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Abstract. We present a very simple yet very powerful idea for turning any passively secure MPC
protocol into an actively secure one, at the price of reducing the threshold of tolerated corruptions.

Our compiler leads to a very efficient MPC protocols for the important case of secure evaluation of
arithmetic circuits over arbitrary rings (e.g., the natural case of Z2 )̀ for small number of parties. We
show this by giving a concrete protocol in the preprocessing model for the popular setting with three
parties and one corruption. This is the first protocol for secure computation over rings that achieves
active security with constant overhead.

1 Introduction

Secure Computation. Secure Multiparty Computaton (MPC) allows a set of participants P1, . . . , Pn with
private inputs respectively x1, . . . , xn to learn the output of some public function f evaluated on their private
inputs i.e., z = f(x1, . . . , xn) without having to reveal any other information about their inputs. Seminal
MPC results from the 80s [Yao86, GMW87, BGW88, CCD88] have shown that with MPC it is possible to
securely evaluate any boolean or arithmetic circuit with information theoretic security (under the assumption
that a strict minority of the participants are corrupt) or with computational security (when no such honest
majority can be assumed).

As is well known, the most efficient MPC protocols are only passively secure. What is perhaps less well
known is that by settling for passive security, we also get a wider range of domains over which we can do
MPC. In addition to the standard approach of evaluating boolean or arithmetic circuits over fields, we can
also efficiently perform computations over other rings. This has been demonstrated by the Sharemind suite
of protocols [BLW08], which works over the ring Z2` . Sharemind’s success in practice is probably, to a large
extent, due to the choice of the underlying ring, which closely matches the kind of ring CPUs naturally
use. Closely matching an actual CPU architecture allows easier programming of algorithms for MPC, since
programmers can reuse some of the tricks that CPUs use to do their work efficiently.

While passive security is a meaningful security notion that is sometimes sufficient, one would of course
like to have security against active attacks. However, the known techniques, such as the GMW compiler, for
achieving active security incur a significant overhead, and while more efficient approaches exist, they usually
need to assume that the computation is done over a field, and they always have an overhead that depends on
the security parameter. Typically, such protocols, like the BeDOZa or SPDZ protocols [BDOZ11, DPSZ12,
DKL+13], start with a preprocessing phase which generates the necessary correlated randomness [IKM+13]
in the form of so called multiplication triples. This is followed by an information theoretic and therefore very
fast online phase where the triples are consumed to evaluate the arithmetic circuit. To get active security
in the on-line phase, protocols employ information-theoretic MACs that allow to detect whether incorrect
information is sent. Using such MACs forces the domain of computation to be a field which excludes, of course,
the ring Z2` . The only exception is recent work subsequent to ours [CDES18]. This is not a compiler but a
specific protocol for the preprocessing model which allows MACs for the domain Z2` . This is incomparable
to our result for this setting: compared to our result, the protocol from [CDES18] tolerates larger number of
corruptions, but it introduces an overhead in storage and computational work proportional to the product
of security parameter and circuit size.



Another alternative is to use garbled circuits. However, they incur a rather large overhead when active
security is desired, and cannot be used at all if we want to do arithmetic computation directly over a large
ring. Thus, a very natural question is:

Can we go from passive to active security at a small cost and can we do so in a general way which allows
us to do computations over general rings?

Our results. In this paper we address the above question by making three main contributions:

1. A generic transformation that compiles a protocol with passive security against at least 2 corruptions
into one that is actively secure (but against a smaller number of corruptions). This works both for
the preprocessing and the standard model. The transformation preserves perfect and statistical security
security and its overhead depends only on the number of players, and not on the security parameter.
Thus, for a constant number of parties it loses only a constant factor in efficiency.

2. We present a preprocessing protocol for 3 parties. It generates multiplication triples to be used by a
particular protocol produced by our compiler. This preprocessing can generate triples over any ring Zm
and has constant computational overhead for large enough m; more precisely, if m is exponential in the
statistical security parameter. We build this preprocessing from scratch, not by using our compiler. This,
together with our compiler, gives a plug-in replacement for the Sharemind protocol as explained below.

3. A generic transformation that works for a large class of protocols including those output by our passive-to-
active compiler. It takes as input a protocol that is secure with abort and satisfies certain extra conditions,
and produces a new protocol with complete fairness [CL14]. In security with abort, the adversary gets
the output and can then decide if the protocol should abort. In complete fairness the adversary must
decide whether to abort without seeing the output. This is relevant in applications where the adversary
might “dislike” the result and would prefer that it is not delivered. The transformation has an additive
overhead that only depends on the size of the output and not the size of the computation. It works in
the honest majority model without broadcast. In this model we cannot guarantee termination in general
so security with complete fairness is essentially the best we can hope for.

Discussion of results. Our passive-to-active compiler can, for instance, be applied to the straightforward
3-party protocol that represents secret values using additive secret sharing over Z2` and does secure mul-
tiplication using multiplication triples created in a preprocessing phase. This protocol is secure against 2
passive corruptions. Applying our compiler results in a 3-party protocol Π in the preprocessing model that
is information theoretically secure against 1 corruption and obtains active security with abort. Π can be
used as plug-in replacement for the Sharemind protocol. It has better (active) instead of passive security and
is essentially as efficient. This, of course, is only interesting if we can implement the required preprocessing
efficiently, which is exactly what we do as our second result, discussed in more detail below.

The compiler is based on the idea of turning each party in the passively secure protocol into a “virtual”
party, and then each virtual party is independently emulated by 2 or more of the real parties (i.e., each real
party will locally run the code of the virtual party). Intuitively, if the number of virtual parties for which
a corrupt party is an emulator is not larger than the privacy threshold of the original protocol, then our
transform preserves the privacy guarantees of the original protocol. Further, if we can guarantee that each
virtual party is emulated by at least one honest party, then this party can detect faulty behaviour by the
other emulators and abort if needed, thus guaranteeing correctness. Moreover, if we set the parameters in a
way that we are guaranteed an honest majority among the emulators, then we can even decide on the correct
behaviour by majority vote and get full active security. While this in hindsight might seem like a simple
idea, proving that it actually works in general requires us to take care of some technical issues relating, for
instance, to handling the randomness and inputs of the virtual parties.

The approach is closely related to replicated secret sharing which has been used for MPC before [Mau03,
FLNW17] (see the related work section for further discussion), but to the best of our knowledge, this is the
first general construction that transforms an entire passively secure protocol to active security. From this
point of view, it can be seen as a construction that unifies and “explains” several earlier constructions.

While our construction works for any number of parties it unfortunately does not scale well, and the
resulting protocol will only tolerate corruptions of roughly

√
n of the n parties and has a multiplicative
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overhead of order n compared to the passively secure protocol. This is far from the constant fraction of
corruptions we know can be tolerated with other techniques. We show two ways to improve this. First, while
our main compiler preserves adaptive security, we also present an alternative construction that only works
for static security but tolerates n/ log n active corruptions, and has overhead log2 n. Second, we show that
using results from [CDI+13], we get a protocol for any number n of parties tolerating roughly n/4 malicious
corruptions. We do this by starting from a protocol for 5 parties tolerating 2 passive corruptions, use our
result to constructs a 5 party protocol tolerating 1 active corruption, and then use a generic comstruction
from [CDI+13] based on monotone formulae. Note that a main motivation for the results from [CDI+13]
was to introduce a new approach to the design of multiparty protocols. Namely, first design a protocol for
a constant number of parties tolerating 1 active corruption, and then apply player emulation and monotone
formulae to get actively secure multiparty protocols. From this point of view, adding our result extends their
idea in an interesting way: using a generic transformation one can now get active and information theoretic
security for a constant fraction of corruptions from a seemingly even simpler object: a protocol for a constant
number of parties that is passively secure against 2 corruptions.

Our second result, the preprocessing protocol, is based on the idea that we can quite easily create
multiplication triples involving secret shared values a, b, c ∈ Zm and where ab = c mod m if parties behave
honestly. The problem now is that the standard efficient approach to checking whether ab = c mod m only
works if m is prime, or at least has only large prime factors. We solve this by finding a way to embed the
problem into a slightly larger field Zp for a prime p. We can then check efficiently if ab = c mod p. In addition
we make sure that a, b are small enough so that this implies ab = c over the integers and hence also that
ab = c mod m.

Our final result, the compiler for complete fairness, works for protocols where the output is only revealed
in the last round, as is typically the case for protocols based on secret sharing. Roughly speaking, the idea is
to execute the protocol up to its last round just before the outputs are delivered. We then compute verifiable
secret sharings of the data that parties would send in the last round – as well as one bit that says whether
sending these messages would cause an abort in the original protocol. Of course, this extra computation may
abort, but if it does not and we are told that the verifiably shared messages are correct, then it is too late for
the adversary to abort; as we assume an honest majority the shared messages can always be reconstructed.
While this basic idea might seem simple, the proof is trickier than one might expect – as we need to be
careful with the assumptions on the original protocol to avoid selective failure attacks.

1.1 Related Work

Besides what is already mentioned above, there are several other relevant works. Previous compilers, notably
the GMW [GMW87] and the IPS compiler [IPS08, LOP11], allow to transform passively secure protocols
into maliciously secure ones. The GMW compiler uses zero-knowledge proofs and, hence, is not blackbox in
the underlying construction. It produces protocols which are far from practically efficient. The IPS compiler
works, very roughly speaking, by using an inner protocol to simulate the protocol execution of an outer
protocol. The outer protocol computes the desired functionality. The inner protocol protocols computes the
individual computation steps of the outer protocol. The compiler is blackbox with respect to the inner,
but not the outer protocol and it requires the existence of oblivious transfer. It is unclear whether the IPS
compiler can be used to produce practically efficient protocols.

In contrast, our compiler does not require any computational assumption and thus preserves any infor-
mation theoretic guarantees the underlying protocol has. Our transform does not have any large hidden
constants and can produce actively secure protocols with efficiency that may be of practical interest.

In a recent work by Furukawa et al. [FLNW17], a practically very efficient three-party protocol with
one active corruption was proposed. Their protocol uses replicated secret sharing and only works for bits.
As the authors state themselves, it is not straightforward to generalize their protocol to more than three
parties, while maintaining efficiency. In contrast, our protocol works over any arbitrary ring and can easily be
generalized to any number of players. Furthermore our transform produces protocols with constant overhead,
whereas their protocol does not have constant overhead.
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The idea of using replication to detect active corruptions has been used before. For instance, Mohassel et
al. [MRZ15] propose a three-party version of Yao’s protocol. In a nutshell, their approach is to let two parties
garble a circuit separately and to let the third party check that the circuits are the same. Our results in this
work are more general in the sense that we propose a general transform to obtain actively secure protocols
from passively secure ones. In [DK00], Desmedt and Kurosawa use replication to design a mix-net with t2

servers secure against (roughly) t actively corrupted servers. A simple approach to MPC based on replicated
secret sharing was proposed by Maurer in [Mau03]. It has been the basis for practical implementations
like [BLW08].

2 Preliminaries

Notation. If X is a set, then v ← X means that v is a uniformly random value chosen from X . When A is
an algorithm, we write v ← A(x) to denote a run of A on input x that produces output v. For n ∈ N, we
write [n] to denote the set {1, 2, . . . , n}. For n party protocols, we will write Pi+1 and implicitly assume a
wrap-around of the party’s index, i.e. Pn+1 = P1 and P1−1 = Pn. All logarithms are assumed to be base 2.

Security Definitions. We will use the UC model throughout the paper, more precisely the variant described
in [CDN15]. We assume the reader has basic knowledge about the UC model and refer to [CDN15] for details.
Here we only give a very brief introduction: We consider the following entities: a protocol ΠF for n players
that is meant to implement an ideal functionality F . An environment Z that models everything external to
the protocol which means that Z chooses inputs for the players and is also the adversarial entity that attacks
the protocol. Thus Z may corrupt players passively or actively as specified in more detail below. We have
an auxiliary functionality G that the protocol may use to accomplish its goal. Finally we have a simulator
S that is used to demonstrate that ΠF indeed implements F securely.

In the definition of security we compare two processes: First, the real process executes Z, ΠF and G
together, this is denoted Z � ΠF � G. Second, we consider the ideal process where we execute Z, S and F
together, denoted Z �S �F . The role of the simulator S is to emulate Z’s view of the attack on the protocol,
this includes the views of the corrupted parties as well as their communication with G. To be able to do
this, S must send inputs for corrupted players to F and will get back outputs for the corrupted players. A
simulator in the UC model is not allowed to rewind the environment.

Both processes are given a security parameter k as input, and the only output is one bit produced by Z.
We think of this bit as Z’s guess at whether it has been part of the real or the ideal process. We define preal
respectively pideal to be the probabilities that the real, respectively the ideal process outputs 1, and we say
that Z �ΠF � G ≡ Z � S � F if |preal − pideal| is negligible in k.

Definition 1. We say that protocol ΠF securely implements functionality F with respect to a class of en-
vironments Env in the G-hybrid model if there exists a simulator S such that for all Z ∈ Env we have
Z �ΠF � G ≡ Z � S � F .

Different types of security can now be captured by considering different classes of environments: For
passive t-security, we consider any Z that corrupts at most t players. Initially, it chooses inputs for the
players. Corrupt players follow the protocol so Z only gets read access to their views. For biased passive
t-security, we consider any Z that corrupts at most t players. Initially, it chooses inputs for the players, as
well as random coins for the corrupt players. Then corrupt players follow the protocol so Z only gets read
access to their views. This type of security has been considered in [MW16, AJL+12] and intuitively captures
passively secure protocols where privacy only depends on the honest players choosing their randomness
properly. This is actutally true for almost all known passively secure protocols. Finally, for active t-security,
we consider any Z that corrupts at most t players, and Z takes complete control over corrupt players.

One may also distinguish between unconditional or computational security depending on whether the
environment class contains all environments of a certain type or only polynomial time ones. We will not
be concerned much with this distinction, as our main compiler is the same regardless, and preserves both
unconditional and computational security. For simplicity, we will consider unconditional security by default.
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We also consider by default adaptive security, meaning that Z is allowed to adaptive choose players to corrupt
during the protocol.

We will consider synchronous protocols throughout, so protocols proceed in rounds in the standard way,
with a rushing adversary. We will always assume that point-to-point secure channels are available. In addition,
we will also sometimes make use of other auxiliary functionalities, as specified in the next subsection.

Ideal Functionalities. The broadcast functionality Fbcast (Figure 1) allows a party to send a value to a set
of other parties, such that either all receiving parties receive the same value or all parties jointly abort by
outputting⊥. This functionality is known as detectable broadcast [FGMv02] and while unconditionally secure
broadcast with termination among n parties requires that strictly less than n/3 parties are corrupted [PSL80],
this bound does not apply to detectable broadcast, which can be instantiated with information-theoretic
security tolerating any number of corruptions [FGH+02].

Functionality Fbcast

The ideal functionality runs with parties P1, . . . , Pn and environment Z.

– Pi sends (v,P) to Fbcast, where v ∈ {0, 1}∗ and P ⊂ {P1 . . .Pn}.
– If P contains a corrupted party, then Z receives v. Otherwise it only receives notification that a

broadcast has been started. Z then decides whether to continue or to abort by sending a bit to the
ideal functionality.

• If Z continues, then Fbcast sends v to all Pj ∈ P.
• If Z aborts, then Fbcast sends ⊥ to all Pj ∈ P.

Fig. 1. The broadcast functionality

Functionality Fcflip

The ideal functionality runs with parties P1, . . . , Pn and environment Z.

– The functionality waits for messages of the form (cflip,P) from all parties.
– After receiving all such messages, and a deliver message from the environment Z, the functionality
Fcflip picks a random string r ← {0, 1}λ and outputs r to all parties in P.

Fig. 2. The coin flip functionality

Using the coin flip functionality Fcflip (Figure 2), a set of parties can jointly generate and agree on a
uniformly random λ-bit string. In the case of an honest majority, this functionality can be implemented with
information-theoretic security via verifiable secret sharing (VSS) [CDN15] as follows: Let P be the set of
players that want to perform a coin flip. To realize the functionality, every participating party Pi ∈ P secret
shares a random bit string ri among all the other players. Once every player in P shared its bit string ri, we
let all players in P reconstruct all bit strings and output

⊕
i ri. This is done by having all players send all

their shares to players in P. Here we assume that reconstruction is non-interactive, i.e., players send shares
to each other and each player locally computes the secret. Such VSS schemes exist, as is well known. It is
important to note that a VSS needs broadcast in the sharing phase, and since we only assume detectable
broadcast, the adversary may force the VSS to abort. However, since the decision to abort or not must be
made without knowing the shared secret (by privacy of the VSS) the adversary cannot use this to bias the
output of the coinflip.
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The standard functionality Ftriple (Figure 3) allows three parties P1, P2, and P3 to generate a replicated
secret sharing of multiplication triples. In this functionality, the adversary can corrupt one party and pick
its shares. The remaining shares of the honest parties are chosen uniformly at random. The intuition behind
this ideal functionality is that, even though the adversary can pick its own shares, it does not learn anything
about the remaining shares, and hence it does not learn anything about the actual value of the multiplication
triple that is secret shared. We will present a communication efficient implementation of this functionality
in Section 5.

Functionality Ftriple

The ideal functionality is parameterized by an integer m, runs with parties P1, P2, P3 and environment
Z.

– If party Pi is corrupted, then the environment Z can input (corrupt, v) where v =
(ai+1, ai+2, bi+1, bi+2, ci+1, ci+2) all in Zm.

– Upon receiving init from all honest parties the functionality Ftriple picks the undefined (ai, bi, ci) uni-
formly at random, such that (a1 + a2 + a3) · (b1 + b2 + b3) = (c1 + c2 + c3) ∈ Zm and outputs:
• (a1, b1, c1) to P2 and P3,
• (a2, b2, c2) to P3 and P1,
• (a3, b3, c3) to P1 and P2.

Fig. 3. Triple generation functionality

Finally, for any function f with n inputs and one output, we will let Ff denote a UC functionality for
computing f securely with (individual) abort. That is, once it receives inputs from all n parties it computes
f and then sends the output to the environment Z. Z returns for each player a bit indicating if this player
gets the output or will abort. Ff sends the output to the selected players and sends ⊥ to the rest. We
consider three (stronger) variants of this: Funanimous

f where Z must give the output to all players or have

them all abort; F fair
f where Z is not given the output when it decides whether to abort; and F fullactive

f where
the adversary cannot abort at all.

3 Our Passive to Active Security Transform

The goal of our transform is to take a passively secure protocol and convert it into a protocol that is secure
against a small number of active corruptions.

For simplicity, let us start with a passively secure n-party protocol (n ≥ 3) that we will convert into an
n-party protocol in the Fcflip-hybrid model that is secure against one active corruption.

The main challenge in achieving security against an actively corrupted party, is to prevent it from devi-
ating from the protocol description and sending malformed messages. Our protocol transform is based upon
the observation that, assuming one active corruption, every pair of parties contains at least one honest party.
Now instead of letting the real parties directly run the passively secure protocol, we will let pairs of real par-
ties simulate virtual parties that will compute, using the passively secure protocol, the desired functionality
on behalf of the real parties. More precisely, for 1 ≤ i ≤ n, the real parties Pi and Pi+1 will simulate virtual
party Pi. In the first phase of our protocol, Pi and Pi+1 will agree on some common input and randomness
that we will specify in a moment. In the second phase, the virtual parties will run a passively secure protocol
on the previously agreed inputs and randomness. Whenever virtual party Pi sends a message to Pj , we will
realize this by letting Pi and Pi+1 both send the same message to Pj and Pj+1. Note that when both Pi
and Pi+1 are honest, these two messages will be identical since they are constructed according to the same
(passively secure) protocol, using the same shared randomness and the previously received messages. The
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“action” of receiving a message at the virtual party Pj is emulated by having the real parties Pj and Pj+1

both receive two messages each. Both parties now check locally whether the received messages are identical
and, if not, broadcast an “abort” message. Otherwise they continue to execute the passively secure protocol.
The high-level idea behind this approach is that the adversary controlling one real party cannot send a
malformed message and at the same time be consistent with the other honest real party simulating the same
virtual party. Hence, either the adversary behaves honestly or the protocol will be aborted.

Remember that we need all real parties emulating the same virtual party to agree on a random tape
and a common input. Agreeing on a random tape is trivial in the Fcflip-hybrid model, we can just invoke
Fcflip for each virtual Pi and have it send the random string to the corresponding real parties Pi and
Pi+1. Moreover, in the process of agreeing on inputs for the virtual parties we need to be careful in not
leaking any information about the real parties’ original inputs. Towards this goal, we will let every real
party secret share, e.g. XOR, its input among all virtual parties. Now, instead of letting the underlying
passively secure protocol compute f(x1, . . . , xn), where real Pi holds input xi, we will use it to compute
f ′((x11, . . . , x

1
n), . . . , (xn1 , . . . , x

n
n)) := f(

⊕
i x

i
1, . . . ,

⊕
i x

i
n), where virtual party Pi has input

(
xi1, . . . , x

i
n

)
, i.e.

one share of every original input.
As a small example, for the case of three parties, we would get P1 = {P1,P2} holding input

(
x11, x

1
2, x

1
3

)
,

P2 = {P2,P3} with input
(
x21, x

2
2, x

2
3

)
, and P3 = {P3,P1} with

(
x31, x

3
2, x

3
3

)
. Since every real party only

participates in the simulation of two virtual parties, no real party learns enough shares to reconstruct the
other parties’ inputs. More precisely, for arbitrary n ≥ 3 and one corruption, each real party will participate
in the simulation of two virtual parties, thus the underlying passively secure protocol needs to be at least
passively 2-secure. Actually, each real party will learn not only two full views, but also one of the inputs of
each other virtual party, since it knows the shares it distributed itself. As we will see in the security proof this
is not a problem and passive 2-security is, for one active corruption, a sufficient condition on the underlying
passively secure protocol.

The approach described above can be generalized to a larger number of corrupted parties. The main
insight for one active corruption was that each set of two parties contains one honest party. For more than
one corruption, we need to ensure that each set of parties of some arbitrary size contains at least one honest
party that will send the correct message. Given n parties and t corruptions, each virtual party needs to be
simulated by at least t+1 real parties. We let real parties Pi, . . . ,Pi+t simulate virtual party Pi1. This means
that every real party will participate in the simulation of t+ 1 virtual parties. Since we have t corruptions,
the adversary can learn at most t (t+ 1) views of virtual parties, which means that our underlying passively
secure protocol needs to have at least passive

(
t2 + t

)
-security.

In the following formal description, let Pi be the virtual party that is simulated by Pi, . . . ,Pi+t. By slight
abuse of notation, we use the same notation for the virtual party Pj and the set of real parties that emulate
it. When we say Pi sends a message to Pj , we mean that each real party in Pi will send one message to every
real party in Pj . Let Vi be the set of virtual parties in whose simulation Pi participates.

Let f be the n-party functionality we want to compute, and Πf ′ be a passive
(
t2 + t

)
-secure protocol

that computes f ′, i.e., it computes f on secret shares as described above. We construct Π̃f that computes f
and is secure against t active corruption as follows:

The protocol Π̃f :

1. Pi splits its input xi into n random shares, s.t. xi =
⊕

1≤j≤n x
j
i , and for all j ∈ [n] send (xji ,Pj) to Fbcast

(which then sends xji to all parties in Pj).
2. For i ∈ [n] invoke Fcflip on input Pi. Each Pi receives {rj |Pj ∈ Vi} from the functionality.

3. Pi receives
(
xj1, . . . , x

j
n

)
for every Pj ∈ Vi from Fbcast. If any xji = ⊥, abort the protocol.

4. All virtual parties, simulated by the real parties, jointly execute Πf ′ , where each real party in Pi uses the
same randomness ri that it obtained through Fcflip. Whenever Pi receives a message from Pj , each member

1 Any other distribution of real party among virtual parties that ensures that each real party simulates equally many
virtual parties would work as well.
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of Pi checks that it received the same message from all parties in Pj . If not, it aborts (this includes the
case where a message is missing). Once a player makes it to the end of Πf ′ without aborting, it outputs
whatever is output in Πf ′ .

Theorem 1. Let n ≥ 3. Suppose Πf ′ implements Ff ′ with passive
(
t2 + t

)
-security. Then Π̃f as described

above implements Ff in the (Fbcast, Fcflip)-hybrid model with active t-security.

Remark 1. We construct a protocol where the adversary can force some honest players to abort while others
terminate normally. We can trivially extend this to a protocol implementing Funanimous

f where all players do
the same: we just do a round of detectable broadcast in the end where players say whether they would abort
in the original protocol. If a player hears “abort” from anyone, he aborts.

Remark 2. In Step 1 of the protocol the parties perform a XOR based n-out-of-n secret sharing. We remark
that any n-out-of-n secret sharing scheme could be used here instead. In particular, when combining the
transform with the preprocessing protocol of Section 5, it will be more efficient to do the sharing in the ring
(Zm,+).

Remark 3. Our compiler is information-theoretically secure. This means that our compiler outputs a pro-
tocol that is computationally, statistically, or perfectly secure if the underlying protocol was respectively
computationally, statistically, or perfectly secure. This is particularly interesting, since, to the best of our
knowledge, our compiler is the first one to preserve statistical and perfect security of the underlying protocol.

Remark 4. The theorem trivially extends to compilation of protocols that use an auxiliary functionality G,
such as a preprocessing functionality. We would then obtain a protocol in the (Fbcast,Fcflip,G)-hybrid model.
We leave the details to the reader.

Proof. Before getting into the details of the proof, let us first roughly outline the possibilities of an actively
malicious adversary and our approach to simulating his view in the ideal world. The protocol can be split
into two separate phases. First all real parties secret share their inputs among the virtual parties through the
broadcast functionality. A malicious party P∗i can pick an arbitrary input xi, but the broadcast functionality

ensures that all parties simulating some virtual party Pj will receive the same consistent share xji from the
adversary. Since every virtual party is simulated by at least one honest real party, the simulator will obtain
all secret shares of all inputs belonging to A. This allows the simulator to reconstruct these inputs and query
the ideal functionality to retrieve f(x′1, . . . , x

′
n) where if Pj is honest then x′j = xj is the input chosen by the

environment and if Pj is corrupt x′j =
⊕

i x
i
j is the input extracted by the simulator. Having the inputs of

all corrupted parties and the output from the ideal functionality, we can use the simulator of Πf ′ to simulate
the interaction with the adversary. At this point, there are two things to note.

First, we have n real parties that simulate n virtual parties. Since the adversary can corrupt at most
t real parties, we simulate each virtual party by t + 1 real parties. As each real party participates in the
same amount of simulations of virtual parties, we get that each real party simulates t + 1 virtual parties.
This means that the adversary can learn at most t2 + t views of the virtual parties and, hence, since Πf ′ is
passively

(
t2 + t

)
-secure, the adversary cannot distinguish the simulated transcript from a real execution.

Second, the random tapes are honestly generated by Fcflip. The simulator knows the exact messages that
the corrupted parties should be sending and how to respond to them. Upon receiving an honest message
from a corrupted party, the simulator responds according to underlying simulator. If the adversary tries to
cheat, the simulator aborts. Aborting is fine, since, in a real world execution, the adversary would be sending
a message, which is inconsistent with at least one honest real party that simulates the same virtual party,
and this would make some receiving honest party abort.

Given this intuition, let us now proceed with the formal simulation. Let Z be the environment (that
corrupts at most t parties). Let P∗ be the set of real parties that are corrupted before the protocol execution
starts. Let V∗ be the set of virtual parties that are simulated by at least one corrupt real party from P∗. We
will construct a simulator SΠ̃f

using the simulator SΠf′ for f ′. In the specification of the simulator we will

often say that it sends some message to a corrupt player. This will actually mean that Z gets the message
as Z plays for all the corrupted parties.
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SΠ̃f
:

1. For each Pi ∈ P∗ and j ∈ [n], Z sends (xji ,Pj) to Fbcast (which is emulated by SΠ̃f
). For each Pj ∈ V∗

and each corrupt emulator in Pj , send to Z the shares this emulator would receive from Fbcast, that is,

{xji}i=1..n where for a corrupt Pi we use the share specified by Z before and for honest Pi we use a
random value.

2. For each Pi ∈ P∗, compute xi =
⊕

j x
j
i and send it to the ideal functionality Ff to retrieve z =

f(x1, . . . , xn), where all xi with Pi 6∈ P∗ are the honest parties’ inputs in the ideal execution.
3. To simulate the calls to Fcflip, for each corrupt Pj , choose rj at random and send it to each corrupt

emulator of Pj .
Note that, at this point, we know the inputs and random tapes of all currently corrupted parties. With
this, we can check in the following whether corrupt players follow the protocol.

4. Start the simulator SΠf′ and tell it that the initial set of corrupted players is V∗. We will emulate both
its interface towards Ff ′ and towards its environment, as described below.

5. When SΠf′ queries Ff ′ for inputs of corrupted players, we return, for each Pj ∈ V∗, xj1, ..., xjn. When it
queries for the output we return z.

6. For each round in Πf ′ the following is done until the protocol ends or aborts:
(a) Query SΠf′ for the messages sent from honest to corrupt virtual parties in the current round. For

each such message to be received by a corrupted Pj , send this message to all corrupt real parties in
Pj .

(b) Get from Z the messages from corrupt to honest real players in the current round. Compute the
set A of honest real players that, given these message, will abort. For all corrupt Pj and honest Pi,
compute the correct message mj,i to be sent in this round from Pj to Pi. Tell SΠf′ that Pj sent mj,i

to Pi in this round.
(c) If we completed the final round, stop the simulation. Else, if A contains all real honest parties, send

“abort” to Ff and stop the simulation. Else, If A = ∅ go to step 6a. Else, do as follows in the next
round (in which the protocol will abort because A 6= ∅): Query SΠf′ for the set of messages M sent
from honest to corrupt virtual parties in the current round. For all real parties in A tell Z that they
send nothing in this round. For all other real honest players compute, as in step 6a, what messages
they would send to corrupt real players given M and send these to Z. Send “abort” to Ff and stop
the simulation.

It remains to specify how adaptive corruptions are handled: Whenever the adversary adaptively corrupts
a new party Pi, we go through all virtual parties Pj in Vi (the virtual parties simulated by Pi) and consider
the following two cases. First, if Pj already contained a corrupted party, then we already know how to
simulate the view for this virtual player. Second, if Pi is the first corrupted party in Pj , then we add Pi to
V∗ and tell SΠf′ that Pj is now corrupt and we forward the response of SΠf′ to Z, namely the (simulated)
current view of Pj . Since the view of Pj contains this virtual party’s random tape, we can continue our
overall simulation as above.

We now need to show that SΠ̃f
works as required. For contradiction assume that we have an environment

Z for which Z �SΠ̃f
�Ff 6≡ Z �Πf �Fcflip �Fbcast. We will use Z to construct an environment Z ′ that breaks

the assumed security of Πf ′ and so reach a contradiction.

Z ′:

1. Run internally a copy of Z, and get the initial set of corrupted real players from Z, this determines the
set V∗ of corrupt virtual players as above, so Z ′ will corrupt this set (recall that Z ′ acts as environment
for Πf ′).

2. For each real honest party Pi, get its input xi from Z. Choose random shares xji subject to xi =
⊕

j x
j
i .

3. Execute with Z Step 1 of SΠ̃f
’s algorithm, but instead of choosing random shares on behalf of honest

players, use the shares chosen in the previous step. This will fix the inputs {xji}i=1..n of every virtual
player Pj . Z ′ specifies these inputs for the parties in Πf ′ .
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4. Recall that Z ′ (being a passive environment) has access to the views of the players in V∗. This initially
contains the randomness rj of corrupt Pj . Z ′ uses this rj to execute Step 3 of SΠ̃f

.

5. Now Z ′ can expect to see the views of the corrupt Pj ’s as they execute the protocol Therefore Z ′ can
perform Step 6 of SΠ̃f

with one change only: it will get the messages from honest to corrupt players by

looking at the views of the corrupt Pj ’s, but will forward these messages to Z exactly as SΠ̃f
would have

done. In the end Z ′ outputs the guess produced by Z.

Now, all we need to observe is that if Z ′ runs in the ideal process, the view seen by its copy of Z is
generated using effectively the same algorithm as in SΠ̃f

, since the views of corrupt virtual parties come

from SΠf′ . On the other hand, if Z ′ runs in the real process, its copy of Z will see a view distributed exactly
as what it would see in a normal real process. This is because the first 4 steps of Z ′ is a perfect simulation
of the real Πf , and the last step aborts exactly when the real protocol would have aborted and otherwise
provides real protocol messages to Z. Therefore Z ′ can distinguish real from ideal process with exactly the
same advantage as Z. ut

Efficiency of our transform. In our transform every real party emulates t+1 virtual parties which constitutes
the only computational overhead of our transform (if we ignore the computational effort in checking that
the t+ 1 received messages are equal)

Since our transform mainly works by sending messages in a redundant fashion, it incurs a multiplicative
bandwidth overhead that depends on the number of active corruptions we want to tolerate. Assume the un-
derlying protocol Πf ′ sends a total of m messages and further assume that we want to tolerate t corruptions.
This means that every virtual party Pi will be simulated by t + 1 real parties. Whenever a virtual party
Pi sends a message to Pj , we send (t+ 1) · (t+ 1) = t2 + 2t + 2 real messages. Ignoring messages sent for
the coin-flips and share distribution, our transform produces a protocol that sends at most m ·

(
t2 + 2t+ 2

)
messages.

For the special case, where n = 3, t = 1, and P1 = {P1,P2}, P2 = {P2,P3}, and P3 = {P3,P1}, it holds
that for all i 6= j, |Pi ∩ Pj | = 1. Hence, every message from Pi to Pj is realized by sending 3 real messages,
which results in 3m total messages sent during the second phase of our transform.

Active security without Fcflip and Fbcast: By the UC composition theorem, we can replace the functionalities
Fcflip and Fbcast in our compiled protocol by secure implementations and still have a secure protocol. It
should be noted that for t corruptions we have n ≥

(
t2 + t

)
+1 and thus we are always in an honest majority

setting. This means that both functionalities can be implemented with information theoretic security in the
basic point-to-point secure channels model as described in Section 2.

The implementation of Fcflip uses verifiable secret sharing (VSS). Note that even though VSS in itself is
powerful enough to realize secure multiparty computation, we only use it for the coin flip functionality. Thus,
the number of VSSs we need depends only on the amount of randomness used in the passively secure protocol,
and this can be reduced using a pseudorandom generator. Besides (and perhaps more importantly) for the
large class of protocols with biased passive security we do not need Fcflip at all to compile them. Recall
that, in the biased passive security model, we still assume that all parties follow the protocol execution
honestly, but corrupted parties have the additional power of choosing their random tapes in a non-adaptive,
but arbitrary manner. Adversaries who behave honestly, but tamper with their random tapes have been
previously considered in [MW16, AJL+12].

If our compiler starts with a protocol Πf ′ that is secure against biased passive adversaries, then we can
avoid the use of a coin-flipping functionality, since any random tape is secure to use. We can modify our
compiler in a straightforward fashion. Rather than executing one coin-flip for every Pi to agree on a random
tape, we simply let one party from each Pi broadcast an arbitrarily chosen random tape to the other members
of Pi. Now, since we do not need Fcflip, and we do not need to implement VSS for this purpose.

Guaranteed Output Delivery. At the cost of reducing the threshold t of active corruptions that our transform
can tolerate, we can obtain guaranteed output delivery. For this we need to ensure that an adversary cannot
abort in neither the first phase, nor the second phase of our protocol. In the first phase, when each real party
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broadcasts its input shares to the virtual parties, we can ensure termination by simply letting every Pi to be
simulated by 3t+ 1 real parties. In this case each Pi contains less than 1/3 corruptions and unconditionally
secure broadcast (with termination) exists among the members of Pi. Using this approach, the adversary
can learn t (3t+ 1) views and thus the underlying protocol needs to have passive

(
3t2 + t

)
-security.

Another approach that gives slightly better parameters is to only assume an honest majority in each Pi
and use detectable broadcast. In this case the underlying protocol needs to be passively

(
2t2 + t

)
-secure and

thus, since n ≥
(
2t2 + t

)
+ 1, unconditionally secure broadcast with termination exists among all parties.

If a real party simulating a virtual party aborts during a detectable broadcast (to members of Pi), it will
broadcast (with guaranteed termination) this abort to all parties. At this point an honest sender, who
initiated the broadcast, can broadcast its share for that virtual party among all parties in the protocol.
Intuitively, since the broadcast failed, there is at least one corrupted party in the virtual party and thus
the adversary already learned the sender’s input share, so we do not need to keep it secret any more. If the
sender is corrupt and does not broadcast its share after an abort, then all parties replace the sender’s input
by some default value.

In the second phase of our protocol, real parties simulating virtual parties are currently aborting as soon
as they receive inconsistent messages, as they cannot distinguish a correct message from a malformed one. If
we ensure that every virtual party is simulated by an honest majority, then, whenever a real party receives
a set of messages representing a message from a virtual party, it makes a majority decision. That is, it
considers the most frequent message as the correct one and continues the protocol based on this message.
Let Π̃f denote the modified protocol as described above. We then have the following corollary whose proof
is a trivial modification of the proof of Theorem 1.

Corollary 1. Let n ≥ 3. Suppose Πf ′ implements Ff ′ with passive
(
2t2 + t

)
-security. Then Π̃f as described

above implements Ffullactivef wiht active t-security in the (Fbcast, Fcflip)-hybrid model.

3.1 Tolerating more corruptions assuming static adversaries.

In this section we sketch a technique that allows to improve the number of corruptions tolerated by our
compiler if we restrict the adversary to only perform static corruptions, i.e., if the adversary must choose
the corrupted parties before the protocol starts.

In constrast to our compiler from Theorem 1, instead of choosing which real parties will emulate which
virtual party in a deterministic way, we will now map real parties to virtual parties in a probabilistic fashion.
Intuitively, since the adversary has to choose who to corrupt before the assignment and since the assignment
is done in a random way, this can lead to better bounds when transforming protocols with a large number
of parties.

Our new transform works as follows: At the start of the protocol, the parties invoke Fcflip and use the
obtained randomness to select uniformly at random a set of real parties to emulate each virtual party. Then
we execute the transformed protocol Πf exactly as we specified above.

Let us define a virtual party in our transform to be controlled by the adversary if it is only emulated by
corrupt real parties, and let us define a virtual party to be observed by the adversary if it is emulated by at
least one corrupt real party. In the proof of Theorem 1, we need to ensure two conditions for our transform
to be secure. (1) No virtual party can be controlled by the adversary and, (2) the number of virtual parties
observed by the adversary must be smaller than the privacy threshold of the passively secure protocol Πf ′ .

We now show that we can set the parameters of the protocol in a way that these two properties are
satisfied (except with negligible probability) and in a way that produces better corruption bounds than our
original transform.

In the analysis we assume that n = Θ(λ), where n is, as before, the number of virtual and real parties,
while λ is the statistical security parameter. We also assume that the security threshold of the underlying
passively secure protocol Πf ′ is cn for some constant c. Finally, let e be the number of real parties that
emulate each virtual party, and let e = u log n for a constant u. The number of corrupt real parties that can
be tolerated by our transform is then at most d · n/ log n for some constant d. We choose the constants d
and u such that c < 1− du.
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To show (1), it is easy to see that (by a union bound) the probability that at least one virtual party is
fully controlled by the adversary (i.e., it is emulated only by corrupt real parties) is at most:

n

(
dn

n log n

)e
= n

(
d

log n

)e
Since we set e = u log n, this probability is negligible.

As for (2), the probability that a virtual party is not observed by the adversary (i.e., it is emulated only
by honest parties) is (1 − d/ log n)e, so that the expected number of such parties is n(1 − d/ log n)e which
for large n (and hence small values of d/ log n) converges to

n(1− de/ log n) = n(1− du).

As we choose d and u such that c < 1 − du, it then follows immediately from a Chernoff bound that the
number of virtual parties with only honest emulators is at least cn with overwhelming probability. Let Π̄f

denote the protocol using this probabilistic emulation strategy. We then have:

Corollary 2. Let n = Θ(λ). Suppose Πf ′ realizes the n-party functionality Ff ′ with passive and static cn-
security for a constant c. Then Π̄f realizes Ff with active and static d ·n/ log n-security in the (Fbcast,Fcflip)-
hybrid model, for a constant d.

Moreover, compared to the protocol obtained using our adaptively secure transform, Π̄f has asymptoti-
cally better multiplicative overhead of only O((log n)2).

3.2 Achieving Constant Fraction Corruption Threshold

A different approach for improving the bound of corruptions that we can tolerate is to combine our compiler
with the results of Cohen et al. [CDI+13].

In [CDI+13], the authors show how to construct a multiparty protocol for any number of parties from a
protocol for a constant number k of parties and a log-depth threshold formula of a certain form. The formula
must contain no constants and consist only of threshold gates with k inputs that output 1 if at least j input
bits are 1. The given k-party protocol should be secure against j − 1 (active) corruptions. In [CDI+13],
constructions are given for such formulae, and this results in multiparty protocols tolerating essentially a
fraction (j − 1)/(k − 1) corruptions.

For instance, from a protocol for 5 parties tolerating 2 passive corruptions (in the model without prepro-
cessing), our result constructs a 5 party protocol tolerating 1 active corruption. Applying the results from
[CDI+13], we get a protocol for any number n of parties tolerating n/4 − o(n) malicious corruptions. This
protocol is maliciously secure with abort, but we can instead start from a protocol for 7 parties tolerating 3
passive corruptions and use Corollary 1 to get a protocol for 7 parties, 1 active corruption and guaranteed
output delivery. Applying again the results from [CDI+13], we get a protocol for any number n of parties
tolerating n/6 − o(n) malicious corruptions with guaranteed output delivery. These results also imply that
if we accept that the protocol construction is not explicit, or we make a computational assumption, then we
get threshold exactly n/4, respectively n/6.

4 Achieving Security with Complete Fairness

The security notion achieved by our previous results is active security with abort, namely the adversary gets
to see the output and then decides whether the protocol should abort – assuming we want to tolerate the
maximal number of corruptions the construction can handle. However, security with abort is often not very
satisfactory: it is easy to imagine cases where the adversary may for some reason “dislike” the result and
hence prefers that it is not delivered.

However, there is a second version that is stronger than active security with abort, yet weaker than full
active security, which is called active security with complete fairness [CL14]. Here the adversary may tell
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the functionality to abort or ask for the output, but once the output is given, it will also be delivered to the
honest parties.

In this section we show how to get general MPC with complete fairness from MPC with abort, with
essentially the same efficiency. This will work if we have honest majority and if the given MPC protocol
has a compute-then-open structure, a condition that is satisfied by a large class of protocols. The skeptical
reader may ask why such a result is interesting, since with honest majority we can get full active security
without abort anyway. Note, however, that this is only possible if we assume that unconditionally secure
broadcast with termination is given as an ideal functionality. In contrast, we do not need this assumption
as our results above can produce compute-then-open protocols that only need detectable broadcast (which
can be implemented from scratch) and our construction below that achieves complete fairness does not need
broadcast with termination either.

We define the following:

Definition 2. Πf is a compute-then-open protocol for computing function f if it satisfies the following:

– It implements Ff with active t-security, where t < n/2. 2

– One can identify a particular round in the protocol, called the output round, that has properties as defined
below. The rounds up to but not including the output round are called the computation phase.

– The adversary’s view of the computation phase is independent of the honest party’s input. More formally,
we assume that the simulator always simulates the protocol up to the output round without asking for the
output.

– The total length of the messages sent in the output round depends only on the number of players, the
size of the output and (perhaps) on the security parameter3. We use di,j to denote the message sent from
party i to party j in the output round.

– At the end of the computation phase, the adversary knows whether a given set of messages sent by corrupt
parties in the output round will cause an abort. More formally, there is an efficiently computable Boolean
function fabort which takes as input the adversary’s view v of the computation phase and messages
d = {di,j | 1 ≤ i ≤ t, 1 ≤ j ≤ n}, where we assume without loss of generality that the first t parties are
corrupted. Now, when corrupt parties have state v and send d in the output round, then if fabort(v,d) =
0 then all honest players terminate the protocol normally, otherwise at least one aborts, where both
properties hold except with negligible probability.

– One can decide whether the protocol aborts based only on all messages sent in the output round 4. More
formally, we assume the function fabort can also take as input messages dall = {di,j | 1 ≤ i ≤ t, 1 ≤
j ≤ n}. Then, if parties P1, ..., Pn send messages dall in the output round and fabort(dall) = 0, then all
honest players terminate the protocol, otherwise some player aborts (except with negligible probability).

Note that the function fabort is assumed to be computable in two different ways: from the set of all
messages sent in the output round, or from adversary’s view. The former is used by our compiled protocol,
while the latter is only used by the simulator of that protocol.

A typical example of a compute-then-open protocol can be obtained by applying our compiler from
Section 3 to a secret-sharing based and passively secure protocol, such as BGW: In the compiled protocol,
the adversary can only make it to the output round by following the protocol. Therefore he knows what
he should send in the output round and that the honest players will abort if they don’t see what they
expect. From the set of all messages sent in the output round, one can determine if an abort will occur
by simple equality checks. More generally, it is straightforward to see that if one applies the compiler to a
compute-then-open passively secure protocol, then the resulting protocol also has the same structure.

We can now show the following:

2 We believe that our results also extend to the computational case, but since we are in an honest majority setting,
we only focus on statistical and perfect security.

3 In particular, it does not depend on the size of the evaluated function.
4 This restriction is only for simplicity, our results extend to the more general case where termination also depends

on some state information that parties keep private, as long as the size of this state only depends on the size of
the output.
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Theorem 2. Assume we are given a compiler that constructs from the circuit for a function f a compute-
then-open protocol Πf that realizes Ff , with active t-security. Then we can construct a new compiler that
constructs a compute-then-open protocol Π ′f that realizes F fair

f with active t-security. The complexity of Π ′f
is larger than that of Πf by an additive term that only depends on the number of players, the size of the
outputs and the security parameter.

Proof. Let Deal be a probabilistic algorithm that on input a string s produces shares of s in a verifi-
able secret sharing scheme with perfect t-privacy and non-interactive reconstruction, we write Deal(s) =
(Deal1(s), . . . , Dealn(s)) where Deali(s) is the i′th share produced. For t < n/2 this is easily constructed,
e.g., by first doing Shamir sharing with threshold t and then appending to each share unconditionally secure
MACs that can be checked by the other parties. Such a scheme will reconstruct the correct secret except
with negligible probability (statistical correctness) and has the extra property that given a secret s and an
unqualified set of shares, we can efficiently compute a complete set Deal(s) that is consistent with s and the
shares we started from.

Now given function f , we construct the protocol Π ′f from Πf as follows:

1. Run the computation phase ofΠf (where we abort ifΠf aborts) and let dall = {di,j | 1 ≤ i ≤ t, 1 ≤ j ≤ n}
denote the messages that parties would send in the output round of Πf . Note that each party Pi can
compute what he would send at this point.

2. Let f ′ be the following function: it takes as input a set of strings dall = {di,j | 1 ≤ i ≤ t, 1 ≤ j ≤ n}. It
computes Deal(di,j) for 1 ≤ i, j ≤ n and outputs to party Pl Deal(di,j)l. Finally, it outputs fabort(dall)
to all parties.
Now we run Πf ′ , where parties input the di,j ’s they have just computed.

3. Each player uses detectable broadcast to send a bit indicating if he terminated Πf ′ or aborted.
4. If any player sent abort, or if Πf ′ outputs 1, all honest players abort. Otherwise parties reconstruct each
di,j from Deal(di,j) (which we have from the previous step): each party Pl sends Deal(di,j)l to Pj , for
1 ≤ i ≤ n (recall that Pj is the receiver of di,j), and parties apply the reconstruction algorithm of the
VSS.

5. Finally parties complete protocol Πf , assuming dall = {di,j | 1 ≤ i ≤ t, 1 ≤ j ≤ n} were sent in the
output round.

The claim on the complexity of Π ′f is clear, since Πf is a compute-then-open protocol and steps 2-4 only
depend on the size of the messages in the output round and not on the size of the total computation.

As for security, the idea is that just before the output phase of the original protocol, instead of sending
the di’s we use a secure computation Πf ′ to VSS them instead and also to check if they would cause an abort
or not. This new computation may abort or tell everyone that the di’s are bad, but the adversary already
knew this by assumption since Πf is a compute-then-open protocol. So by privacy of the VSS, nothing is
revealed by doing this. On the other hand, if there is no abort and we are told the di’s are good, the adversary
can no longer abort, as he cannot stop the reconstruction of the VSSs.

More formally, we construct a simulator T as follows:

1. First run the simulator S for Πf up to the output round. Then run the simulator S′ for Πf ′ where T
also emulates the functionality Ff ′ . In particular, T can observe the inputs S′ produced for f ′ on behalf
of the corrupt parties, that is, messages d = {di,j | 1 ≤ i ≤ t, 1 ≤ j ≤ n} where we assume without loss
of generality that the first t parties are corrupt.

2. Note that T now has the adversary’s view v of the computation phase of Πf (from S) and messages d,
so T computes fabort(v,d). Since Πf is a compute-then-open protocol, this bit equals the output from
f ′, so we give this bit to S′, who will now, for each honest player, say whether that player aborts or gets
the output.

3. T can now trivially simulate the round of detectable broadcasts, as it knows what each honest player
will send. If anyone broadcasts “abort”, or the output from f ′ was 1, T sends “abort” to Ff and stops.
Otherwise, T asks for the output y from f which we pass to S, who will now produce a set of messages
dhonest to be sent by honest players in the output round. In response, we tell S the corrupt parties sent
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d. By assumption we know that this will not cause S to abort. So we now have a complete set of messages
dall (including messages from the honest parties) that is consistent with y.

4. Now T exploits t-privacy of the VSS: during the run of Πf ′ t shares of each Deal(di,j) have been given
to the adversary. T now completes each set of shares to be consistent with di,j , and sends the resulting
shares on behalf of the honest parties in Π ′f .

5. Finally, we let S complete its simulation of the execution of Πf after the output round (if anything is
left).

It is clear that T does not abort after it asks for the output. Further the output of T working with f is
statistically close to that of the real protocol. This follows easily from the corresponding properties of S and
S′ and statistical correctness of the VSS. ut

The construction in Theorem 2 is quite natural, and works for a more general class of protocols than
those produced by our main result, but we were unable to find it in the literature.

It should also be noted that when applying the construction to protocols produced by our main result,
we can get a protocol that is much more efficient than in the general case. This is because the computation
done by the function f ′ becomes quite simple: we just need a few VSSs and some secure equality checks.

5 Efficient Three-Party Computation Over Rings

To illustrate the potential of our compiler from Section 3, we provide a protocol for secure three-party
computation over arbitrary rings Zm that is secure against one active corruption, and has constant online
communication overhead for any value of m. That is, during the online phase, the communication overhead
does not depend on the security parameter.

The protocol uses the preprocessing/online circuit evaluation approach firstly introduced by Beaver [Bea92].
During the preprocessing phase, independently of the inputs and the function to be computed, the parties
jointly generate a sufficient amount of additively secret shared multiplication triples of the form c = a·b ∈ Zm.
During the online phase, the parties then consume these triples to evaluate an arithmetic circuit over their
secret inputs.

The online phase of Beaver’s protocol tolerates 2 passive corruptions and thus we can directly apply
Theorem 1 to obtain a protocol for the online phase that is secure against one active corruption. What is left
is the preprocessing phase, i.e., how to generate the multiplicative triples. Our technical contribution here
is a novel protocol for this task. Note that this protocol does not use our compiler. Instead it produces the
triples to be used by the compiled online protocol. Furthermore, since Beaver’s online phase is deterministic,
our protocol, as opposed to the general compiler, does not require to use any coin flip protocol.

For the sake of concreteness, in this section we give an explicit description of the entire protocol. In
the preprocessing protocol we create replicated secret shares of multiplication triples5. Afterwards we briefly
describe the online phase we obtain from applying our compiler to Beaver’s online phase. The communication
of our preprocessing protocol is only O(logm+λ) many bits per generated triple, meaning that the overhead
for active security is a constant when m is exponential in the (statistical) security parameter.

5.1 The Preprocessing Protocol

The goal of our preprocessing protocol is to generate secret shared multiplication triples of the form c =
a · b ∈ Zm, where m is an arbitrary ring modulus. Our approach can be split into roughly three steps. First,
we optimistically generate a possibly incorrect multiplication triple over the integers. In the second step, we
optimistically generate another possibly incorrect multiplication triple in Zp, where p is some sufficiently
large prime. We interpret our integer multiplication triple from step one as a triple in Zp and “sacrifice” our
second triple from Zp to check its validity. In the third step we exploit the fact that the modulo operation

5 Note that for the three-party case an additively secret shared value among virtual parties, corresponds to a
replicated additively secret shared value among the real parties.
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and the product operation are interchangeable. That is, each party reduces its integer share modulo m to
obtain a share of a multiplication triple in Zm.

The main idea in step one is, that we can securely secret share a value a ∈ Zm over the integers by using
shares that are logm+ λ bits large. The extra λ bits in the share size ensure that for any two values in Zm
the resulting distributions of shares are statistically close.

We now proceed with a more formal description of the different parts of the protocol. We start by
introducing some useful notation for replicated secret sharing:

Replicated Secret Sharing – Notation and Invariant: We write [a]Z = (a1, a2, a3) for a replicated
integer secret sharing of a and [a]p = (a1, a2, a3) for a replicated secret sharing modulo p. In both cases it
holds that a = a1 + a2 + a3 (where the additions are over the integer in the first case and modulo p in the
latter). As an invariant for both kinds of secret sharing, each party Pi will know the shares ai+1 and ai−1.

Replicated Secret Sharing – Input: When a party Pi wants to share a value a ∈ Zp, Pi picks uniformly
random a1, a2 ← Zp and defines a3 = a−a1−a2 mod p. Then Pi sends shares aj−1 and aj+1 to Pj . Finally
Pi+1 and Pi−1 echo ai to each other and abort if the value they received in this echo phase differs from
what they received from Pi. When using integer secret sharing instead, the shares need to be large enough
to statistically hide the secret. That is, when a party Pi wants to share a value a ∈ {0, . . . ,m− 1}, Pi picks
uniformly random a1, a2 ← {0, . . . , 2dlogme+λ − 1} and defines a3 = a− a1 − a2. Then Pi sends shares aj−1
and aj+1 to Pj . Now, Pj checks if |aj±1| ≤ 2dlogme+λ+1 and aborts otherwise.6 Finally Pi+1 and Pi−1 echo
ai to each other and abort if the value they received in this echo phase differs from what they received from
Pi.

Replicated Secret Sharing – Reveal: When parties want to open a share [a], Pi sends its shares ai+1

and ai−1 to Pi+1 and Pi−1 respectively. When Pi receives share ai from Pi+1 and share a′i from Pi−1, Pi
aborts if ai 6= a′i or outputs a = a1 + a2 + a3 otherwise.7

Replicated Secret Sharing – Linear Combination: Since the secret sharing we use here is linear, we
can compute linear functions without interaction i.e., when executing [c] = [a] + [b] each party will locally
add its shares8. We consider three kind of additions:

– [c]p = [a]p + [b]p, where all the shares are added modulo p;
– [c]Z = [a]Z + [b]Z, where the shares are added over the integers (note that the magnitude of the shares

will increase when using integer secret sharing);
– [c]p = [a]p+[b]Z, where the shares are added modulo p. Note that in the this case, if a is uniform modulo
p then c is uniform modulo p.9

Replicated Secret Sharing – Multiplication: Given two sharings [a]p, [b]p, we can compute a secret
sharing of the product [c = a · b] in the following way:

1. Pi samples a random si ← Zp and computes ui = ai+1bi+1 + ai+1bi−1 + ai−1bi+1 + si;
2. Pi sends ui to Pi+1 and si to party Pi−1;
3. Finally, party Pi defines its own two shares of c as ci+1 = ui−1 − si and ci−1 = ui − si+1;

When performing multiplications with integer secret sharings, we need to ensure that the chosen randomness
is large enough to hide the underlying secrets. In particular, given two sharings [a]Z, [b]Z, such that all shares
are bounded by B, we can compute a secret sharing of the product [c = a · b]Z in the following way:

1. Pi samples a random si ← {0, . . . , 22dlogBe+λ+2−1} and computes ui = ai+1bi+1+ai+1bi−1+ai−1bi+1+si;

6 To keep the protocol symmetric, we use the bound for a3 for all three shares.
7 There is no need to explicitely check for the size of a share in the reconstruction phase since, by the assumption

that at least one among Pi+1 and Pi−1 is honest, one of the received shares will be the correct one.
8 The implementation of [c] = [a] + k and [c] = k · [a] i.e., addition and multiplication by constant, follows trivially.
9 We will use this property twice in the protocol: once, when mixing integer triples and p-modular triples in the

multiplication checking phase, and finally, to argue that the resulting triples will be uniform modulo m.
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2. Pi sends ui to Pi+1 and si to party Pi−1;
3. Pi checks that the received shares are of the correct size i.e., |ui−1| ≤ 22dlogBe+λ+3 and |si+1| ≤

22dlogBe+λ+2

4. Finally, party Pi defines its own two shares of c as ci+1 = ui−1 − si and ci−1 = ui − si+1;

Armed with these tools we are now ready to describe our preprocessing protocol. The protocol is similar in
spirit to previous protocols (e.g., [DO10, DPSZ12]) for generating multiplication triples, and like in previous
work we start by generating two possibly incorrect triples, and then “sacrificing” one to check the correctness
of the other. The main novelty of this protocol is that the two triples actually live in different domains. One
is a an integer secret sharing, while the others is a modular secret sharing. For the sake of exposition we
describe the protocol to generate a single multiplicative triple but, as with previous work, it will be more
efficient to generate many triples in parallel.

The Preprocessing Protocol – Generate Random Triples:

1. Every Pi picks random ai, bi ← Zm and generates sharings of [ai]Z, [bi]Z;
2. All parties jointly compute [a]Z = [a1]Z + [a2]Z + [a3]Z and [b]Z = [b1]Z + [b2]Z + [b3]Z;10

3. All parties jointly compute [c]Z = [a]Z · [b]Z (optimistically using the multiplication protocol described
above);

4. Every Pi picks random xi, yi, ri ← Zp and generates sharings of [xi]p, [yi]p, [ri]p;
5. All parties jointly compute [x]p = [x1]p + [x2]p + [x3]p and [y]p = [y1]p + [y2]p + [y3]p and [r]p =

[r1]p + [r2]p + [r3]p;
6. All parties jointly compute [z]p = [x]p · [y]p (optimistically using the multiplication protocol described

above);
7. All parties open r;
8. All parties jointly compute [e]p = r[x]p + [a]Z;
9. All parties jointly compute [d]p = [y]p + [b]Z;

10. All parties jointly open e, d, then compute and open

[t]p = de− rd[x]p − e[y]p + r[z]p − [c]Z

and abort if the result is not 0;
11. If the protocol did not abort, all parties output (modular) sharings [a]m, [b]m, [c]m by reducing their

integer shares modulo m;

We now argue that:

Theorem 3. The above protocol securely realizes Ftriple with statistical security parameter λ in the presence
of one active corruption when |p| = O(logm+ λ).

Proof. We only give an informal argument for the security of the protocol, since its proof is quite similar to
the proof of many previous protocols in the literature (such as [DO10, BDOZ11, DPSZ12], etc.).

We first argue for correctness of the protocol, focusing on steps 1,2 and 9: Note that, if there is an output,
the output is correct and uniform modulo m. It is correct since, if c = ab over the integer then c = ab mod m
as well. And the values a, b, c are distributed uniformly since there is at least one honest party (in fact, two),
who will pick ai uniformly at random in Zm, therefore a = a1 + a2 + a3 mod m will be uniform over Zm as
well (the same applies of course also to b and c).

We now describe the simulator strategy for the individual subroutines, and then we build the overall
simulator for the protocol in a bottom-up fashion. To keep the notation simpler we assume that P1 is
corrupt. This is w.l.o.g. due to the symmetry of the protocol. To account for rushing adversaries, we always
let the adversary send their message after seeing the message output by the simulator on behalf of the honest

10 Note that if now we convert the sharing of [a]Z to [a]m by having each party take their shares and locally reduce
modulo m, we get that, from the adversary’s point of view, a is uniformly random in Zm, since at least one honest
party choose ai as a uniform value modulo m; the same argument applies symmetrically to [b]Z.
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parties. As usual, the simulator keeps track of the shares that all parties (honest and corrupt) are supposed
to hold at all times.

Simulator – Honest Parties Inputs: To simulate an honest party inputting a value a the simulator
follows the share procedure but replacing a with 0. The simulator then sends a2, a3 to the adversary P1 and
stores a1, a2, a3. Now the simulator receives a′2 (or a′3 depending on whether we are simulating a P2 input
or a P3 input) back from the adversary and aborts if a′2 6= a2 (as an honest party would do).

When performing sharings modulo p, the distribution of the simulated a2, a3 are identical as in the
real protocol (trivially for a2, and since a1 is random and unknown to the adversary, a3 will be uniformly
distributed in both cases). When performing integer sharings, the distribution of the simulated a2 is trivially
identical in the real and simulated execution while a3 is statistically close. This can be easily seen considering
the distribution of a3 + a2 which is a − a1 in the real protocol and −a1 in the simulated execution. Since
a < m and a1 is uniform between 0 and m · 2λ the distributions are statistically close with parameter λ.

Simulator – Corrupt Party Input: When simulating the input of the corrupt party P1 the simulator
receives (a1, a3) (on behalf of P2) and (a′1, a2) on behalf of P3. The simulator aborts if a1 6= a′1 (like the
two honest party would do). When simulating an input in Zp the simulator reconstructs a =

∑
i ai mod p.

When simulating an integer input the simulator checks in addition that the shares received are of the right
size and then reconstructs a =

∑
i ai. Note that now |a| < 3 · 2dlogme+λ+1 which could be larger than m, but

not larger than p given our parameters.

Simulator – Multiplication: When simulating multiplications the simulator picks random (u3, s2) (see
below for the distribution) and sends them to P1. Then the simulator receives (u1, s1) from P1. This uniquely
defines the corrupt party shares of c, namely c2 = u3 − s1 and c3 = u1 − s2. Note that the simulator can
already now compute the error δc = c− ab from the stored shares of a, b and the received values u1, s1 i.e.,
δc = u1 − (a2b2 + a2b3 + a3b2 + s1). The simulator sets the final share of c to be c1 = ab+ δc − c2 − c3 and
remembers (c1, c2, c3) and δc.

When simulating multiplications in Zp the simulator picks (u3, s2) uniformly at random, thus the view of
the adversary is perfectly indistinguishable in the real and simulated execution: this is trivial for s2, and for
u3 we can see that it will also be uniformly random as well since in the real protocol s3 is chosen uniformly
at random.

When simulating integer multiplications the simulator picks (u3, s2) uniformly at random in the interval
{0, . . . , 22dlogBe+λ+2 − 1}, thus the view of the adversary is statistically close in the real and simulated
execution (trivially for s2, and since in the protocol s3 is used to mask a value of magnitude at most 3B3,
the distributions are statistically close with parameter λ. Note that when simulating integer multiplications
the simulator will also abort if the received shares (u1, s1) exceed their bounds. This means that at this point
the value of |c| = |

∑
i ci| is bounded by 24B22λ. As we know from the input phase that all shares are bound

by B = 2dlogme+λ+1 we get that by setting p to be e.g., larger than 100m222λ we can ensure that even in
the presence of a corrupt party the value of c will not exceed p.

Simulator – Fake Reveal: At any point the simulator can open a sharing (a1, a2, a3) to any value a+ δ1
of its choice. To do so, the simulator sends two identical shares (a1 + δ1) to P1 (simulating that both the
honest P2 and P3 send the same share to P1). Then, P1 sends its (possibly malicious) shares a2 + δ2 and
a3 + δ3 to the simulator. Now the simulator aborts if δ2 6= 0 or if δ3 6= 0. Note the aborting condition is
exactly the same as in the real protocol, where e.g., the honest P2 receives a2 from P1 and a′2 from P3 and
aborts if the two values are different. Finally note that the view of the adversary is exactly the same in the
real and simulated execution.

Putting Things Together – Overall Simulator Strategy: We are now ready to describe the overall
simulation strategy. Note that all the settings in which the simulator aborts in the previous subroutines are
identical to the abort conditions of the honest parties in the protocol and moreover are “predictable” by
the adversary (i.e., the adversary knows that sending a certain message will make the protocol abort). The
labels of the steps of the simulator refer to the respective steps in the protocol.
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0. As already described, the simulator keeps track of the shares that all parties (honest and corrupt) are
supposed to hold at all times.

1a. (Send on behalf of P2 and P3) The simulator simulates P2 and P3 sharing values a2, a3, b2, b3 as described
above (e.g., the input are set to be 0);

1b. (Receive from P1) The simulator receives the (maliciously chosen) shares of a1 using the procedure
described above. In particular, now a1 is well defined and bounded.

2. The simulator keeps track of the shares of a and b that all parties are supposed to store after the addition;
(note that since the shares of the honest parties are simulated to 0 we have a = a1 and b = b1 at this
point);

3. The simulator uses the simulation strategy for the multiplication protocol as explained above. If the
simulation does not abort the value of c and δc are now well defined and bounded.

4. The simulator runs the sharing subroutine for x2, y2, r2, x3, y3, r3 (e.g., all values are set to 0).
5. The simulator keeps track of the shares of x, y and r that all parties are supposed to store after the

addition; (at this point x, y and r are well defined);
6. The simulator uses the simulation strategy for the multiplication protocol as explained above. If the

simulation does not abort the value of z and δz are now well defined.
7. The simulator now runs the fake reveal subroutine and opens r to a uniformly random value;

8-9. The simulator keeps track of the shares of e, d that all parties are supposed to store after the executions
of the linear combination;

10a. The simulator runs the fake reveal subroutine and opens e, d to two uniformly random values;
10b. If the simulation did not abort so far the simulator runs the fake reveal subroutine and opens t to rδz−δc

mod p. The simulator aborts if t 6= 0 as an honest party do, but also aborts if δc 6= 0 or δz 6= 0.
11. If the simulator did not abort yet, then the simulator inputs the shares of the multiplicative triple owned

by the adversary (a2, a3, b2, b3, c2, c3) to the ideal functionality Ftriple.

We have already argued for indistinguishability for the various subroutines (thanks to the large masks
used in the integer secret sharings). Note that when we combine them in the overall simulator we add an
extra aborting condition between a real world execution of the protocol and a simulated execution, namely
that the simulation always aborts when the triple is incorrect (during the triple check phase). We conclude
that the the view of the adversary in these two cases are statistically close in λ thanks to the correctness
check at steps 4− 10: assume that the multiplication triples are correct i.e., that z = xy mod p and c = ab
over the integers. Now, if we make sure that p is large enough such that the shares of a,b, and c are the same
over the integers and modulo p, then the resulting t will always be 0. Note that this is guaranteed by the
check, during the sharing phase, of the magnitude of the shares chosen by the other parties. Finally, assume
that c 6= ab e.g., c = ab+ δc (with δc 6= 0) and z = xy + δz.

Now the result of the check will be t = rδz − δc mod p: Since the value r is picked by the simulator after
the values δc, δz have already been defined, we finally have that t is equal to 0 with probability p−1 which is
negligible as desired.

5.2 Online Phase

Here we briefly sketch the online phase of our protocol i.e., the protocol resulting by applying our compiler
to Beaver’s passively protocol, which is secure against 1 active corruption. In what follows we describe the
protocol explicitly i.e., we describe directly the steps to be performed by the real parties and with no access
to helping ideal functionalities: since the online phase of Beaver’s protocol is completely deterministic, we
do not need the coin flip functionality and, since we only have 3 parties, the broadcast functionality is easily
implemented: when Pi broadcasts to a set {Pi,Pj}, this is implemented by sending a message to Pj and,
when Pi broadcasts to a set {Pj ,Pk}, this is implemented by sending the same message to both parties, who
then echo it to each other and abort if the two received messages are different. Finally, note that an additive
secret sharing a = a1+a2+a3 mod m among the virtual parties P1,P2,P3 (i.e., where Pi knows ai) is exactly
the same as a replicated secret sharing [a]m (as described above) between the real parties P1,P2,P3, and
therefore we can continue using the notation introduced for the preprocessing phase.
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Online Phase – Setup and Invariant: Let C be the arithmetic circuit that the real parties wish to
evaluate, where every input wire is associated to some party Pi. As before, for a value x ∈ Zm we write [x]m
to denote the situation where Pi knows two shares xi+1, xi−1 such that

∑
i xi = x.

Online Phase – Input Gates: Remember that in our general compiler the secret sharing happened
“outside” of the passive MPC protocol and then we modified the circuit to be evaluated by adding a layer
of linear operations to reconstruct the secret sharings of the inputs. This is not necessary in the special case
of Beaver’s protocol, since after a single sharing we already have the inputs in the desired, replicated secret
shared format. Therefore, for every input wire in C associated to Pi with input x ∈ Zm, we let Pi pick
random shares (x1, x2, x3) ∈ Z3

m s.t.,
∑
i xi = x, and sends xi to Pi−1 and Pi+1. Finally Pi−1 and Pi+1 echo

xi to each other and abort if the value they received in this echo phase differs from what they received from
Pi.

Online Phase – Output Gates/Open Subroutine: Whenever the parties need to be able to reveal the
content of a shared value [z]m, we let Pi sends its shares zi+1 and zi−1 to Pi+1 and Pi−1 respectively. When
Pi receives share zi from Pi+1 and share z′i from Pi−1, Pi aborts if zi 6= z′i or outputs z = z1 + z2 + z3
otherwise. During the circuit evaluation we open wires to output the result of the computation and as a
subroutine during the evaluation of multiplication gates.

Online Phase – Linear Gates: Linear gates (binary additions, unary additions by constant and mul-
tiplication by constant) can be locally implemented by share manipulations in the same way as for the
preprocessing phase.

Online Phase – Multiplication Gates: Binary multiplication of two shared values [x]m, [y]m is performed
by finding an unused preprocessed multiplication triple [a]m, [b]m, [c]m and then running Beaver’s protocol,
i.e.:

1. Open e = [a]m + [x]m
2. Open d = [b]m + [y]m
3. Locally compute [z]m = [c]m + e · [y]m + d · [x]m − ed
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