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Abstract. In this paper we present the first proof of a shuffle for lattice-
based cryptography which can be used to build a universally verifi-
able mix-net capable of mixing votes encrypted with a post-quantum
algorithm, thus achieving long-term privacy. Universal verifiability is
achieved by means of the publication of a non-interactive zero knowl-
edge proof of a shuffle generated by each mix-node which can be verified
by any observer. This published data guarantees long-term privacy since
its security is based on perfectly hiding commitments and also on the
hardness of solving the Ring Learning With Errors (RLWE) problem,
that is widely believed to be quantum resistant.
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1 Introduction

In the last years, several countries have been introducing electronic voting sys-
tems to improve their democratic processes: electronic voting systems provide
more accurate and fast vote counts, reduce the logistic cost of organizing an
election and can offer specific mechanisms for voters with disabilities to be able
to cast their votes independently. In particular, internet voting systems provide
voters with the chance to cast their votes from anywhere: their homes, hospitals,
or even from foreign countries in case they are abroad at the time of the election.

Anonymity and verifiability are two fundamental requirements for internet
voting systems that seem to be contradictory. Anonymity requires that the link
between the vote and the voter who has cast it must remain secret during the
whole process, while verifiability requires that all the steps of the electoral pro-
cess - vote casting, vote storage and vote counting - can be checked by the voters,
the auditors or external observers.

The different techniques used by the actual internet voting systems to achieve
anonymity can be classified in three categories:

Blind signature: this method allows the voter to obtain a message signed by
an authorized entity in such a way that this entity gets no information at all
about the message. Consequently, votes are anonymized before being sent.

Homomorphic tallying : the votes are encrypted using a homomorphic cryp-
tosystem and during the tallying phase they are aggregated. The resulting ci-
phertext is decrypted and the ballot count results are obtained. This anonymizes
the votes at the end of the election since no vote is individually decrypted.



Mixing : the ciphertexts are permuted and re-encrypted in such a way that the
correlation between the input and output of the mixing process is hidden and it is
not possible to trace it back. This operation is called a shuffle and it is executed
in a mixing network (mix-net) composed of mixing nodes each one performing
in turns the same operation. This is done in order to be able to preserve the
privacy of the process even if some nodes are dishonest: as long as one of the
mix nodes remains faithful and does not reveal the secret permutation or re-
encryption values, unlinkability is preserved. Notice that this method requires
to provide a proof of a shuffle so that it can be checked that the contents of the
output are the same as the contents of the input.

On the other hand, in order to build verifiable systems one key instrument is
the Bulletin Board: a public place where all the audit information of the election
(encrypted votes, election configuration, . . . ) is published by authorized parties
and can be verified by anyone: voters, auditors or third parties. However, once
published in the Bulletin Board, it is not possible to ensure that all the copies
are deleted after the election and the audit period ends, and long-term privacy
may not be ensured by encryption algorithms used nowadays, for example due to
efficient quantum computers. Learning how a person voted some years ago may
have political, as well as personal implications (e.g. in case of family coercion).

Everlasting privacy is a recent research topic meaning that even if a compu-
tationally unbounded adversary exists, the voter’s privacy is preserved. Several
solutions have been proposed in order to address the problem exposed above
and the majority of them use Pedersen commitments [31] to protect the infor-
mation that is going to be published in the Bulletin Board. These commitments
perfectly hide the committed message since its privacy does not depend on any
computational assumption whose strength may be eroded in the future. Never-
theless most of these proposals require an anonymous channel to send additional
information (for instance, the encrypted openings of the commitments) to the
server either during the voting phase [28, 13] or during the authentication phase
[23, 24]. Since these anonymous channels are difficult to implement, mix-nets
are frequently used as an alternative. There are some proposals to construct
universally verifiable mix-nets with everlasting privacy [6], where a mixing of
commitments instead of ciphertexts is performed.

Nevertheless, our goal is to achieve long-term privacy, in which the voter’s
privacy is preserved against a polynomially bounded quantum capable adver-
sary. Lattice-based cryptography [27] is maybe the most promising approach to
get cryptosystems that will remain secure in the post-quantum era, and so it has
become a very active area of research in the last years. The security of lattice-
based cryptography is based on the worst-case problem meaning that breaking
a lattice-based cryptosystem implies finding an efficient algorithm for solving
any instance of the underlying lattice problem, for instance, the Shortest Vector
Problem (SVP), the Closest Vector Problem (CVP) or the Shortest Independent
Vector Problem (SIVP). There are several proposals to build lattice-based cryp-
tosystems such as public key encryption schemes, digital signatures schemes,
hash functions, Identity Based Encryption schemes or ZK proofs.



Since mix-nets are of paramount importance in an online voting scenario and
lattice-based cryptography seems to be one of the main alternatives to achieve
post-quantum security, we consider it necessary to have a system with a mix-net
capable of shuffling lattice-based encryptions. As far as we know there is only
one proposal of an e-voting protocol that uses lattice-based cryptography [9]. In
the cited paper, the authors present an e-voting scheme that uses LWE-based
fully homomorphic encryption in order to provide a homomorphic tally system.
Nevertheless, to the best of our knowledge, there is no proposal for a lattice
based e-voting scheme using mix-nets in the literature.

1.1 Related work

The first mix-net was introduced by Chaum [8] in 1981 where the plaintext is en-
crypted as many times as mixing nodes using RSA onions with random padding,
and during the mixing process each node decrypts the outer layer and removes
the random padding, so the last node obtains the original message. In 1993, Park
et al. noticed that Chaum’s mix-net required a ciphertext size proportional to
the number of mixing nodes and proposed a re-encryption mix-net [30] where
instead of concatening, they re-randomized the ciphertexts using a homomorphic
cryptosystem like ElGamal. In this system decryption occurs after shuffling is
finished, however they also proposed a different mix-net in the same paper [30]
where each node performs partial decryption besides the shuffling. Two years
later, Sako and Kilian [35] defined the property of universal verifiability and
proposed the first universally verifiable mix-net, that provides a zero-knowledge
proof of correct mixing that any observer can verify. Achieving efficient mixing
proofs was the challenge of the late 1990s, where two solutions were proposed
for an efficient universally verifiable mix-net [26, 1]. In 2001, Furukawa and Sako
[16] proposed a proof of correct mixing more efficient than the previous ones,
in this scheme each node uses a matrix to do the ciphertexts permutation and
proves that this matrix is a permutation matrix. In the same year, Neff [29]
introduced the fastest, fully-private, universally verifiable mix-net shuffle proof
known so far, optimized and generalized by Groth in [18]. In 2004, Golle et al.
[17] proposed a mix-net with universal re-encryption, that does not require that
each mix node knows the public key of the ciphertexts they are mixing. This
can be done with homomorphic cryptosystems like ElGamal. In the same year,
Wikström [40] gave the first mix-net definition and implementation in the UC
framework [7] as well as a simpler and efficient construction [41].

Adida and Wikström introduced a different mix-net approach [2, 3] moti-
vated by the complexity of using mix-nets in elections. They proposed an offline
precomputation technique in order to reduce the online computation complex-
ity. However, the scheme [2] was quite inefficient while the construction in [3]
was very efficient but reduced to a relatively small number of senders. In 2010
Terelius and Wikström [38] proposed a provably secure technique to prove the
correctness of a cryptographic shuffle using simple shuffle arguments and two
years later, Bayer and Groth, proposed an honest verifier zero-knowledge argu-
ment for the correctness of a shuffle of homomorphic encryptions that, compared



with previous work, matched the lowest computation cost for the verifier. Nev-
ertheless, as these non-interactive proofs are known in the random oracle model,
several works have studied how to construct NIZK shuffle arguments in the
Common Reference String (CRS) model without using random oracles [19, 22,
14, 15]. However, given that these CRS-based proposals are constructed for bi-
linear groups, we are going to use the approach presented in [38, 42] to build
our proof of a shuffle. In [42] Wikström presented a mix-net based on homomor-
phic cryptosystems using the idea of permutation matrices. In the proposal, a
proof of a shuffle is split in an offline and online phase that reduces significantly
the computational complexity in the online part. More precisely, in the offline
part the mixing node computes a commitment to the permutation matrix and
proves in zero knowledge that it knows an opening for that commitment. In the
online part, the node computes a commitment-consistent proof of a shuffle to
demonstrate that the committed matrix has been used to shuffle the input.

To the best of our knowledge, the concept of using mix-nets for lattice-based
cryptography is very new in the research literature, and as such, there are not
many proposed schemes. There have been proposals for a lattice based universal
re-encryption for mix-nets [36, 37] but none of them proposes a proof of a shuffle,
which is essential for verifiable protocols.

1.2 Our contribution

We propose the first universally verifiable mix-net for a post-quantum cryptosys-
tem. The mix-net receives at its input a set of messages encrypted using a RLWE
encryption scheme [25] whose security is based on the hardness of solving the
Learning With Errors problem over rings (RLWE problem) [33]. In the proposal,
we show how to permute and re-encrypt RLWE encryptions and we also give the
first proof of a shuffle that works for a lattice-based cryptosystem. This proof is
based on what is proposed in [42] but it is not a direct adaptation of it, since we
introduce a new technique to implement the last part of the proof that differs
from what is presented in that article.

We split the proof of a shuffle into two protocols following Wikström’s tech-
nique. In the offline part, the permutation and re-encryption parameters used to
shuffle the ciphertexts are committed and it is demonstrated using zero knowl-
edge proofs that these values meet certain properties and that the openings for
the commitments are known. The zero-knowledge proofs used in this part satisfy
special soundness and special honest verifier zero-knowledge [10]. The first prop-
erty means that given two accepting conversations with identical first messages
but different challenges, it is possible to extract a valid witness. Regarding the
second property, it means that for a given challenge the verifier can be simulated.

In the online part, instead of computing a commitment-consistent proof of
a shuffle, each mix node should compute a commitment to its output using the
commitments calculated in the offline protocol taking advantage of the homo-
morphic property of both the commitment and encryption schemes. Finally, the
node should reveal the opening of the output commitment in order to demon-
strate that it has used the committed permutation and re-encryption values to



do the shuffle. It is important to notice that we are not opening directly the com-
mitments to the secret permutation neither to the secret re-encryption values
but the commitments to a linear combination of them. The openings revealed
by each node perfectly hide the secret values and no information is leaked that
could compromise the privacy of the process. Commitments used to construct the
proof are generalized versions of the Pedersen commitment, which is perfectly
hiding and computationally binding under the discrete logarithm assumption
and it is widely used to provide everlasting privacy. The reason why we use this
commitment is for efficiency and simplicity, nevertheless since our protocol only
requires a commitment that allows us to prove linear relations between commit-
ted elements, the protocol presented in this paper could be modified in order to
use the commitment scheme proposed by Benhamouda et al. in [5]. This would
allow us to construct a mix-net totally based on post-quantum cryptography. As
this is a non-trivial modification we first show how to mix RLWE ciphertexts
using Pedersen commitments and how to do it universally verifiable.

The organization of this paper is as follows. In section 2 we define the notation
and review the cryptographic background that is necessary to understand the
mix-net proposal. In section 3 we give the details about the shuffle of RLWE
encryptions, and finally in section 4 we conclude the paper.

2 Preliminaries

In this section we present the notation that we are going to use throughout
the paper and we also give some details about the cryptographic background
required for the latter sections.

Standard notation regarding vectors and matrices will be used. Vectors will
be represented by boldface lowercase roman letters (such as v or w) and matrices
will be represented by boldface uppercase roman letters (such as M or A). Let
〈·, ·〉 denote the standard inner product in ZNq , given two vectors v,w ∈ ZNq
〈v,w〉 is defined by means of

∑N
i=1 viwi. When working with lattices we are

going to follow the notation proposed in [25].

2.1 Ideal lattices

A lattice is a set of points in an n-dimensional space with a periodic struc-
ture. Given m-linearly independent vectors a1, . . . ,am ∈ Rn, the rank m lattice
generated by them is the set of vectors:

L(a1, . . . ,am) =

{
m∑
i=1

xiai : xi ∈ Z

}

We denote the basis of the lattice as A = (a1, . . . ,am), i.e., the matrix whose
columns are a1, . . . ,am. We are going to work with lattices that are full-rank
(n = m), that is, the number of linearly independent vectors in the basis of the
lattice is equal to the number of dimensions in which the lattice is embedded.



Definition 1. An ideal lattice is a lattice defined by a basis A constructed with
a vector a ∈ Zn iteratively multiplied by a transformation matrix F ∈ Zn×n
defined from a vector f ∈ Zn as follows.

F =


0 . . . 0 −f0

. . . −f1

I
...

. . . −fn−1


The basis is defined as: A = F∗a = [a,Fa, . . . ,Fn−1a].

Lattices that follow this particular structure have been named ideal lattices
because they can be equivalently characterized as ideals of the ring of modular
polynomials R = Z[x]/〈f(x)〉 where f(x) = xn + fn−1x

n−1 + · · · + f0 ∈ Z[x].
That means that working on the polynomials domain modulo f(x) is equivalent
to working on the ideal lattice domain characterized by F. We will use the ring
where f(x) = xn + 1, as proposed by [25]. When working in this ring, where
we know that f(x) is a cyclotomic polynomial for n a power of 2, one obtains
the family of the so called anti-cyclic integer lattices, i.e., lattices in Zn that are
closed under the operation that cyclically rotates the coordinates and negates the
cycled element. The vector f corresponding to f(x) = xn + 1 is f = (1, 0, . . . , 0)
and therefore the basis A is:

A =


a1 −an −an−1 . . . −a2
a2 a1 −an . . . −a3
a3 a2 a1 . . . −a4
...

...
...

. . .
...

an an−1 an−2 . . . a1

 (1)

Notice that using ideal lattices we are able to express a rank n ideal lattice with
only n values, rather than n× n as is the case for general lattices, which allows
a more compact representation that requires less storage space.

Given a prime q, let Rq be Zq[x]/〈f(x)〉. Henceforth we will write a either
as a polynomial a = a1 + a2x + a3x

2 + . . . + anx
n−1 ∈ Rq or as a vector with

coefficients (a1, a2, a3, . . . , an) ∈ Znq . Notice that given two polynomials a ∈ Rq
and p ∈ Rq, the product a · p in Rq is equivalent to the product of the matrix A
with the vector p = (p1, . . . , pn). Working with the polynomial representation
in Rq allows a speedup in operations commonly used in lattice-based schemes:
polynomial multiplication can be performed in O(n log n) scalar operations, and
in parallel depth O(log n), using the Fast Fourier Transform (FFT).

2.2 RLWE encryption scheme

Let Rq be the ring of integer polynomials Rq = Zq[x]/〈xn + 1〉 where n is a
power of 2, q is a prime; and let χσ be a discretized Gaussian distribution with
standard deviation σ = αq/

√
2π.



Definition 2 (RLWE distribution). Given the “secret” s ∈ Rq and an error
distribution χσ, the RLWE distribution As,χ over Rq × Rq consists of samples
of the form (a, b = a · s+ e) ∈ Rq ×Rq where a← Rq is chosen uniformly, and
e is the error polynomial sampled from the error distribution χσ.

Definition 3 (Search RLWE). Given many samples (ai, bi = ai · s + ei) ∈
Rq × Rq from the RLWE distribution As,χ the goal is to recover the “secret”
s ∈ Rq with high probability,

Definition 4 (Decision RLWE). Given a vector (a, b) the goal is to efficiently
distinguish if it has been sampled uniformly at random from Rq ×Rq or from a
RLWE distribution As,χ.

Hardness of RLWE. For any large enough q, solving certain instantia-
tions of the search RLWE problem is at least as hard as quantumly solving a
corresponding poly(n)-approximate Shortest Vector Problem (approx -SVP) on
any ideal lattice. On the other hand, solving decision RLWE in any cyclotomic
ring (for any poly(n)-bounded prime q = 1 mod n) is as hard as solving search
RLWE. See [25] for the details about the hardness of RLWE and the quantum
reduction from worst-case approx -SVP on ideal lattices to the search RLWE.

RLWE parameters. How to choose secure parameters for lattice based
cryptosystems is still an open question, nevertheless there are some parameters’
proposals in the literature that take into account various security levels or at-
tacker types [34], that consider the requirements of security reductions [32] or
that consider an upper bound on the decryption error probability [20].

A RLWE encryption scheme is a triplet (KeyGen, Enc, Dec) which operates
on rings such as Rq for which the RLWE is difficult to be solved. The original
definition of the algorithm requires choosing small elements in Rq from an error
distribution at several points. For practical purposes we will construct these
small elements by taking their coefficients from an error distribution χσ which
will be a discrete Gaussian distribution with parameter σ, as defined above. The
RLWE encryption scheme that we are going to use is that proposed in [25] which
defines the following algorithms:

KeyGen(): choose a uniformly random element a ∈ Rq as well as two random
small elements s, e ∈ Rq from the error distribution. Output sk = s as the secret
key and the pair pk = (a, b = a · s+ e) ∈ Rq ×Rq as the public key.

Encrypt(pk, z, r, e1, e2): to encrypt an n-bit message z ∈ {0, 1}n, we view it
as an element of Rq by using its bits as the 0-1 coefficients of a polynomial.
The encryption algorithm then chooses three random small elements r, e1, e2 ∈
Rq from the error distribution and outputs the pair (u, v) ∈ Rq × Rq, as the
encryption of z: (u, v) = (r · a+ e1 mod q, b · r+ e2 +

⌊
q
2

⌉
z mod q) ∈ Rq ×Rq

Decrypt(sk, (u, v)): the decryption algorithm simply computes v − u · s =
(r · e− s · e1 + e2) + b q2ez mod q.

For an appropiate choice of parameters (namely q and σ) the coefficients of
r · e− s · e1 + e2 have magnitude less than q/4, so the bits of z can be recovered
by rounding each coefficient of v − u · s back to either 0 or

⌊
q
2

⌉
, whichever is

closest modulo q. Notice that in the RLWE encryption scheme presented above



the secret s is taken from the error distribution, as well as r, e1 and e2. This is
done in order to build efficient encryption schemes and it is demonstrated in [4]
that the hardness of the underlying problem is not affected by this change.

Security. The RLWE encryption scheme is semantically secure given the
pseudorandomness of the RLWE samples [25]. Notice that both the public key
(a, b) and the ciphertexts are RLWE samples, where the encrypted messages can
be seen as the pairs (a, u), (b, v) ∈ Rq×Rq (ignoring the message component b q2ez
mod q) with secret r. Then, these values are pseudorandom. Consequently, the
encryption of a message using the RLWE encryption scheme is indistinguishable
from an element sampled uniformly at random from Rq × Rq as long as the
number of samples containing the same secret r is polynomial on the security
parameter. The number of nodes in a mix-net is fixed and every re-encryption
is computed using different parameters r, so the security is not compromised.

For our proposal we will need not only to encrypt messages but also to re-
encrypt them. Since an RLWE encryption scheme is an additive homomorphic
cryptosystem, we can re-encrypt a message just adding to the original ciphertext
the encryption of the neutral element, that is, the encryption of a polynomial
whose coefficients are 0. Following the same argumentation as above we can
conclude that semantic security in an RLWE encryption scheme implies semantic
security under re-encryption.

Reencrypt((u, v), r′, e′1, e
′
2): to re-encrypt an n-bit message z, the algorithm

chooses three random small elements r′, e′1, e
′
2 ∈ Rq from the error distribution

and outputs the pair (u′, v′) = (u, v) + Encrypt(pk, 0, r′, e′1, e
′
2) ∈ Rq ×Rq.

Decrypting this re-encrypted ciphertext we would obtain v′ − u′ · s = (r +
r′) + (e2 + e′2) − s · (e1 + e′1) +

⌊
q
2

⌉
z. The plaintext is preserved but the error

terms may grow after every homomorphic operation. In order to avoid decrypting
errors the number of mixing nodes must be taken into account when choosing
the parameters q and σ, such that the error is still small compared to q even
after as many re-encryptions as mixing nodes we are planning to use.

2.3 Zero knowledge proofs

A zero-knowledge proof is a protocol between two parties, the prover P and
the verifier V, where the first tries to convince the second that it knows some
secret w that satifies a public relation (x,w) ∈ R (where x would be some
public information), for instance, that P knows the discrete logarithm of a public
element. This proof is done in such a way that the prover does not reveal any
information beyond the fact that a certain statement is true.

Definition 5. A two party protocol (P,V) is a Σ-protocol [12] for relation R if
it is a three round public-coin protocol of the form:

1. The prover P sends a message t to the verifier V.
2. V sends a random string e to P.
3. P sends a response s to V. The verifier decides to accept or reject the proof

based on the protocol transcript (t, e, s).

and the following requirements hold:



– Completeness: if an honest prover P knows w satisfying the relation (x,w) ∈
R, then V always accepts.

– Special soundness: given two accepted protocol transcripts (t, e, s) and
(t, e′, s′) where e 6= e′, there exists a Probabilistic Polynomial-Time (PPT)
algorithm which outputs w such that (x,w) ∈ R.

– Special honest-verifier zero-knowledge: given a pair (x, e) there exists a
PPT algorithm that outputs a valid protocol transcript (t, e, s) with the same
probability distribution as transcripts between the honest P and V.

The underlying structure behind the zero-knowledge proofs constructed in our
proposal is that of a Σ-protocol. As Terelius and Wikström mention in their
article [38], we need to prove knowledge on how to open commitments such that
the committed values satisfy a public polynomial relation.

Σ-proof[e ∈ ZNq , s ∈ Zq|a = Com(e, s) ∧ f(e) = e′)] (2)

We refer the reader to [38] for more details on how this can be done.

2.4 Pedersen commitments

Let p and q be large primes, Z∗p a group of integers modulo p = 2q + 1 and
Gq ⊂ Z∗p a subgroup of order q where the discrete logarithm assumption holds.
Given two independent generators {g, g1} of Gq, to commit to a message x ∈ Zq
using the Pedersen commitment scheme [31], choose a random α

$←− Zq and
output Com(x, α) = gαgx1 . In order to open this commitment simply reveal the
values α and x. This scheme is perfectly hiding and computationally binding as
long as the discrete logarithm problem is hard in Gq.

In our proposal we are going to work with the extended version of the Ped-
ersen commitment scheme, that allows to commit to more than one message at
once. Given N+1 independent generators {g, g1, . . . , gN} of Gq and a randomnes

α
$←− Zq, the commitment to N messages x = (x1, . . . , xN ) ∈ ZNq is computed as:

Com(x, α) = gα
N∏
i=1

gxii

We use this extended version of the Pedersen commitment to commit to a ma-
trix M ∈ ZN×Nq . In order to do that just compute a commitment to each of
its columns (m1, . . . ,mN) where mj = (m1j ,m2j , . . . ,mNj) for j = 1, . . . , N .
This means that a matrix commitment is a vector whose components are the
commitments to the matrix columns:

Com(M, α1, α2, . . . , αN ) = (Com(m1, α1), . . . ,Com(mN, αN )) (3)

Due to the homomorphic property of the Pedersen commitment we can compute
a commitment to the product of a matrix M by a vector x from the commitment
to the matrix Com(M,α) = (cm1 , . . . , cmN ).

N∏
j=1

c
xj
mj =

N∏
j=1

(
gαj

N∏
i=1

g
mi,j
i

)xj
= g〈α,x〉

N∏
i=1

g
〈(mi,1,...,mi,N ),(x1,...,xN )〉
i (4)



3 Shuffling Ring-LWE encryptions

In this section we first present an overview of the mixing protocol and then
we explain in more detail how is it proved that the committed matrix is a
permutation matrix, the random re-encryption paramenters are small and that
all these values have been used to perform the shuffle.

Let M1, . . . ,Mk be the mix-nodes that participate in the mixing protocol
and let N be the number of encrypted messages at the input of each node.

3.1 Protocol overview

Given the the ring Rq and the encryption scheme presented in section 2, and the
matrices A and B constructed from vectors a and b (RLWE public key) following
equation 1; we can express a ciphertext (u(i), v(i)) ∈ R2

q as a vector of 2n elements

(u(i),v(i)) = (u
(i)
1 , . . . , u

(i)
n , v

(i)
1 , . . . , v

(i)
n ) ∈ Z2n

q and its re-encryption as:(
u′(i) v′(i)

)T
=
(
u(i) v(i)

)T
+

(
A
B

)
(r′(i))T +

(
e
′(i)
1 e

′(i)
2

)T
∀i ∈ [1, . . . , N ]

Following this notation and given a permutation π characterized by the matrix

M and a set of re-encryption parameters
(
r′(i), e

′(i)
1 , e

′(i)
2

)
for each one of the

messages, we can express the shuffling of N RLWE encryptions as:


u
′′(1)
1 · · · u′′(1)n v

′′(1)
1 · · · v′′(1)n

...
. . .

...
...

. . .
...

u
′′(N)
1 · · · u′′(N)

n v
′′(N)
1 · · · v′′(N)

n


N×2n

=

m11 · · · m1N

...
. . .

...
mN1 · · · mNN


N×N


u
(1)
1 · · · u(1)n v

(1)
1 · · · v(1)n

...
. . .

...
...

. . .
...

u
(N)
1 · · · u(N)

n v
(N)
1 · · · v(N)

n


N×2n

+


r
′(1)
1 · · · r′(1)n

...
. . .

...

r
′(N)
1 · · · r′(N)

n


N×n


a1 · · · an b1 · · · bn
−an · · · an−1 b2 · · · bn−1

...
. . .

...
...

. . .
...

−a2 · · · a1 −b2 · · · b1


n×2n

+


e
′(1)
1,1 · · · e

′(1)
1,n e

′(1)
2,1 · · · e

′(1)
2,n

...
. . .

...
...

. . .
...

e
′(N)
1,1 · · · e

′(N)
1,n e

′(N)
2,1 · · · e

′(N)
2,n


N×2n(

U′′ V′′
)

= M
(
U V

)
+ R′

(
AT BT

)
+
(
E′1 ,E

′
2

)
(5)

A mix-net node should prove that it knows the matrices M,R′,E′1,E
′
2 such that

the output of the node
(
U′′ V′′

)
is the input

(
U V

)
re-encrypted and permuted,

without revealing any information about M,R′,E′1 and E′2.

Σ-proof


π

r′(1), . . . , r′(N)

e
′(1)
1 , . . . , e

′(N)
1

e
′(1)
2 , . . . , e

′(N)
2

∣∣∣∣∣∣∣∣∣∣∣∣∣

((
u′′(1),v′′(1)

)
, . . . ,

(
u′′(N),v′′(N)

))T
=

Re-encrypt
((
uπ(1),vπ(1)

)
, r′(1), e

′(1)
1 , e

′(1)
2

)T
. . .

Re-encrypt
((
uπ(N),vπ(N)

)
, r′(N), e

′(N)
1 , e

′(N)
2

)T



Following Wikström’s proposal we are going to split the proof into two protocols.



Offline phase

1. The mix-node Mj chooses a random permutation πj characterized by the
matrix M j ∈ ZN×Nq , computes a matrix commitment Com(Mj ,αmj ) and
publishes it. It also proves knowledge of the committed permutation.

2. Mj chooses randomly the re-encryption parameters: R′j ∈ ZN×nq ,E′1j ∈
ZN×nq and E′2j ∈ ZN×nq . It computes the corresponding matrix commit-
ments, publishes them and prove that the committed elements are small.

Online phase

1. Given a list of N input ciphertexts, the mix-node Mj permutes and re-
encrypts the list using equation 5.

2. In order to prove that the committed matrices have been used to perform
the mixing, Mj computes the commitment to its output using those com-
mitments calculated during the online phase, and finally reveals its opening.

3.2 Proof of Knowledge of Permutation Matrix

The permutation matrix is characterized by the following theorem.

Theorem 1. Given a matrix M ∈ ZN×Nq and a vector x = (x1, . . . , xN ) ∈ ZNq
of N independent variables, M is a permutation matrix if and only if M1 = 1
and

∏N
i=1 xi =

∏N
i=1 x

′
i where x′ = Mx.

We refer the reader to [38] for the details about the theorem’s proof.
Given a commitment to a matrix Com(M,αm) = (cm1 , . . . , cmN

) and a
vector x = (x1, . . . , xN ), we can compute a commitment to the product of the
matrix by a vector Com(Mx, k) using equation 4, where k = 〈αm,x〉. In the
special case where the vector x = 1 the identity above is Com(1, t) where t =∑N
i=1 αmj . Another important observation is that given a vector r̂ = (r̂1, . . . , r̂N )

we can express a commitment to the product of the elements of x′ in a recursive

way ĉi = gr̂i ĉ
x′i
i−1 for i = 1, . . . , N and ĉ0 = g1.

Applying the second condition for a permutation matrix (
∏N
i=1 xi =

∏N
i=1 x

′
i),

it is possible to obtain a commitment ĉN such that ĉN = gr̂g
∏N
i=1 x

′
i

1 = gr̂
′
g
∏N
i=1 xi

1 ,

and prove that we know two different valid openings (r̂,
∏N
i=1 x

′
i) and (r̂′,

∏N
i=1 xi).

Due to the binding property of the commitments we know that if someone
is able to open a commitment to two different openings, this means that ei-
ther both openings are the same or the discrete logarithm, g1 = gz where

z = (r̂ − r̂′) /
(∏N

i=1 xi −
∏N
i=1 x

′
i

)
, can be computed.

Observe that using the Schwartz-Zippel lemma we can prove the polynomial
equality

∏N
i=1 xi =

∏N
i=1 x

′
i holds with overwhelming probability just verifying

that the equation holds for a point (λ1, . . . , λN ) randomly chosen from ZNq .
Given these preliminaries we can construct a Σ-proof to prove that the mix-

net node knows an opening for the commitment and that the element committed
is a permutation matrix. Since this proof follows the approach given by Wik-
ström, we left the details for the Appendix A.



3.3 Proof of knowledge of small exponents

The second step in the offline part will be to prove that the random values used
to re-encrypt are small. Remember that in order to re-encrypt a message, the

following randomness is used: r′(i) =
(
r
′(i)
1 , . . . , r

′(i)
n

)
, e
′(i)
1 =

(
e
′(i)
1,1 , . . . , e

′(i)
1,n

)
and e

′(i)
2 =

(
e
′(i)
2,1 , . . . , e

′(i)
2,n

)
for i ∈ [1, . . . , N ]. In our case, we would require that

the coefficients of these vectors belong to [−β + 1, β − 1] where β = 2k. In order
to prove this we are going to use the strategy proposed in [21] by Ling et al.
As it is explained in [5] the probability of obtaining an element from the error
distribution with norm larger than β is negligible (notice that β will depend
on the parameters of the encryption). Even when this restriction on the re-
encryption elements norm is applied, the RLWE samples remain pseudorandom.
This prevents a corrupted node from modifiying the plaintext of the ciphertexts,
while an honest node can still use the pseudorandomness to hide the relation
between its input an output.

We decompose r
′(i)
j =

∑k−1
l=0 r

′(i)
j,l 2l, e

′(i)
1,j =

∑k−1
l=0 e

′(i)
1,j,l2

l and e
′(i)
2,j =

∑k−1
l=0 e

′(i)
2,j,l2

l,

with r
′(i)
j , e

′(i)
1,j,l, e

′(i)
2,j,l ∈ {−1, 0, 1} and we prove that these elements have one of

the possible values in the set {−1, 0, 1} using an OR-proof. Afterwards, using
the commitment to every bit of the decomposition we obtain a commitment to
the coefficients, and consequently a commitment to each of the corresponding
matrix columns. The protocol used to demonstrate that a value belongs to a
specific set, x ∈ {−1, 0, 1}, is based on a zero knowledge proof that proves that
the element x has one of the values in the set without revealing which one it is.

Σ-proof
[
x
∣∣x ∈ {−1, 0, 1}, c = grhx

]
Informally, the proof consists of computing three proofs simultaneously, for x =
−1, x = 0 and x = 1, where two of them will be simulated and only that which
corresponds to the real value of x will be the real proof. As this is a standard
proof [11] the details are omitted here and both the proof and the demonstration
of its properties are given in Appendix B.

3.4 Opening the commitments

Given the commitments to the permutation matrix and to the re-encryption
matrices, the only thing that is left to prove is that these matrices have been
used during the mixing process. This is an operation that should be done online
since we need the list of encrypted messages to compute the proof. In order to
do that we propose a methodology that differs from what Wikström proposes.

Given the commitments cmj = Com
(
mj , αmj

)
, cr′j = Com

(
r′j , αr′j

)
,

ce′1,j
= Com

(
e′1,j , αe′1,j

)
and ce′2,j

= Com
(
e′2,j , αe′2,j

)
and equation 5, we can

compute the following commitments to matrix products and sums,



ce′1,k

 N∏
j=1

c
u
(j)
k

mj

 n∏
j=1

c
ak,j
r′j

 = Com
(
û′′k, αe′1,k + 〈αM , ûk〉+ 〈αr′ , (ak,1, . . . , ak,n)〉

)

ce′2,k

 N∏
j=1

c
v
(j)
k

mj

 n∏
j=1

c
bk,j
r′j

 = Com
(
v̂′′k, αe′2,k + 〈αM , v̂k〉+ 〈αr′ , (bk,1, . . . , bk,n)〉

)
denoting ûk, v̂k, û

′′
k, v̂

′′
k the corresponding k-column of each matrix U,V,U′′,V′′.

The only thing that the mix node should do in order to prove that it has used
the appropiate values during the shuffling, is to open the commitments above
revealing the openings.(

αe′1,k +
〈
αM ,

(
u
(1)
k , . . . , u

(N)
k

)〉
+ 〈αr′ , (ak,1, . . . , ak,n)〉

)
∀k ∈ [1, . . . , n](

αe′2,k +
〈
αM ,

(
v
(1)
k , . . . , v

(N)
k

)〉
+ 〈αr′ , (bk,1, . . . , bk,n)〉

)
∀k ∈ [1, . . . , n]

The verifier has to check that these values are appropiate openings of the com-
mitments in order to verify the node has used the committed matrices M,R′,E′1
and E′2 to shuffle the encrypted messages (at its input).

As we have seen above, given the commitments to M,R′,E′1 and E′2 we
can compute the commitment to the matrix of permuted votes M

(
U V

)
and

the re-encryption matrix
(
R′
(
AT BT

)
+
(
E′1 E′2

))
. Notice that the 2n linear

combinations of the values αmj , αr′j , αe′1,j , αe′2,j that the mix node reveals, allow
us to open the commitments to the sum of these matrices, but not to each matrix
separately. Given that αM , and αr appear on all the openings that we reveal
we have to double check if they could leak any information about any relations
between the α’s that (in a post-quantum scenario) may reveal information about
the permutation and the re-encryption elements. This is not the case because
all the αe1′,j and αe′2,j are uniformly and independently chosen from Zq. All the
linear combinations that we reveal have a different αe′i,j , and this implies that
the combinations are also uniformly and independently distributed, and thereby
it is impossible to isolate any of the α. The full protocol and a discussion about
its properties are given in Appendix C.

4 Conclusions

We have proposed the first universally verifiable proof of a shuffle for a lattice-
based cryptosystem. The messages at the input of the mix-net are encrypted us-
ing an RLWE encryption system and then they are shuffled by the mixing nodes.
In order to prove the correctness of this shuffle each node must provide a proof of
a shuffle, demonstrating that the protocol has been executed correctly without
leaking any secret information. Our proposal follows the idea presented in [42]
but introduces two significant differences: during the offline part the random
elements used to re-encrypt the ciphertexts are committed using the generalized



version of Pedersen commitment and it is proved that these elements belong to
a certain interval using OR-proofs. On the other hand, during the online part
each node computes a commitment to its output using the homomorphic prop-
erties of both the commitment scheme and the encryption scheme. Opening this
commitment the mix node proves that it has used the values committed during
the offline part to compute its output. Revealing this opening does not give any
information about the secret information required to do the shuffling.

It is worth noticing that shuffling the votes is not enough to guarantee the
voters’ privacy, as the system can be insecure, for instance, due to malleability
attacks [39]. To avoid this kind of attack additional security proofs might be
provided before the mixing process starts.

Regarding efficiency, the number of OR-proofs to be computed by each mix
node is proportional to knN , where N is the number of encrypted messages
received by the node, n is the dimension of the lattice and k is the number of
bits of each element of the re-encryption matrices. There are some techniques
that allow to reduce the computational cost of these proofs and we leave for a
future work to explore these improvements. We refer the reader to [42] for the
details about the efficiency of the ZKP for a permutation matrix.
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A Proof of a committed permutation matrix

As Wikström defines in his article, we let nv, nc and nr denote the bitsize of
components in random vectors, challenges, and random paddings respectively.
The security parameters 2−nv , 2−nc and 2−nr must be negligible in n.

This protocol meets the requirements of completeness, soundess and zero
knowledge defined in section 2[38]. We can construct a simulator selectingB1, . . . , BN ∈
Gq, d,d′ ∈ ZNq and dα, dγ , dδ ∈ Zq randomly, and computing α, βi, γ, δ using
the verification equations. In order to prove the consistency we have to undo the
built recurrences in the same way that Wikström explains in his article.

Σ-proof

λ′ ∈ ZNq , t, k, z ∈ Zq

∣∣∣∣∣∣∣∣∣

(
Com(1, t) =

∏N
j=1 c

1j
mj

)
∧
(
Com(λ′, k) =

∏N
j=1 c

λj
mj

)
∧
(∏N

i=1 λi =
∏N
i=1 λ

′
i ∨ g1 = gz

)


The protocol is shown in the next page.



r, s
$←− ZNq

sα
$←− Zq

sγ
$←− Zq

sδ
$←− Zq

n̂ = nv + nr + nc

s′
$←−
[
0, 2n̂ − 1

]
B0 = g1

Bi = griB
λ′i
i−1

α = gsα
N∏
i=1

g
s′i
i

βi = gsiB
s′i
i−1

γ = gsγ

δ = gsδ

P B0,Bi,α,βi,γ,δ−−−−−−−−−→ V

c
$←− [0, 2nc − 1]

P c←− V
λ′′1 = s1

λ′′i = λ′′i−1λ
′
i + si

dα = ck + sα

d′i = cλ′i + s′i

di = cri + si

dγ = c 〈s,1〉+ sγ

dδ = cλ′′N + sδ

P dα,d
′
i,di,dγ ,dδ−−−−−−−−−→ V  N∏

j=1

c
λj
mj

c

α
?
= gdα

N∏
i=1

g
d′i
i

Bci βi
?
= gdiB

d′i
i−1 N∏

j=1

c
1j
mj

/
N∏
i=1

gi

c

γ
?
= gdγ

(
BN
/
g
∏N
i=1 λi

)c
δ

?
= gdδ



B OR-proof for re-encryption parameters

In this appendix we give the details of the proof that an element x is in the set
{−1, 0, 1}.

s, tx+1, tx−1, ex+1, ex−1
$←− Zq

dy =

{
gs if y = x

gty (ch−y)
−ey if y 6= x

P d0,d1,d−1−−−−−−→ V

k
$←− Zq

P k←− V
ex = k − ex+1 − ex−1
tx = s+ rex

P e0,e1,e−1−−−−−−→
t0,t1,t−1

V

k
?
= e0 + e1 + e−1

∀y ∈ {−1, 0, 1}

gty
?
= (ch−y)eydy

Notice that given that the values of x could be−1, 0 or 1, variables tx−1, tx, tx+1

correspond to t−1, t0, t1.
The completeness of the protocol is easy to demonstrate considering that if

both the prover and the verifier follows the protocol, the equation k
?
= e0 + e1 +

e−1 holds since ex = k−ex+1−ex−1. Regarding the second verification equation,
we will distinguish between the situation where y = x:

gs+rex = gs+rex

gs+rex = (grhxh−x)exgs

gtx = (ch−x)exdx

and where y ∈ {x− 1, x+ 1}:

gty = gty

gty = (ch−y)eygty
(
ch−y

)−ey
gty = (ch−y)eydy



In order to prove the consistency, we define two accepted transcriptions of the
protocol:

(d0, d1, d−1, k, t0, t1, t−1, e0, e1, e−1)(
d0, d1, d−1, k

′, t′0, t
′
1, t
′
−1, e

′
0, e
′
1, e
′
−1
)

k 6= k′

Since k 6= k′, one of the values ey must be different from e′y.

e−1 + e0 + e1 = k 6= k′ = e′−1 + e′0 + e′1

=⇒ ∃y ∈ {−1, 0, 1} st ey 6= e′y

=⇒ (ey − e′y) 6= 0 ∈ Zq

On the other hand, given that both transcriptions are accepted:

gty = (ch−y)eydy

gt
′
y = (ch−y)e

′
ydy

gty−t
′
y = (ch−y)ey−e

′
y

g(ty−t
′
y)/(ey−e

′
y)hy = c

We can conclude that
(
(ty − t′y)/(ey − e′y), y

)
would be an opening for the com-

mitment c to a value y ∈ {−1, 0, 1}.
Finally, the protocol is zero knowledge since it is possible to construct a sim-

ulator that generates accepted transcriptions indistinguishable from real tran-
scriptions between a honest prover and verifier.

t−1, t0, t1, e−1, e0, e1
$←− Zq

k = e−1 + e0 + e1

d−1 = gt−1(ch)−e−1

d0 = gt0c−e0

d1 = gt1(c/h)−e1

(d0, d1, d−1, k, t0, t1, t−1, e0, e1, e−1) is a valid transcription



C Full protocol and its properties

The mix node output is defined by the following equation:(
U′′ V′′

)
= M

(
U V

)
+ R′

(
AT BT

)
+
(
E′1 ,E

′
2

)
where matrices M,R′,E′1,E

′
2 are selected by the mix node and kept secret and(

U′′ V′′
)
,
(
U V

)
,
(
A B

)
are public values since they are the output and the in-

put of the mix node, and the public key of the encryption scheme, respectively.
The full protocol run by each node consists of committing the secret matrices,
demonstrating that the committed matrix M is a permutation matrix (see Ap-
pendix A), that the committed re-encryption parameters R′,E′1,E

′
2 are small

(see Appendix B) and finally on verifying that the committed values have been
used to perform the mixing (see Section 3.4). Briefly, the proof computed by the
mix node can be expressed as:

Σ-proof


π

r′(1), . . . , r′(N)

e
′(1)
1 , . . . , e

′(N)
1

e
′(1)
2 , . . . , e

′(N)
2

∣∣∣∣∣∣∣∣∣∣∣∣∣

((
u′′(1),v′′(1)

)
, . . . ,

(
u′′(N),v′′(N)

))T
=

Re-encrypt
((
uπ(1),vπ(1)

)
, r′(1), e

′(1)
1 , e

′(1)
2

)T
. . .

Re-encrypt
((
uπ(N),vπ(N)

)
, r′(N), e

′(N)
1 , e

′(N)
2

)T



Recall that the commitments are calculated in the following way:

Com(M,αm) = (cm1 , . . . , cmN
)

Com(R′,α′
r) = (cr′1 , . . . , cr′n)

Com(E′1,αe′1) = (ce′1,1 , . . . , ce′1,n)

Com(E′2,αe′2) = (ce′2,1 , . . . , ce′2,n)

where each element of each vector is defined as the committment to a matrix
column j :

cmj
= Com(mj, αmj ) = gαmj

N∏
i=1

g
mi,j
i ∀j ∈ [1, . . . , N ]

cr′j = Com(r′j, αr′j ) = g
αr′
j

N∏
i=1

g
r
′(i)
j

i ∀j ∈ [1, . . . , n]

ce′1,j = Com(e′1,j, αe′1,j ) = g
αe′

1,j

N∏
i=1

g
e
′(i)
1,j

i ∀j ∈ [1, . . . , n]

ce′2,j = Com(e′2,j, αe′2,j ) = g
αe′

2,j

N∏
i=1

g
e
′(i)
2,j

i ∀j ∈ [1, . . . , n]



Moreover, in order to prove that the re-encryption parameters are small they
are represented using their bit decomposition:

r
′(1)
1

r
′(1)
2
...

r
′(1)
n

r
′(2)
1
...

r
′(N)
n


nN×1

=



r
′(1)
1,0 r

′(1)
1,1 · · · r

′(1)
1,k−1

r
′(1)
2,0 r

′(1)
2,1 · · · r

′(1)
2,k−1

...
...

. . .
...

r
′(1)
n,0 r

′(1)
n,1 · · · r

′(1)
n,k−1

r
′(2)
1,0 r

′(2)
1,1 · · · r

′(2)
1,k−1

...
...

. . .
...

r
′(N)
n,0 r

′(N)
n,1 · · · r

′(N)
n,k−1


nN×k


20

21

...
2k−1


k×1



e
′(1)
1,1
...

e
′(1)
1,n

e
′(1)
2,1
...

e
′(1)
2,n

e
′(2)
1,1
...

e
′(N)
2,n


2nN×1

=



e
′(1)
1,1,0 e

′(1)
1,1,1 · · · e

′(1)
1,1,k−1

...
...

. . .
...

e
′(1)
1,n,0 e

′(1)
1,n,1 · · · e

′(1)
1,n,k−1

e
′(1)
2,1,0 e

′(1)
2,1,1 · · · e

′(1)
2,1,k−1

...
...

. . .
...

e
′(1)
2,n,0 e

′(1)
2,n,1 · · · e

′(1)
2,n,k−1

e
′(2)
1,1,0 e

′(2)
1,1,1 · · · e

′(2)
1,1,k−1

...
...

. . .
...

e
′(N)
2,n,0 e

′(N)
2,n,1 · · · e

′(N)
2,n,k−1


2nN×k


20

21

...
2k−1


k×1

The commitment to each element of the decomposition can be expressed as:

c
r
′(i)
j,l

= g
α
r
′(i)
j,l g

r
′(i)
j,l

i

c
e
′(i)
1,j,l

= g
α
e
′(i)
1,j,l g

e
′(i)
1,j,l

i

c
e
′(i)
2,j,l

= g
α
e
′(i)
2,j,l g

e
′(i)
2,j,l

i

Using that r
′(i)
j =

∑k−1
l=0 r

′(i)
j,l 2l, e

′(i)
1,j =

∑k−1
l=0 e

′(i)
1,j,l2

l and e
′(i)
2,j =

∑k−1
l=0 e

′(i)
2,j,l2

l,
is easy to compute the commitment to cr′j , ce′1,j , ce′2,j using the commitments
mentioned above.

The full protocol is detailed in the following diagram. We discuss later the
completeness, soundness and zero knowledge properties of the protocol.



Protocol 1.1: Mix-net protocol

P
(
u(i),v(i),u′′(i),v′′(i);π, r′(i), e

′(i)
1 , e

′(i)
2

)
V
(
u(i),v(i),u′′(i),v′′(i)

)
∀i ∈ [1, . . . , N ] , ∀j ∈ [1, . . . , n] ,
∀l ∈ [0, . . . , k − 1]

α
r
′(i)
j,l

, α
e
′(i)
1,j,l

, α
e
′(i)
2,j,l

$←− Zq

c
r
′(i)
j,l

= Comg,gi

(
r
′(i)
j,l , αr

′(i)
j,l

)
c
e
′(i)
1,j,l

= Comg,gi

(
e
′(i)
1,j,l, αe

′(i)
1,j,l

)
c
e
′(i)
2,j,l

= Comg,gi

(
e
′(i)
2,j,l, αe

′(i)
2,j,l

)
c
r
′(i)
j,l

, c
e
′(i)
1,j,l

, c
e
′(i)
2,j,l−−−−−−−−−−−→

Σ-proof

[
r
′(i)
j,l

∣∣∣∣ (cr′(i)
j,l

= Com
(
r
′(i)
j,l

))
∧
(
r
′(i)
j,l = −1 ∨ r′(i)j,l = 0 ∨ r′(i)j,l = 1

)]
Σ-proof

[
e
′(i)
1,j,l

∣∣∣∣ (ce′(i)
1,j,l

= Com
(
e
′(i)
1,j,l

))
∧
(
e
′(i)
1,j,l = −1 ∨ e′(i)1,j,l = 0 ∨ e′(i)1,j,l = 1

)]
Σ-proof

[
e
′(i)
2,j,l

∣∣∣∣ (ce′(i)
2,j,l

= Com
(
e
′(i)
2,j,l

))
∧
(
e
′(i)
2,j,l = −1 ∨ e′(i)2,j,l = 0 ∨ e′(i)2,j,l = 1

)]
αM

$←− ZN
q

cM = Com(M ,αM )
cM−−−−−−−−−−−→

λ
$←− ZN

q

λ←−−−−−−−−−−−
Σ-proof

[
M
∣∣∣ (cM = Com(M)) ∧ (M1 = 1) ∧

(∏N
i=1 λi =

∏N
i=1 λ

′
i

∣∣∣λ′ = Mλ
) ]

α
r
′(i)
j

=
∑k−1

l=0 2lα
r
′(i)
j,l

, αr′j
=
∑N

i=1 αr
′(i)
j

, αr′ =
(
αr′1

, . . . , αr′n

)
α
e
′(i)
1,j

=
∑k−1

l=0 2lα
e
′(i)
1,j,l

, αe′1,j
=
∑N

i=1 αe
′(i)
1,j

α
e
′(i)
2,j

=
∑k−1

l=0 2lα
e
′(i)
2,j,l

, αe′2,j
=
∑N

i=1 αe
′(i)
2,j

α1,j =
(
αe′1,j

+ 〈αM ,U j〉+ 〈αr′ , (aj,1, . . . , aj,n)〉
)

α2,j =
(
αe′2,j

+ 〈αM ,V j〉+ 〈αr′ , (bj,1, . . . , bj,n)〉
)

α1,j , α2,j−−−−−−−−−−−→
c
r
′(i)
j

=
∏k−1

l=0 c
2l

r
′(i)
j,l

, cr′j =
∏N

i=1 cr′(i)j

c
e
′(i)
1,j

=
∏k−1

l=0 c
2l

e
′(i)
1,j,l

, ce′1,j =
∏N

i=1 ce′(i)1,j

c
e
′(i)
2,j

=
∏k−1

l=0 c
2l

e
′(i)
2,j,l

, ce′2,j =
∏N

i=1 ce′(i)2,j

ce′
1,k

(∏N
j=1 c

u
(j)
k

mj

)(∏n
j=1 c

ak,j
r′j

)
?
= Com (U′′k, α1,k)

ce′
2,k

(∏N
j=1 c

v
(j)
k

mj

)(∏n
j=1 c

bk,j
r′j

)
?
= Com (V′′k, α2,k)



We restate here the full protocol with its properties for completeness.

C.1 Completeness

Completeness follows from the homomorphic property of the Pedersen commit-
ment and the completeness of the Σ-protocols for the small elements and the
permutation matrix. The prover computes α1,j and α2,j for all j ∈ [1, . . . , n]
using the random elements from the initial commitments. Then, if the prover
has been honest, the verifier builds the commitments to the output using the
published commitments and applying equation 5, and check that α1,j and α2,j

are valid openings for the output commitments.

C.2 Soundness

Soundness follows from the homomorphic and binding properties of the Pedersen
commitment and from the soundness of the Σ-protocols for the small elements
and the permutation matrix. The prover has published some commitments and
proved knowledge of valid openings that satisfy the required conditions. When
combined into a commitment to the output he shows a valid opening. Given that
the commitment scheme is binding this implies that the output of the mix node
is really the desired permutation and rerandomization of the input.

This property is the only one that wouldn’t hold in a quantum scenario, as the
binding property of the Pedersen commitment would be broken. Nevertheless,
until the first practical quantum computer is build soundness would be achieved
by our protocol.

C.3 Zero Knowledge

We can build a simulator that produces transcriptions indistinguishable from
the real interactions between an honest prover and a verifier.

Given λ and the responses of the Σ-protocols we choose π and r
′(i)
j,l , e

′(i)
1,j,l, e

′(i)
2,j,l

uniformly at random except for e
′(1)
1,j,0, e

′(1)
2,j,0. We compute its commitments, pub-

lish them and answer the challenges from the Σ-protocols as usual. Then we
choose α1,k and α2,k uniformly at random and we define:

ĉ
e
′(1)
1,j,0

=
Com (U′′k, α1,k)(∏k−1

l=1 c
2l

e
′(1)
1,j,l

)(∏N
i=2 ce′(i)1,j

)(∏N
j=1 c

u
(j)
k

mj

)(∏n
j=1 c

ak,j
r′j

)
ĉ
e
′(1)
2,j,0

=
Com (V′′k, α2,k)(∏k−1

l=1 c
2l

e
′(1)
2,j,l

)(∏N
i=2 ce′(i)2,j

)(∏N
j=1 c

v
(j)
k

mj

)(∏n
j=1 c

bk,j
r′j

)
The only thing that is left to prove is that ĉ

e
′(i)
1,j,0

and ĉ
e
′(i)
2,j,0

are commitments

to −1, 0 or 1. As we have the response from the verifier we can simulate these



proofs and publish its outputs. By construction this simulation will be a valid
conversation, equally distributed as any honest conversation since α1,k and α2,k

follow the same uniformly random distribution as if they were computed using
linear combinations of other uniformly random elements. Fake commitments
ĉ
e
′(1)
1,j,0

and ĉ
e
′(1)
2,j,0

follow again a uniformly random distribution as they will do if

they were honestly obtained.
The same applies to the outputs of the Σ-protocols, both the one proving

that an element is −1, 0, 1 and Wikström’s protocol for the characterization of
a committed permutation matrix.

The zero-knowledge property will not be compromised with quantum com-
puters as the distribution of the simulated proof is not only computationally
indistinguishable but completely identical to the honest distribution, thanks to
the perfectly hiding property of the Pedersen commitments.


