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Abstract

The research on secure poker protocols without trusted intermediaries has a long history
that dates back to modern cryptography’s infancy. Two main challenges towards bring-
ing it into real-life are enforcing the distribution of the rewards, and penalizing misbehav-
ing/aborting parties. Using recent advances on cryptocurrencies and blockchain technolo-
gies, Andrychowicz et al. (IEEE S&P 2014 and FC 2014 BITCOIN Workshop) were able
to address those problems. Improving on these results, Kumaresan et al. (CCS 2015) and
Bentov et al. (ASIACRYPT 2017) proposed specific purpose poker protocols that made sig-
nificant progress towards meeting the real-world deployment requirements. However, their
protocols still lack either efficiency or a formal security proof in a strong model. Specifi-
cally, the work of Kumaresan et al. relies on Bitcoin and simple contracts, but is not very
efficient as it needs numerous interactions with the cryptocurrency network as well as a lot
of collateral. Bentov et al. achieve further improvements by using stateful contracts and
off-chain execution: they show a solution based on general multiparty computation that has
a security proof in a strong model, but is also not very efficient. Alternatively, it proposes
to use tailor-made poker protocols as a building block to improve the efficiency. However,
a security proof is unfortunately still missing for the latter case: the security properties the
tailor-made protocol would need to meet were not even specified, let alone proven to be met
by a given protocol. Our solution closes this undesirable gap as it concurrently: (1) enforces
the rewards’ distribution; (2) enforces penalties on misbehaving parties; (3) has efficiency
comparable to the tailor-made protocols; (4) has a security proof in a simulation-based model
of security. Combining techniques from the above works, from tailor-made poker protocols
and from efficient zero-knowledge proofs for shuffles, and performing optimizations, we ob-
tain a solution that satisfies all four desired criteria and does not incur a big burden on the
blockchain.

1 Introduction

Shamir, Rivest and Adleman, soon after their seminal work on the RSA cryptosystem, started
exploring new ideas on cryptography inspired by everyday activities such as playing games. In
particular, they started investigating how to play poker remotely [43]. A poker game, despite
its apparent triviality, in fact, relates to a set of very interesting problems for the distributed
setting. For example, shuffling a deck of cards in the presence of the players is very different
from securely shuffling with remote parties: in the latter case every player needs to participate
in the shuffling procedure; otherwise, security may not be assured at all for the participants.
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Mental Poker, Cryptography and the Gambling Market: Since its origins the research
on mental poker and card games worked as a drive for the research in cryptography. Therefore
it is not a surprise that we can find a myriad of works pursuing the development of this area
within the cryptographic literature. The original work of Shamir et al. inspired a number of
follow-ups, starting in the eighties with the works on the feasibility of playing mental games,
e.g., [37, 15, 29, 4, 51, 25, 26, 16, 17].

In fact, the study of this problem led to concrete and seminal results that have shaped
modern cryptography. Vulnerabilities in the poker protocol of Shamir et al. [43] that were
pointed out by Lipton [37] triggered developments in the formalization of security models that
culminated with the establishment of the notion of probabilistic security by Goldwasser and
Micali [29] as the standard security goal for cryptosystems. Another example is the general
purpose secure multiparty computation [28]. In other words, research in mental poker has
motivated the development of the cryptography in a broader sense.

The first protocols for mental poker faced several limitations due to poor efficiency. However,
they made it clear that a full protocol for card games needs secure sub-protocols for several
steps: generating cards, blindly shuffling cards, revealing cards, checking the outcome of the
game, and so on. In the following decades several works dealt with this important problem, e.g.,
[36, 40, 5, 53, 12, 31, 52, 45, 42, 50, 47, 46]. These works improved the efficiency of one or more
of these sub-protocols.

Coincidentally, in economic terms, poker has become a strong trend from the early 2000’s in
what is known as the “Poker Boom” [49] and was described in prestigious economic venues [22].
Much of the strong interest in online gambling has its advent due to the appearance of on-
line casinos. The rising popularity of online games can be verified by the peaks of play-
ers flocking in the poker rooms registered in websites like http://www.fulltilt.com/ and
https://www.pokerstars.com/. This phenomenon still holds despite legal restrictions imposed
by new US legislation [19, 18]. Even with these setbacks players continue to play in websites
based in other countries. For example, a report from the Financial Times [1] describes how UK
firms filled the vacuum left by the US counterparts in the estimated 40 billion dollars global mar-
ket of international online gambling (with one of the major online casino reporting 22 millions
users and revenue of 2.5 billions dollars).

The current model of online gambling is based on trusted casinos, which are responsible for
generating the randomness used to shuffle the cards and for enforcing the proper execution of
the game. In contrast, a real world poker game requires almost no trust among the players, or
between players and third parties like casinos. In the current model, a malicious casino or an
attacker working for a casino can greatly influence the outcome of the game by manipulating
the randomness used for shuffling or by leaking additional information to the players. And such
cases have already happened (see Section “Integrity and Fairness” of [48] for more details). This
state of affairs represents a clear disadvantage from online poker in comparison with a game
played face-to-face. Techniques from mental poker can be used to overcome this problem and
securely play poker online without the need for trusted casinos.

In the domain of cryptocurrencies, users and practitioners did not fail to notice this strong
interest in online gambling and the opportunities that cryptocurrencies offer for online gam-
bling [44]. In terms of the development of cryptography and economic importance, the research
in the field of mental poker combined with cryptocurrencies, has the potential to not only give
novel theoretical results, but also concrete fruits in the real world.

Challenges Preventing Deployment: Given that poker is most commonly played with
money at stake, two central problems that were not addressed by the previously mentioned
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secure poker protocols, but need to be solved for allowing deployment are protecting against
aborts and ensuring that winners get rewarded properly.

The first problem consists in players who leave the game prematurely (i.e. abort the protocol
execution) causing the protocol to freeze. Castellà-Roca et al. [13] investigated this scenario and
proposed a protocol. However, we have identified a flaw in this protocol that effectively enables
the adversary to artificially increase the probability that a given card (or set of cards) is drawn
from the deck.

The problem of ensuring that a player actually gets a reward if it wins has only been tackled
very recently after the advent of cryptocurrencies and blockchain technologies. Andrychowicz
et al. [3, 2] addressed this problem with the help of Bitcoin and blockchains. They concurrently
also dealt with the abort problem in a far more satisfactory way by imposing financial penalties
on the aborting parties and using the collected money to compensate the remaining players.
They followed the approach of using an unfair multiparty computation protocol along with
many simple smart contracts and Bitcoin deposits to ensure that the rewards are distributed
to players whenever the relevant conditions are fulfilled, and to enforce financial penalties on
aborting/misbehaving parties. A similar solution was independently proposed by Bentov and
Kumaresan in [8] and [34]. Kumaresan et al. [35] improved on this general strategy and employed
it in designing a specific purpose protocol for card games (with a focus on poker). However, this
protocol is not efficient enough for practical purposes: for instance, it requires a lot of interaction
with the cryptocurrency network and of collateral (for a more detailed discussion see [9, Section
7]).

A significant improvement was obtained by Bentov et al. [9] by leveraging the power of state-
ful contracts to greatly improve the efficiency and solve some of the bottlenecks in the previous
protocol. The main difference between the two approaches boils down to use of smart contracts.
The protocol presented in [35] is based on simple claim-or-refund transactions, requiring O(n2)
rounds of interaction with the cryptocurrency network and an amount of collateral linear in the
number of messages exchanged during the protocol. In contrast, the protocol of Bentov et al. [9]
requires only O(1) rounds of interaction with the cryptocurrency network and an amount of col-
lateral equal to the compensation the players would receive. The central idea for improving the
performance and decreasing the amount of collateral needed is to use a single stateful contract
that keep all the deposits and to execute the unfair protocol off-chain. After the initial deposits,
the stateful contract is only involved in two situations: for the cash distribution, or if a problem
happens.

Bentov et al. presented a general possibility result in which the unfair multiparty compu-
tation protocol is based on enhanced trapdoor permutations and provided an UC-style security
proof. Additionally, they argued that their paradigm can also be instantiated with tailor-made
poker protocols to improve the performance; however, they did not provided a security proof for
this case nor described the properties the underlying poker protocol should satisfy. This security
gap is discussed below.

Lack of Strong Security Proofs: Even though efficient solutions are known for different
components of card games, most have not been formally proven secure in a strong security
model. As the experience from decades of cryptographic research clearly shows, in order to avoid
proposing/using insecure protocols, it is imperative to use strong security models to formally
prove the protocols’ security.

Out of the few protocols that have been suggested, it seems that only [35] and its follow-up
work [9] present a more detailed security proof in a strong, simulation-based security model. We
should, nonetheless, emphasize that in the case of the work in [9] only the general solution based
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on enhanced trapdoor permutations enjoys such a strong security proof. While this general
construction can be used to instantiate a poker protocol, it would not be as efficient as tailor-
made poker protocols (it has inefficiencies in terms of computation and communication due to its
generality). Bentov et al. [9, Section 7] argue that, instead of the general protocol, tailor-made
poker protocols can be used as a building block and coupled with their techniques for dealing with
aborts and cash distribution in order to obtain more efficient poker protocols. However a proof of
security for this claim is not presented in their work, furthermore it is not even mentioned which
security properties the tailor-made poker protocol would have to satisfy in order for the overall
solution to be secure. They specifically mentioned as a potential candidate “the protocol of Wei
and Wang [47, 46]”. However, these citations refer to two different journal works appearing in
different journals: Wei and Wang [47] that appeared in Journal of Mathematical Cryptology
in 2012 and Wei [46] that appeared in Information Sciences in 2014. The work of [9] seems to
consider them the same protocol, mentioning [47] during the description of their solution and
then referring also to [46]. Unfortunately this state of the things leaves the reader confused about
which protocol they consider to be adequate. In addition, the security models used in [47, 46] are
not formally defined and seem to be rather weak (judging by the informal descriptions presented
by the authors). One example is the “ideal game” in [47] (i.e., Game 8) which does not capture
all the challenging difficulties involved in playing mental poker securely (a gap that we address
by introducing the first detailed functionality for poker in the research literature in Section 3).
Using such building blocks in a black-box way without a comprehensive definition of the security
requirements and a matching security proof can potentially lead to security vulnerabilities that
are “inhereted” from the building blocks, and to composition problems.

Concrete Flaws in Previous Protocols: Given the lack of formal security definitions and
proofs in previous papers, it comes as no surprise that some proposals have security problems.
It has been observed in [42] that the protocols of Zhao et al. [53, 52] are broken.

We have identified a flaw in the mechanism used for player dropout resistance (i.e. guar-
anteed output delivery) in the protocol proposed by Castellà-Roca et al. [13] that allows an
adversary to manipulate the probability of a card being drawn from the deck. When a player
leaves the game the protocol does not abort, it requires however a complete new deck to be
shuffled for continuing the game. The players then proceed using the new deck and a veto
mechanism that prevents the distributed cards from reappearing. The main problem is that the
cards that were previously distributed to the player who dropped out are not vetoed, and thus
are potentially reinserted into the game - allowing a potential attack vector for colluding parties.
If one adversarial player has in his hand a card that can greatly increase the winning probability
of another player, he is able to drop out of the game so that the card is reinserted into the new
deck and potentially reappears - thus influencing the outcome. Note that this attack cannot
happen in a face-to-face poker game.

Analyzing the protocol of Barnett and Smart [5], we have observed that the adversary can
obtain a trapdoor that allows it to learn the order of all cards in the deck with probability 1,
consequently learning exactly which cards are held by other players. This attack can be carried
out by any adversary that corrupts at least one of the players during the key generation phase of
the Verifiable Threshold Masking Function (VTMF) employed in that protocol. In this phase,

each player Pi is required to generate a random secret-key share ski
$← Zp and broadcasts the

group element hi = gski , where g is a generator. An adversary corrupting a player Pj can choose

a trapdoor td
$← Zp and broadcast hj = gtd∑

i 6=j hi
. The resulting public key for the VTMF will be

computed as pk =
∑

i hi =
(∑

i 6=j hi

)
· gtd∑

i 6=j hi
= gtd with the corresponding secret key equal to
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the trapdoor td known by the adversary, allowing it to reverse the masking operations done to
each card and recover the order of the cards in the final shuffled deck. In Section 2.5, we present
a key generation procedure for a threshold ElGamal cryptosystem that can be readily employed
to solve this issue of [5].

General Requirements for a Useful Poker Protocol: The current state of the art is still
unsatisfactory as there is no solution that meets all the following criteria that would be necessary
in a deployment in a real world scenario in which money is at stake:

1. Efficiency: performance that is comparable to tailor-made poker protocols;

2. Security: a simulation-based, formal proof of security;

3. Penalties: avoiding aborts/misbehavior or penalizing the misbehaving players;

4. Rewards: securely distributing the rewards to the players.

The works that are closer to achieve these criteria are [35] and [9], which made fundamental
progress towards providing viable solutions to satisfy conditions (3) and (4). Nevertheless, none
of their solutions meet simultaneously conditions (1) and (2). The solutions in [35] as well as
the general solution in [9] do not meet condition (1), while the solution in [9] using tailor-made
protocol improves on condition (1) but does not address (2) as it lacks a security proof.

1.1 Our Contribution

We present our protocol, Kaleidoscope, named after the homonymous poker themed movie from
the sixties [32]. Given the earlier discussion, our main goal in this work is to design a poker
protocol that concurrently meets all four criteria above. In designing our solution we face two
main challenges: 1. constructing an efficient off-chain protocol without sacrificing provable
security guarantees as in previous tailor-made poker protocols, 2. reducing the amount of data
stored in the blockchain, which is a highly constrained resource. In summary, our contributions
are:

1. First full-fledged simulation-based security definition tailored for poker (Section 3);

2. First fully-simulatable poker protocol, which provably realizes our security definition (Sec-
tion 4);

3. Improved concrete computational and communication complexities for off-chain card op-
erations (around 10 times better than previous works) and reduced on-chain storage re-
quirements for the penalties and rewards enforcement mechanism (estimated in Section 5).

As our goal is to provide a strong security guarantee, we first specify a poker functionality
that encompasses the whole game execution, penalizes aborting parties and guarantees the
distribution of the rewards. Such modeling of the whole poker game as an ideal functionality
is, to the best of our knowledge, novel. Then we design a tailor-made protocol that provably
realizes such functionality in a simulation-based security model.

Our protocol is designed with both off-chain and on-chain efficiency in mind. We focus on
the case where players act honestly and the on-chain protocol execution is used as a last resort
to recover from malicious actions. In this context, we design an off-chain protocol that is highly
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efficient while providing compact witnesses to be posted to the blockchain for claiming rewards
or enforcing penalties.

We design a highly optimized tailor-made poker protocol that meets criteria (1) and (2)
inspired by the protocol of Barnett and Smart [5] and an efficient zero-knowledge proof of
correctness for shuffle [6]. While we follow the general approach of [5], we make a series of subtle
but significant modifications in order to both correct security issues and improve efficiency of
several phases. We meet criteria (3) and (4) by building on top of the ingenious ideas in [35]
and [9], optimizing their general rewards/penalties mechanism for the specific case of poker, for
which we obtain compact witnesses of correct behavior.

1.2 Overview and Intuition of Our Protocol

Next we present a more detailed overview of our protocol. Due to the fact that it is not reasonable
to assume that the majority of the players are honest in a poker game, the secure poker protocol
will not be able to guarantee fairness. Instead, we follow the approach of imposing a financial
penalty on the party that interrupts the correct execution of the protocol, and use this money
to compensate the honest parties. A stateful contract is used to enforce these properties.

As it is highly desirable to decrease the burden on the blockchain as much as possible (thus
improving the efficiency and decreasing the impact on other users), the execution of the protocol
is performed mostly off-chain and the parties only go back on-chain for the cash distribution or
if some problem happens. When the protocol goes back on-chain, the parties need to present
witnesses to the stateful contract to validate the state of the game. It is important to decrease
the size of these witnesses that need to be stored by the players, as well as the verification costs
for the stateful contract. In this regard, a key characteristic of poker is that the future execution
is independent from the past when conditioned on a few variables that keep track of the current
status. Hence, if all participants sign these variables at a checkpoint, then this constitutes a
witness witness that can be delivered to the stateful contract in order to prove the state of the
game at this particular point. Therefore, at the checkpoints, the players can delete all other
previous witnesses, saving space for the players and verification efforts for the stateful contract.

The general overview of the protocol is:

1. Initially the parties lock into the stateful contract functionality an amount of money equal
to the sum of the collateral and the money that they will use for the bets. A few initial-
ization procedures are also executed during this stage.

2. The parties then execute an unfair tailor-made poker protocol off-chain. We construct a
highly optimized protocol building on the techniques of [5] along with an efficient zero-
knowledge proof of correctness for shuffles from [6]. During this stage the players need to
record a few witnesses that must be sent to the stateful contract in the case of problems that
require its intervention. All messages are signed by the senders, and at some checkpoints a
few variables that summarize the status of the game are signed by all players, constituting
a compact witness of correct execution.

3. If the protocol finishes correctly off-chain, then the final payout amounts will have been
signed by all players, and so the parties only come back on-chain for the cash distribution
that is performed by the stateful contract.

4. If some problem happens and a player requests the intervention of the stateful contract,
each party that does not want to get penalized handles their respective recorded witnesses
to the stateful contract, which is then able to verify the latest status of the protocol
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execution and continue the execution (on-chain) under its mediation. During the mediated
execution, it penalizes any participant that does not follow the protocol rules or abort.

Note that on Step 2, the adopted technique is used in order to decrease the size of the
witnesses that the players need to store after the checkpoint as well as to reduce the amount
of on-chain verification that needs to be performed in case of intervention (thus reducing the
burden on the blockchain, which affects all users of the cryptocurrency).

The safe deposit d that each of the n participants lock into the contract should be enough
to pay the compensation amount q for all the other parties, i.e., d ≥ q(n − 1). Obviously, the
monetary compensation q should be related to the maximum possible bet amount m at each
hand; otherwise the corrupted parties would have an incentive to abort the protocol if they
notice that one hand will end up badly for them.

2 Preliminaries

In this section we settle notation and definitions used throughout the paper. x
$← S denotes

sampling uniformly at random an element x from a set S.

2.1 Security Model, Adversarial Model and Setup Assumptions

We prove our protocol secure in the real/ideal simulation paradigm with sequential composition.
This is an intuitive paradigm that provides strong security guarantees for the protocols that are
proven secure according to it. A real world and an ideal world are defined and compared. In
the real world, the protocol π is executed with the parties, some of which are corrupted and
controlled by the adversary A. On the other hand, in the ideal world the protocol is replaced by
an ideal functionality F and a simulator S interacts with it. The ideal functionality F describes
the behavior that is expected from the protocol and acts as a trusted entity. A protocol π is
said to securely realize the ideal functionality F , if for every polynomial time adversary A in
the real world, there is a polynomial time simulator S for the ideal world, such that the two
worlds cannot be distinguished. In more detail, no probabilistic polynomial time distinguisher
D can have non-negligible advantage in distinguishing the concatenation of the output of the
honest parties and of the adversary A in the real world from the concatenation of the output
of the honest parties (which come directly from F) and of the simulator S in the ideal world.
Protocols proven secure according to this paradigm can be sequentially composed. For more
details about this security paradigm please check [11, 27].

We consider malicious adversaries that may deviate from the protocol in any arbitrary way.
Moreover we consider the static case, where the adversary is only allowed to corrupt parties
before protocol execution starts and parties remain corrupted (or not) throughout the execution.
Our protocol uses the Random Oracle Model (ROM) [7].

2.2 Decision Diffie Hellman (DDH):

The DDH problem consists in deciding whether c = ab or c
$← Zp in a tuple (g, ga, gb, gc) where

g is a generator of a group G of order p, and a, b
$← Zp. The DDH assumption states that the

DDH problem is hard for every probabilistic polynomial time distinguisher.
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2.3 Digital Signatures

We will employ digital signatures with Existential Unforgeability under Adaptive Chosen Mes-
sage Attacks (EUF-CMA) [30]. In general, a digital signature scheme is a tuple of three PPT
algorithms SIG = (SIG.Gen,SIG.Sign,SIG.Vrf) such that:

• SIG.Gen(1λ) takes in a security parameter and outputs a verification key SIG.vk and a
signing key SIG.sk.

• SIG.SignSIG.sk(m) takes in a signing key SIG.sk and a message m, outputting a signature
σ on message m under signing key SIG.sk.

• SIG.VrfSIG.vk(m,σ) takes in a verification key SIG.vk, a message m and a signature σ,
outputting 1 if the signature is valid and 0 otherwise.

2.4 Non-Interactive Zero-Knowledge Proofs for Discrete Logarithm Rela-
tions

In this section, we describe some non-interactive zero knowledge proofs (NIZK) for discrete loga-
rithm relations constructed via the Fiat-Shamir heuristic that will be employed by our protocols.

Non-Interactice Zero-Knowledge Proof of Discrete Logarithm Equality (DLEQ): We
will need a NIZK of knowledge of a value α ∈ Zp such that x = gα and y = hα given g, x, h, y. We
denote this proof by DLEQ(g, x, h, y). Chaum and Pedersen [14] constructed a sigma protocol
for this relation that works as follows:

1. The prover computes a1 = gw and a2 = hw where w
$← Zp and sends a1, a2 to the verifier.

2. The verifier sends a challenge e
$← Zp to the prover.

3. The prover sends a response z = w − αe to the verifier.

4. The verifier accepts the proof if a1 = gzxe and a2 = hzye hold.

This sigma protocol can be transformed into a NIZK of knowledge of α in the random oracle
model through the Fiat-Shamir heuristic [24, 39]. In this transformation, the challenge e is
computed by the prover as e = H(x, y, a1, a2), where a1, a2 are computed as in the interactive
protocol and H(·) is a random oracle (that can be of course substituted by a cryptographic hash
function). The proof consists of the challenge e along with response z = w − αe computed ac-
cording to x, y and w. The verifier can check the proof by computing a′1 = gzxe and a′2 = hzye,
and verifying that H(x, y, a′1, a

′
2) = e. DLEQ(g, x, h, y) in our protocols references its Fiat-Shamir

NIZK version, i.e. (e, z).

Non-Interactive Zero-Knowledge Proof of Discrete Logarithm Knowledge (DLOG):
We will also need a simpler NIZK of knowledge of a value α ∈ Zp such that x = gα given g, x.
This proof is denoted by DLOG(g, x). Schnorr [41] constructed a sigma protocol for this relation
that was later proven secure in [39]. Using the Fiat-Shamir heuristic [24, 39] to turn this sigma

protocol into a NIZK, the prover computes a challenge e = H(g, x, a), where a = gw and w
$← Zp,

and a response z = w − αe. The final proof consists of (e, z) and a verifier can check that it is
valid by first computing a′ = gzxe and then verifying that c = H(g, x, a′). DLOG(g, x) in our
protocols references its Fiat-Shamir NIZK version, i.e. (e, z).
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2.5 (n, n)-Threshold ElGamal Cryptosystem

Threshold cryptosystems with (t, n)-threshold allow a group of n parties to jointly generate
a public key that is then used to encrypt plaintext messages in such a way that they can
only be recovered from the ciphertexts if at least t parties cooperate [20]. In our card deck
generation procedure we employ a (n, n)-threshold version of the ElGamal cryptosystem [23]
based on the constructions of [38, 21] with a verifiable decryption protocol as in the Verifiable
Threshold Masking Functions (VTMF) of [5]. The final goal is to encode card information
as Threshold ElGamal ciphertexts as in the VTMF based construction of [5]. However, we
do not require the verifiable masking and verifiable re-masking (rerandomization) operations
because the verification that these ciphertexts are correctly re-randomized is handled by the
zero-knowledge proofs of correctness of a shuffle [6] presented in the next section. However, we
do use the fact that this scheme is additively homomorphic (and thus rerandomizable) and a
verifiable decryption procedure, where it is possible to verify that each user is providing a valid
decryption share (as in a VTMF). We now present the (n, n)-Threshold ElGamal cryptosystem
with verifiable decryption TEG and refer interested readers to [38, 21, 5] for a full discussion:

• Key Generation TEG.Gen(1λ): Each party Pi generates a random secret-key share

TEG.ski
$← Zp and broadcasts hi = gTEG.ski along with a proof DLOG(g, hi)

1. Once all n
parties have broadcast their public key share hi, each party Pi verifies the accompanying
proofs DLOG(g, hj) (aborting if invalid) and then saves all hj , for i 6= j, reconstructing the
public key by computing TEG.pk = h =

∏n
i=1 hi = g

∑n
i=1 TEG.ski .

• Encryption TEG.EncTEG.pk(m, r): The encryption of a message m ∈ G under a public-key
TEG.pk with randomness r ∈ Zp is carried out as a regular ElGamal encryption. Namely,
a ciphertext c = (c1 = gr, c2 = hrm) is generated.

• Re-Randomization TEG.ReRand(c, r′): A ciphertext c = (c1, c2) is re-randomized with
fresh randomness r′ by computing c′ = (gr

′
c1, h

r′c2).

• Verifiable Decryption TEG.DecTEG.sk1,...,TEG.skn(c): Parse c = (c1, c2). Each party Pi
broadcast a decryption share di = cTEG.ski1 and a proof DLEQ(g, hi, c1, di) showing that
they have correctly used their secret-key share TEG.ski. Once all n parties have broadcast
their decryption share di, each party Pi checks that the DLEQ(g, hj , c1, dj) proofs are
correct for all i 6= j (aborting otherwise) and retrieves the message by computing

c2∏n
i=1 di

=
c2

c
∑n

i=1 TEG.ski
1

=
m · TEG.pkr

gr
∑n

i=1 TEG.ski
=
m
(
g
∑n

i=1 TEG.ski
)r

gr
∑n

i=1 TEG.ski
= m.

2.6 Zero-Knowledge Proofs of Correctness of a Shuffle

A central component of our protocol is a zero-knowledge proof that an ordered set of ElGamal
ciphertexts has been obtained by re-randomizing each ciphertext and permuting the resulting
ciphertexts in a previous ordered set (an operation called a Shuffle). Formally, we want to prove
knowledge of a permutation π ∈ ΣN and randomness r = (r1, . . . , rN ) such that for the vectors
of ciphertexts c = (c1, . . . , cN ) and c′ = (c′1, . . . , c

′
N ) we have c′i = TEG.ReRand(cπ(i), ri). An

efficient zero-knowledge argument for correctness of this kind of shuffle has been proposed in [6]

1This zero-knowledge proof of the knowledge of the exponent solves the issue in [5] that was pointed out in
the introduction.
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and it can be turned into the required zero-knowledge proof through the Fiat-Shamir heuristic
[24, 39]. We denote this NIZK by ZKSH(π, r, c, c′) and refer interested readers to for details on
its construction and proof.

The zero-knowledge argument of [6] proves correctness of a shuffle of ElGamal ciphertexts
arranged in a k × l matrix. The resulting Fiat-Shamir NIZK requires 11k elements of the
underlying group G and 5l elements of Zp. The computational complexity is of 2 log(k)kl
exponentiations for the prover and 4kl exponentiations for the verifier. In our scenario, we are
interested in proving the correctness of a shuffle of 52 ciphertexts. We choose the parameters
k = 4 and l = 13, which give us 208 exponentiations for the prover and 208 exponentiations for
the verifier, with a proof size of 44 elements of G and 65 elements of Zp.

The scheme of [6] requires a CRS containing the public-key used for generating the cipher-
texts that are shuffled and parameters for a generalized Pedersen commitment (that takes as
input a message consisting of multiple elements of Zp). In our protocols, the public key is jointly
generated by the parties (as described above). Notice that the public parameters for the general-
ized Pedersen commitment used in the scheme of [6] are basically n+1 random group generators
G1, . . . , Gn, H (such that the discrete logarithm of each generator in relation to the others is
unknown). Thus, each of these generators can be generated by exactly the same procedure used
for distributed key generation in the threshold ElGamal cryptosystem presented above. In the
simulation, the simulator can extract the witness of the DLOG NIZKs of discrete logarithm
knowledge provided by each of the parties in order to learn the trapdoor needed for simulating
the ZKSH NIZKs of correctness of a shuffle. Concretely, each party Pi generates each of the

generators needed for the generalized Pedersen commitment by sampling a random ri
$← Zp and

broadcasting hi = gri along with a proof DLOG(g, hi). In the simulation, first ri is extracted
from DLOG(g, hi) (with the help of simulator of the DLOG NIZK), which gives the simlator of
the ZKSH NIZK the trapdoor for the generalized Pedersen commitment that it needs.

3 Game Formalization

The most widely played poker variant is the Texas Hold’em, thus, before presenting our formal-
ization, we introduce a brief overview of this variant.

Game Overview. Initially each player receives two covered cards and is free to look his own
cards. Additionally five covered cards are placed in the center of the table. These are named
community cards and are revealed during the subsequent rounds of the hand. The hand is played
in at most 4 betting rounds and the goal is to obtain the highest-ranked hand among all players
that play until the end. Each player forms his hand by picking any combination of five cards
from his own cards and the community cards. The winner takes the bets, which is commonly
referred as the pot. After the first betting round, three community cards are revealed, then
another one is revealed after the second betting round, and finally the last covered community
card is opened after the third round. Afterwards the players perform one last betting round
before revealing their hands in order to determine the winner of the hand and distribute the
money.

Betting Rounds. In each betting round the players proceed in turns and have some actions
available:

• check: the player does not add any amount to the pot. This action is only allowed if no
player has placed any bet before in the round.
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Functionality Fpoker

The functionality is executed with n players with identities (id1, . . . , idn) and is parametrized by the
small sb and big bb blind bets amounts, the initial stake t, the maximum bet m per hand, the security
deposit d and of the compensation amount q. There are c corrupted parties that are controlled by
S. Whenever a message is sent to S for confirmation or action selection, S should answer, but can
always answers abort, in which case the compensation procedure is executed; this option will not
be explicitly mentioned in the functionality description henceforth.

Players Check-in: Wait to receive a message (checkin, coins(d+ t)) from each player. Announce
the check-ins to the other players. Allow the players to dropout and reclaim their coins if a player
fails to check-in (S is consulted for approval). Once all check-ins are done, order the players by
picking a random permutation and denote the ordered sequence of players by (P1, . . . ,Pn). Send the
order to all players. This order is used in a circular way to update the roles of small and big blinds
after each hand (among the players that are still in the game), and within each hand to proceed with
the actions (among the players that are still active in the hand). Let psb (resp. pbb) denote the index
of the player who is the small (resp. the big) blind, and initialize psb = 1 and pbb = 2. Initialize the
vector that tracks the balance of the n players as balance = (t, . . . , t) and initialize the vector that
tracks the bets of the n players as bets = (0, . . . , 0). Keep track of the active players in the game,
initially marking them all active.

Player Check-out: Send (checkout, i) to S. If S answers (checkout, i), mark Pi as inactive in
the game, send (payout, coins(d+balance[i])) to Pi and ignore future messages from Pi. If no active
player is left, stop the execution.

Compensation: For each honest player Pi who has not checked-out, send (compensation, coins(d+
q + balance[i] + bets[i])) to him. Let ` denote the amount of remaining locked coins. Send
(remaining, coins(`)) to S and stop the execution.

Hand Execution: Initialize the set of hand’s active players as the game’s active players. Keep track
of the chronological order of folds. Send shuffle? to S. If S answers shuffle, shuffle a deck of
cards D and draw two private cards pci,1 and pci,2 for each active player Pi as well as the community
cards cc1, cc2, cc3, cc4, cc5. Proceed as follows:
• Send (paysb, psb) to Ppsb. If Ppsb answers paysb, then decrease balance[psb] by sb, increase

bets[psb] by sb and broadcast (sbpaid, psb) to the players.
• Send (paybb, pbb) to Ppbb. If Ppbb answers paybb, then decrease balance[pbb] by bb, increase

bets[pbb] by bb and broadcast (bbpaid, psb) to the players.
• Send hand together with the private cards of the corrupted players to S. If S answers hand,

send (hand, pci,1, pci,2) to each Pi.
• Execute a round of bets starting with the closest active successor of pbb.
• Send (flop, cc1, cc2, cc3) to S. If S answers flop, send (flop, cc1, cc2, cc3) to the players.
• Execute a round of bets starting with the closest active successor of psb− 1.
• Send (turn, cc4) to S. If S answers turn, send (turn, cc4) to the players.
• Execute a round of bets starting with the closest active successor of psb− 1.
• Send (river, cc5) to S. If S answers river, send (river, cc5) to the players.
• Execute a round of bets starting with the closest active successor of psb− 1.
• Run the showdown starting with the last player who increased the bet in the last round, if

there is one; otherwise, the closest active successor of psb− 1.

Figure 1: Functionality for the game of poker.
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Betting round: Initialize ba = maxibets[i]. Proceed in a circular way using the ordered sequence
of the hand’s active players until either there is only one player who has not folded, in which case
the pot distribution is executed immediately, or all the following conditions hold: (1) all players have
had a chance to act; (2) for each player Pi who haven’t folded or performed an all-in, bets[i] = w for
some fixed value w; (3) for any Pj who have performed an all-in it holds that w ≥ bets[j]. In the
turn of Pi, a message (bet, ba) is sent to him and he can answer with one of the following actions:
• fold: He is marked inactive in the hand and (fold, i) is sent to the players.
• call: Check if balance[i] > ba−bets[i]. If it is not, run the compensation procedure. Otherwise,

decrease balance[i] by ba− bets[i], set bets[i] = ba and send (call, i) to the players.
• (raise, r): Check if balance[i] > r − bets[i] and ba < r ≤ m. If not, run the compensation

procedure. Otherwise, decrease balance[i] by r−bets[i], set bets[i] and ba to r, and send (raise,
i, r) to the players.

• all-in: Check if r = balance[i] + bets[i] ≤ m. If not, run the compensation procedure. Set
bets[i] = r and balance[i] = 0. If r > ba, set ba = r. Pi will not perform any further action
during the betting rounds of this hand. Send (all-in, i) to the players.

• check: If it’s the hand’s first betting round or anyone has bet in the round, run the compen-
sation procedure. Otherwise, send (check, i) to the players.

Showdown: The showdown performs one round among the active players and then call the pot
distribution procedure. In the turn of Pi, a message open is sent to him and he can answer with one
of the following actions:
• open: Send (open, i, pci,1, pci,2) to S. If S answers (open, i), then send (open, i, pci,1, pci,2)

to the players.
• muck: He is marked inactive in the hand and (muck, i) is sent to the players.

Pot(s) Distribution: Using bets, the opened hands, the chronological order of folds/mucks and the
standard rules of Texas Hold’em poker compute the vector pot so that pot[i] determines the amount of
money that Pi will receive from the pot(s). Send (distribute, pot) to S. If S answers distribute,
then increase each balance[i] by pot[i] and set bets = (0, . . . , 0). For each Pi that have balance[i] = 0,
perform his check-out. For every other Pi, send the message continue?. If Pi answers continue,
continue. If Pi answers checkout, perform his check-out. Update the roles of small and big blinds,
and start a new hand.

Figure 2: Functionality for the game of poker (continuation).

• call: the player just matches the amount already bet.
• fold: the player does not add any amount to the pot and is out of the hand.
• raise: the player raises the amount of the bet by adding more money to the pot than

what is necessary to continue on the hand.
• all-in: the player bets all the money that he has available. He does not need to perform

any additional action during the betting rounds of this hand.

A betting round finishes when: (1) all players have had a chance to act and (2) all players
who haven’t folded or performed an all-in have bet the same amount of money for the round
and this amount is at least equal to the amount bet by each player who performed an all-in.
Note that whenever a player plays a raise action, all the other players (except all-ins) which
had already placed their actions should review its actions in order to (at least) match the same
amount added to the pot, fold or all-in. The players disclose their actions publicly, and in
order. The order and the publicity of the actions are important for the dynamics of the game,
because the other players watching the actions would base their own next actions on what they
observe during the rounds.
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Blind bets and Game Order. Before any cards are dealt, covered and community cards,
the two first players according to the game order, are requested to place bets, usually called
small and big blinds. Naturally they are called blind because the players did not received any
cards yet. Moreover, the roles of small and big blinds are rotated on every hand, therefore all
the participants will eventually be requested to place the blind bets.

All-in and Side Pots. A player always have the possibility of betting all his remaining money,
in which case he is allowed to continue in the hand until the end. However, in case that other
players continue betting and increasing the pot, a side pot will be created for them. An all-in
player only participates in the pots in which the other players are putting money to match the
money that he bet.

Safe Deposits and Limits on Bets. Our solution is based on the principle of imposing
financial penalties on misbehaving/aborting parties and then using the collected money to com-
pensate the remaining parties. The safe deposit d is required from each participant, and in case
of problems each other party receives a compensation amount q. Clearly, if there are n players,
then it should hold that d ≥ q(n− 1). In this setting, a limit on the amount of bets m at each
hand should be imposed; otherwise, if the amount of bets grow too big, a malicious player has
no incentive to behave properly anymore. Therefore, it is clear that the monetary compensation
q should be bigger than the maximum possible bet amount m at each hand. Note that it is
possible to set m so that all the betting money available can be bet in a single hand, but in this
case the security deposits would be bigger. Studying the optimal way of setting these quantities
in order to encourage a proper behavior of rational players is out of the scope of this paper.

The Poker Functionality. We formalize the earlier game in the ideal functionality Fpoker,
which is described in Figures 1 and 2.

4 Poker Protocol

In building our protocol, we depart from the construction of [5], which represents cards as cipher-
texts of a threshold ElGamal cryptosystem. In this scheme, first the parties run a distributed
key generation algorithm to obtain the public-key (while each holds a share of the secret-key).
Next, they start a shuffling procedure that involves rerandomizing ciphertexts that encrypt the
numbers assigned to each card (1 to 52) and shuffling the ciphertexts. The parties also pro-
vide to each other proofs that the shuffling procedure was conducted correctly, which is done
via a cut-and-choose technique. When cards are intended to be revealed publicly, each party
broadcasts a decryption share along with a zero-knowledge proof showing that it was computed
correctly. If a covered card is to be given to one specific party, each party sends their decryption
shares and proofs directly to that party through a private channel.

In order to improve the efficiency of the shuffling phase, we substitute the cut-and-choose
technique used for attesting correctness of the shuffling operations by a zero-knowledge proof of
a shuffle introduced in [6] and discussed in Section 2.6. This proof is compatible with ElGamal
ciphertexts and achieves the same security level of the cut-and-choose technique employed by [5]
with only a fraction of the computational and communication complexities. The procedures for
distributing private covered cards and for publicly opening a covered card remain the same.

The main new feature of our protocols is a mechanism for detecting and (financially) pun-
ishing cheaters without requiring the whole protocol to the executed on chain. This mechanism
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Functionality FSC

The functionality is executed with n players with identities (id1, . . . , idn). It is parametrized by the
small sb and big bb blind bets amount, the initial stake t, the maximum bet m per hand, the security
deposit d, the compensation amount q, a protocol verification mechanism pv and a timeout limit τ .

Players Check-in: Wait to receive from each player with idi (checkin, coins(d + t),SIG.vki, hi,
DLOG(g, hi)) containing the necessary coins, its signature verification key, its share of the threshold
ElGamal public-key and the zero-knowledge proof of knowledge of the secret-key’s share. Record
the values and send (checkedin, idi,SIG.vki, hi,DLOG(g, hi)) to all players. Allow the players to
dropout and reclaim their coins if a player fails to check-in within the timeout limit τ . Once all
check-ins are done, order the players by picking a random permutation and announce the ordered
sequence of players by (P1, . . . ,Pn) to them. Mark all players as active.

Player Check-out: Upon receiving (checkout, active, balance, σ) from Pi, verify that σ contains
valid signatures by all active players on active and balance and that active[i] = 0. If everything
is correct, for w = balance[i] + d, send (payout, coins(w)) to Pi and mark him as inactive. Send
(checkedout, i, w) to the other players.

Recovery: Upon receiving a recovery request (report,Pi,Checkpointi,CurrPhasei) from Pi con-
taining some checkpoint witnesses and current phase witnesses, send to each Pj 6= Pi (request,Pi,
Checkpointi,CurrPhasei). Upon getting (response,Pj ,Checkpointj ,CurrPhasej) from some player
Pj with checkpoint and phase witnesses (which are not necessarily relative to the same checkpoint
as received from other players), forward the witnesses to the other parties. Upon getting replies
from all players or reaching the timeout limit τ , determine the current phase by verifying the most
recent checkpoint that has valid witnesses. Verify the last valid point of the protocol execution
using the current phase witnesses and pv. If there exists some Pi who sent misbehaving messages
(together with a signature) in the current phase, then for each Pj 6= Pi who has not checked-out,
send (compensation, coins(d + q + balance[j] + bets[j])) to him. Send any leftover coins after the
compensation for Pi and halt. Otherwise, mediate the execution of the protocol until the next check-
point. This is done by using (nxt-stp, phase, round) to request an action from the next party that
is supposed to act and using pv to verify the answer (nxt-stp-rsp,msgphase,round). All messages are
delivered to all players. If during this mediated execution a player misbehaves or does not answer
within the timeout limit τ , penalize him and compensate the others as above, and halt. Otherwise
send (recovered, phase,Checkpoint) to the parties once the next checkpoint is reached.

Figure 3: The stateful contract functionality that is used in the poker protocol.

requires that the parties first make a deposit of a number of coins used as “collateral”, i.e. they
lose these coins if they are detected as cheaters or abort. The protocol execution has a series of
checkpoints where parties cooperate to generate a witness that the protocol has been executed
correctly up to that point. This witness is basically a signature by all parties agreeing on the
current state of the execution. If at any point a protocol malfunction occurs (a party either does
not receive a message or receives a invalid message), the party that detected the malfunction
posts a complaint to the blockchain along with the last checkpoint witness and the protocol
messages generated after that checkpoint. All the other parties are required to do the same or
face punishment otherwise. These witnesses are used to verify the current state of the protocol
and then the execution continues in the blockchain until the next checkpoint. Any misbehavior
or abort in this on-chain execution is punished financially. After the protocol execution reaches
the next checkpoint and the parties obtain the corresponding witnesses, the protocol is again
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executed off-chain.
Our poker protocol πPoker interacts with a stateful contract functionality FSC, described in

Figure 3, that models blockchain transactions used to keep collateral deposits and enforce pun-
ishment of players who misbehave, as well as ensuring that winners get their rewards. Protocol
πPoker is described in Figures 4, 5, 6 and 7, which describe its several steps.

Implementation of FSC. It is important to emphasize that the FSC functionality can be easily
implemented via smart contracts over a blockchain. More formally, using a public available
ledger. Moreover, our construction (for protocol πPoker) requires only simple operations, i.e.,
verification of signatures and discrete logarithm operations over cyclic groups. The regular
operation of our protocol is performed entirely off-chain, without intervention of the contract.
However in the event that any problem happen or in the case that any participant in the game
claim problems in the execution, any player can publish their agreed status of the game in the
chain, via short witnesses (to be detailed in the protocol description). This approach reduces the
information stored in the blockchain, and is an improvement in terms of efficiency in comparison
to previously suggested protocols.

Protocol πPoker

Protocol πPoker is executed by n players with identities (id1, . . . , idn) interacting with the stateful
contract functionality FSC, and is parametrized by the small sb and big bb blind bets amount, the
initial stake t, the maximum bet m per hand, the security deposit d and a timeout limit τ . We assume
that the parties agree on a generator g of a group G of order p for the (n, n)-Threshold ElGamal
cryptosystem TEG and also on a EUF-CMA secure digital signature scheme SIG. Moreover, a nonce
unique to each protocol execution and protocol round (e.g. a hash of the public protocol transcript
up to the current round) is implicitly attached to every signed message to avoid replay attacks.

Recovery Triggers: Whenever a signature or NIZK proof is received, its validity is tested. If the
test fails, the party proceeds to the recovery phase. The same happens if a party does not receive an
expected message until a timeout limit τ . These triggers will be omitted henceforth.

Players Check-in: For i = 1, . . . , n, the party with idi proceeds as follows:

1. generates the keys of the signature scheme (SIG.vki,SIG.ski)
$← SIG.Gen(1λ).

2. generates TEG’s key shares by sampling TEG.ski
$← Zp, setting hi = gTEG.ski and generating a

proof DLOG(g, hi).
3. sends (checkin, coins(d+ t),SIG.vki, hi,DLOG(g, hi)) to FSC and waits until getting from FSC

the check-in confirmation (checkedin, idj ,SIG.vkj , hj ,DLOG(g, hj)) of each player and the
parties’ order (P1, . . . ,Pn) that is used henceforth in the protocol. If not received until the
timeout limit τ , contact FSC to dropout and reclaim the deposited coins.

4. verifies each DLOG(g, hj) for j 6= i, reconstructs the initial public key TEG.pk =
∏n
j=1 hj ,

record all hj , and initializes a vector balance = (t, . . . , t), a vector bets = (0, . . . , 0), a counter
psb = 1 and a counter pbb = 2.

Player Check-out: If Pi was marked as checking out in the pot distribution phase, it sends a
message (checkout, active, balance, σ) to FSC, where σ contains all signatures on active and balance,
waits for confirmation from FSC and stops execution.

Figure 4: Protocol πPoker.
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Hand Execution - Shuffle: As the first step in executing a hand, the parties generate a randomly
shuffled deck of closed cards c1, . . . , c52. For i = 1, . . . , n, Pi proceeds as follows (w.l.o.g. we assume
all parties are active, the adaptation to the other cases is the straightforward one):

1. If Pi = P1, it sets c0 = (c01, . . . , c
0
52) where c0j = TEG.EncTEG.pk(j, 1) a. Otherwise, Pi considers

the cards ci−1 = (ci−11 , . . . , ci−152 ) received from Pi−1.

2. Pi samples uniformly at random a permutation π ∈ Σ52 and r = (r1, . . . , r52) where rj
$← Zp,

and sets cij = TEG.ReRandTEG.pk(ci−1π(j), rj), obtaining a new set ci = (ci1, . . . , c
i
52). Notice that

this new set of ciphertexts representing cards simply contains rerandomized versions of the
previous ciphertexts in a random order.

3. Pi generates a zero-knowledge proof of correctness of shuffle ZKSH(π, r, ci−1, ci) and broadcasts
it with the shuffled deck ci. All other parties verify this zero-knowledge proof.

After all parties have participated in the shuffling procedure, the shuffled deck for the current hand is
set to be D = cn. All parties sign it by computing σiD = SIG.SignSIG.sk(DECK− READY,D), broadcasts
σiD and verifies all signatures. Checkpoint Witness: The previous checkpoint witness concatenated
with the deck D and corresponding signatures σiD.

Hand Execution - Blinds: After the shuffle is done, all parties wait for the small blind, i.e. for
Ppsb to broadcast a signature σpsbsb = SIG.SignSIG.skpsb(SB) as well as signatures on vectors balance and
bets, where balance[psb] is decreased by sb coins, bets[psb] is increased by sb coins, while all other
coordinates remain the same. Upon receiving the signatures, each party Pi broadcasts a signature
σisb = SIG.SignSIG.ski(SB) as well as signatures on balance and bets. All signatures are verified. Proceed
analogously for the big blind. Checkpoint Witness: The previous checkpoint witness with the updated
balance and bets (and signatures on them) concatenated with all signatures σisb and σibb.

Hand Execution - Drawing Cards and Private Cards Distribution: Two private cards
pci,1, pci,2 for each active party Pi as well as the community cards cc1, cc2, cc3, cc4, cc5 are drawn
from D according to the rules of poker. For i = 1, . . . , n , Pi proceeds as follows to open cards
pcj,1, pcj,2 towards Pj for j = 1, . . . , n and to obtain its own private cards (here all parties act in
parallel):

1. Pi computes its decryption shares for pcj,1, pcj,2 by parsing pcj,k as (cj,k,1, cj,k,2) and computing

dj,k,i = cTEG.skij,k,1 and a NIZK DLEQ(g, hi, cj,k,1, dj,k,i) for k ∈ {1, 2}. Pi sends the decryption
shares dj,1,i, dj,2,i along with their corresponding proofs to Pj through a private channel.

2. Once it has received all di,1,j , di,2,j and corresponding DLEQ proofs from the other parties,
Pi checks that the proofs are valid. Finally, Pi learns its private cards by computing pc′i,k =

ci,k,2∏n
i=1 di,k,j

for k ∈ {1, 2}.
3. After retrieving its private cards, Pi broadcasts σipc = SIG.SignSIG.ski(PRIVATE− CARDS). Re-

member the signature implicitly includes a nonce unique to this protocol execution and specific
round. Once signatures σjpc from all parties have been received, verify them.

Checkpoint Witness: The previous checkpoint witness, except for the signatures σisb and σibb, con-
catenated with all σipc.

aNotice that these initial ciphertexts just encrypt the number of each card (in increasing order) under
deterministic randomness 1, allowing P2 to locally compute the initial set of ciphertexts for verification.

Figure 5: Protocol πPoker (continuation).
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Hand Execution - Main Flow: After cards are drawn and private cards are distributed, all parties
proceed to the main flow of playing a hand, where a number of community cards will be opened and a
number of betting rounds will be played, both according to the community card opening and betting
round procedures. All parties continue the main flow by proceeding as follows:
• Execute a betting round starting with the closest active successor of Ppbb.
• Execute a community card opening procedure for flop cards cc1, cc2, cc3.
• Execute a betting round starting with the closest active successor of Ppsb−1.
• Execute a community card opening procedure for turn card cc4.
• Execute a betting round starting with the closest active successor of Ppsb−1.
• Execute a community card opening procedure for river card cc5.
• Execute a betting round starting with the closest active successor of Ppsb−1.
• Proceed to showdown starting with the last player who increased the bet in the last round, if

there is one; otherwise, the closest active successor of Ppsb−1.

Betting Round: In the steps of πPoker that require a betting round starting from party Ps, each
party Pi communicates its betting action actioni ∈ {fold,call, (raise, r),all-in,check} (as
defined in Fpoker) in a round robin manner starting from Ps and following the order (P1, . . . ,Pn)
received from FSC, proceeding as follows until the conditions specified in Fpoker for finishing the
betting round are met:
• When it is Pi’s turn to state its bet, Pi updates vectors bets and balance according to

its action actioni, i.e. it increases (resp. decreases) bets[i] (resp. balance[i]) by the
amount of coins required by actioni as defined in Fpoker. Pi generates a signature σibet =
SIG.SignSIG.ski(actioni, bets[i], balance[i]) and broadcasts (actioni, bets[i], balance[i], σ

i
bet).

• Upon receiving (actionj , bets[j], balance[j], σ
j
bet) from party Pj for j 6= i, Pi checks the validity

of σjbet. Next, Pi verifies that bets[j] and balance[j] are consistent with actionj according to
the rules defined in Fpoker. If not, Pi proceeds to the recovery phase. If both checks succeed,
Pi updates its local copy of bets and balance with the new values of bets[j] and balance[j], and
proceeds in the betting round.

When the conditions for ending the betting round specified in Fpoker are met, each party Pi broadcasts
a signature σibetstate = SIG.SignSIG.ski(bets, balance) on its local copy of vectors bets and balance. Pi
waits until all signatures σjbetstate are received from every other party Pj for j 6= i and verifies that
they are valid signatures on their local vectors bets and balance (verifying that all parties agree on
the final bets and balance). Checkpoint Witness: The previous checkpoint witness with the updated
vectors bets and balance, along with all signatures σibetstate on the updated vectors.

Community Card Opening: In the steps of πPoker where a community card cc ∈
{cc1, cc2, cc3, cc4, cc5} has to be opened, party Pi, for i = 1, . . . , n, proceeds as follows:

1. Pi parses cc = (cc1, cc2) and broadcasts its decryption shares di = ccTEG.ski1 along with a NIZK
DLEQ(g, hi, cc1, di).

2. After all decryption shares dj and corresponding DLEQ NIZKs are received from all parties,
Pi verifies if all NIZKs are valid. Pi opens cc by computing cc2∏n

i=1 dj
.

3. After opening cc, Pi broadcasts a signature σicc = SIG.SignSIG.sk(COMMUNITY− OPEN, cc) in order
to communicate it has successfully opened cc. Once all signatures σjcc from other parties have
been received, Pi verifies that they are all valid.

Checkpoint Witness: The previous checkpoint witness together with all signatures σicc.

Figure 6: Protocol πPoker (continuation).
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Showdown: The parties proceed in a round-robin way. If a party Pi wishes to open its private
cards pci,1, pci,2 during showdown, Pi broadcasts the decryption shares di,1,j , di,2,j along with their
corresponding DLEQ proofs, for j = 1, . . . , n. For every party Pi who opens its private cards
during showdown, the other parties Pj decrypt pci,1, pci,2 by following the same procedure used for
reconstructing their own private cards. If decryption fails, Pj proceed to the recovery phase. If a
party Pi wishes to muck during showdown, it broadcasts a signature σimuck = SIG.SignSIG.ski(MUCK),
the other parties verify the signature. Once all parties have either opened or mucked, the parties
proceed to the pot distribution.

Pot Distribution: Each party Pi uses the opened cards, chronological order of folded/mucked
hands and current vectors balance and bets to locally compute the updated balance for all parties
according to the rules of poker. It also zeros out bets. Pi broadcast signatures on balance and bets.
Upon receiving these values from each party Pj , Pi verifies that it is a valid signature on its own
local updated vectors balance and bets. A party Pi who wishes to continue playing broadcasts a
signature σicont = SIG.SignSIG.ski(CONTINUE). A party Pi who no longer wishes to play or who has
balance[i] = 0 broadcasts a signature σichko = SIG.SignSIG.skj (CHECKOUT). Each party Pi checks that
all other parties’ signatures are valid. For all parties Pj who choose to check-out, mark party Pj as
inactive. After determining which parties remain active and which check out, each party Pi constructs
a vector active such that active[j] = 1 if party Pj is active in the next hand or active[j] = 0 if Pj is

checking out. Pi broadcasts a signature σiact = SIG.SignSIG.ski(active). Pi checks that signatures σjact
by all other parties Pj are valid signatures on the same active vector, otherwise it proceeds to the
recovery phase. If there were check-outs, update the public key as TEG.pk =

∏n
j=1 s.t. j is active hj .

Increment psb and pbb using the order among the active players. A signature on these values are also
generated by each party and checked by the others. Checkpoint Witness: Vectors balance, bets and
active, counters psb and pbb, as well as all signatures on these values.

Recovery Request: If a party Pi enters the recovery phase at any step of a given phase, it sends
a message (report,Pi,Checkpointi,CurrPhasei) to FSC, where Checkpointi is the checkpoint witness
from the previous phase and CurrPhasei is the transcript of the current phase so far (i.e. only the
messages that have been received and sent by Pi after the last checkpoint).

Responding to a Recovery Request: Upon receiving a message (request,Pi,
Checkpointi,CurrPhasei) from FSC containing the checkpoint witness and current phase tran-
script included in the report message of Pi, every other party Pj sends a message
(response,Pj ,Checkpointj ,CurrPhasej) to FSC containing their own most recent checkpoint wit-
ness and the transcript of the current phase. Once all parties have responded to the recovery request,
all parties have learned each other checkpoint witnesses and the transcripts of the current phase. For
i = 1, . . . , n, party Pi proceeds as follows:
• Upon receiving (nxt-stp, phase, round) from FSC, Pi computes its message msgphase,round for the

round specified by round of the phase specified by phase and sends (nxt-stp-rsp,msgphase,round)
to FSC following the protocol rules.

• Upon receiving (recovered, phase,Checkpoint) from FSC, Pi records the checkpoint witness
of the phase specified by phase and returns to the regular execution of next phase as described
in the protocol by communicating directly to the other parties.

Figure 7: Protocol πPoker (continuation).
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Theorem 1. Assuming that the DDH problem is hard and that the digital signature scheme SIG
is EUF-CMA secure, protocol πPoker securely computes Fpoker in the FSC-hybrid, random oracle
model in the presence of malicious static adversaries.

Proof. In order to prove Theorem 1 we construct a non-uniform expected probabilistic polyno-
mial time simulator (ideal adversary) S that interacts with the ideal functionality Fpoker and
internal copies of c corrupted parties. S simulates the actions of the n − c honest parties and
the functionality FSC. Let H denote the set of honest parties and C denote the set of corrupted
parties in the internal execution run by S. S is parameterized by the small sb and big bb blind
bets amounts, the initial stake t, the maximum bet m per hand, the security deposit d and a
timeout limit τ . S proceeds as follows:

Player Check-in: S simulates FSC internally as well as the parties. Whenever a corrupted
party Pc ∈ C sends a message (checkin, coins(d+ t), SIG.vkc, hc,DLOG(g, hc)) to FSC, S verifies
DLOG(g, hc) and, if it is valid, uses the coins to perform the check-in of that party with Fpoker.
Whenever a honest party P ∈ H checks-in with Fpoker, S is informed and simulates πPoker’s
check-in procedure for that party. S records all keys and uses the public key shares to construct
the initial Threshold ElGamal public key TEG.pk. Note that due to the usage of DLOG(g, hc)
it is guaranteed that the corrupted parties always know secret-key shares corresponding to the
public-key shares that they send. Hence, for any proper subset of all players, from their point
of view the final public-key is such that they do not know the corresponding secret-key and so
the Threshold ElGamal encryption scheme can be used to obtain indistinguishable ciphertexts.
If some party fails to check-in within the timeout limit, S allows the parties to dropout from
Fpoker and reclaim their coins.

Hand Execution - Shuffle: S executes the shuffling protocol exactly as in the real protocol
(emulating the actions of the honest parties), with the exception that it uses the simulator of the
ZKSH proofs to extract their witnesses learning the exact order of the cards in the final shuffled
deck D = (cn1 , . . . , c

n
52). S learns the permutation and fresh randomness used to rerandomize

and permute the ciphertexts representing cards in each step of the shuffling phase. Thus, S is
able to follow the ciphertext encrypting each card number (from 1 to 52) to its final position in
the deck. In other words, S learns the plaintext messages of (cn1 , . . . , c

n
52) since it knows both

the exact contents of (c01, . . . , c
0
52) and the exact randomness used to rerandomize and permute

these initial ciphertexts (extracted from the ZKSH NIZKs). S follows the same recovery triggers
of the real world protocol, proceeding to the recovery phase if an invalid NIZK or signature is
detected or if it does not receive a message from one of the internal corrupted parties before
the timeout. If the shuffling phase is successfully completed, S answers shuffle to the query
shuffle? from Fpoker and proceeds.

Hand Execution - Blinds: S executes the small and big blinds phases exactly as in the
real protocol, emulating internal honest parties Ph ∈ H in case they are the small and/or big
blinds. S follows the same recovery triggers of the real world protocol, proceeding to the recov-
ery phase if necessary. If the small and big blinds phase is successful, S answers with paysb,
resp. paybb, to the query (paysb, psb), resp. (paybb, pbb), from Fpoker and proceeds.

Hand Execution - Drawing Cards and Private Cards Distribution: Upon receiving
hand together with the values p̃cc,1, p̃cc,2 of the corrupted parties’ private cards from Fpoker, S
proceeds as follows. S follows the procedures of an honest party to compute the corresponding
decryption shares from all parties Ph ∈ H but for one party Ps ∈ H, whose decryption share will
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be used to open the private cards of the internal corrupted parties to arbitrary values received
from Fpoker. For every Pc ∈ C and k ∈ {1, 2}, parse pcc,k from the internal simulation as
(cc,k,1, cc,k,2). Let m be the value that is encrypted in the card pcc,k (that is known to S since it
traces the known cards through the shuffling process), and m̃ the value for the card p̃cc,k that
is received from Fpoker. Then S computes Ps’s original decryption share dc,k,s and the modified
decryption share

d̃c,k,s =
dc,k,s ·m

∼
m

.

S then uses the DLEQ NIZK simulator to generate a valid proof D̃LEQ(g, hs, cc,k,1, d̃c,k,s)

and sends d̃c,k,s to Pc along with this proof. Note that the decryption process will give as result

cj,k,2

d̃c,k,s
∏
i 6=s dc,k,i

=
cj,k,2 · m̃
m
∏
i dc,k,i

=
m · m̃
m

= m̃.

If the private cards distribution phase succeeds and all private cards are opened to all play-
ers, S answers hand to Fpoker. S follows the same recovery triggers of the real world protocol,
proceeding to the recovery phase if necessary.

Hand Execution - Main Flow: S simulates the actions of the honest parties by executing
the community cards opening and betting round procedures as described below. If a call to the
community card opening procedure succeed, S answers Fpoker’s message requesting permission
to open the cards involved in this call and proceeds to the next procedure in the main flow. If
during either a betting round or a community card opening procedure a recovery trigger happens
in the real protocol, then S would proceed to the recovery phase.

Betting Round: During a betting round, S receives the actions of the honest parties
from Fpoker and simulates the respective actions of the honest parties in the internal simulation.
Whenever a corrupted party performs an action in the internal simulation, S forwards that action
to Fpoker. S follows the same recovery triggers as the real protocol to activate the recovery phase.

Community Card Opening: S follows a similar strategy as in the private cards distri-
bution phase, that is, generating a decryption share that forces the ciphertext representing the
card to be decrypted to an arbitrary card value obtained from Fpoker. It simulates honestly the
protocol procedures of all parties Ph ∈ H but for one party Ps ∈ H whose decryption share will
be used to open the community card cc to the value received from Fpoker. Parse cc from the
internal simulation as (cc1, cc2). Let m be the value that is encrypted in the card cc (that is
known to S since it traces the known cards through the shuffling process), and m̃ the value for
the card c̃c that is received from Fpoker. Then S computes Ps’s original decryption share ds and
the modified decryption share

d̃s =
ds ·m
m̃

.

S then uses the DLEQ NIZK simulator to generate a valid proof D̃LEQ(g, hs, cc1, d̃s) and sends
d̃s along with this proof to the parties. As above, it is easy to verify that the result of the
decryption process will be the desired value. If the community card(s) opening procedure suc-
ceeds, S answers Fpoker confirming that the community cards involved in the procedure can be
opened. S follows the same recovery triggers as the real protocol to activate the recovery phase.
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Showdown: During the showdown, if a corrupted party Ps tries to reveal its cards, S simply
simulates the actions of the honest parties. If a honest party Ps tries to reveal its cards, S follows
a similar strategy as in the private cards distribution phase, that is, generating a decryption
share that forces the ciphertexts representing the cards in the hand that is being opened to be
decrypted to an arbitrary card value obtained from Fpoker. If S receives (open, s, p̃cs,1, p̃cs,2)
containing the cards of a party Ps ∈ H that is opening during showdown, it broadcasts to the
internal corrupted parties Pc ∈ C the decryption shares ds,k,i along with their corresponding
DLEQ proofs for all Pi ∈ H \ {Ps}. For k ∈ {1, 2}, parse pcs,k from the internal simulation as
(cs,k,1, cs,k,2). Let m be the value that is encrypted in the card pcs,k (that is known to S since it
traces the known cards through the shuffling process), and m̃ the value for the card p̃cs,k that
is received from Fpoker. Then S computes Ps’s original decryption share ds,k,s and the modified
decryption share

d̃s,k,s =
ds,k,s ·m

m̃
.

S then uses the DLEQ NIZK simulator to generate a valid proof D̃LEQ(g, hs, cs,k,1, d̃s,k,s) and

sends d̃s,k,s along with this proof to the corrupted parties. Note that the decryption process will
give the desired result as in the case of drawing cards.

If the opening succeeds, S answers (open, s) to Fpoker. S follows the same recovery triggers
as the real protocol to activate the recovery phase.

Pot Distribution: S simulates the behavior of the honest parties and wait to see if the pot
distribution succeeds. If this phase succeeds, S answers Fpoker with distribute to the query
(distribute, pot). S gets from Fpoker the information about which honest parties want to con-
tinue for the next hand and which parties want to leave the game and simulates the behavior of
the honest parties in the internal simulated execution; if some party obtains all the signatures
necessary to check-out, S perform the check-out for that party. S follows the same recovery
triggers as the real protocol to activate the recovery phase.

Player Check-out: S simulates FSC internally as well as the honest parties. If a corrupted
party Pc performs a check-out in the internal execution, S performs Pc’s check-out on Fpoker

and use the received coins to pay Pc. If an honest player Ph is able to check-out in the internal
execution, then S allows Ph’s check-out from Fpoker to proceed. S follows the same recovery
triggers as the real protocol to activate the recovery phase.

Recovery: S emulates FSC and simulates the behavior of the honest parties according to
the procedures described above for the respective part of the protocol. If a timeout occurs or
a misbehavior is detected S performs the compensation: S aborts the execution in Fpoker, thus
activating the compensation phase of Fpoker and getting the coins that S uses to compensate the
corrupted parties that are supposed to get some. Otherwise, S returns to the normal execution
when the next checkpoint is achieved.

Simulator Analysis: Notice that the simulator S conducts a simulation with internal copies
of the corrupted parties by emulating FSC and executing the protocol exactly as an honest party
would do for most of the protocol, except for phases where cards are opened. In these phases,
S waits for information on the values that specific cards are supposed to have from Fpoker and
then produces bogus decryption shares that result into the threshold ElGamal ciphertext that
represents the card being decrypted to the value obtained from Fpoker. S is able to do this
because it can use the simulators for the NIZKs used in πPoker to produce a valid NIZK showing
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that the bogus decryption share is valid even without knowing a witness. As the shares of the
secret key are never revealed, it is clear that the decryption shares are indistinguishable from
a random element of the same group. Hence, the execution with S could only be distinguished
from the real execution if the NIZKs generated without witnesses by their respective simulators
are distinguishable from an actual real world NIZK generated with a witness. This is clearly not
the case, since distinguishing the NIZKs generated by their simulator from NIZKs generated by
real world parties who know the witnesses would break those NIZKs’ zero-knowledge property.

5 Concrete Complexity Analysis

In this section, we analyze the concrete communication and computational complexities of πPoker.

We estimate (off-chain) communication and computational complexities for the case where no
user cheats (thus never triggering the recovery phase). Notice that, during recovery, every party
has to post on the public ledger both their most recent checkpoint witness along with protocol
messages generated after that witness has been generated and then execute the protocol by
posting each of the next messages in the public ledger. Thus, in case the recovery phase is
triggered, the cost of performing recovery will depend on the exact point of the protocol where
the recovery request happened. Nevertheless, we discuss why our on-chain space complexity
is generally low given that we explicitly define compact witnesses for intermediate step of the
protocol (even inside poker rounds). On the other hand, previous works in [35] and [9] only
mention (but not define) intermediate witnesses for each round of the poker game.

Moreover, we exclude the cost of generating and sending the messages between the par-
ties and FSC. We remark that these messages are basically transactions being posted in the
blockchain and their size and generation cost may vary depending on the concrete implementa-
tion.

Estimating Complexity: We estimate computational complexity in terms of the number of
exponentiations that each party has to perform in each phase of the protocol. On the other
hand, we estimate communication complexity in terms of the total number of group (i.e. G)
elements and ring (i.e. Zp) elements transferred by all parties in each phase of the protocol.
Most of the messages exchanged in the protocol are broadcast to all parties2. However, during
private cards distribution, decryption shares for each card are sent directly to its owner through
a private channel. We denote messages transmitted through private channels by [private] and
messages broadcast through public channels by [broadcast]. Messages that are not explicitly
marked are assumed to be broadcast by public channels.

Both the Betting Round and Showdown phases have complexities that fully depend on the
behavior of each player in the game of poker and other conditions such as the stake of the
game. For example, a user can choose to keep raising his bet in a Betting Round and users can
choose whether to show their cards or muck in Showdown. Those choices are perfectly honest
and permitted in the game but they result in different final complexities for these phases of
πPoker. In the case of the Betting Round phase, we estimate the complexity for the case where
all players speak once, which can be easily used to compute the complexity in cases where each
player speaks multiple times. In the case of the Showdown phase, we estimate the complexity
for the worst case (in terms of complexity), where all players choose to show their cards.

2We remark that, in our scenario, broadcasts can achieved by having parties communicate directly with each
other due to the low number of parties (typically n ≤ 10).
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Instantiating the Building Blocks: In this analysis we instantiate ZKSH (NIZK of correct-
ness of a shuffle) with parameters k = 4 and l = 13, which results in 208 exponentiations for the
prover and 208 exponentiations for the verifier, with a proof size of 44 elements of G and 65 ele-
ments of Zp. Notice that this estimation is actually an upper bound for concrete communication
complexity, since it pertains to the interactive version of ZKSH, which is significantly improved
in terms of concrete communication complexity after applying the Fiat-Shamir heuristic.

We instantiate the signature scheme SIG with the ECDSA scheme [33]. This scheme is chosen
because it does not require any extra computational assumptions (apart from the ones πPoker is
already based on) and because it can be efficiently implemented [10]. In the ECDSA scheme, a
public key consists of a elliptic curve point (that we count as an element of G) and a signature
consists of two scalars (that we count as elements of Zp). The ECDSA scheme requires one
elliptic curve point multiplication by a scalar for generating a key pair, one for signing and two for
signature verification (without optimizations). Similarly, the exponentiations required by πPoker
can be efficiently implemented over elliptic curves as point multiplications by a scalar. However,
we count the operations of elliptic curve point multiplications by scalars as exponentiations since
πPoker is written in terms of groups with multiplicative notation.

We present the concrete communication and computational complexities of πPoker in Table 1.

Phase
Exponentiations

(Per Player)
Communication (Total)
G Zp

Players Check-in 2n+ 1 2n 2n

Hand Execution - Shuffle 209n+ 104 148n 67n

Hand Execution - Blinds 12n 0 24n

Hand Execution - Drawing/
Private Cards Distribution

16n− 13 2(n2 − n) [private]
4(n2 − n) [private],

2n [broadcast]

Hand Execution - Main Flow 52n− 20 5n 28n

Showdown (Worst Case) 8(n− 1)2 2n2 4n2

Pot Distribution 2n 0 4n

Total 8n2 + 271n+ 82
2n2 + 155n
[broadcast],

2(n2 − n) [private]

4n2 + 127n
[broadcast],

4(n2 − n) [private]

Table 1: Concrete communication and computational complexities of πPoker in terms of number
of exponentiations executed per player and numer of elements of G and Zp transmitted by all
players in total for each phase with n players. During private cards distribution, some messages
are sent through a private channel, which we denote by [private]. All the other messages in the
protocol are broadcast through public channels, which we denote by [broadcast]. Messages that
are not explicitly marked are assumed to be broadcast by public channels.

On-chain Space Complexity: Considering that players act honestly throughout the proto-
col, information only stored in the blockchain when a player wishes to redeem its rewards. In
this case, the player must post a witness showing that all players agree that the protocol was
correctly executed. This witness consists of a simple digital signature.

In case a malicious player does cheat and an honest player triggers the recovery mechanism,
all players are required to post to the blockchain their latest checkpoint witness and the protocol
messages generated after that witness. Notice that this checkpoint witness is also a simple digital
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signature and that the bulk of the data posted on the blockchain actually depends on which
phase of the protocol is currently being executed. Our protocol employs compact witnesses that
show that several intermediate protocol phases have been correctly executed during each round
of poker. For example, if recovery is triggered during the Main Flow phase of Hand Execution,
only the latest checkpoint witness and short messages required in that phase would have to
be posted to the blockchain, excluding the long messages previously sent in the Shuffle and
Drawing Cards phase. On the other hand, previous protocols in [35] and [9] only mention that
intermediate witnesses could be generated after a full round of poker, incurring in a much higher
overhead in terms of blockchain storage when recovery happens. Moreover, such witnesses are
only mentioned but not explicitly defined in [35] and [9].

Comparison with Previous Protocols: While we present estimated computational and
communication complexities for each phase of a complete poker game, previous works only fo-
cus on individual card operations [47, 46, 42, 53, 52, 13, 5], making it hard to provide direct
comparisons to our results. In order to provide evidence that our protocol indeed achieves high
efficiency while providing provable security guarantees, we will focus on the card shuffling phase,
which is the main bottleneck of poker protocols.

Most previous protocols rely on cut-and-choose techniques to prove that the shuffle phase
was correctly executed by all users. On the other hand, we employ efficient zero knowledge
proofs of correctness of a shuffle, which results in improvements of the order of (at least) 10
times. Considering a deck of 52 cards (necessary for a poker game) and a security parameter
k = 40 for the cut-and-choose step (which is the lowest security parameter used for this kind of
technique in modern cryptography), the protocol of [47] (used as a building block in [9]) requires
2120n exponentiations per player in the Shuffle phase where n is the number of players. With
the same parameters, the Shuffle phase of the protocol proposed in [5] requires 6240(n−1)+8320
exponentiations, where n is the number of players. On the other hand, our protocol only requires
209n+ 104 exponentiations per player as described in Table 1.

6 Conclusion

In this paper, we introduce the first specific purpose protocol for secure poker with payment
distribution and penalty enforcement with fully-simulatable security. In order to argue about
our protocol’s security, we introduce the first formal simulation based security notions for such
protocols, which have been overlooked in previous works. Moreover, we identify concrete flaws
in previous protocols proposed in [13] and [5], showcasing the need for formal security definitions
and proofs in designing poker protocols. Our work improves on previous heuristic approaches
for constructing poker protocols and provides a more efficient alternative to general results
that provide payment distribution and penalty enforcement for general MPC protocols, where
generality comes at the cost of efficiency.

Even though we can formally prove that our protocol securely realizes a poker game with
payment distribution and penalty enforcement in a sequentially composable scenario, our current
results do not provide any guarantees in scenarios with arbitrary composability. In other words,
our protocol retains its security guarantees when several executions are run in sequence but
not when executed in parallel with other protocols or instances of itself. Therefore, we leave
open the important open problem of designing protocols for the same poker functionality with
arbitrary composability guarantees.

Another interesting (and related) open problem lies in constructing efficient protocols for
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each of the individual card operations commonly used in card games, in such a way that these
operations can be mixed and matched to obtain secure card games with payment distribution
and penalty enforcement. Even though we prove that our protocol securely realizes the game
of poker and intuitively the same operations could be applied to other games, our security
proofs (as well as those of previous works) do not suffice for a setting where these operations
are arbitrarily used to construct different games. In order to obtain such a protocol, it will be
needed to obtain arbitrarily composable protocols for each individual card operation as opposed
to a protocol for the full game of poker.
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