
On Iterative Collision Search for LPN and Subset Sum

Srinivas Devadas Ling Ren Hanshen Xiao

Massachusetts Institute of Technology, Cambridge, MA
{devadas, renling, hsxiao}@mit.edu

Abstract. Iterative collision search procedures play a key role in developing combinatorial algorithms
for the subset sum and learning parity with noise (LPN) problems. In both scenarios, the single-list
pair-wise iterative collision search finds the most solutions and offers the best efficiency. However, due
to its complex probabilistic structure, no rigorous analysis for it appears to be available to the best
of our knowledge. As a result, theoretical works often resort to overly constrained and sub-optimal
iterative collision search variants in exchange for analytic simplicity. In this paper, we present rigorous
analysis for the single-list pair-wise iterative collision search method and its applications in subset sum
and LPN. In the subset sum direction, it outperforms Wagner’s algorithm for attacking knapsack-based
cryptosystems. In the LPN literature, the single-list pair-wise iterative collision search method is known
as the LF2 heuristic. Besides LF2, we also present rigorous analysis of other LPN solving heuristics
and show that they work well when combined with LF2. Putting it together, we significantly narrow
the gap between theoretical and heuristic algorithms for LPN.

1 Introduction

The Learning Parity with Noise (LPN) problem is a fundamental problem in coding theory, cryp-
tography and machine learning. In cryptography, LPN attracts most interest from lightweight
constructions, i.e., those that run efficiently on constrained devices such as RFID tags and wireless
sensors. Many lightweight constructions [11,13,9,15] build on the hardness of the LPN due to the
simplicity of the operations it entails. Studying the best algorithms for solving LPN is vital to
determine suitable parameters for these constructions and subsequent improvements.

For a uniformly selected secret s ∈ Zn2 , the LPN problem is to find s given input samples As+e,
where A is uniformly random and each component of e is a Bernoulli noise. For ease of exposition,
we follow prior work and think of LPN algorithms as consisting of two phases: a reduction phase
and a solving phase. The classical algorithm for LPN is the BKW algorithm [6]. At its core is an
iterative collision search procedure for the reduction phase. To start, partition the samples into
2

n
k+1 groups such that the first n

k+1 bits are identical. Here, k is a parameter of the algorithm and
is set to Θ(log n). Then, select one sample in each group and add it to the other ones in the group
to cancel out the first n

k+1 bits. Each subsequent iterative step follows the same procedure to cancel
out the next n

k+1 bits. After a few iterations, the samples only depend on a single bit in the secret.
These samples are the outputs of the reduction phase and we call them reduced samples. At this
point, the algorithm enters the solving phase to guess this secret bit and tests it on the reduced
samples. The algorithm then moves on to guess the next secret bit, repeating the reduction phase
and the solving phase therein.

The BKW algorithm needs a sub-exponential number of input samples. Lyubashevsky [19]
and Kirchner [16] modified the BKW algorithm to work with a polynomial number of samples.
Outside the “limited-sample” direction, however, theoretical advances for LPN algorithms have
been stagnant for more than a decade. On the other hand, heuristic and practical methods for

LPN continue to develop at a fast pace. Levieil and Fouque [17] proposed two important heuristic
methods. The first one, LF1, improves the solving phase by guessing multiple secret bits at a time.
It is augmented with the Fast Walsh-Hadamard transform to further reduce runtime. The second
method, LF2, is a more efficient iterative collision search procedure in the reduction phase. The
goal is to generate more reduced samples for the solving phase. After partitioning input samples
into groups sharing a chunk of bits, instead of adding one sample to the others in the group as in
BKW, LF2 computes the sums of every pair in the group. Recent works [17,10,27,7,8] have applied
covering codes, partial secret guessing and linear programming to improve the solving phase.

The LF1 and LF2 heuristics are two most important heuristic techniques in the LPN literature,
and have been adopted by every subsequent work we know of [10,27,7,8]. The efficiency gain,
however, presents a challenge for analysis since the reduced samples now depend on each other in
a complex manner. (LF1 was initially presented as a rigorous algorithm [17], but Zhang et al. [27]
pointed out that the original proof incorrectly assumed independence between reduced samples.
Hence, LF1 should be treated as a heuristic prior to our work.) A main contribution of this paper
is to provide rigorous analysis for the LF1 and LF2 methods and establish them as rigorous LPN
algorithms. In particular, we compute the number of solutions (both expectation and distribution)
produced by LF2 in the reduction phase. We also show that the correlation between LF2 reduced
samples has little impact on the success rate of the LPN solving phase for both majority voting
and LF1 Walsh-Hadamard transform. Our results significantly narrow the gap between theoretical
and heuristic solutions to the LPN problem.

LPN has a close connection to the subset sum problem. As Wagner suggests [26], any im-
provement to the subset sum problem will also result in an improvement to LPN. In this paper,
we consider the random fixed-weighted XOR variant of subset sum. Given a list L of elements
sampled uniformly randomly from Zn2 , find 2k elements from L such that they XOR to 0. Most
works [21,2,4] treat Wagner’s algorithm [26] as the default and classical algorithm for this problem.
However, Wagner’s algorithm was not tailored for fixed weighted subset sum. Instead, it was pre-
sented for the generalized birthday problem [26]. In the generalized birthday problem, there are 2k

separate lists and the goal is to find one element from each list such that they XOR to 0. In order
to apply Wagner’s algorithm, prior works have to partition the single list L into 2k smaller lists.
Wagner’s algorithm then places the 2k lists as the leaves of a depth-k binary tree. In step i, every
pair of sibling lists are merged into a new list at their parent node such that the i-th chunk of n

k+1
bits are canceled out. To elaborate, the merge operation searches for two elements, one from each
input list, such that their i-th chunk of n

k+1 bits XOR to 0. After k steps, the elements in the last
list at the root of the tree are solutions to the problem.

Clearly, the partition into 2k separate lists is an artifact in order to invoke Wagner’s algorithm. It
not only increases the time complexity but also imposes an unnecessary constraint that eliminates
many valid candidate solutions. It is much more natural to perform the same merge operation
within the original single list L: at step i, search for pairs of distinct elements in L that cancel
out the i-th chunk of n

k+1 bits, and add their XOR results to the new list for the next step. This
single-list pair-wise iterative collision search very much resembles the LF2 method (there are also
important differences which we describe in Section 3.2). Also resembling LF2, it creates difficulties
for the analysis. In Wagner’s algorithm, in every merge operation, the two input elements (from
different lists) are independent of each other. In contrast, the single-list iterative collision search
introduces dependence across steps, making it hard to reason about the expected list size after
each step or the number of solutions produced in the end. With a rigorous analysis, we establish

2

the single-list pair-wise iterative collision search as an improved algorithm over Wagner for random
fixed weighted subset sum. Cryptographic constructions based on it need to adjust their parameter
choices accordingly [21,2].

The rest of the paper is organized as follows. We start with the fixed weighted subset sum
problem since the LPN problem additionally has to deal with the solving phase. Section 2 presents
our analysis for the single-list iterative collision search algorithm for the fixed weighted subset sum
problem. Section 3 presents our analysis for the LF1 and LF2 methods for LPN. We conclude in
Section 4.

2 Random Fixed Weighted Subset Sum

2.1 Background

Definition 1 (subset sum). Given a list L = {a1, a2, ..., aN} of N numbers from an algebraic
structure and an operation ⊕, find x ∈ {0, 1}N such that 〈x, S〉 = x1a1 ⊕ x2a2 ⊕ ... ⊕ xNaN = t
where t is a pre-defined target.

The subset sum problem is one of Karp’s 21 NP-complete problems [14]. The classical subset sum
problem considers integers and integer addition. In the last three decades, there have also been a few
important variants of the subset sum problem that attracted interest in cryptography [18,20,12].

In this paper, we focus on the random fixed weighted variant of the problem. For concreteness,
we start with the XOR case and consider a larger modulus q later. Specifically, a1, a2, · · · , aN are
n-bit binary string drawn independently and uniformly randomly from Zn2 . The operator ⊕ is bit-
wise XOR. The solution vector x must have a Hamming weight of 2k. We also focus on the special
case where the target is t = 0.

Wagner’s Generalized Birthday Problem and Algorithm. Wagner introduced the general-
ized birthday problem and an algorithm for it [26]. The generalized birthday problem bears some
similarities to the random fixed-weighted subset sum problem, but is also different in a fundamen-
tal way. Instead of finding 2k elements from a single list, the problem takes 2k lists and finds one
element from each list.

Definition 2 (generalized birthday problem). Given 2k lists L1, L2, · · · , L2k each containing
N elements in Zn2 , find one element from each list a1 ∈ L1, a2 ∈ L2, · · · , a2k ∈ L2k such that
a1 ⊕ a2 ⊕ · · · ⊕ a2k = 0.

Wagner’s algorithm performs iterative collision search in a tree fashion in k steps. 1 Write the

2k input lists as L
(0)
1 , L

(0)
2 , ..., L

(0)

2k
and place them at the leaves of a binary tree of depth k. In the

j-th step (1 ≤ j < k), for each pair of lists L
(j−1)
2i and L

(j−1)
2i+1 , find two elements l ∈ L(j−1)

2i and

l′ ∈ L(j−1)
2i+1 such that the j-th chunk of n

k+1 bits cancel out (i.e., XOR to 0), and then add l ⊕ l′ to

a new list L
(j)
i . In the last step j = k, there are only two lists remaining, and the algorithm looks

for two elements, one from each list, such that they cancel out the last 2n
k+1 bits and XOR to 0n.

Figure 1 gives an illustration of this algorithm. There have been several improvements to Wagner’s
algorithm [3,22,16], and they all follow the tree-based collision search framework.

1 Different from our notation, Wagner denoted the number of lists as k and the number of steps as log2 k [26].

3

Fig. 1: An illustration of Wagner’s algorithm.

Input: A single list L, also written as L(0), of size N .
1. Initially, add the index alongside each element in L(0), i.e., each element in L(0) now has the form (ai, {i}).
2. for j = 1 : k − 1 do

For each pair of elements (a, α) and (a′, α′) in L(j−1), if a⊕ a′ cancel out the j-th chunk of n
k+1

bits and

α ∩ α′ = ∅, then add (a⊕ a′, α ∪ α′) to the new list L(j).
end
3. At the last step, repeat the similar operation to find a pair of elements (a, α) and (a′, α′) such that a⊕ a′
cancel out the last 2n

k+1
bits and α ∩ α′ = ∅. Output L(k).

Algorithm 1: The single-list pair-wise iterative collision search algorithm.

To ensure at least one solution is found in expectation, the size of each input list should be at
least N ≥ 2

n
k+1 . Crucially for the analysis, in each step, a pair of elements l and l′ are independent

because they are sums of elements that come from disjoint lists. Thus, the expected list size at each

step can be easily calculated as N2 · 2−
n
k+1 ≥ N , and in the last step, N2 · 2−

2n
k+1 ≥ 1 solutions are

produced in expectation.

2.2 Single List Iterative Collision Search

While Wagner’s algorithm is clearly tailored for the generalized birthday problem, many previous
works [21,2,4,16] apply it to the random fixed-weighted subset sum problem. To do so, they have

to artificially divide the list L into 2k disjoint lists L
(0)
1 , L

(0)
2 , ..., L

(0)

2k
. As mentioned, the division

imposes the unnecessary restriction of finding one element from each list. It not only eliminates
many valid solutions but also increases space and time complexity.

It is much more natural to perform the iterative collision search directly on a single list without
division. In particular, we repeatedly merge the single list L with itself, i.e., find pairs of elements
in L that cancel out the next chunk of bits, and add their XOR results to a new list for the next
step. Algorithm 1 gives the pseudocode.

The single-list pair-wise collision search algorithm is known as the LF2 method in the LPN liter-
ature [17], which was in turn inspired by Wagner’s algorithm [26]. However, it has not gained much
attention in knapsack-based cryptosystems and cryptanalysis where it is most suitable. Recently, it
was also independently proposed, though seemingly by accident, in a memory hard proof-of-work
scheme called Equihash [5]. The Equihash paper [5] used the above Algorithm 1 to solve the random

4

fixed-weighted subset sum, but confusingly, claimed to be using Wagner’s algorithm and solving
the generalized birthday problem throughout the paper.

As we have mentioned, analyzing the single-list pair-wise collision search algorithm is much
harder than analyzing Wagner’s algorithm because, after the first step, elements in the list become
correlated. They are no longer sums of non-overlapping elements. Rather, they are now sums that
contain common addends. If the input list size at a certain step is N , the expected output list size
is no longer simply N2 · 2−

n
k+1 . Indeed, it seems difficult to derive the final expected number of

solutions by calculating the expected list size at each step. In the next subsection, we approach the
problem from a different angle. We will calculate the total number of distinct candidate solutions
and the probability that each one is an actual solution that Algorithm 1 produces.

2.3 Expected Number of Solutions

Theorem 1. Let p = 2−
n
k+1 . The expected number of solutions produced by Algorithm 1 is

E
[
|L(k)|

]
= 2

(
N

2k

)
(2k)!(p/2)2

k
.

Proof. Consider an index vector α = (i1, i2, ..., i2k), and the candidate solution it defines, aα =
{ai1 , ai2 , · · · , ai2k}. Let Yα = 1 if aα is a solution produced by Algorithm 1 and Yα = 0 otherwise.
Before we proceed, we remark that a solution to the fixed-weighted subset sum problem is not
necessarily a solution that will be found by Algorithm 1. (The other direction is true). The reason
is that Algorithm 1 can only find solutions that meet stringent conditions, i.e., those that cancel
out a chunk of bits after each step. For example, if α = (1, 2, 3, 4) and Yα = 1, it is not only required
that a1⊕ a2⊕ a3⊕ a4 = 0, but also that a1⊕ a2 and a3⊕ a4 both cancel out the first chunk of bits.
The iterative collision search framework in general only finds solutions with a specific structure
rather than all solutions.

It is also important to note that some index vectors represent the same solution and should be
counted only once. For example, if α = (1, 2, 3, 4) and Yα = 1, then for α′ = (1, 2, 4, 3), (2, 1, 3, 4),
(2, 1, 4, 3), (3, 4, 1, 2), (3, 4, 2, 1), (4, 3, 1, 2), or (4, 3, 2, 1), we have Yα′ = 1. However, these eight
vectors all represent the same single solution that will be produced by Algorithm 1. Define I to
be a maximal set of index vectors that correspond to distinct candidate solutions. To calculate
|I|, we think of the indices in a vector as the leaves in a binary tree of depth k. (This binary
tree is just a tool for analyzing Algorithm 1 and should not be confused with Wagner’s tree-based
iterative collision search in Figure 1.) In the jth step, swapping the two siblings would yield the

same candidate solution. Thus, for each subset of 2k elements, there are (2k)!∏k
j=1 2

k−i = (2k)!

22k−1
distinct

candidate solutions out of the (2k)! total possible index vectors. Therefore, |I| =
(
N
2k

) (2k)!

22k−1
is the

number of distinct candidate solutions that Algorithm 1 can possibly produce. The expected number
of solutions produced by Algorithm 1 can then be calculated as E

[
|L(k)|

]
= E

[∑
α∈I Yα

]
.

After the jth step, the list L(j) contains (XOR) sums of 2j addends. We again think of the 2j

addends as leaves of a binary tree of depth j. To appear in L(j), the two addends need to cancel
out a chunk of n

k+1 bits at each node in the tree. At each node, the probability is2 p = 2−
n
k+1 and

2 p = 2−
n

k+1 is used throughout the paper.

5

Table 1: The expected number of solutions found through experiments and Theorem 1.
n 16 32 48 56 96 128 160 192
k 1 3 5 6 5 7 9 11

Experiments 2.00 1.90 0.76 0.03 2.00 1.8 0.8 0.0
Theorem 1 1.9961 1.8931 0.7437 0.0328 1.9924 1.8797 0.7362 2.1× 10−7

there are 2j − 1 nodes in a tree of depth j. So the probability that a sum of certain 2j addends
appear in L(j) is p2

j−1. The expected number of elements in L(j) is hence

E
[
|L(j)|

]
= |I| · p2j−1 =

(
N

2j

)
(2j)!

22j−1
· p2j−1 =

(
N

2j

)
(2j)!(p/2)2

j−1. (1)

The last step needs to cancel out 2n
k+1 bits which happens with probability p2. Thus, we have

Pr(Yα = 1) = p2
k
, and

E
[
|L(k)|

]
= |I| · p2k =

(
N

2k

)
(2k)!

22k−1
· p2k = 2

(
N

2k

)
(2k)!(p/2)2

k

Remark. Although we presented our analysis in the XOR case for simplicity, it can be easily
modified to work with a larger modulus q, i.e., when the operator ⊕ is modular addition over Znq .

2.4 Experimental Verification

In this subsection, we provide experimental results that corroborate the expected number of so-
lutions we derive in Theorem 1. Another purpose of this section is to correct a mistake in the
Equihash scheme [5]. Specifically, Equihash adopts Algorithm 1 with a list size N = 2

n
k+1

+1. It

then claimed the expected number of solutions is
(
N
2

)
· 2−

2n
k+1 ≈ 2 citing Wagner’s analysis. As we

mentioned, Wagner’s analysis requires independence and does not hold in the single-list case.

Table 1 lists the expected number of solutions found through experiments as well as the values
given by Theorem 1 under different choices of n and k. Our theorem accurately predicts the number
of solutions. (Our theorem is precise. The difference is due to errors in the experiments.) Equihash
claims 2 solutions in expectation under all parameter settings, which as we see can be orders of
magnitude off. We note that the latter four (n, k) pairs are among the recommended parameter
settings from the Equihash paper [5]. For readers who are interested, this incorrect estimation will
make the difficulty of the proof-of-work scheme proportionally harder than intended. For example,
if a protocol designer adopts Equihash with (n, k) = (192, 11), the expected time to find a valid
proof-of-work will be 107× longer than intended!

2.5 Distribution of Solutions

Knowing the expected number of solutions is in most cases sufficient to parameterize an algorithm.
For example, to attack knapsack-based cryptosystems, one may parameterize Algorithm 1 to pro-
duce a small constant number of solutions in expectation, e.g., 1. But for a rigorous analysis, we
would like to rule out a possible bad corner case. With the expectation being 1, it is possible that
Algorithm 1 generates 230 solutions with a 2−30 probability, while producing no solution most of

6

the time. In this subsection, we study the distribution of the number of solutions produced by
Algorithm 1. Aside from ruling out that bad corner case, a more precise distribution will be useful
in our analysis for LPN and possibly other applications.

We will show that the distribution of solutions is close to a Poisson distribution. We will apply
the Chen-Stein method of the second moment analysis as the main tool to bound the difference.

Lemma 1 (Chen-Stein [1]). Let Π be a random variable that follows a Poisson distribution with
mean λ = E

[
|L(k)|

]
. Let Jα be the neighborhood of dependence for Yα (which means any Yβ 6∈ Jα

is independent of Yα) and J∗α = Jα \ {α} where \ is set subtraction. Then,

∞∑
j=0

∣∣∣P (|L(k)| = j
)
− P (Π = j)

∣∣∣
≤4(1− e−λ)

λ

∑
α∈I

∑
β∈Jα

E [Yα)E(Yβ] +
∑
α∈I

∑
β∈J∗α

E [YαYβ]

 .

The rest of this subsection bounds the two double sums separately. The first sum is∑
α∈I

∑
β∈Jα

E [Yα] E [Yβ] = E
[
|L(k)|

] ∑
β∈Jα

E(Yβ)

= E
[
|L(k)|

]
p2
k (2k)!

22k−1

2k−1∑
i=0

(
2k

i

)(
N − 2k

i

)
≈ E

[
|L(k)|

]
· p.

In most applications (e.g., attack hash functions), finding a few solutions is sufficient, so E
[
|L(k)|

]
will be much less than 1

p , and this first sum can be ignored.
The dominant part and also the difficulty of this analysis is the sum of the correlation terms

E(YαYβ). To start, we have

E [YαYβ] = E [E [YαYβ|Yβ]] = Pr(Yα = 1, Yβ = 1)

= Pr(Yα = 1) Pr(Yβ = 1|Yα = 1).

The last term above depends on the overlap pattern between two index vectors (and their corre-
sponding candidate solutions). For convenience, we denote a candidate solution by an index vector,
e.g., α = (1, 2, 3, 4) refers to the candidate solution {a1, a2, a3, a4}. We again treat their elements
as leaves of a binary tree. For each node in the tree for β, we color it black if its XOR output is
independent of α. At the leaf level, any element in β that does not appear in α is independent of α
and is colored black. For each level above, a node is colored black if at least one of its two children
is black. This is because XORing with an independent and uniformly random addend yields an
independent and uniformly random output.

As black nodes in β’s tree are independent of α, we have P (Yβ = 1|Yα = 1) ≤ p1+B where B is
the number of black nodes in the tree excluding the leaf level. This is because the candidate solution
β needs to cancel out a chunk of bits at each node, and what happens with β at the black nodes are
independent of α. The extra p is because the last step (the tree root) cancels out 2n

k+1 bits which

happens with p2. p1+B reaches its largest value when there are fewest black nodes in the tree. For

7

Fig. 2: Fewest black nodes occur when black nodes at the leaf level are clustered in the smallest
subtree possible.

a certain number of black nodes at the leaves (height 0), the number of black nodes in the entire
tree is the fewest if all the black nodes at height 0 are contained in the smallest subtree possible.
Figure 2 gives an illustration of this configuration with the minimal number of black nodes. In this
case, an upper bound on the number of black nodes in the tree can be derived as follows:

γ0 = |β \ α|
γj = dγj−1/2e j > 0

γ(m) =
∑k

j=1 γj where m = γ0

(2)

Then, γ (|β \ α|) is an upper bound on B, and we have

E [YαYβ] ≤ Pr(Yα = 1) Pr(Yβ = 1|Yα = 1) ≤ p2k+1+γ(|β\α|) (3)

Next, to bound
∑

α∈I
∑

β∈J∗α E [YαYβ], we partition J∗α, into disjoint parts U1, U2, · · · , U2k ac-
cording to the number of elements that differ from α. In other words, if β ∈ Ui, then |β \α| = i. For
example, for a candidate solution α = (1, 2, 3, 4) (implying k = 2), U1 contains (1, 2, 3, 5), (1, 6, 2, 3),
etc. By a simple counting argument,

|Ui| =
(

2k

2k − i

)(
N − 2k

i

)
(2k)!

22k−1
(4)

For β ∈ Um, we have derived an upper bound that E [YαYβ] ≤ p2
k+1+γ(m) in Equation 3. In

Lemma 2, we would like to bound the number of candidate solutions in Um that can reach this
upper bound. To do so, we introduce some additional notations. For an integer 0 < m < 2k, write
m as a sum of a powers of 2 in ascending order li, i.e., m =

∑ζ
i=1 2li where 0 ≤ l1 < l2 < · · · lζ < k.

Lemma 2. Let Ûm ⊂ Um be the set of candidate solutions that achieve the maximum correlation

p2
k+1+γ(m). |Ûm| ≤

(
N−2k
m

)
· m!
2m−ζ

· 2k

2l1
.

Proof. As mentioned, the maximum correlation appears when black nodes at the leaf label are
closest to each other. We calculate how many such max-correlation configurations exist. First,
the 2lζ leaves of a certain subtree of depth lζ should be taken up by black nodes. There are 2k

2
lζ

subtrees of depth lζ in total. After choosing one subtree of depth lζ , all the remaining black nodes
should appear in the sibling subtree of depth lζ . Similarly, within that sibling subtree of depth lζ ,
a certain subtree of depth lζ−1 should be taken by black nodes, giving 2lζ−lζ−1 possible ways. We

8

then repeat the above argument on the next subtree of depth lζ−2 until we place all the m black
nodes. Therefore, the total number of the candidate solutions in Um that achieve the maximum
correlation is at most

|Ûm| ≤
(
N − 2k

m

)
· m!∏ζ

i=1 22
li−1
· 2k

2lζ
· 2lζ

2lζ−1
· ... · 2l2

2l1
=

(
N − 2k

m

)
· m!

2m−ζ
· 2k

2l1

We can now finally bound the correlation sum in Lemma 1. While ∀β ∈ Ûm achieves the
maximum correlation by definition, ∀β 6∈ Ûm will have a correlation that is at most p times the
maximum, because its corresponding binary tree has at least one more black node. Therefore,∑

α∈I

∑
β∈J∗α

E [YαYβ] ≤ |I| · Pr(Yα = 1)
∑
β∈J∗α

Pr(Yβ = 1|Yα = 1)

≤ E
[
|L(k)|

]
·
2k−1∑
i=0

[
|Ûi|+ p

(
|Ui| − |Ûi|

)]
p2
k+1+γ(i)

where E
[
|L(k)|

]
is given in Theorem 1, |Ûi| is given in Lemma 2, |Ui| is given in Equation (4),

p = 2−
n
k+1 , and γ(i) is defined in Equation (2).

Example numerical calculation. Suppose k = 2. For brevity, we temporarily write Pr(Yβ =
1|Yα = 1) as Pβα for short. We have

– |U0| = 4!
23

= 3, and ∀β ∈ U0, Pβα ≤ p;
– |U1| = 3 ·

(
N−4
1

)
·
(
4
1

)
, |Û1| = 4(N − 4);

– |U2| = 3 ·
(
N−4
2

)
·
(
4
2

)
, |Û2| = 2

(
N−4
2

)
; and ∀β ∈ Û1 ∪ U2, Pβα ≤ p3.

– |U3| = |Û3| = 3 ·
(
N−4
3

)
·
(
4
3

)
, and ∀β ∈ U3, Pβα ≤ p4.

Denote the right hand side in Lemma 1 as ∆. Plugging in a few example values, we have

– For n = 30 and N = 2× 2
n
k+1 ,

∑
β∈J∗α Pβα < 0.021 and ∆ < 0.037;

– For n = 100 and N = 2 · 2
n
k+1 ,

∑
β∈J∗α Pβα < 2.033 · 10−9 and ∆ < 3.511 · 10−9;

– For a larger list size N = 10 ·2
n
k+1 with n = 100,

∑
β∈J∗α Pβα < 1.942 ·10−7 and ∆ < 3.790 ·10−9;

For a few more examples,

– For k = 3, n = 100, and N = 4× 2
n
k+1 , ∆ < 2.1× 10−3;

– For k = 3, n = 120, and N = 5× 2
n
k+1 , ∆ < 3.1× 10−4;

– For k = 3, n = 120, and N = 10× 2
n
k+1 , ∆ < 3.8× 10−2;

– For k = 4, n = 200, and N = 4× 2
n
k+1 , ∆ < 3.8× 10−5;

– For k = 4, n = 250, and N = 5× 2
n
k+1 , ∆ < 1.1× 10−6.

The above calculations show that the distribution of the number of solutions produced by Algo-
rithm 1 can be closely approximated by a Poisson distribution. The total variation distance ∆
between the two is small.

9

3 Learning Parity with Noise

3.1 Background

The Learning Parity with Noise (LPN) problem is a famous open problem that is widely conjec-
tured to be hard. It forms the foundation of several primitives in lightweight cryptography and
post-quantum cryptography. It is also a special case of the Learning With Error (LWE) problem,
which has a reduction from the Shortest Independent Vector Problem (SIVP) [25] and has enabled
numerous works in lattice-based cryptography [24,23].

Definition 3 (LPN). Find the secret bit vector s ∈ Zn2 , given samples in the form {bi = 〈ai, s〉⊕ei}
where each ai ∈ Zn2 is a random n-bit string, and each ei ∈ {0, 1} is a Bernoulli noise with parameter
0 < τ < 0.5.

Starting from the seminal work by Blum, Kalai and Wasserman [6], LPN solving algorithms
and heuristics largely follow the “reduce-and-solve” framework below.

– The reduction phase. Find a subset of samples {bi = 〈ai, s〉 ⊕ ei} such that
∑

ai is one of
the n bases of Zn2 . The most popular choice is the standard orthogonal bases, in which case the
reduction phase becomes a subset sum problem. For brevity and without loss of the generality,
we focus on the first bit of s, denoted by s1. The reduction phase looks for samples such that∑

ai = (1, 0, · · · , 0). Adding up the samples yield b̂ = s1 ⊕ ê where b̂ =
∑
bi and ê =

∑
ei. We

call these output samples of the reduction phase reduced samples.

– The solving phase. With abundant reduced samples {b̂}, solve s1.

LPN solving algorithms/heuristics differ in the detailed strategies for the reduction phase and
the solving phase. In all existing proposals we know of, the reduction phase always uses some
type of iterative collision search procedure. The reduction phase of BKW in each step adds one
sample to a set of other samples to cancel out a chunk of bits in

∑
ai, and in the end obtains one

reduced sample. BKW then repeats the collision search procedure on fresh samples to obtain more
independent reduced samples.

For the reduction phase, the two most popular techniques are simple majority voting and Fast
Walsh-Hadamard Transform. BKW uses simple majority voting: given abundant reduced samples
{b̂}, if there are more 0’s than 1’s, guess s1 = 1; otherwise, guess s1 = 0. Levieil and Fouque [17]
proposed recovering multiple secret bits at a time in the solving phase and using the Fast Walsh-
Hadamard Transform, which we explain in Section 3.4.

3.2 LPN Reduction Phase using Iterative Collision Search

The BKW algorithm only obtains one reduced sample from each run of the reduction phase in order
to ensure independence among reduced samples to apply the Chernoff bound in the solving phase.
As a result, BKW is extravagant in consuming input samples and does not mind “missing” many
candidate reduced samples. Similar to the subset sum case, the single-list pair-wise iterative collision
search, known as the LF2 method in the LPN literature, will produce far more reduced samples
given the same amount of initial samples. The LF2 method has been an important technique,
and has been adopted by every subsequent LPN solving work that we know of. But prior to our
work, LF2 remains a heuristic with no rigorous analysis available. In particular, it remains open

10

after a decade how many reduced samples LF2 produces, to what degree these reduced samples
are correlated, and to what extent the correlation affects the solving phase. We now answer these
questions with rigorous analysis.

Although the reduction phase of LPN is almost exactly the same as a subset sum problem if
we think of the vectors {ai} as the bit-strings in the list L of subset sum, several remarks should
be made regarding the collision schedule, i.e., how many bits to cancel at each step.

1. There is no agreed upon collision schedule in the literature. The original LF2 method [17] was
inspired by Wagner’s algorithm [26], which cancels out 2n

k+1 bits in the last step and n
k+1 bits in

every other step. Many subsequent works define LF2 to cancel out n
k bits in every step including

the last one. Our analysis will assume the original collision search schedule by Wagner, but can
be extended to other schedules. With Wagner’s schedule, our analysis for the number of solutions
(both expectation and distribution) in Section 2 would apply if we only output fixed weighted
reduced samples. But we note that it is OK for the LPN reduction phase to output reduced
samples with weights lower than 2k. So the total number of reduced samples will be greater
than what our analysis in Section 2 indicates. We omit the analysis of this effect because more
reduced samples improve the success rate of the solving phase.

2. The number of input samples to the reduction phase (i.e., the original list size N =
∣∣L(0)

∣∣)
greatly influences the expected number of reduced samples output by the reduction phase. If
we set N = 2× 2

n
k+1 as in Section 2.4, then the list size at each step roughly remains the same

(or slightly decreases) and the expected number of output samples is less than 2. However, in
LPN, we would like the reduction phase to produce more samples for the solving phase. An
easy way to achieve this is to increase the initial list size N to be slightly larger than 2× 2

n
k+1 .

In this case, the list size will grow after every step before the last step.
3. Another way to obtain more reduced samples is to adjust the collision search schedule to cancel

out slightly fewer than 2n
k+1 bits in the last step, and slightly more than n

k+1 bits in every other
step. The optimal collision schedule is outside the scope of this paper.

4. Bogos et al. [7] used an oversimplified combinatorial method to estimate the expected number

of reduced samples, which led to the conclusion that N = 3 × 2
n
k+1 would keep the list size

constant across steps. Our analysis shows this is not true. Plugging into Equation (1), we can

see that N = 3× 2
n
k+1 will cause the list size to grow exponentially after each step.

5. Another flaw in previous work is the LF(4) proposal by Zhang et al. [27]. It generalizes the LF2
method by with the intention to check all 4-tuple combinations instead of 2-tuple combinations.
However, the scheme presented in [27] approximates the 4-tuple collision search using a 2-tuple
collision search. This is essentially LF2 with the number of steps k doubled, and hence will
not produce the claimed number of reduced samples. On the other hand, if a scheme really
enumerates all 4-tuple combinations by brute force, the time complexity will become much
more formidable than what’s reported in [27], and it remains unclear whether the increased
number of reduced samples can make up for it.

3.3 LPN Solving Phase with Majority Voting

This subsection and the next one analyze how the correlation between reduced samples affects
the solving phase. Several previous works [10,27,7] have experimentally shown that the correlation
does not seem to cause problems in the solving phase. Our analysis will provide theoretical support
for these experimental results. We show the correlation between reduced samples produced by the

11

iterative collision search is weak and does not affect the success rate too much. This subsection
focuses on the majority voting method, while the next subsection studies the fast Walsh-Hadamard
transform method.

Recall that the majority voting method tallies the reduced samples {b̂}, and guesses s1 = 1
if there are more 1’s than 0’s, and guesses 0 otherwise. Since b̂ = s1 ⊕ ê, each ê = 1 contributes
an incorrect vote. Define Zα = Yαêα where Yα is defined in Section 2 and êα = ⊕i∈αei. Let
W =

∑
α∈I Zα. W represents the number of incorrect votes among the reduced samples. If W does

not exceed one half of the reduced samples, then the majority voting will guess s1 correctly.

If {Zα} were independent, a Chernoff bound would suffice like in BKW [6]. The main difficulty
we face is to bound Pr(W ≥ w) when {Zα} are not independent. We will show that if we calculate
this bound pretending that {Zα} are independent, the error will be very small.

Let W ′ be the sum of |I| independent Bernoulli random variables (cf. the definition of W). Each
addend Z ′ follows the same distribution as Zα, i.e., Pr(Z ′ = 1) = Pr(Zα = 1) = Pr(Yα = 1) Pr(êα =
1). We once again invoke the Chen-Stein method [1] to bound the total variation distance between
W and W ′,

∆
′

=
∞∑
l=0

|Pr(W = l)− Pr(W ′ = l)|.

We introduce an intermediate random variable Π that follows a Poisson distribution with mean
λ′ = E [W]. Using the triangle inequality, we have ∆′ ≤ ∆′1 + ∆′2 where ∆′1 and ∆′2 are the total
variation distances between W and Π, and between Π and W ′, respectively. ∆′1 can be bounded in
the same way as in Section 2.5. Recall that W =

∑
α∈I Zα, |L(k)| =

∑
α∈I Yα and Zα = Yαêα ≤ Yα.

So ∆′1 is no larger than ∆.

W ′ follows a binomial distribution, which is frequently approximated by a Poisson distribution.
Concretely, we can bound their total variation distance using the Chen-Stein method. Note that
for each addend Z ′ of W ′, the neighborhood of dependence of Z ′ is empty, so only the first double
sum in the Chen-Stein method (cf. Lemma 1) remains.

∆′2 =

∞∑
l=0

|Pr(W ′ = l)− Pr(Π = l)| ≤ 4(1− eλ′)
λ′

· |I| ·
(
Pr(Z ′ = 1)

)2
Observe that λ′ = E [W ′] = |I|·Pr(Z ′ = 1), Pr(Z ′ = 1) = Pr(Yα = 1)·Pr(êα = 1), Pr(Yα = 1) = p2

k
,

and Pr(êα = 1) = Pr(⊕i∈αei = 1) = 1−(1−2τ)2
k

2 [6]. Thus,

∆′2 ≤ 4(1− eλ′) · Pr(Z ′ = 1) ≤ 4(1− eλ′) · p2k · 1− (1− 2τ)2
k

2
< 2p2

k
.

Clearly, ∆′2 is very small compared to ∆′1, so ∆′ ≈ ∆′1 ≤ ∆.

W ′ is a sum of independent Bernoulli random variables, so the Chernoff bound can be applied to
Pr(W ′ ≥ w). Pr(W ≥ w) can then be bounded by ≤ Pr(W ′ ≥ w) +∆′. This means the correlation
between votes (i.e., reduced samples) resulting from the reduction phase lowers the success rate by
at most ∆ compared to independent votes. Section 2.5 has shown that ∆ is very small, ranging
from 0.02 to 10−9. This explains why previous works observed that majority voting using correlated
reduced samples works well in reality.

12

3.4 LPN Solving Phase with Fast Walsh-Hadamard Transform

Levieil and Fouque [17] proposed applying the Fast Wash-Hadamard Transform (FWHT) and
recovering a block of secret bits at a time. They call this method LF1. We describe the LF1 method
below.

Since LF1 tries to recover a block of n′ secret bits at a time, it needs to modify the reduction
phase to generate reduced samples that depend on n′ bits of the secret. This is a straightforward
modification that simply involves cancelling out fewer bits (n− n′ instead of n− 1). Denote these
reduced samples as b̂l = 〈âl, s〉 ⊕ êl where âl, s ∈ Zn

′
2 , i.e., we focus on the n′ secret bits we are

trying to guess.

In the solving phase, for x ∈ {0, 1}n′ define f(x) =
∑

l δ(al, x)(−1)bl where δ(al, x) = 1 if al = x
and 0 otherwise. LF1 applies FWHT to compute for each v ∈ {0, 1}n′ ,

f̂(v) =
∑
x

(−1)〈x,v〉f(x) =
∑
l

(−1)〈âl,s⊕v〉⊕êl (5)

Observe that f̂(s) =
∑

l(−1)êl . Since Pr(êl = 0) > Pr(êl = 1), f(s) should be noticeably larger
than 0. On the other hand, for s′ 6= s, e′l = 〈âl, s′ ⊕ s〉 is uniformly random, and f(s′) should be

close to 0. LF1 then picks the largest f̂(v) and guesses s = v. Thus, if there exists s′ 6= s such that
f̂(s′) ≥ f̂(s), then the LF1 method fails. For each s′, the probability that f̂(s′) ≥ f̂(s) is

ε = Pr
(
f̂(s′) ≥ f̂(s)

)
= Pr

(∑
l

e′l ≤
∑
l

êl

)
(6)

When analyzing the success rate of LF1, there are two places that prior works argue heuris-
tically [17,10,27,7,8]. One is that they assume reduced samples are independent. The other one is
that after noting LF1’s success requires ∀s′ ∈ {0, 1}n′ , f̂(s′) < f̂(s), they assume independence

between these events and approximate the success rate of LF1 as (1− ε)2n
′−1.

We now present a rigorous analysis for LF1’s success rate. Note that the second inaccuracy
above can be easily fixed by a union bound: Pr(LF1 succeeds) ≥ 1−2n

′
ε. So it remains to bound ε.

The difficulty again lies in analyzing
∑

l êl for correlated {êl}. We use similar techniques as before.
Write S =

∑
l êl =

∑
α∈I Yαêα and T =

∑
l e
′
l =

∑
α∈I Yα · 〈âα, s′ ⊕ s〉. Define S′ to be the sum of I

independent Bernoulli random variables each with mean Pr(Yαêα = 1) = 1
2 · p

2k · (1− (1− 2τ)2
k

).
Define T ′ to be the sum of I independent Bernoulli random variables each with mean Pr(e′l = 1) = 1

2 .
We again have

∑∞
l=0 |Pr(S = l) − Pr(S′ = l)| ≤ ∆′3 ≤ ∆ and

∑∞
l=0 |Pr(T = l) − Pr(T ′ = l)| ≤

∆′3 ≤ ∆. Therefore,

ε = Pr(T ≤ S) ≤ Pr(T ′ ≤ S′) + 2∆′3 ≤ Pr(T ′ ≤ S′) + 2∆.

Now T ′ and S′ are sums of independent of random variables, so Pr(T ′ ≤ S′) can be bounded
using the central limit theorem or the Hoedffing bound. We omit these details as several prior
works [27,?,8] have included such analysis. Again, this means a heuristic estimation of the success
rate by pretending that T and S are sums of independent random variables is only off by at most
2∆, which is very small. This shows the Fast Walsh-Hadamard Transform method for the solving
phase has good success rate under suitable parameters.

13

4 Conclusion

Iterative collision search is a crucial technique in solving subset sum and LPN. The single-list pair-
wise variant has so far been the most efficient variant for random fixed weighted subset sum and
LPN, but has not been rigorously analyzed prior to our work. In this paper, we presented rigorous
analysis for the single-list pair-wise iterative collision search procedure and its applications in
random fixed weighted subset sum and LPN. In the LPN context, we show that while the reduced
samples produced by this method are correlated, the correlation is weak and barely decreases the
success rate of LPN solving. Our analysis of the single-list pair-wise iterative collision search is
also applicable to LWE. It remains interesting future work to study how it interacts with other
techniques in the LWE literature.

References

1. Richard Arratia, Larry Goldstein, and Louis Gordon. Two moments suffice for poisson approximations: the
chen-stein method. The Annals of Probability, pages 9–25, 1989.

2. Daniel Augot, Matthieu Finiasz, and Nicolas Sendrier. A family of fast syndrome based cryptographic hash
functions. In International Conference on Cryptology in Malaysia, pages 64–83. Springer, 2005.

3. Daniel J Bernstein. Better price-performance ratios for generalized birthday attacks. In Workshop Record of
SHARCS, volume 7, page 160, 2007.

4. Daniel J Bernstein, Tanja Lange, Ruben Niederhagen, Christiane Peters, and Peter Schwabe. Fsbday. In Inter-
national Conference on Cryptology in India, pages 18–38. Springer, 2009.

5. Alex Biryukov and Dmitry Khovratovich. Equihash: Asymmetric proof-of-work based on the generalized birthday
problem. In NDSS, 2016.

6. Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and the statistical
query model. Journal of the ACM, 50(4):506–519, 2003.

7. Sonia Bogos, Florian Tramer, and Serge Vaudenay. On solving LPN using BKW and variants. Cryptography and
Communications, 8(3):331–369, 2016.

8. Sonia Bogos and Serge Vaudenay. Optimization of lpn solving algorithms. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 703–728. Springer, 2016.

9. Henri Gilbert, Matthew JB Robshaw, and Yannick Seurin. Hb#: Increasing the security and efficiency of hb+.
In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 361–378.
Springer, 2008.

10. Qian Guo, Thomas Johansson, and Carl Löndahl. Solving lpn using covering codes. In International Conference
on the Theory and Application of Cryptology and Information Security, pages 1–20. Springer, 2014.

11. Nicholas J Hopper and Manuel Blum. Secure human identification protocols. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 52–66. Springer, 2001.

12. Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 235–256. Springer, 2010.

13. Ari Juels and Stephen A Weis. Authenticating pervasive devices with human protocols. In Annual International
Cryptology Conference, pages 293–308. Springer, 2005.

14. Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer computations, pages
85–103. Springer, 1972.

15. Eike Kiltz, Krzysztof Pietrzak, David Cash, Abhishek Jain, and Daniele Venturi. Efficient authentication from
hard learning problems. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 7–26. Springer, 2011.

16. Paul Kirchner. Improved generalized birthday attack. Cryptology ePrint Archive, Report 2011/377, 2011.
17. Éric Levieil and Pierre-Alain Fouque. An improved lpn algorithm. In International Conference on Security and

Cryptography for Networks, pages 348–359. Springer, 2006.
18. Vadim Lyubashevsky. On random high density subset sums. In Electronic Colloquium on Computational Com-

plexity (ECCC), volume 12. Citeseer, 2005.
19. Vadim Lyubashevsky. The parity problem in the presence of noise, decoding random linear codes, and the subset

sum problem. In Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques,
pages 378–389. Springer, 2005.

14

20. Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are collision resistant. Automata,
Languages and Programming, pages 144–155, 2006.

21. Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. Swifft: A modest proposal for fft
hashing. In International Workshop on Fast Software Encryption, pages 54–72. Springer, 2008.

22. Lorenz Minder and Alistair Sinclair. The extended k-tree algorithm. In Proceedings of the Twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 586–595. SIAM, 2009.

23. Chris Peikert. A decade of lattice cryptography. Foundations and Trends in Theoretical Computer Science,
10(4):283–424, 2016.

24. Krzysztof Pietrzak. Cryptography from learning parity with noise. In International Conference on Current
Trends in Theory and Practice of Computer Science, pages 99–114. Springer, 2012.

25. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM
(JACM), 56(6):34, 2009.

26. David Wagner. A generalized birthday problem. In Annual International Cryptology Conference, pages 288–304.
Springer, 2002.

27. Bin Zhang, Lin Jiao, and Mingsheng Wang. Faster algorithms for solving lpn. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 168–195. Springer, 2016.

15

	On Iterative Collision Search for LPN and Subset Sum

