as the IND-security experiment is essentially less
restrictive than the 3Partition-security experiment. Speci�cally, given an adversary to the 3Partition-
security experiment we can construct an adversary to the IND-security experiment (having the exact
same advantage) as follows:

• All queries of the form AddColumn(col, S) are ignored. However, the adversary keeps track of
the set R.

• Any query of the form Enc(m, col) is converted into a query Enc(m,m, col).

• Any query of the form TokenGen(coli, colj) is forwarded as without any modi�cation.

• The challenge (m0,m1) is converted into queries of the form Enc(m0,m1, col) for each col ∈ R.
• Any query of the form AddColumn(col, �R�) in the post-challenge query phase is converted into
a query Enc(m0,m1, col).

16

4.3 Simulation-Based Security Notions

As with our indistinguishability-based notions, we �rst formalize a non-adaptive simulation-based
notion, which we then generalize to an adaptive one.

Non-adaptive SIM security. Our non-adaptive simulation-based notion considers an adversary
A and a simulator S. In the real-world experiment, the adversary A interacts with the scheme
in the following non-adaptive manner: It obtains the public parameters of the scheme, chooses a
databases DB and a list I of column label pairs, and then obtains an encoding of DB and tokens
for all column label pairs in I. In the ideal-world experiment, the simulator has to produce a view
that is indistinguishable from the real world when given only the �minimal� leakage L(DB, I), and
without being given the database DB (recall that the leakage function L was de�ned in Section 4.2).

Formally, for an adjustable join scheme Π and an adversary A, we consider the experiment
RealnaSIMΠ,A (λ) which is de�ned as follows:

1. Setup phase: Sample (sk, params) ← KeyGen(1λ). The public parameters params are given as
input to the adversary A.

2. Challenge phase: A chooses a databases DB and a list I of column label pairs. As a response,
A obtains Encsk(DB) and TokenGensk(DB, I).

3. Output phase: A outputs a value σ ∈ {0, 1} which is de�ned as the value of the experiment.

In addition, given an adversary A and a simulator S, we consider the experiment IdealnaSIMA,S (λ) which
is de�ned as follows:

1. Setup phase: The simulator S produces the public parameters params, which are given as input
to the adversary A.

2. Challenge phase: A chooses a databases DB and a list I of column label pairs. The simulator
is given L(DB, I) and produces a database encoding and a list of tokens, which are given to A.

3. Output phase: A outputs a value σ ∈ {0, 1} which is de�ned as the value of the experiment.

De�nition 4.6 (Non-adaptive SIM security). A join scheme Π = (KeyGen,Enc,TokenGen,Adj) is
non-adaptively SIM-secure if for any probabilistic polynomial-time adversary A there exist a proba-
bilistic polynomial-time simulator S and a negligible function ν(·) such that

AdvnaSIMΠ,A,S(λ)
def
=
∣∣∣Pr
[
RealnaSIMΠ,A (λ) = 1

]
− Pr

[
IdealnaSIMA,S (λ) = 1

]∣∣∣ ≤ ν(λ)

for all su�ciently large λ ∈ N.

The following claim, which is proved in Appendix A, states that non-adaptive SIM security is
equivalent to non-adaptive IND security.

Claim 4.7. Any join scheme Π that supports a message space of super-polynomial size (in the

security parameter λ ∈ N) is non-adaptively SIM secure if and only if it is non-adaptive IND secure.

Adaptive SIM security. We consider an adaptive �avor of De�nition 4.6 by naturally generalizing
the above real-world and ideal-world experiments. Speci�cally, for an adjustable join scheme Π and
an adversary A, we consider the experiment RealSIMΠ,A(λ) which is de�ned as follows:

1. Setup phase: Sample (sk, params) ← KeyGen(1λ). The public parameters params are given as
input to the adversary A.

17

2. Query phase: A may adaptively issue Enc and TokenGen queries, which are de�ned as follows.

• Enc(m, col): Computes an encoding c← Encsk(m, col), and returns c to A.
• TokenGen(coli, colj): Computes a token (τi, τj) ← TokenGensk(coli, colj), and returns

(τi, τj) to A.
3. Output phase: A outputs a value σ ∈ {0, 1} which is de�ned as the value of the experiment.

In addition, given an adversary A and a simulator S, we consider the experiment IdealSIMA,S(λ) which
is de�ned as follows:

1. Setup phase: The simulator S produces the public parameters params, which are given as
input to the adversary A. An empty database DB and an empty list I of column label pairs
are initialized.

2. Query phase: A may adaptively issue Enc and TokenGen queries, which are de�ned as follows.

• Enc(m, col): The pair (m, col) is inserted into the database DB, and S obtains L(DB, I).
Then, S provides A with an encoding c.

• TokenGen(coli, colj): The pair (coli, colj) is inserted into the list I, and S obtains L(DB, I).
Then, S provides A with a pair (τi, τj).

3. Output phase: A outputs a value σ ∈ {0, 1} which is de�ned as the value of the experiment.

De�nition 4.8 (Adaptive SIM security). A join scheme Π = (KeyGen,Enc,TokenGen,Adj) is SIM-

secure if for any probabilistic polynomial-time adversaryA there exist a probabilistic polynomial-time
simulator S and a negligible function ν(·) such that

AdvSIMΠ,A,S(λ)
def
=
∣∣∣Pr
[
RealSIMΠ,A(λ) = 1

]
− Pr

[
IdealSIMA,S(λ) = 1

]∣∣∣ ≤ ν(λ)

for all su�ciently large λ ∈ N.

The following claim states that adaptive SIM security implies adaptive IND security.

Claim 4.9. Any SIM-secure join scheme is an IND-secure join scheme.

The proof idea of Claim 4.9 is similar to the non-adaptive case: The adversary cannot distinguish
between DB0 and the simulation, and between the simulation and DB1, hence cannot distinguish
between DB0 and DB1. In more details, given an adversary B to the IND-security experiment, we
construct an adversary A to the SIM-security experiment, which samples c ← {0, 1}, and converts
each query of the form Enc(m0,m1, col) into a query Enc(mc, col). Finally, when B halts and outputs
σ ∈ {0, 1} then A halts and outputs σ ⊕ c. A similar argument to the one in the proof of Claim 4.7
(see Appendix A.4) shows that

AdvINDΠ,B(λ) = 2 · AdvSIMΠ,A,S(λ),

where S is the simulator for which AdvSIMΠ,A,S(λ) is negligible. Therefore, the SIM-security of Π implies
its IND-security.

4.4 Additional Remarks

Column privacy. Our notions of security include the column labels Cols(DB) of the encrypted
databases as explicit leakage (either as part of the experiment or via leakage functions). In fact, our
scheme in Section 5 does not leak the column labels. All of our security notions can be naturally
re�ned to model column privacy in addition to message privacy. Although the task of guaranteing
column privacy is well motivated, in this paper we focus on message privacy in order to simplify our
notions of security.

18

Implicit (and unavoidable) leakage. Our notions of security assume that the given encrypted
databases are �valid� in the sense that no message appears more than once in each column. An alter-
native approach (e.g., [CK10, CGK+11]) is to avoid this assumption, and explicitly include a leakage
function that speci�es the frequency characteristics of each column. For deterministic encodings of
messages (where such leakage is unavoidable), these two approaches are equivalent. Therefore, we
do not explicitly include such a leakage function, but rather incorporate this unavoidable leakage
directly into our security notions.

5 Our Adjustable Join Scheme

In this section we present an adjustable join scheme that satis�es our 3Partition security notion. In
Section 5.1 we describe our scheme and prove its correctness, and in Section 5.2 we prove its security.

5.1 The Scheme

Let PRF = (PRF.Gen,PRF.Eval) be a pseudorandom function family, and let G be a probabilistic
polynomial-time algorithm that takes as input the security parameter 1λ, and outputs a triplet
(G,GT , g, p, ê), where p is a λ-bit prime number, G and GT are groups of order p, g is a generator
of G, and ê : G × G → GT is a non-degenerate e�ciently-computable bilinear map. The scheme
Π = (KeyGen,Enc,TokenGen,Adj) is de�ned as follows.

• Key generation. On input 1λ the key-generation algorithm KeyGen samples (G,GT , g, p, ê)
← G(1λ), K1 ← PRF.Gen(1λ), and K2 ← PRF.Gen(1λ). For each i ∈ {1, 2} we let PRFKi(·) =
PRF.Eval(Ki, ·), and we assume that PRFK1 : Mλ → Z4

p and PRFK2 : Lλ → Rk4(Z4×4
p),

where M = {Mλ}λ∈N and L = {Lλ}λ∈N are the message space and the column label space,
respectively. The algorithm outputs params = (G,GT , g, p, ê) and sk = (K1,K2).

For the above description, recall that Rk4(Z4×4
p) denotes the set of all invertible 4× 4 matrices

over Zp. Note that a pseudorandom function PRFK2 : Mλ → Rk4(Z4×4
p) can be constructed,

for example, by taking any pseudorandom function PRFK2 :Mλ → Z4×4
p and substituting each

non-invertible output with the identity matrix.

• Encoding. On input params = (G,GT , g, p, ê), sk = (K1,K2), a column label col ∈ Lλ and a
message m ∈ Mλ, the encoding algorithm Enc computes Acol = PRFK2(col) ∈ Rk4(Z4×4

p) and

xm = PRFK1(m) ∈ Z4
p, and then outputs c = gAcolxm ∈ G4.

• Token generation. On input params = (G,GT , g, p, ê), sk = (K1,K2) and two column
labels col, col′ ∈ Lλ, the token-generation algorithm TokenGen uniformly samples v ← Z4

p \
{(0, 0, 0, 0)}, computes Acol = PRFK2(col) ∈ Rk4(Z4×4

p) and Acol′ = PRFK2(col′) ∈ Rk4(Z4×4
p),

and then outputs the pair of adjustment tokens
(
gv

TA−1
col , gv

TA−1
col′
)
∈ G4 ×G4.

• Adjustment. On input params = (G,GT , g, p, ê), an adjustment token τ ∈ G4, and an
encoding c ∈ G4, the adjustment algorithm Adj outputs ê(τT, c) ∈ GT .

19

Correctness. For any two column labels col, col′ ∈ Lλ and for any two messages m,m′ ∈ Mλ it
holds that

Adj (τ,Encsk(m, col)) = ê
(
gv

TA−1
col , gAcolxm

)
= ê(g, g)v

TA−1
col Acolxm = ê(g, g)v

Txm

Adj
(
τ ′,Encsk(m

′, col′)
)

= ê
(
gv

TA−1
col′ , gAcol′xm′

)
= ê(g, g)v

TA−1
col′Acol′xm′ = ê(g, g)v

Txm′ ,

where (sk, params)← KeyGen(1λ) and (τ, τ ′)← Adj(sk, col, col′). Therefore, it holds that

Adj (τ,Encsk(m, col)) = Adj
(
τ ′,Encsk(m

′, col′)
)

if and only if vTxm = vTxm′ . Note that if m = m′ then the equality always holds. In addition, if
m 6= m′ then with an overwhelming probability xm 6= xm′ (since PRF is a pseudorandom function),
and since v is uniform then the probability that vTxm = vTxm′ is at most 1/p. We conclude that if
m 6= m′ then vTxm 6= vTxm′ with an overwhelming probability.

5.2 Proof of Security

We prove the following theorem:

Theorem 5.1. Assuming that PRF is a pseudorandom function family and that the linear assumption

holds relative to G, then Π is a 3Partition-secure adjustable join scheme.

For proving Theorem 5.1, we introduce a scheme Π̂ which is obtained from Π by replacing its
TokenGen and Adj algorithms with the followings algorithms:

• Token generation. On input params = (G,GT , g, p, ê), sk = (K1,K2) and two column labels
col, col′ ∈ Lλ, the modi�ed token-generation algorithm TokenGen uniformly samples V ←
Rk4(Z4×4

p), computes Acol = PRFK2(col) ∈ Rk4(Z4×4
p) and Acol′ = PRFK2(col′) ∈ Rk4(Z4×4

p),

and then outputs
(
gV A

−1
col , gV A

−1
col′
)
∈ G4×4 ×G4×4.

• Adjustment. On input params = (G,GT , g, p, ê), an adjustment token T ∈ G4×4, and an
encoding c ∈ G4, the modi�ed adjustment algorithm Adj outputs ê(T , c) ∈ G4

T .

Note that Π can be obtained from Π̂ by viewing any v ∈ Z4
p \ {(0, 0, 0, 0)} that is produced

by Π's token-generation algorithm as the �rst row of the matrix V ∈ Rk4(Z4×4
p) that is produced

by Π̂ token-generation algorithm. That is, Π's token-generation algorithm can be obtained from
Π̂'s token-generation algorithm by outputting only the �rst rows of its tokens. Thus, there is no
information that Π reveals and Π̂ does not, and therefore it su�ces to prove the security of Π̂.

For each b ∈ {0, 1} and an adversary A, let Exp3ParRand,A(λ, b) denote the experiment obtained

from Exp3Par
Π̂,A (λ, b) by replacing the pseudorandom functions PRFK1 :Mλ → Z4

p and PRFK2 : Lλ →
Rk4(Z4×4

p) with truly random functions f1 : Mλ → Z4
p and f2 : Lλ → Rk4(Z4×4

p). By the pseu-
dorandomness property of the pseudorandom function family PRF, it holds that for any b ∈ {0, 1}
and any probabilistic polynomial-time adversary A, the advantage of A in distinguishing between
the experiments Exp3Par

Π̂,A (λ, b) and Exp3ParRand,A(λ, b) is negligible. Therefore, in order to prove the

3Partition-security of Π̂ it su�ces to show that the advantage of any adversary A in distinguishing
between the experiments Exp3ParRand,A(λ, 0) and Exp3ParRand,A(λ, 1) is negligible.

20

By Claim 2.5 and Fact 2.3, it follows that under the linear assumption it holds that(
params, gA, gAx, gAy, gB, gBx

)
≈c
(
params, gA, gAx, gAy, gB, gBz

)
≈c
(
params, gA, gAx, gAy, gB, gBy

)
,

where params← G(1λ), A,B ← Rk4(Z4×4
p) and x, y, z ← Z4

p. We denote by X and Y the computa-

tionally indistinguishable ensembles X = (params, gA, gAx, gAy, gB, gBx) and Y = (params, gA, gAx,
gAy, gB, gBy). Assume for now that during the pre-challenge query phase, the adversary A does
not issue a query of the form Enc(m0, col) or Enc(m1, col), from any column label col, where
m0 and m1 are the challenge messages. We claim that there exists a polynomial-time challenger
Chal, such that it holds that ChalA(X) ≡ Exp3ParRand,A(λ, 0) and ChalA(Y) ≡ Exp3ParRand,A(λ, 0) as dis-
tributions (and this implies that the advantage of A in distinguishing between the experiments
Exp3ParRand,A(λ, 0) and Exp3ParRand,A(λ, 1) is negligible subject to the above assumption on A). Given

(params, gA, gAx, gAy, gB, gBz) as input and A as oracle, the challenger Chal works as follows:

Setup phase. Chal provides A with params.

Pre-challenge query phase. We specify how Chal handles A's queries:

• AddColumn(col, S): Chal adds the column label col to the set S, where S ∈ {�L�, �R�, �M �}.
In addition, Chal samples Rcol ← Rk4(Z4×4

p), and denotes

Acol =

RcolA col ∈ L
RcolB col ∈ R
Rcol col ∈M

.

Note that since Chal does not explicitly know A and B, he does not explicitly know Acol in
case that col ∈ L ∪R.
• Enc(m, col): Chal samples xm ← Z4

p, unless it was already sampled before. Then, Chal returns

c = gAcolxm to A. We need to show that Chal can e�ciently compute c, and we show this by
cases:

1. col ∈M : Chal explicitly knows Acol = Rcol and xm, so he can e�ciently compute gAcolxm .

2. col ∈ L: Since Chal knows gA, Rcol and xm, he can e�ciently compute gAcolxm =
Rcol
(
gA
)xm .

3. col ∈ R: Similar to the previous case, but with gB.

• TokenGen(coli, colj): Chal returns to A the pair of tokens

(
g
V A−1

coli , g
V A−1

colj

)
where V ←

Rk4(Z4×4
p) is freshly sampled. We show that Chal is able to e�ciently compute τ by cases:

1. coli, colj ∈ M : Since Chal explicitly knows Acoli = Rcoli and Acolj = Rcolj , he can simply

sample V ← Rk4(Z4×4
p), and compute g

V A−1
coli and g

V A−1
colj .

2. coli, colj ∈ L: Denote U = V A−1
coli

and W = V A−1
colj

. Chal needs to be able to compute gU

and gW . Fixing Acoli and Acolj , both U and W are uniform in Rk4(Z4×4
p), but dependent

of each other by the relation UAcoli = WAcolj . In our case, Acoli = RcoliA and Acolj =
RcoljA, so the relation turns into URcoli = WRcolj , and Chal can sample U ← Rk4(Z4×4

p)

and take W = URcoliR
−1
colj

. Since Chal explicitly knows U and W , he can compute gU

and gW e�ciently.

3. coli, colj ∈ R: Similar to the previous case.

21

4. coli ∈ L and colj ∈ M : In this case, Acoli = RcoliA and Acolj = Rcolj , so the relation
UAcoli = WAcolj turns into URcoliA = WRcolj . So Chal can sample U ← Rk4(Z4×4

p) and

take W = URcoliAR
−1
colj

. Since Chal explicitly knows U , he can compute gU . Since he

knows U , Rcoli , Rcolj and g
A, he can e�ciently compute gW =

URcoli
(
gA
)R−1

colj .

5. coli ∈ R and colj ∈M : Similar to the previous case.

6. coli ∈ L and colj ∈ R: This case is not allowed by the de�nition of 3Partition-security.

Challenge phase. A chooses messages m0 and m1. As a response, Chal returns to A an encoding

c = gAcolz for every col ∈ R. Since c =
Rcol
(
gBz
)
, and Chal knows Rcol and g

Bz, it can e�ciently
compute c.

Post-challenge query phase. The only di�erences from the pre-challenge query phase are the
followings:

• AddColumn(col, S): In case that S = �R�, Chal provides A with c = gAcolz, which we already
saw that Chal can e�ciently compute.

• Enc(m, col): In case that m = m0 or m = m1, by the de�nition of 3Partition-security it
must be that col ∈ L, and Chal return to A the encoding gAcolx or gAcoly, respectively. Since

gAcolx =
Rcol
(
gAx
)
and gAcoly =

Rcol
(
gAy
)
, Chal can e�ciently compute them.

Output phase. Chal outputs the value σ ∈ {0, 1} that A outputs.

This completes the description of Chal. Denote xm0 = x and xm1 = y. It does not cause
ambiguity in the notation because we assume that A does not query m0 or m1 in the pre-challenge
query phase, so Chal never samples xm0 and xm1 by himself. Every xm ∈ Z4

p and Acol ∈ Rk4(Z4×4
p)

are uniformly random. So Chal returns to A encodings and tokens with respect to truly random
functions. In the case that Chal is given as input X = (params, gA, gAx, gAy, gB, gBx), it answers the
challenge with encodings of m0, so we obtain the experiment Exp3ParRand,A(λ, 0). Similarly, in the case

Chal is given Y = (params, gA, gAx, gAy, gB, gBy), we obtain the experiment Exp3ParRand,A(λ, 1). This
completes the proof of security for adversaries that ful�ll the aforementioned assumption.

When dealing with adversaries that may querym0 andm1 in the pre-challenge phase, the problem
is that Chal does not know when he queried on m0 and m1. If he knew that, then he could respond
in the same way he does in the post-challenge query phase. So to solve this, Chal guesses when it
is queried with m0 or m1. More precisely, let q(λ) be a bound on the number of queries that A
performs. Chal samples t0, t1 ← {0, . . . , q(λ)}. During the pre-challenge phase, if Chal is queried for
an encoding of a message m that is the t0-th or t1-th distinct message so far, then he acts as if it was
queried on m0 or m1 respectively, that is, he returns to A the encoding gAcolx or gAcoly, respectively.
Then, in the challenge phase, if it turns out that the guess was wrong, or if Chal was queried on
less than max{t0, t1} distinct messages, then Chal aborts and outputs 0. Since until the challenge
phase, the view of A is independent of the sampling of t0 and t1, it holds that the guess of Chal
succeeds with probability of exactly 1/(q(λ) + 1)2, and that the success probability is independent
of the behavior of A, so it holds that,∣∣∣Pr

[
Exp3ParRand,A(λ, 0) = 1

]
− Pr

[
Exp3ParRand,A(λ, 1) = 1

]∣∣∣ (5.1)

= (q(λ) + 1)2 ·
∣∣Pr
[
ChalA(X) = 1

]
− Pr

[
ChalA(Y) = 1

]∣∣ . (5.2)

For any probabilistic polynomial-time adversary A, the bound q(λ) on its number of queries is poly-
nomial in the security parameter λ. The linear assumption implies that the expression in Equation
(5.2) is negligible, and therefore also the expression in Equation (5.1) is negligible, and this concludes
the proof.

22

Acknowledgments

We thank Zvika Brakerski for fruitful discussions and the TCC reviewers for their valuable comments.

References

[AFG+06] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Transactions on Informa-

tion and System Security, 9(1):1�30, 2006.

[ANS+16] G. Asharov, M. Naor, G. Segev, and I. Shahaf. Searchable symmetric encryption: Opti-
mal locality in linear space via two-dimensional balanced allocations. In Proceedings of

the 48th Annual ACM Symposium on Theory of Computing, pages 1101�1114, 2016.

[BBS98] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryptog-
raphy. In Advances in Cryptology � EUROCRYPT '98, pages 127�144, 1998.

[BBS04] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances in Cryptology

� CRYPTO '04, pages 41�55, 2004.

[BHH+08] D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption from
decision Di�e-Hellman. In Advances in Cryptology � CRYPTO '08, pages 108�125, 2008.

[BHJ+14] C. Bösch, P. H. Hartel, W. Jonker, and A. Peter. A survey of provably secure searchable
encryption. ACM computing surveys, 47(2):1�18, 2014.

[BKS16] Z. Brakerski, I. Komargodski, and G. Segev. Multi-input functional encryption in the
private-key setting: Stronger security from weaker assumptions. In Advances in Cryp-

tology � EUROCRYPT '16, pages 852�880, 2016.

[BLR+15] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and J. Zimmerman. Semanti-
cally secure order-revealing encryption: Multi-input functional encryption without ob-
fuscation. In Advances in Cryptology � EUROCRYPT '15, pages 563�594, 2015.

[CGK+06] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryp-
tion: improved de�nitions and e�cient constructions. In Proceedings of the 13th ACM

Conference on Computer and Communications Security, pages 79�88, 2006.

[CGK+11] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryp-
tion: Improved de�nitions and e�cient constructions. Journal of Computer Security,
19(5):895�934, 2011.

[CGP+15] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks against search-
able encryption. In Proceedings of the 22nd ACM Conference on Computer and Com-

munications Security, pages 668�679, 2015.

[CJJ+13] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-scalable
searchable symmetric encryption with support for boolean queries. In Advances in Cryp-

tology - CRYPTO '13, pages 353�373, 2013.

23

[CJJ+14] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner.
Dynamic searchable encryption in very-large databases: Data structures and implemen-
tation. In Proceedings of the 21st Annual Network and Distributed System Security Sym-

posium, 2014.

[CK10] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In Advances

in Cryptology - ASIACRYPT '10, pages 577�594, 2010.

[CM05] Y.-C. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote
encrypted data. In Proceedings of the 3rd International Conference on Applied Cryptog-

raphy and Network Security, pages 442�455, 2005.

[CT14] D. Cash and S. Tessaro. The locality of searchable symmetric encryption. In Advances

in Cryptology - EUROCRYPT '14, pages 351�368, 2014.

[EHK+17] A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. L. Villar. An algebraic framework for
Di�e-Hellman assumptions. Journal of Cryptology, 30(1):242�288, 2017.

[FHN+16] M. J. Freedman, C. Hazay, K. Nissim, and B. Pinkas. E�cient set intersection with
simulation-based security. Journal of Cryptology, 29(1):115�155, 2016.

[FI12] J. Furukawa and T. Isshiki. Controlled joining on encrypted relational database. In
Proceedings of the 5th International Conference on Pairing-Based Cryptography, pages
46�64, 2012.

[FVY+17] B. Fuller, M. Varia, A. Yerukhimovich, E. Shen, A. Hamlin, V. Gadepally, R. Shay, J. D.
Mitchell, and R. K. Cunningham. SoK: Cryptographically protected database search. In
Proceedings of the 38th IEEE Symposium on Security and Privacy, pages 172�191, 2017.

[GGG+14] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi,
and H.-S. Zhou. Multi-input functional encryption. In Advances in Cryptology � EURO-

CRYPT '14, pages 578�602, 2014. Merge of [GGJ+13] and [GKL+13].

[GGJ+13] S. Goldwasser, V. Goyal, A. Jain, and A. Sahai. Multi-input functional encryption.
Cryptology ePrint Archive, Report 2013/727, 2013.

[GKL+13] S. D. Gordon, J. Katz, F.-H. Liu, E. Shi, and H.-S. Zhou. Multi-input functional en-
cryption. Cryptology ePrint Archive, Report 2013/774, 2013.

[Goh03] E. Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003.

[GSB+16] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart. Leakage-abuse
attacks against order-revealing encryption. Cryptology ePrint Archive, Report 2016/895,
2016.

[HEK12] Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits better
than custom protocols? In Proceedings of the 19th Annual Network and Distributed

System Security Symposium, 2012.

[HIL+02] H. Hacigümüs, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in
the database-service-provider model. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 216�227, 2002.

24

[HIM04] H. Hacigümüs, B. R. Iyer, and S. Mehrotra. E�cient execution of aggregation queries
over encrypted relational databases. In Proceedings of the 9th International Conference

on Database Systems for Advances Applications, pages 125�136, 2004.

[HKD15] I. Hang, F. Kerschbaum, and E. Damiani. ENKI: Access control for encrypted query
processing. In Proceedings of the 2015 ACM SIGMOD International Conference on

Management of Data, pages 183�196, 2015.

[ID03] A. Ivan and Y. Dodis. Proxy cryptography revisited. In Proceedings of the 10th Annual

Network and Distributed System Security Symposium, 2003.

[KKN+16] G. Kellaris, G. Kollios, K. Nissim, and A. O'Neill. Generic attacks on secure outsourced
databases. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, pages 1329�1340, 2016.

[KM16] S. Kamara and T. Moataz. SQL on structurally-encrypted databases. Cryptology ePrint
Archive, Report 2016/453, 2016.

[KO12] K. Kurosawa and Y. Ohtaki. UC-secure searchable symmetric encryption. In Proceedings
of the 16th International Conference on Financial Cryptography and Data Security, pages
285�298, 2012.

[KO13] K. Kurosawa and Y. Ohtaki. How to update documents veri�ably in searchable symmet-
ric encryption. In Proceedings of the 12th International Conference on Cryptology and

Network Security, pages 309�328, 2013.

[KP13] S. Kamara and C. Papamanthou. Parallel and dynamic searchable symmetric encryption.
In Proceedings of the 16th International Conference on Financial Cryptography and Data

Security, pages 258�274, 2013.

[KPR12] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric encryption.
In Proceedings of the 19th ACM Conference on Computer and Communications Security,
pages 965�976, 2012.

[NKW15] M. Naveed, S. Kamara, and C. V. Wright. Inference attacks on property-preserving
encrypted databases. In Proceedings of the 22nd ACM SIGSAC Conference on Computer

and Communications Security, pages 644�655, 2015.

[NS12] M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. SIAM Journal

on Computing, 41(4):772�814, 2012.

[Pop14] R. A. Popa. Building Practical Systems that Compute on Encrypted Data. PhD thesis,
Massachusetts Institute of Technology, 2014. Available at http://www.eecs.berkeley.
edu/~raluca/Thesis.pdf.

[PRZ+11] R. A. Popa, C. M. S. Red�eld, N. Zeldovich, and H. Balakrishnan. CryptDB: Protect-
ing con�dentiality with encrypted query processing. In Proceedings of the 23rd ACM

Symposium on Operating Systems Principles, pages 85�100, 2011.

[PRZ+12] R. A. Popa, C. M. S. Red�eld, N. Zeldovich, and H. Balakrishnan. CryptDB: Processing
queries on an encrypted database. Communications of the ACM, 55(9):103�111, 2012.

25

http://www.eecs.berkeley.edu/~raluca/Thesis.pdf
http://www.eecs.berkeley.edu/~raluca/Thesis.pdf

[PSS+15] B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing: Private set intersection using
permutation-based hashing. In Proceedings of the 24th USENIX Security Symposium,
pages 515�530, 2015.

[PZ12] R. A. Popa and N. Zeldovich. Cryptographic treatment of CryptDB's adjustable join.
Technical Report MIT-CSAIL-TR-2012-006, 2012. Available at http://people.csail.
mit.edu/nickolai/papers/popa-join-tr.pdf.

[PZB15] R. A. Popa, N. Zeldovich, and H. Balakrishnan. Guidelines for using the CryptDB system
securely. Cryptology ePrint Archive, Report 2015/979, 2015.

[SWP00] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted
data. In Proceedings of the 21st Annual IEEE Symposium on Security and Privacy, pages
44�55, 2000.

[vLSD+10] P. van Liesdonk, S. Sedghi, J. Doumen, P. H. Hartel, and W. Jonker. Computationally
e�cient searchable symmetric encryption. In Proceedings of 7th VLDB Workshop on

Secure Data Management, pages 87�100, 2010.

A Additional Proofs

A.1 Proof of Claim 2.5

The matrix linear assumption. The matrix linear assumption [BHH+08, NS12] states that for
all 2 ≤ a ≤ b it holds that (

params, gR
)
≈c
(
params, gS

)
,

where params← G(1λ), S ← Za×bp and R← Rk2(Za×bp).

Claim A.1 ([BHH+08, NS12]). The linear assumption implies the matrix linear assumption.

Claim A.2. The matrix linear assumption implies that for any 4 ≤ a ≤ b it holds that(
params, gA, gAx, gB, gBy

)
≈c
(
params, gA, gAx, gB, gBx

)
,

where params← G(1λ), A,B ← Za×bp and x, y ← Zap.

We consider the case where a = b = 4. For S ← Z4×4
p it holds that Pr[S /∈ Rk4(Z4×4

p)] ≤ 2/p,
which is negligible in λ. Thus, from Claim A.1, Claim A.2 and Fact 2.2 we deduce Claim 2.5.

Proof of Claim A.2. Let params← G(1λ), A,B ← Za×bp , A′, B′ ← Rk2(Za×bp) and x, y ← Zap. We
claim that (

params, gA, gAx, gB, gBy
)
≈c
(
params, gA

′
, gA

′x, gB, gBy
)

(A.1)

≈c
(
params, gA

′
, gA

′x, gB
′
, gB

′y
)

(A.2)

≈s
(
params, gA

′
, gA

′x, gB
′
, gB

′x
)

(A.3)

≈c
(
params, gA

′
, gA

′x, gB, gBx
)

(A.4)

≈c
(
params, gA, gAx, gB, gBx

)
, (A.5)

26

http://people.csail.mit.edu/nickolai/papers/popa-join-tr.pdf
http://people.csail.mit.edu/nickolai/papers/popa-join-tr.pdf

and the claim is deduced by the transitivity of computational indistinguishability. Equations (A.1),
(A.2), (A.4) and (A.5) follow directly from the matrix linear assumption and Fact 2.3. It remains to
justify Equation (A.3). First, we show that(

params a1 a2 〈a1, x〉 〈a1, x〉
b1 b2 〈b1, y〉 〈b1, y〉

)
≈s
(
params a1 a2 〈a1, x〉 〈a1, x〉

b1 b2 〈b1, x〉 〈b1, x〉

)
, (A.6)

where a1, a2, x, y ← Zbp, (a1, a2) are conditioned to be linearly independent, and also (b1, b2) are
conditioned so. The probability that (a1, a2, b1, b2) are linearly dependent is negligible, so by Fact 2.2
we can condition them to be linearly independent. Fixing (a1, a2, b1, b2) that are linearly independent,
(〈a1, x〉, 〈a2, x〉, 〈b1, x〉, 〈b2, x〉) is uniform over Z4

p, and clearly this is still true when replacing some
of the x's with y's, so we get the same distribution (after the conditioning). Now, we can sample
A′ ← Rk2(Za×bp) by sampling S ← Rk2(Za×2

p) and T ← Rk2(Z2×b
p) and taking A′ = ST . We may take

the rows of T to be (a1, a2). To compute A′x (without knowing x) we have STx = S[〈a1, x〉, 〈a2, x〉]T
and similarly we can compute B′x and B′y, so we can apply a random function to both sides of
Equation (A.6) and by Fact 2.1 we get(

params, gA
′
, gA

′x, gB
′
, gB

′y
)
≈s
(
params, gA

′
, gA

′x, gB
′
, gB

′x
)
.

A.2 Tools for Proving Claims 4.3 and 4.7

In this section we state and prove Lemma A.5 which will be used to prove Claim 4.3, and we state
and prove Lemma A.3 which will be used to prove Lemma A.5 and Claim 4.7. Recall the de�nitions
of a database and a message map from Section 4.2.

Lemma A.3. There exists a deterministic polynomial-time algorithm ConstructDB, that given a

security parameter 1λ and a leakage output L = L(DB, I) as input, under the assumption that

|Mλ| ≥ size(DB), outputs a database DB∗ for which it holds that L(DB, I) = L(DB∗, I). Moreover,

let dim(DB) = (t, (ni)
t
i=1), if m is the message map of DB, and m∗ is the message map of DB∗, then

for all i, j ∈ [t], k ∈ [ni] and ` ∈ [nj] it holds that

m∗(i, k) = m∗(j, `) =⇒ m(i, k) = m(j, `).

Proof. Let
L = (dim = (t, (ni)

t
i=1),Cols, I = (ia, ja)

s
a=1, (Ja)

s
a=1)

be a possible output of the leakage function. For a valid message map m′ : V (dim) → Mλ, we
denote by DB(m′) a database with dimensions dim, columns Cols, and message map m′. Clearly
L(DB(m′)) = L if and only if for each a ∈ [s], k ∈ [nia] and ` ∈ [nja] it holds that

m′(ia, k) = m′(ja, `) ⇐⇒ (k, `) ∈ Ja,

and in that case we say that m′ conforms with L. Now, we de�ne a graph G(L), whose vertex set is
V (dim), and for each (ia, ja) ∈ I we add the edges {{(ia, k), (ja, `)}|(k, `) ∈ Ja}. Our construction
algorithm gets as input L = L(DB, I), builds G = G(L), �nds the connected components (V1, . . . , Vc)
in G, selects an arbitrary injective function π : [c]→Mλ,

3 and outputs DB∗ = DB(m∗) where

m∗(i, k) = π(j) ⇐⇒ (i, k) ∈ Vj .
3This can be done under the assumption that Mλ is e�ciently enumerable, i.e., there exists a linear ordering of

Mλ such that we can e�ciently compute the �rst element ofMλ, and given m ∈Mλ we can e�ciently compute the
next element after m. This is the case, for example, whenMλ is the set of all bit strings of a certain length.

27

It remains to show that m∗ is valid and conforms with L. To achieve that, we �rst claim that if
m∗(i, k) = m∗(j, `) then m(i, k) = m(j, `) where m is the message map of the original DB. Indeed
equality in m∗ means that there is a path between (i, k) and (j, `) in G, but every consecutive vertices
in the path must have the same value of m because m conforms with L, so by the transitivity of
equality we get m(i, k) = m(j, `) as claimed. As a direct consequence we get that m∗ is also valid,
i.e. it has distinct messages in each column, and that

m∗(ia, k) = m∗(ja, `) =⇒ m(ia, k) = m(ja, `) =⇒ (k, `) ∈ Ja

The direction (k, `) ∈ Ja ⇒ m∗(ia, k) = m∗(ja, `) is easy since (ia, k) and (ja, `) are neighbors in G,
hence are in the same connected component.

We say that two message maps m,m′ : V →Mλ are equivalent if m′ = π ◦m for some injective
function π : m(V)→Mλ.

Claim A.4. Let DB be a database with dimensions dim = (t, (ni)
t
i=1) and a message map m : V →

Mλ, and let I be a list of pair of indices. Then, under the assumption that |Mλ| ≥ size(DB), we can
e�ciently construct a sequence of message maps m0, . . . ,mr with the following properties:

• r ≤ size(DB).

• For all 0 ≤ q ≤ r, mq : V →Mλ is valid and conforms with L(DB, I).

• m0 = m and mr is equivalent to m∗, where m∗ is the message map of ConstructDB(1λ,L(DB, I)).

• For any 1 ≤ q ≤ r, there are α 6= β ∈Mλ such that if mq−1(i, k) 6= mq(i, k) then mq−1(i, k) = α
and mq(i, k) = β.

Proof. We show how to construct m0, . . . ,mr. First we set m0 = m. By Lemma A.3, it holds
that m∗(i, k) = m∗(j, `) ⇒ m0(i, k) = m0(j, `). If also the direction ⇐ holds, then m0 and m∗ are
equivalent and we are done. Otherwise there exist i′, j′ ∈ [t], k′ ∈ [ni′] and `′ ∈ [nj′] such that
m0(i′, k′) = m0(j′, `′) but m∗(i′, k′) 6= m∗(j′, `′). Take an arbitrary4 β ∈ Mλ \ m0(V) (which exists
by the assumption thatM≥ size(DB)) and de�ne m1 by

m1(i, k) =

{
β if m∗(i, k) = m∗(i′, k′)

m0(i, a) otherwise

It is easy to see that m∗(i, k) = m∗(j, `) ⇒ m1(i, k) = m1(j, `) ⇒ m0(i, k) = m0(j, `). From that
along with the fact that m0 and m∗ are valid and conform with L(DB, I), it is easily seen that m1 is
also valid and conforms with L(DB, I). Now we repeat this process with respect to m1 and m∗ to get
m2, and so on. Since in the qth stage we have |mq(V)| = |mq−1(V)|+ 1 and the image of mq cannot
be bigger than |V | = size(DB), the process must stop after r ≤ size(DB) steps and we end up with
mr that is equivalent to m∗.

Lemma A.5. Let DB0 and DB1 be two databases, and let I be a list of pairs of indices, such that

L(DB0, I) = L(DB1, I), with message maps m,m′ : V → Mλ, respectively. Denote the common

leakage by

L = (dim = (t, (ni)
t
i=1),Cols, I = (ia, ja)

s
a=1, (Ja)

s
a=1)

and the common size by size =
∑t

i=1 ni. Suppose that |Mλ| ≥ size + 1. Then, we can e�ciently

construct a sequence of message maps m0, . . . ,mr with the following properties:

4As before, this can be done under the assumption thatMλ is e�ciently enumerable.

28

• r ≤ 4 · size.

• For all 0 ≤ q ≤ r, mq : V →Mλ is valid and conforms with L.

• m0 = m and mr = m′.

• For any 1 ≤ q ≤ r, there are α 6= β ∈Mλ such that if mq−1(i, k) 6= mq(i, k) then mq−1(i, k) = α
and mq(i, k) = β.

Proof. We de�ne an L-sequence between m and m′ of length r to be a sequence of messages maps
m0, . . . ,mr with the following properties:

• For all 0 ≤ q ≤ r, mq : V →Mλ is valid and conforms with L.

• m0 = m and mr = m′.

• For any 1 ≤ q ≤ r, there are α 6= β ∈Mλ such that if mq−1(i, k) 6= mq(i, k) then mq−1(i, k) = α
and mq(i, k) = β.

Note that we can reverse such a sequence, and get an L-sequence between m′ and m. Also, we can
concatenate an L-sequence between m and m′ of length r, and an L-sequence between m′ and m′′ of
length r′, into an L-sequence between m and m′′ of length r+ r′. By Claim A.4, we can construct an
L-sequence of length at most size between m and m̂, where m̂ is equivalent to m∗, and an L-sequence
of length at most size between m′ and m̂′, where m̂′ is equivalent to m∗, thus is equivalent to m̂. So
it remain to show that we can construct an L-sequence of length at most 2 · size between m̂ and m̂′,
and the lemma follows from the above reverse and concatenation operations.

Let π : m̂(V) → Mλ be an injective map such that m̂′ = π ◦ m̂. Let α ∈ m̂(V) and β = π(α)
such that α 6= β (if no such α exists then m̂ = m̂′ and we are done), and let γ ∈ Mλ \ m̂(V) which
must exist by the assumption that |Mλ| ≥ size + 1. We de�ne m̂1 and m̂2 as follows

m̂1(i, k) =

{
γ if m̂(i, k) = β

m̂(i, k) otherwise

m̂2(i, k) =

β if m̂(i, k) = α

γ if m̂(i, k) = β

m̂(i, k) otherwise

,

Namely, in m̂1 we �free� the value β by replacing it with γ, and in m̂2 we replace α with β. m̂2 is
equivalent to m̂′ and agrees with it on the value β. Note that m̂ do not agree with m̂′ on the value
β, since otherwise we would get π(α) = π(β) in contradiction to the injective property of π, so m̂2

also agrees with m̂′ on any value that m̂ agrees with m̂′ on. Repeating this process with respect to
m̂2 and m̂′ yields m̂3 and m̂4 such that m̂4 agrees with m̂′ on another value, etc. After at most size
steps we get to m̂′, and obtain a sequence of length at most 2 · size as wanted.

A.3 Proof of Claim 4.3

Let A be a valid adversary to the non-adaptive IND-security experiment. Denote the challenge
phase algorithm of A by A(1)(params) → (DB0,DB1, I, state), and the output phase algorithm by
A(2)(state,Encsk(DBb),TokenGensk(DBb, I))→ σ. We de�ne an adversary B to the 3Partition-security
experiment as follows. In the setup phase, on input public parameters params, the adversary B works
as follows:

29

• B computes A(1)(params) → (DB0,DB1, I, state). Let m and m′ be the message map of DB0

and DB1 respectively.

• B constructs message maps m0, . . . ,mr as in Lemma A.55, such that m0 = m and mr = m′.

• B samples q ← {1, . . . , 4 · p(λ)}, where p(λ) is a bound on size(DB0) = size(DB1).

Now, if q > r, then B skips to the output phase and simply outputs 0. Otherwise, let α, β ∈ M
such that if mq−1(i, k) 6= mq(i, k) then mq−1(i, k) = α and mq(i, k) = β. Using AddColumn queries,
B declares the following column sets:

L = {coli ∈ Cols|∃k mq−1(i, k) = mq(i, k) ∈ {α, β}}
R = {coli ∈ Cols|∃k mq−1(i, k) 6= mq(i, k)}
M = Cols \ (L ∪R)

It should be noted that L and R are disjoint, since otherwise it would imply that there are i and
k 6= ` such that either mq−1(i, k) = α = mq−1(i, `) or mq(i, k) = β = mq(i, `), in contradiction to the
validity of mq−1 and mq. Next, for each i and k such that mq−1(i, k) = mq(i, k), using Enc queries,
B retrieves the encoding of mq(i, k) with respect to the column coli. Also, for each (i, j) ∈ I, using
TokenGen queries, B retrieves the tokens for the columns coli and colj . We argue that those queries
are valid, namely, it never happens that coli ∈ L and coli ∈ R, or vice versa. Otherwise, it would
imply that there are (i, j) ∈ I, k and ` for which (k, `) ∈ JoinDB(mq−1)(i, j)4JoinDB(mq)(i, j), where
4 denotes the symmetric di�erence of the sets, so L(DB(mq−1), I) 6= L(DB(mq), I) in contradiction
to the fact that both sides are equal to L(DB0, I). Lastly, B declare the challenge (α, β) and
obtains the encryptions of α or β according to the columns in R. The encodings that B retrieves
allow her to construct a database encoding E that is either Encsk(DB(mq−1)) or Encsk(DB(mq)),
depending on whether b = 0 or b = 1, respectively, and the tokens that B retrieves allow her
to construct τ = TokenGensk(DB(mq−1), I) = TokenGensk(DB(mq), I). The �nal step of B is to
compute A(2)(state, E, τ)→ σ, and output σ. This completes the description of B.

Fix some possible output out = (DB0,DB1, I, state) of A(1), and denote by Eout the event that
A(1) outputs out. This event can be seen as an event of both experiments ExpnaINDΠ,A and Exp3ParΠ,B ,

since in both cases A(1) is invoked exactly once. Note that �xing the output out in the experiment
Exp3ParΠ,B �xes the sequence m0, . . . ,mr. It holds that

Pr
[
Exp3ParΠ,B (λ, b) = 1

∣∣∣Eout]
=

4·p(λ)∑
q=1

Pr[B samples q] Pr
[
Exp3ParΠ,B (λ, b) = 1

∣∣∣Eout,B samples q
]

=

r∑
q=1

Pr[B samples q] Pr
[
Exp3ParΠ,B (λ, b) = 1

∣∣∣Eout,B samples q
]

=
r∑
q=1

1

4 · p(λ)
Pr
[
A(2)(state, Eq−1+b) = 1

]
,

5Note that Lemma A.5 has the requirement that |Mλ| ≥ size(DB0) + 1, however, by our assumption that |Mλ| is
super-polynomial, for any polynomial-time adversary A, this inequality holds for all su�ciently large λ.

30

where Eq−1+b = (Encsk(DB(mq−1+b)),TokenGensk(DB(mq−1+b), I)). Therefore,

Pr
[
Exp3ParΠ,B (λ, 0) = 1

∣∣∣Eout]− Pr
[
Exp3ParΠ,B (λ, 1) = 1

∣∣∣Eout]
=

1

4 · p(λ)
·
(

Pr
[
A(2)(state,Encsk(DB0),TokenGensk(DB0, I)) = 1

]
−Pr

[
A(2)(state,Encsk(DB1),TokenGensk(DB1, I)) = 1

])
=

1

4 · p(λ)
·
(

Pr
[
ExpnaINDΠ,A (λ, 0) = 1

∣∣∣Eout]− Pr
[
ExpnaINDΠ,A (λ, 1) = 1

∣∣∣Eout]) ,
and deduce that

AdvnaINDΠ,A (λ) = 4p(λ) · Adv3ParΠ,B (λ). (A.7)

For a probabilistic polynomial-time adversary A, the bound p(λ) on size(DB0) can be taken to be a
polynomial, and the probabilistic adversary B runs in polynomial time. By the assumption that Π is
3Partition-secure, it holds that the RHS of Equation (A.7) is negligible, hence the LHS is negligible,
and this shows that Π is non-adaptively IND-secure as claimed.

A.4 Proof of Claim 4.7

Proving that non-adaptive SIM security implies non-adaptive IND security is standard (here the non-
adaptivity does not play a signi�cant role): The adversary cannot distinguish between DB0 and the
simulation, and between the simulation and DB1, hence cannot distinguish between DB0 and DB1.

For proving that non-adaptive IND security implies non-adaptive SIM security, our main observa-
tion is the one stated in Lemma A.3 (see Section A.2 for the proof), namely, that given the leakage
L(DB, I) we can e�ciently produce a �canonical� database and use its encoding for the simulation.

Proof of Claim 4.7. We �rst prove that non-adaptive SIM security implies non-adaptive IND se-
curity. Let B be a valid probabilistic polynomial-time adversary to the non-adaptive IND-security
experiment. We denote the algorithm of the setup and challenge phases by B(1)(1λ, params) →
(DB0,DB1, I, state), where state is an internal state of B, and the algorithm of the output phase by
B(2)(state, E) → σ, where E is the input from the challenger (i.e., an encoding of DB0 or DB1, and
the tokens).

We build an adversary A to the non-adaptive SIM-security experiment as follows: Again we
denote the two algorithms A by A(1)(1λ, params) → (DB, I, state) and A(2)(state, E) → σ. A(1)

runs (DB0,DB1, I, state) ← B(1)(1λ), samples c ← {0, 1} and outputs (DBc, I, state). A(2) runs
B(2)(state, E)→ σ and output σ ⊕ c. For any simulator S we have

AdvnaINDΠ,B (λ) =
∣∣∣Pr[ExpnaINDΠ,B (λ, 0) = 1]− Pr[ExpnaINDΠ,B (λ, 1) = 1]

∣∣∣
=
∣∣∣Pr[RealnaSIMΠ,A (λ) = 1|c = 0]− Pr[RealnaSIMΠ,A (λ) = 0|c = 1]

∣∣∣
=
∣∣∣Pr[RealnaSIMΠ,A (λ) = 1|c = 0]− Pr[IdealnaSIMA,S (λ) = 1|c = 0]

+ Pr[IdealnaSIMA,S (λ) = 0|c = 1]− Pr[RealnaSIMΠ,A (λ) = 0|c = 1]
∣∣∣

=
∣∣∣Pr[RealnaSIMΠ,A (λ) = 1|c = 0]− Pr[IdealnaSIMA,S (λ) = 1|c = 0]

+ Pr[RealnaSIMΠ,A (λ) = 1|c = 1]− Pr[IdealnaSIMA,S (λ) = 1|c = 1]
∣∣∣

= 2 · AdvnaSIMΠ,A,S(λ),

31

where we used the fact

Pr[RealnaSIMΠ,A (λ) = 1|c = 0] = Pr[RealnaSIMΠ,A (λ) = 0|c = 1],

which follows from the fact that in both conditional spaces A(1) output the same distribution
(L(DB, I), state), and that A(2) inverts the output of B(2) in case that c = 1. By the assumption
that Π is non-adaptively SIM-secure there exists a simulator S for which AdvnaSIMΠ,A,S(λ) is negligible,

therefore AdvnaINDΠ,B (λ) is negligible as claimed.
We now prove that non-adaptive IND security implies non-adaptive SIM security. We de�ne a sim-

ulator S = (S(1),S(2)) as follows: S(1) runs (sk, params)← KeyGen(1λ) and outputs (state, params) =
((sk, params), params). Given L and state = (sk, params), S(2) computes6 DB∗ = ConstructDB(L),
and outputs Encsk(DB

∗) and TokenGensk(DB
∗, I).

Let A be a probabilistic polynomial-time adversary to the non-adaptive SIM-security experiment.
We construct a valid adversary B to the non-adaptive IND-security experiment as follows: B(1) runs
(DB, I, state)← A(1)(1λ, params), calculates DB∗ = ConstructDB(L(DB, I)), and outputs (DB0,DB1,
I, state) = (DB,DB∗, I, state). B(2) gets as input state, Encsk(DBb) and TokenGensk(DBb, I), runs
σ ← A(2)(state,Encsk(DBb),TokenGensk(DBb, I)), and outputs σ. The experiments RealnaSIMΠ,A (λ) and

ExpnaIND
Π,B (λ, 0) behave in the same way, and also the experiments IdealnaSIMA,S (λ) and ExpnaINDΠ,B (λ, 1)

behave in the same way. So it follows that AdvnaSIMΠ,A,S(λ) = AdvnaINDΠ,B (λ). By the assumption that Π is

non-adaptively IND-secure it follows that AdvnaINDΠ,B (λ) is negligible, hence AdvnaSIMΠ,A,S(λ) is negligible
as claimed.

6Note that Lemma A.3 has the requirement that |Mλ| ≥ size(DB), however, by our assumption that |Mλ| is
super-polynomial, for any polynomial-time adversary A, this inequality holds for all su�ciently large λ.

32

	Introduction
	Our Contributions
	Overview of Our Contributions
	Additional Related Work
	Extensions and Open Problems
	Paper Organization

	Preliminaries
	Pseudorandom Functions
	Computational Assumptions

	Adjustable Join Schemes and Their Security
	Adjustable Join Schemes
	The 2Partition Security Notion and its Weakness

	Strengthening the Definitional Framework
	The 3Partition Security Notion
	Indistinguishability-Based Security Notions
	Simulation-Based Security Notions
	Additional Remarks

	Our Adjustable Join Scheme
	The Scheme
	Proof of Security

	References
	Additional Proofs
	Proof of Claim 2.5
	Tools for Proving Claims 4.3 and 4.7
	Proof of Claim 4.3
	Proof of Claim 4.7

