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Abstract

The client-server architecture is one of the most widely used in
Internet for its simplicity and flexibility. In practice the server is
assigned a public address so that its services can be consumed. This
makes the server vulnerable to a number of attacks such as Distributed
Denial of Service (DDoS), censorship from authoritarian governments
or exploitation of software vulnerabilities.

In this work we propose an asynchronous protocol for allowing a
client to issue requests to a server without leaking any information
about the location of the server. In addition, our solution reveals
limited information about the network topology, leaking the distance
from the client to the corrupted participants.

We also provide a simulation-based security definition capturing
the requirement described above. Our protocol is secure in the semi-
honest model against any number of colluding participants. Moreover
our solution is efficient as it requires O(N · |M |) bits per client-server
interaction where N is the number of participants and |M | is the
number of bits of the message.

To the best of our knowledge our solution is the first asynchronous
protocol that provides strong security guarantees.
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1 Introduction

1.1 Motivation

The client-server architecture is one of the most widely used in Internet for
its simplicity and flexibility. In practice the server is assigned a domain
name and one or more IP addresses so that its services can be consumed.
This makes the server vulnerable to a number of attacks such as DDoS,
censorship from authoritarian governments or exploitation of software vul-
nerabilities. Thus it would be desirable to hide the location of the server in
the network. By doing so an attacker will not be able to attack directly the
host containing the server’s code nor interrupt the execution of its services
by non-technical means. While the literature is abundant on the topic of
anonymous channels [6, 5, 17, 18], the problem of hiding the location of a
server remains of great interest. TOR hidden services [7] is without a doubt
the most popular alternative for this purpose. Unfortunately, the security
provided by TOR is not guaranteed; in fact, several practical attacks have
been discovered [15, 12, 20, 24].

We observe that simple solutions for the problem described above do not
work. Standard end-to-end encryption is vulnerable to tracing the cipher-
text across the network, and hence, an adversary that is powerful enough
to corrupt several nodes is very likely to detect the origin or destination of
the message. Other approaches like using multicast are not enough either
since clients that are close to the server will notice that the response comes
back within short time. The main challenge is to avoid nodes to distinguish
whether the server is close or far away.

In this work we focus on solving the following problem. A set of clients
wish to establish a communication with a server, yet we want to hide the
location of this server in the network. We also expect the client’s queries and
server’s responses to remain private.

At a high level our protocol implements two phases: (1) a client issues
a request to the server, and then (2) the server returns a response. The
first phase of the protocol is straightforward: the client encrypts the request
using the public key of the server and then multicasts the message across
the network. Note that the server must still forward the request as if it
were any other node, otherwise its neighbors may infer its location. The
second phase is much more complex because as mentioned above the client
or other nodes could detect the presence of the server by a simple timing
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attack. To circumvent this difficulty we introduce the following idea: we
force all the nodes to behave as the server. We achieve this by relying on a
secret sharing scheme where every participant holds a share of the response.
To perform this split-and-reconstruct phase every node including the server
generate a random share. Then all shares are propagated to the server. At
this stage the server replaces its share by a value that enables to reconstruct
the response. In order to improve performance, we use a spanning tree1 over
the network graph. This allows us to optimize multicast invocations and
shares aggregation. We emphasize that our protocol is asynchronous, which
means that participants do not rely a on shared clock to run the protocol,
but rather acts upon the reception of neighbors messages. Unfortunately,
asynchronism comes at price: Since nodes do not know when a participant
initiates a request, it is impossible to hide the requesters activity. Hence our
protocol leaks proximity information of the requester to other nodes.

1.2 Contributions

Our contributions are the following:

• To the best of our knowledge we provide the first simulation-based
security definition capturing the requirement of hiding a server in a
network. This definition considers the full interaction (request and
response) between clients and server.

• To the best of our knowledge our protocol is the first to provide strong
security guarantees in an asynchronous setting (see Figure 1).

• Our protocol is secure against any number of corrupted participants:
Indeed if the adversary controls all nodes but two (including the server)
it will not be able to guess the right location with probability better
than 1

2
.

• Our protocol is efficient, requiring O(N · |M |) bits per client-server
interaction. Note that a linear communication complexity is required as
nodes that do not communicate would implicitly leak some information
about the location of the server.

1which we borrow from Dolev and Ostrovsky [8].
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1.3 Related Work

While the problem of hiding the physical location of a server in a network is
not exactly an anonymity problem (we do not want to hide the fact that a
specific client connects to the server) the techniques and concepts we use are
borrowed from the area of anonymity. Since Chaum’s two seminal papers on
mixes [6, 5], a large body of work has been written in order to enable com-
munications that do not reveal the identity of participants. An alternative to
mixers for achieving anonymity has been introduced by Reiter et al. with a
protocol named Crowds[19] and consists of using random paths among a set
of “dummy” nodes a.k.a. jondo before reaching a specific destination (the
server). In this protocol – contrary to our setting – the location of the server
is public and the goal is to hide the clients. This solution is simple, efficient
and provide some level of anonymity for the client. Beyond the protocol itself,
the authors highlight some fundamental problems that arise with these types
of constructions where traffic is routed through possible corrupted nodes: In
particular, preserving the initiator’s anonymity turns out to be more complex
than expected [23, 21]. Indeed in our case, we have to solve a similar problem
where we must hide the location of the server during the phase of responding
a request. Hordes [13] is an improvement to Crowds where the reply from the
server is done using multicast. This change makes passive attacks consisting
in tracing back messages harder while adding only a reasonable operational
cost. While Crowds and Hordes do not aim to hide the server like we do,
these protocols highlight the difficulty of hiding nodes in a network where the
adversary controls a subset of the participants and can leverage traffic anal-
ysis. Another approach to establish anonymous channels between client and
servers is onion routing [9]. An onion is obtained by encrypting the message
in a layered fashion using the public keys of the nodes on a path from sender
to receiver. By doing so, a node on the circuit will not be able to identify
the original source, the final destination, nor the message itself. The most
popular onion routing protocol is without a doubt TOR [7]. TOR not only
enables to preserve the anonymity of clients but also provides a mechanism
to hide the location of the server through a rendez-vous node where both
client and server meet. Unfortunately, as in Crowds and Hordes, a number
of practical attacks based on traffic analysis are possible [12, 20, 24, 16]: In
particular if a node manages to be the first relay between the server and
the rendez-vous node, it will likely detect the server presence [16]. In case
managing a Public-Key Infrastructure is too complex, one can use Katti et
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Protocol Asynchronous Collusion-resistant Communication complexity
TOR [7] YES NO O(D2 · κ+D|M |)

Dolev and Ostrovsky [8] NO Up to x(N − 1)/2y O(N · |M |)
MPC-Hiding topology [1] NO YES O(κ(κ+ logN)N5 · |M |))

Our work YES YES O(N · |M |)

Figure 1: Comparison of protocols for hiding a node location. In
this table N is the number of participants, D is the diameter of the graph
representing the network, |M | is the number of bits of the message and
κ is the security parameter. TOR is not collusion resistant because some
attacks can succeed with only two corrupted nodes [16]. We assume also
that the length of the onion circuit should be proportional to the diameter D
of the graph as otherwise traffic analysis attacks would become more effective.
Regarding communication complexity, we do not take into account the setup
phase occurring in Dolev and Ostrovsky’s construction and ours.

al.’s protocol [11] that relies on the idea of splitting the routing information
in such a way that only the right nodes on the circuit are able to reconstruct
it correctly. In our protocol we also leverage secret-sharing techniques, but
for splitting and reconstructing the message only. Also our solution does not
require a sender to control different nodes as in the onion slicing approach.

Early attempts to counter traffic analysis attacks were not practical as
they assumed the existence of some broadcast channel or ad-hoc topology and
required a synchronous execution [5, 18, 22]. The more general problem of
hiding the topology of a network has been solved recently in the Secure multi-
party computation setting [1, 14, 10]. However, these solutions involves a lot
of communication and computational overhead. One of the most promising
attempts for hiding the location of a server was due to Dolev and Ostrovsky
[8]: Indeed our solution borrows some of the techniques of their work, in
particular we also use spanning-trees to make the multicast communications
more efficient. Nonetheless our solution has two major advantages: it is
asynchronous and it is secure against any number of corrupted nodes.

In Figure 1 we compare our work with other proposals that allow arbi-
trary topologies. We observe that our construction is the most efficient with
Dolev and Ostrovsky’s one [8] but is asynchronous and tolerates up to N − 2
corrupted participants2.

2N − 1 corrupted participants is a trivial case where the adversary controls all nodes
which are not the server.
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1.4 Organization of the paper

This paper is organized as follows. Section 2 introduces definitions and no-
tations. The abstract functionality capturing the secure interaction between
client and server is introduced in Section 3. We describe our main protocol
in Section 4, prove its security in Section 5 before concluding in Section 6.

2 Preliminaries

2.1 Definitions and notations

Let n ∈ N be an integer, we denote by [n] the set {1, 2, 3, · · · , n}.
For a graph G = 〈V,E〉 the distance d(u, v) between two vertices u and

v is the length of the shortest path between u and v. Let (M, ◦) be an
abelian group and κ ∈ N the security parameter. A (single-operation) ho-
momorphic encryption scheme over message space M is a tuple of algorithms
〈Gen,Enc,Dec,Add〉 in which 〈Gen,Enc,Dec〉 is a regular public-key encryp-
tion scheme and algorithm Add satisfy the following property: For every valid
key-pair (pk, sk)← Gen(1κ), and for every pair of messages m1,m2 ∈ M:

Decsk(Addpk(Encpk(m1),Encpk(m2))) = m1◦m2

For some arbitrary ciphertext set C = {ci = Encpk(mi)}i∈I , we abuse no-
tation by using

∑
i∈I ci or Encpk(

∑
i∈I mi) to denote the result of a sequential

computation of Addpk over C.

2.2 Modeling networks

We can think of a regular communication network as a graph G, composed
by a set of nodes V and a set of edges E between them. Participants (nodes)
vi and vj cannot communicate directly unless there is an edge (vi, vj) in E.
To allow communication between distant participants, nodes can forward
incoming messages to neighbor nodes following some protocol.

We use the approach of [10] in which the participants in the real protocol
have access to a network functionality that allows to send message between
neighbor participants. The network functionality is specified in Figure 2,
and allows any participant to send messages to a neighbor at an arbitrary
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Fnetwork

Participants: On-line participants P = {P1, P2, . . . , PN}, and off-line operator
Op

Setup. Operator Op inputs an undirected graph G = 〈V,E〉 and a mapping M :
P ↔ V . Each participant Pi gets v = M(Pi), and set of neighbors {u :
(v, u) ∈ E}.

Comm. On input (msg, vj) from participant Pi, Pj outputs (msg, u) (where u is
M(Pi)) if (M(Pi), vj) ∈ V . Otherwise, Pi outputs ⊥.

Figure 2: Physical Network Functionality

time3. It provides two services, Setup and Comm. On the setup phase, the
communication graph is specified. This can be done by an off-line operator,
or by the participant itself describing their neighbors (or their pseudonyms
as inputs). The Comm service allows for neighbor participant to exchange
messages.

We will use this functionality as the basic mechanism to send message
throughout the network. For simplicity, we require that Setup is called
before any Comm service can be processed.

2.3 Multicast protocol

In this section we describe a simple multicast protocol that uses functionality
Fnetwork as its basic communication mechanism. We assume that a trusted
party has already instantiated the network functionality, and hence each par-
ticipant knows the vertex label associated with its neighbor for functionality
Fnetwork. When a participant issues a multicast, it sends the message to its
neighbor using functionality Fnetwork. Each participant, upon reception of a
multicast message, first check if the message has not been seen before. In
this case, it forwards the message to its neighbors and outputs the message.
Jumping ahead, our main protocol will use this functionality on a subgraph

3The network functionality of [10] is rather different in the sense that all participant
call it at same time, and all have message to all its neighbors.
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Protocol ΠFnetwork
MCast

Participants. On-line participants P = {P1, P2, . . . , PN}, and an off-line trusted
party T .

Requirement. Off-line trusted party T has initialized Fnetwork functionality for
P on a graph G = 〈V,E〉.

Setup. On input a graph G′ = 〈V,E′ ⊆ E〉, T specify to each participant the
label of its neighbors in G′. Each participant initiates an empty set L.

MCast. Any participant P : On input a message m, invoke
Fnetwork.Comm(〈mcast,m〉, u) for each neighbor u in G′.

Upon receiving Fnetwork.Comm’s output 〈mcast,m〉 from neighbor v, check
if m 6∈ L. If so, add m to set L, invoke Fnetwork.Comm(〈mcast,m〉, u) for
each neighbor u 6= v in G′, and output m. Otherwise, do nothing.

Figure 3: ΠFnetwork
MCast

of the network graph to efficiently broadcast the client’s encrypted requests.

2.4 Security definition

As standard in cryptographic protocols, we define security in terms of a real-
versus-ideal world procedures. That is, we first specify a desired functionality
for our protocol, and then claim that a protocol computing the functionality
is secure if its real-world execution realizes an ideal procedure in which the
participants get their outputs by sending their inputs to a trusted party
computing the functionality on behalf of them. More specifically, we say
that our protocol privately computes the functionality if whatever can be
computed by adversary interacting in the real execution of the protocol, can
also be obtained with only inputs and outputs of the corrupted participants
in the ideal execution.

We now formally provide a security definition for semi-honest static ad-
versaries. In what follows we let algorithms Sim, Adv, and Z be state-full.

IdealFZ,Sim(κ): 1) Run Z(1κ) to produce participant inputs {inj}j∈[N ] and ad-
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versary input inSim. 2) Run Sim(1κ, inSim) to get the index set of corrupted
parties IC ⊆ [N ]. 3) Run Sim({ink}k∈IC) to obtain modified input {in′k}k∈IC
for the corrupted parties. 4) Call functionality F on previous inputs to ob-
tain output {outj}j∈[N ]. 5) Run Sim({outk}k∈IC) to get adversary’s output
outSim. 6) Run Z({outj}j∈[N ]\IC , outSim) to obtain output bit b. 7) Return b
as the output of the ideal-world execution.

RealΠZ,Adv(κ): 1) Run Z(1κ) to produce participant inputs {inj}j∈[N ] and ad-
versary input inAdv. 2) Run Adv(1κ, inAdv) to get set of corrupted parties
IC ⊆ [N ]. 3) Run Adv({ink}k∈IC) to obtain modified input {in′k}k∈IC for the
corrupted parties. 4) Execute protocol Π with previously computed inputs,
saving the view of every corrupted participant, {viewk}k∈IC . When every par-
ticipant finishes the protocol execution, recollect output of every uncorrupted
participants, {outj}j∈[N ]\IC . 5) Run Adv({viewk}k∈IC) to get adversary’s out-
put outAdv. 6) Run Z({outj}j∈[N ]\IC , outAdv) to obtain output bit b. 7) Return
b as the output of the real-world execution.

Definition 1. A protocol Π privately computes functionality F if for every
PPT algorithm Adv, there exists a PPT algorithm Sim such that for every
PPT algorithm Z the random variables IdealFZ,Sim(1κ) and RealΠZ,Adv(1

κ) are
computationally indistinguishable, for all sufficiently long κ.

In our work it is sufficient to show a PPT simulator Sim that can produce
a view that is computationally indistinguishable from the corrupted partic-
ipants view. Then, the simulator can run A to produce a simulated output
to Z.

We slightly modify the ideal world to include a leakage function, L, whose
output is leaked to the simulator Sim. This leakage model the fact the proto-
col may reveal some partial private information to the adversary (for example,
the length of the messages to encrypt). It also allows for the specification of
trade-offs between protocol features or efficiency and security. This leakage
information is added to the simulator’s input on step 5.

3 Request Response Functionality

The functionality is executed between a set of participant P = {P1, P2, P3, . . . }.
A server node, which we denote as S, provides an arbitrary polynomial-
time requests-response service for all participants. A protocol realizing this
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FL(·)
ReqResp

Participants. On-line participants P = {P1, P2, . . . , PN}, and an off-line operator
Op that instantiate the parameters on a setup phase.

Parameters. A graph G = 〈V,E〉.

Setup. On input j∗ ∈ [|V |], a mapping {vj : Pj}vj∈V , and private Turing machine
ProcessRequest, save ProcessRequest and j∗.
Output vj to participant Pj for every j 6= j∗, and, 〈vj∗ , ProcessRequest〉 to
participant Pj∗ .

Req. On input req from participant Pi do:

• res← ProcessRequest(req).

• Output res to Pi and req to Pj∗ .

• Leak L(Req, req, res, Pi) to the adversary.

Figure 4: Hidden-Server Request-Response functionality FReqResp over an
incomplete network with leakage profile L(·).

functionality needs to hide which of the participant is the server node. A
secondary desired goal is to also protect the requests and the responses (in-
cluding the request issuer and destination nodes). Hence, our functionality
allows for the specification of a leakage profile over the request and response;
however, we do not allow any leakage on who the server is or any secret
information on what it is computing.

The functionality is parametrized by a public graph. On a setup phase,
the operator participant Op specifies the server node, its service Turing ma-
chine ProcessRequest, and a mapping between graph nodes and partici-
pants. As a result of this setup phase, every node gets its graph label, and
the server node gets the Turing machine ProcessRequest.
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4 Protocol Design

4.1 Overview

For a set of participants P = {P1, P2, . . . , PN} communicating over an ar-
bitrary network graph G, the goal of our protocol is to hide the location
of a server S = Pj∗ in G while enabling other participants to consume its
services. The main difficulty is to make it impossible for an adversary to
leverage timing information to obtain (or estimate) the distance between S
and some other corrupted nodes in G.
The protocol proceeds in two high level steps. The first step corresponds
to enabling a client Pi to send a request req to the server S. This step
can be easily implemented using a multicast protocol (see Section 2.3): The
client encrypts req using S’s public key and multicasts the ciphertext c =
EncpkS (req). Indeed, S’s location is not leaked4.
The second step consists of letting the server S to send the response res back
to Pi. This turns out to be more challenging. Indeed, proceeding as in the
first step is not secure since nodes that are close to S would detect S’s ac-
tivity and be able to deduce its location or some information about it (as for
example the subnet that contains S). In order to circumvent this difficulty
we introduce the following high level idea: each node Pj sends a random
share sj to the server S (including the S itself). The server will obtain all
the shares {sharej}j 6=i and recompute its share sharej∗ so that combination
of all shares reconstruct to res. Then, all the participants send their shares
to the requester Pi, and finally, Pi reconstruct and outputs the response.
Since shares on the last step reconstruct the response, it is clear that they
need to be encrypted under Pi’s public-key. As the initial shares sent to the
server reconstruct to a random value, it is tempting to send these in plaintext.
However, an adversary that controls the requester can see the shares both
times, and therefore notice when a share was updated, inferring information
on S’s location.
We take the approach of [8] and restrict the communication to an (arbitrary)
spanning tree on the network graph. This allows us to efficiently communi-
cate the messages on all phases. In particular, we use the following mecha-
nism to send the shares to S and Pi: First, the shares are sent up to the root
node of the spanning tree, and then the root node multicasts the shares down

4Note that messages needs to be forwarded once – and only once– to neighbors, even
when the message has arrived to its destination
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the tree. By using n-out-of-n information-theoretic secret sharing, we note
that nor the server or the requester need to know every individual share. In
fact, they only need to learn the final secret. Our idea, hence, is to use homo-
morphic encryption on the shares, and have each internal node to “add-up”
its share to the shares computed by its children, and then send a single result
up the tree (rather than the individual shares of every node in its subtree).
The root node then obtains an encrypted secret, which is sent down the tree
to reach the server or the requester. This efficient procedure allow our final
protocol to have linear communication complexity, and is formally described
in Section 4.2.
Our full protocol implementing functionality FReqResp is specified in Sec-
tion 4.3.

4.2 Encrypted Share Reconstruction Protocol

In this section we describe an important sub-protocol of our solution. This
protocol, denoted ΠESR, allows to efficiently and privately reconstruct a secret
out of each participant share. In a nutshell, each party encrypts its share
under the public-key of the recipient, and sends the ciphertext up into a
spanning tree of the network graph. The participant at the root node of
this tree can homomorphically compute the encrypted secret, and then send
the result down the tree to reach the recipient. We do this efficiently in
the following way: Each internal node privately reconstructs part of the
secret by homomorphically combining its encrypted share with the ciphertext
obtained from its children. Hence, each internal node needs to send a single
ciphertext up the tree. Furthermore, we use n-out-of-n information-theoretic
secret sharing so that we only need a single homomorphic operation for the
encryption scheme. Protocol ΠESR is specified in Figure 5.

4.3 Request-Response Server Protocol

In this section we introduce an Fnetwork-hybrid protocol achieving functional-
ity FReqResp.
Our protocol is divided in an off-line setup phase and three on-line phases.
In the setup phase, a trusted party T chooses a server participant S and
generates for it a key-pair (pkS , skS). T also chooses an arbitrary rooted
spanning tree instantiate protocols ΠMCast and ΠESR.
On the first on-line phase, the requester Pi encrypts its query req under
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Protocol ΠFnetwork
ESR

Participants. On-line participants P = {P1, P2, . . . , PN}, and an off-line trusted party T .

Parameters. An homomorphic encryption scheme H = 〈Gen,Enc,Dec,Add〉.
Requirement. Off-line trusted party T has initialized Fnetwork functionality for P on a graph G = 〈V,E〉.

Setup. On input a spanning tree ST = 〈root ∈ V,EST ⊂ E〉 over G, T specifies to every participant its
parent p and children set children on ST.

SendUp. Any participant P ∈ P: On input a message m, public key pk, and session id sid, compute
c = Enc(m, pk) and store 〈sid, c〉.

If Pi has no children jump to ?.

Upon receiving Fnetwork.Comm’s output 〈sid, up, c′〉 from children u, use sid to get c and update
it to Addpk(c, c

′). If all children have submitted their up message, then jump to ?.

?: If P is the root of the tree, output (c, sid). Otherwise, invoke Fnetwork.Comm(〈sid, up, c〉, p).

SendDown. Participant P ∈ P (root of the tree): On input a message c and session id sid, invoke

Π
Fnetwork
MCast .MCast(〈sid, down, c〉), and output (c, sid).

(Any participant). Upon receiving Π
Fnetwork
MCast .MCast′s output 〈sid, down, c〉, output (c, sid)

Figure 5: ΠFnetwork
ESR

the server’s public key, and uses protocol ΠMCast to multicast propagate the
ciphertext across the network.
Then, on the second on-line phase every participant (including the server)
generates a random string (used as a share for the response) and sends it
to the server using protocol ΠESR. Upon receiving the combined shares
cs =

∑
j 6=i sharej, S recomputes its share sharej∗ as res − (cs − sharej∗)

so that the reconstruction procedure outputs the response res.
On the third on-line phase, every participant Pj use ΠESR to send its sharej
(encrypted under Pi’s public key), so that the response can be homomorphi-
cally reconstructed and sent to Pi. Pi decrypts and output the response.

Notice that these three phases can be executed in a pipeline. In fact,
each encrypted share sent on the second on-line phase can be sent as soon as
the participant sees the request multicast message issued by Pi on the first
phase. Similarly, each participant can send its share in the third phase as
soon as the participant sees the multicast-down message issued by the root
node in the second phase. Therefore, our protocol is asynchronous.
We also note that the initial multicast of the encrypted request leaks the
direction towards the requester node to each participant. Therefore, the
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encrypted response on the third phase, can be sent efficiently from the root
to the requester. In fact, when a participant receives the request message
from neighbor u, this is saved so that at the final phase, each participant
knows where to send the encrypted response.
Since all participants act according to the same communication pattern, and
all messages are encrypted, our protocol does not reveal the location of the
server, nor the request or response.

Our protocol is formally described in Figure 6.

4.4 Variants of the protocol

Avoiding an off-line trusted party. Protocol 6 relies on a trusted party
to set up the initial parameters of each participant. By using state-of-the-art
topology-hiding secure computation protocols [14, 10, 2, 1] we can achieve a
secure distributed setup without any trusted party.
Precomputing shares using PRG. It is possible to simplify the protocol
described in Figure 6 by having the server computing the other participant
shares locally. In practice, all the participants would receive a secret seed
Rj to generate its seed, and the server receives the secret seeds of every par-
ticipant. This means that the second on-line phase of the protocol can be
removed, and hence save 2N in communication complexity and N homomor-
phic operation. The other steps remain unchanged.
Response recipient. Our protocol can be modified so that the recipient
of the response can be any arbitrary participant (or set of participants).
This is achieved as follows: (a) the client chooses the public key of another
participant as the session public key, and (b) because the location of the
recipient is not necessarily known, the root node multicasts the encrypted
response down the tree instead of sending it directly to the originator of the
request.
Avoiding the use of the spanning tree. In a practical environment, the
spanning tree could affect the resilience of the protocol and can be hard to
maintain or configure. In such a scenario, the steps (SendUp,SendDown)
can be replaced by multicast operations of the shares for each participant.
Note that in addition to increase the communication complexity, this change
introduces a new challenge: The nodes need to wait for the server to decrypt
all its shares before the shares for the client can be multicasted. In order
to keep the protocol asynchronous, we solve this issue by precomputing the
shares using PRG (see above) so that nodes are not forced to delay the release
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Protocol ΠFnetwork
ReqResp

Participants. On-line P = {P1, P2, . . . , PN}, and an off-line trusted party T .

Parameters. A security parameter κ and an homomorphic encryption scheme H = 〈Gen,Enc,Dec,Add〉.
Requirement. Off-line trusted party T has initialized Fnetwork functionality for P on a graph G.

Setup. a) T chooses a server participant S ∈ P and an arbitrary spanning tree ST on graph G. b)

T instantiate protocols Π
Fnetwork
MCast and Π

Fnetwork
ESR on input ST, c) T generates server’s key pair

(pkS , skS) ← Gen(1κ) and securely distributes S’s public key pkS to every participant. d) Fi-
nally, T securely sends (skS , pkS) and a Turing Machine ProcessRequest to S.

(In what follows, let j∗ denote the index of S in P.)

Req. On input req, participant Pi chooses a session key-pair (pksid, sksid) and a fresh session id sid, and

invokes multicast protocol Π
Fnetwork
MCast .MCast(〈request to server, sid,EncpkS (req), pksid〉) over the

spanning tree.

Response phase. Every participant Pj (including S):

1. Upon receiving Π
Fnetwork
MCast .MCast’s output 〈request to server, sid, C, pksid〉 from neigh-

bor u, pick a random share sharej and invoke ΠESR.SendUp(sharej , pk
S , sid), and store

〈sid, pksid, sharej , u〉. In addition, if Pj is S, compute req = DecskS (C) and res ←
ProcessRequest(req), and store 〈sid, req, res〉.

2. (Root node) Upon receiving ΠESR.SendUp’s output (C = EncpkS (
∑
j 6=i sharej), sid), in-

voke ΠESR.SendDown(C, sid).
3. Upon receiving ΠESR.SendDown’s output (C, sid), use sid to get pksid and sharej from local

storage, and:

• If Pj is S = Pj∗ , decrypt C to get sharesum =
∑
j 6=i sharej , and update sharej∗ to

res− (sharesum − sharej∗ ).

• Invoke ΠESR.SendUp(sharej , pksid, sid)
4. (Root node) Upon receiving ΠESR.SendUp’s output (C = Encpksid (

∑
j 6=i sharej), sid), use

sid to get neighbor label u, and invoke Fnetwork.Comm(〈C, sid〉, u).
5. Upon receiving Fnetwork.Comm’s output (C, sid) do:

• If Pj is Pi, use sid to get sksid from local storage, and output res← Decsksid (C).

• Otherwise, use sid to get u, and invoke Fnetwork.Comm(C, u).
.

Figure 6: ΠFnetwork
ReqResp

of their shares to the client.

5 Proof of Security

We begin by specifying the private information revealed by protocol ΠReqResp.
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Leakage 1. L(G, ST,M, Pi, C) On input a graph G = 〈V,E〉, a spanning tree
ST = 〈root ∈ V, T ⊂ E〉 over G, a mapping M := P ↔ V , a requester
participant Pi ∈ P, and a set of corrupted participants C ⊂ P, output, for
each P in C, the distance and direction (edge to children or parent) from
M(P ) to M(Pi) in ST, its depth (distance to ST’s root node), and the height
of each of its children nodes (distance to further leaf on subtree).

Theorem 1. Let H = 〈Gen,Enc,Dec,Add〉 be semantically secure homomor-
phic public-key encryption scheme. Then, protocol ΠReqResp privately realizes
functionality FReqResp in the Fnetwork hybrid model under Leakage 1.

In the following proof we analyze the case in which the server is not cor-
rupted and there is at least one other honest node (otherwise, the location of
the server node is leaked anyway). In the case where the server is corrupted,
there is no secret beyond the network graph structure, and hence simulation
becomes simpler (and all the interesting simulation steps are included in the
proof).

Proof. Let C be the set of corrupted participants, andH be the public key en-
cryption scheme as in protocol ΠReqResp. We next specify the ideal adversary
behavior on each of the protocol phases.
Simulating Setup In the setup phase, the corrupted participants only re-
ceive their key-pairs, the server’s public key pkS .

1. Instantiate network functionality Fnetwork using graph G for the partic-
ipant set.

2. Generate additional server public key pkS .
3. For each corrupted party, assign its spanning tree edges (to children

and parent) and pkS .
Simulating Req Let Pi ∈ C be the requester, and Pj∗ = S 6∈ C be the server
participant. Simulation proceeds as follows:

1. Sample session id sid, key-pair (ski, pki).
2. If Pi is corrupted, then upon receiving input req from Pi, simulate the

real adversary execution to get the (possibly) updated request req′.
Send req′ to Pi as its input and get its output res. Otherwise, set res
to 0`.

3. Using distance and direction from corrupted participants to Pi, simulate
a Pi started multicast protocol on spanning tree with message
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〈request to server, sid,EncpkS (0`), pksid〉 where sid and pksid are fresh
values. (That is, the corrupted participants get
〈request to server, sid,EncpkS (0`), pki〉 at the right moment and through
the expected graph edge.)

4. Simulate to server UP messages by assigning a random share sharej
to each corrupted participant, and assigning an arbitrary share to the
honest children of each corrupted participant. Then, the simulation is
done by giving message 〈sid, to server UP, S〉 at the right moment from
the correct children, where S = EncpkS (share).

5. Use corrupted participant depth to simulate the to server DOWN mes-
sage by giving message 〈sid, to server DOWN, S〉 to each corrupted par-
ticipant at the right moment. If the root of the tree is corrupted, then S
must match the homomorphic computed value of the sum of the nodes
shares. Otherwise, S can contain a dummy value.

6. Simulate each participant sending the to requester UP message were
shares are identical as in step 4, except the honest participants, whose
share are updated so that reconstruction produces res.

7. Simulate to requester DOWN by sending 〈sid, to requester DOWN, C〉
to corrupted participants in the path root to requester, where C =
Encpksid(res).

The simulation above is perfect in terms of communication patterns (tim-
ing, length and type of messages). This is because the simulator uses the
leakage profile to deliver the message to the corrupted participants at the
right time and through the exact graph edge. Hence, the security of the
protocol relies on the ability to simulate the content of the messages seen by
the corrupted nodes. We next analyze the content by message type:

• Request multicast. If the request is known to the simulator, it can pro-
duce a ciphertext identically distributed to the real message. Otherwise,
the simulator produces a dummy ciphertext (computationally indistin-
guishable to the real message by the security of the encryption scheme).

• to server UP messages. There is no secret information to simulate.
Hence, the simulator produces ciphertexts identically distributed to the
real protocol messages.

• to server DOWN message. Same as above.

• to requester UP and to requester DOWN messages. Here the shares
corresponding to honest participant are updated so that the reconstruc-
tion produces res. In the worst case that the adversary controls Pi, then
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it can decrypt the shares. However, these cannot be correlated with the
shares sent to the server, since these are encrypted under the key of the
server. In addition, shares are uniformly distributed, (n− 1)-wise inde-
pendent, and they reconstruct to the same valid output res. Hence, the
simulated shares in plaintext cannot be distinguished from the ones used
in the real execution.

A simple hybrid-argument5 over the security of the encryption scheme
proves that the real and simulated views are computationally indistinguish-
able.

6 Conclusion

We have introduced a new protocol that enables to hide a server in a network.
This protocol has several advantages other previous proposals: it is efficient,
asynchronous and collusion-resistant. To the best of our knowledge this is
the first solution with these characteristics.

We believe that this work is an important step towards designing practical
and provably secure systems that enable to hide relevant meta-data (such
as the identity or location of participants) in a controllable way. Future
work directions include improving the robustness of the protocol in order to
handle adaptative and active adversaries. We also believe that the current
construction can be proven secure in the UC framework[4].
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