
Variable-Length Bit Mapping
and Error-Correcting Codes

for Higher-Order Alphabet PUFs

Vincent Immler1, Matthias Hiller1, Qinzhi Liu1,2,
Andreas Lenz3, and Antonia Wachter-Zeh3

1 Fraunhofer Institute for Applied and Integrated Security (AISEC)
{vincent.immler,matthias.hiller,qinzhi.liu}@aisec.fraunhofer.de

2 RWTH Aachen University
3 Institute for Communications Engineering, Technical University of Munich (TUM)

andreas.lenz@mytum.de,antonia.wachter-zeh@tum.de

Abstract. Device-specific physical characteristics provide the founda-
tion for Physical Unclonable Functions (PUFs), a hardware primitive for
secure storage of cryptographic keys. So far, they have been implemented
by either directly evaluating a binary output or by mapping outputs from
a higher-order alphabet to a fixed-length bit sequence. However, the lat-
ter causes a significant bias in the derived key when combined with an
equidistant quantization.
To overcome this limitation, we propose a variable-length bit mapping
that reflects the properties of a Gray code in a different metric, namely
the Levenshtein metric instead of the classical Hamming metric. Subse-
quent error-correction is therefore based on a custom insertion/deletion
correcting code. This new approach effectively counteracts the bias in
the derived key already at the input side.
We present the concept for our scheme and demonstrate its feasibil-
ity based on an empirical PUF distribution. As a result, we increase
the effective output bit length of the secret by over 40% compared to
state-of-the-art approaches while at the same time obtaining additional
advantages, e.g., an improved tamper-sensitivity. This opens up a new
direction of Error-Correcting Codes (ECCs) for PUFs that output re-
sponses with symbols of higher-order output alphabets.

Keywords: Physical Unclonable Functions, Fuzzy Extractor, Secrecy Leakage,
Coding Theory, Quantization, Varshamov-Tenengolts (VT) Code.

1 Introduction

For a variety of applications, PUFs provide cryptographic keys with an increased
level of security when compared to previous approaches, e.g., keys stored in non-
volatile memory that can be extracted while the device is powered off. Most
PUFs are implemented in silicon, such as the Ring Oscillator (RO) [?] or SRAM

PUF [?]. Other more specialized approaches include the Coating PUF [?] which
additionally provides tamper-evidence, i.e., a property that is required to deter-
mine if the device has been physically tampered with. At their core, all PUFs
output quasi-continuous physical measurement data that is processed by a quan-
tization and error correction to generate reliable keys.

For the ease of implementation, most PUFs map these quasi-continuous val-
ues to a single-bit response, as it is the case for the RO PUF. However, this
discards large portions of the information provided by the PUF response. It was
shown, e.g., for the Coating PUF, that a multi-bit quantization step increases
the output entropy and also facilitates a first error reduction step [?].

So far, the non-uniformly distributed input data of the quantization is mapped
to symbols by a fixed-length bit mapping. Depending on the selected type of
quantization this has several drawbacks. For equiprobable quantization, helper
data vectors leak significant amounts of secret information and also the tamper-
sensitivity is poor, i.e., physical changes in the underlying PUF structure may
not necessarily cause a change in the output of the quantization [?]. For an
equidistant quantization, the resulting binary sequence is heavily biased and
causes secrecy leakage in the helper data of a subsequent ECC.

To address this issue, we follow the information-theoretical intuition of quan-
tizing values with different probabilities of occurrence to binary sequences of
varying length, i.e., values that occur more often are assigned a shorter bi-
nary representation and vice-versa. A good compression algorithm maps a non-
uniform sequence to a shorter uniformly distributed sequence. Therefore, the
output binary data is nearly unbiased and the underlying equidistant quantiza-
tion does not leak secret information. Moreover, for tamper-evident PUFs, an
equidistant quantization is more sensitive towards physical attacks [?].

Unfortunately, following this idea comes at the expense that a large body of
previous work on error correction [?,?,?,?,?,?,?,?,?] can no longer be applied to
the quantized bit sequence of a PUF. This is owed to the fact that if noise exceeds
the tolerance of the quantization scheme, the length of the considered sequence
changes. A change in length is either called an insertion if it gets longer, or a
deletion if it gets shorter. For more advanced cases not specifically considered in
the paper, they may occur also at the same time.

In contrast, commonly known ECCs are directed towards correcting substitu-
tion errors, typically by taking into account the Hamming distance of sequences.
Since one insertion or deletion does not only affect the erroneous symbol itself,
but also shifts all subsequent symbols, codes in the Hamming metric are not
able to efficiently correct insertion or deletion errors.

The challenge therefore is to use codes capable of correcting errors that stem
from variable-length bit mappings within the context of PUFs, i.e., they must
address common design issues of PUF key derivation schemes such as reliability
and secrecy leakage in the helper data. To do so, we leverage the properties of
Varshamov-Tenengolts (VT) codes [?,?,?] that are able to correct insertion and
deletion errors. In fact, we use a variation of the original VT codes that also
covers substitution errors.

2

To further elaborate on our scheme, let us briefly introduce the PUF system
model, as illustrated in Figure 1. The upper part represents the enrollment of
the PUF, i.e., the point in time when it is initialized in a secure environment and
helper data is created to enable later error correction. The lower part depicts
the reconstruction in the field where the PUF key is extracted again to serve as
secret input for cryptographic applications. As part of this processing chain, the
PUF values are affected by noise which makes it necessary to compensate for
this influence by suitable schemes, e.g., a combination of quantization and ECC.
In this work, we focus on the specifics of this algorithmic part.

Fig. 1: PUF system model with enrollment and reconstruction.X is the quantized
PUF response and Y the secret bit sequence. Added noise is denoted as (·)′.

1.1 Contributions

In short, this work presents the following three contributions:

– A variable-length bit-mapping scheme that is well-adjusted in terms of the
Levenshtein distance to the properties of an equidistant quantization.

– First application of codes with insertion and deletion error-correcting capa-
bility in the domain of PUFs including necessary code modifications.

– Practical design and comparison to state-of-the-art approaches, showcasing
a gain of over 40% in effective output secret bits while at the same time
improving tamper-sensitivity and ensuring sufficient reliability.

1.2 Organization

A brief outline of our paper is as follows. Related work is discussed in Section 2,
while the required background information on insertion/deletion-correcting codes
is reviewed in Section 3. Subsequently, we introduce our custom VT based key

3

derivation scheme in Section 4. This new scheme is then evaluated in Section 5.
Eventually, we conclude our work in Section 6.

1.3 Notation

Unless specifically noted otherwise, random variables and their distributions
are represented by capital letters, whereas numbers and specific realizations of
random variables are denoted as small letters. Subscripts refer to indices of
vectors, and superscripts show the length of vectors (in either symbols or bit).
CVT is the ECC and c stands for the n-bit codeword with m information bits
and r parity bits.

For the helper data W ∗, a quantized PUF response Xv with either super-
script v as the symbol-wise length with alphabet size q or superscript n as length
in bit, the mutual information between PUF response and helper data I(Xv;W ∗)
measures the information leakage. The min-entropy definition for H̃∞(Xv|W ∗)
is given in [?]:

I(Xv;W ∗) = H(Xv)−H(Xv|W ∗) ≤ v · log2(q)− H̃∞(Xv|W ∗), (1)

H̃∞(Xv|W ∗) = − log2

(
E
w∗

[
max
xv

Pr
Xv|W∗

[xv|w∗]
])

. (2)

2 State of the Art

We align our work with two other domains. In Section 2.1, we discuss previous
work on quantization schemes and bit mappings. Subsequently, in Section 2.2
we briefly consider other ECC proposals for PUFs and explain why they cannot
be applied to our setting.

2.1 Quantization Schemes and Bit Mappings

A common approach for generating secret keys from PUFs with continuous out-
put values is to apply an equiprobable quantization as in [?] or [?]. The Prob-
ability Density Function (PDF) over all analog PUF responses is divided into
intervals of equal probability and each interval is mapped to a symbol from a
higher-order alphabet as illustrated in Figure 2a. In order to decrease the prob-
ability of an erroneous quantization value, an offset is stored during enrollment
that shifts the PUF response to the center of its corresponding quantization in-
terval. However, as shown in [?], equiprobable quantization with these correcting
vectors causes significant helper data leakage and requires precise knowledge of
the distribution of the sampled PUF values. Hence, investigating other schemes
is necessary.

Other equiprobable quantization schemes implement a partitioning scheme
to avoid helper data leakage but again require precise knowledge of the distribu-
tion [?]. Also, for equiprobable approaches, tamper-sensitivity varies significantly

4

due to the varying size of the quantization intervals [?]. Equidistant quantiza-
tion intervals mitigate these effects but come at the downside of biased quantized
PUF outputs. Here, the PDF is divided into intervals of equal width but different
probability as shown in Figure 2b. As a consequence, a suboptimal assignment
of the interval boundaries relative to the PDF only has a minor impact on the
resulting entropy of the quantized output.

For both cases, the resulting symbols can be represented with a Gray code bit
mapping, i.e., neighboring intervals differ only in a single bit position in terms
of the Hamming distance. This results in a practical scheme for an equiprobable
quantization, neglecting the challenge of precisely knowing the PDF. However,
when combining equidistant quantization with fixed-length binary outputs and
a linear fuzzy extractor scheme, significant amounts of secret information are
leaked by the helper data due to the induced bias [?].

(a) Equiprobable quantization. (b) Equidistant quantization.

Fig. 2: Visualization of equiprobable and equidistant quantization schemes.

2.2 Error-Correcting Codes for PUFs

A significant amount of work was carried out in the domain of PUFs ranging
from formalizing PUFs [?] to generic ECC constructions, and protocols [?] in
addition to analyses in terms of implementation and information efficiency [?,?].

As outlined before, previous work is mostly specifically tailored towards PUFs
with a binary alphabet. The strong focus on these PUFs has been a valid require-
ment due to their large availability. While generally being suitable to provide a
sufficient reliability, these schemes suffer from other shortcomings mostly related
to helper data leakage that is caused by biased PUF data, as explained in [?].
Schemes targeting PUFs that provide higher-order alphabets must take these
possible effects into account, too.

While lacking the opportunity to use existing ECC constructions, we still
need to check if suitable ideas from the binary or fixed-length domain could be
applied to our scenario, e.g., to prevent helper data leakage and bias. To remove
this leakage, various debiasing schemes were proposed.

Index-Based Syndrome coding (IBS) [?] is a debiasing technique that also
improves the reliability by indexing only reliable PUF response bits. However, the

5

quantized input values all have the same reliability for equidistant quantization
such that IBS is not applicable for the discussed scenario.

The scheme presented in [?] improves the von Neumann (VN) corrector [?].
For i.i.d. PUF response bits, pairs of consecutive zeros or ones occur with differ-
ent probabilities, while pairs (1,0) and (0,1) have the same probability. However,
the approach is intended for PUFs with small output alphabets. It evaluates
groups of elements that occur with the same probability but differ in their se-
quence, such that an increasing number of elements decreases the probability of
these equiprobable events. In [?], it was recently extended to ternary outputs
using reliability information. However, it cannot be efficiently applied to higher-
order alphabets. The multi-bit symbol approach in [?] is especially suited for
PUFs with high bit error probabilities > 20%. It is not explicitly designed for
bias reduction but can also handle biased inputs efficiently as well. However,
please note that it still has binary inputs and cannot compensate for inser-
tion/deletion errors so that it cannot by applied under our constraints.

As a result, none of the discussed techniques provide a promising foundation
to efficiently derive keys from PUFs with higher-order alphabets. To the best of
our knowledge, the case of a variable-length bit mapping for PUFs has not been
considered beforehand. We are aware of the threat of helper data manipulation
attacks [?]. However, for the presented work, we are interested in discussing more
fundamental properties of variable-length bit mappings and the corresponding
ECCs.

3 Preliminaries

This section briefly introduces the two concepts that form the theoretical foun-
dation of our proposed scheme. First, the Levenshtein distance is presented and
its applicability to quantify the distortion caused by insertion/deletion errors is
discussed. Second, VT codes are covered as a code class to deal with errors of
this type.

3.1 Insertion/Deletion Errors and Levenshtein Distance

Let us briefly consider the following example: let X = [1, 0, 1, 0, 1, 0, 1] be the
designated bit sequence and X ′ = [1, 1, 0, 1, 0, 1] a shorter received sequence
where a deletion occurred at the second position of X. Since the Hamming
distance is not defined between vectors of unequal length, one could artificially
pad X ′ with a zero which results in dH(X, [X ′, 0]) = 6. This large distance
highlights that it is impractical to rate deletions (and similarly, insertions) with
the help of the Hamming metric.

To better reflect the nature of the error, Levenshtein [?] defined the distance
dL(X,X ′) as the smallest number of insertions, deletions, and substitutions that
are required to transformX ′ intoX. Hence, dL(X,X ′) = 1 for the given example.
In the following, we review VT codes that form a class of codes that can correct
errors in the Levenshtein metric.

6

3.2 VT Codes for Insertion/Deletion Error Correction

Varshamov-Tenengolts (VT) codes have been introduced to address insertion
and deletion errors and correct a single insertion or deletion [?,?]. For a fixed
integer a ∈ {0, . . . , n}, a binary VT code of length n is defined as the set of all
vectors Cn = (c1, c2, . . . , cn) ∈ {0, 1}n such that:

n∑
i=1

i · ci ≡ a (mod n+ 1). (3)

The integer a is called the checksum (or syndrome). VT codes are conjectured
to be optimal in the sense that they have the largest cardinality of all single-
deletion correcting codes [?]. The largest code sizes are obtained for a = 0. The
size of the code for a = 0 is at least 2n

n+1 and its redundancy therefore at most
dlog2(n + 1)e bits. Please note that this basic construction is unable to correct
substitutions and only works when the type of error is already known, i.e., the
length of the received word must be provided.

The procedure to construct systematic VT-like codes according to [?] is as
follows: For a binary input sequence (x1, . . . , xm), the corresponding codeword
has the form (c1, . . . , cn) where x1 = ci1 , x2 = ci2 , . . . , xm = cim , 1 ≤ i1 < i2 <
· · · < im ≤ n. The bits ck, where k /∈ {i1, i2, · · · , im} are called parity bits. For
a codeword of length n, the number of parity-check bits is r = dlog2(n− 1)e+ 1
and they are located at positions k = 2l, where 0 ≤ l ≤ r− 2, and at position n.

ForM such that 2n ≤M ≤ min(n+2r−1, 2r), the parity-check bits (p1, . . . , pr)
are chosen according to

r−1∑
l=1

pl · 2l−1 + pr · n+

m∑
j=1

ij · xj ≡ 0 (mod M). (4)

Please note, that “systematic” in this setting does not imply that the first m bits
contain the information, they are distributed to positions which are not a power
of 2 or equal to n. Extending this systematic encoding with the capability to
also correct one substitution error comes at the expense of storing one additional
redundancy bit.

In our PUF use case, only parts of the codewords are transmitted since the
parity bits are stored as public helper data. The helper data is assumed not to
be corrupted, so we can retrieve it without errors, similarly to [?]. However, the
message bits may contain errors at unknown positions as they are drawn from
the noisy PUF.

The standard systematic VT code cannot be employed in PUFs, because
when recovering the response from the PUF, the positions where to insert the
parity-check bits cannot be determined. It is therefore necessary to fully sepa-
rate parity-check bits from the message containing secret information. This is
explained in Section 4.2.

7

4 Variable-Length Bit Mapping and New VT-like Code

We first introduce the variable-length bit mapping of equidistant quantization
intervals and discuss how to encode them into VT-like codewords.

4.1 Variable-Length Bit Mapping for Equidistant Quantization

Ideally, the bit mapping is such that the obtained sequence is not biased, i.e.,
the 1s and 0s are uniformly distributed. In addition, the bit mapping should
support the subsequent error correction in terms of low distance changes from
one to another quantization interval. At the same time this improves tamper-
sensitivity, as errors that result in a larger distance to the designated value
are almost certainly caused by a physical attack and therefore – as part of its
intended purpose – should cause the device to fail.

To achieve low distance changes for neighboring intervals in Hamming dis-
tance, i.e., dH = 1, one would use a Gray code [?]. However, it cannot be applied
in our case, since this scheme only works for fixed-length bit mappings. Another
disadvantage of fixed-length bit mappings is that some patterns of 1s and 0s
would occur more likely, i.e., cause a bias. To overcome these limitations, we
propose a new variable-length bit mapping scheme, as shown in Figure 3b.

(a) Tree for variable-length bit mapping. (b) Resulting bit assignment.

Fig. 3: Proposed variable-length bit mapping for equidistant quantization.

In order to preserve the entropy of the quantization, i.e., when mapping its
symbols to the binary domain, the quantization procedure requires a uniquely
decodable code, e.g., it should be prefix-free. Therefore, we build a binary tree
to explicitly assign symbols to a variable-length bit mapping that differs only in
dL = 1 for neighboring intervals. Hence, it is the Levenshtein counterpart to the
Gray code. Notice that a Huffman code is not an eligible candidate here as it
neither ensures a debiasing characteristic due to the lack of same-probability of
0s and 1s, nor is the constraint of dL = 1 for neighboring intervals considered.

8

The example displayed for 14 intervals of Figure 3a is explained by following
the conventions of graph theory. Let G = (V; E) be the graph G, whereas V
represents the set of vertices and E the set of edges. The effective vertices are
numbered from ±1 to ±7 to indicate the vertices’s corresponding quantization
interval to the left and right of the PDF’s mean.

This construction follows the principle of a prefix-free code, where each effec-
tive vertex is connected to only one other vertex by one edge. For the resulting
symbols of adjacent quantization intervals, the desired distance of dL = 1 is
achieved. By traversing the graph either to the left or right, bit 1 or 0 is incorpo-
rated in the pattern. Unfortunately, we have not yet found a way to generalize
this construction. The resulting bit mapping for the case of 14 intervals as rep-
resented by Figure 3b is therefore given in Table 1.

Table 1: Example for variable-length encoding with Levenshtein distance 1 be-
tween adjacent intervals. The colors are matched to Figure 3b.

Symbol 7 6 5 4 3 2 1 −1 −2 −3 −4 −5 −6 −7

Binary 01100 01101 0111 0011 0010 000 010 110 111 1011 1010 1000 10010 10011

The new bit mapping is well-suited for the application based on the following
perspective:

– As long as the input distribution is symmetric, 0s and 1s are balanced, since
equally probable intervals have an equal number of 1s and 0s.

– It fulfills the requirement that adjacent intervals only differ by one inser-
tion/deletion/substitution error, i.e., adjacent intervals have dL = 1.

– It is prefix-free, i.e., it preserves the information provided by the quantization
but with less redundant bits compared to a fixed-length bit mapping.

– It has a debiasing property, i.e., more probable symbols are assigned shorter
bit mappings and less probable symbols are assigned longer bit mappings.

4.2 Systematic VT-Like Code Construction for PUFs

This section introduces a code to address a single insertion, deletion or substi-
tution error that originates to a quantization error and subsequently stems from
the bit mapping as introduced in Section 4.1. We propose a VT-like code con-
struction for the situation that the parity-check bits are not transmitted within
the input bit stream and are thus error-free. Our code construction is as follows:

CVT :=
{

(x1, · · · , xm, p1, · · · , pr) :

m∑
i=1

ixi +

r∑
j=1

2j−1pj ≡ 0 (mod 2m+ 1)
}
,

(5)

9

where m information bits and r parity-check bits together for a codeword of
length n = m + r. The redundancy of this code construction is dlog(2m + 1)e
and smaller than the redundancy of the systematic construction from [?]. In the
following, we will show how CVT can correct one deletion, insertion, or substi-
tution error. The decoding procedure is similar to the decoding of classical VT
codes [?].

First consider an example with a single deletion. Assume that the π-th bit in
the original bit sequence was deleted, which has λ0 0s to the left of it, ρ0 0s to
the right of it, λ1 1s left of it and ρ1 1s right of it. Therefore, π = 1+λ0+λ1. Let
ω be the Hamming weight the received bit stream, i.e., ω = λ1 + ρ1. Evaluating
the sums in Equation 5, the deficiency ∆ of the new checksum compared to the
original one is

∆ = −(π · xπ +

m∑
i=π+1

xi) (mod (2 ·m+ 1)) (6)

When a 1 was deleted, the checksum deficiency is given by

∆ = −(π + ρ1) (7)

= −(1 + λ0 + λ1 + ρ1) (8)

= −(1 + λ0 + ω) (9)

≡ 2 ·m+ 1− (1 + λ0 + ω) (mod 2 ·m+ 1) (10)

To recover the initial input, one needs to insert a 1 at the right side of λ0 0s in
the received sequence. When a 0 was deleted, the new checksum is ρ1 less than
the original, i.e., ∆ = 2 ·m+ 1− ρ1. To recover, one needs to insert a 0 on the
left side of ρ1 1s. The case for insertion errors can be solved in a similar manner.

For substitution errors, the error pattern where the 0 flips to 1 gives a de-
ficiency ∆ of the position number, i.e., π. Vice-versa, if 1 changes to 0, the
deficiency ∆ is the value of 2m + 1 − π. The range of values for the checksum
deficiency ∆ for insertion, deletion, and substitution errors is given in Table 2.

Table 2: Checksum Deficiency ∆ vs. Error Pattern
Error Type Error Pattern ∆ Range of ∆

Insertion insert 0 ρ1 [0, ω]
Insertion insert 1 π + ρ1 = ω + λ0 [ω,m+ 1]
Deletion delete 0 −ρ1 + 2m+ 1 [2m+ 1− ω, 2m] ∪ {0}
Deletion delete 1 −ρ1 − π + 2m+ 1 [m+ 1, 2m− ω]

Substitution flip 0 to 1 π [1,m]
Substitution flip 1 to 0 2m+ 1− π [m+ 1, 2m]

The table shows that the range of the two cases of insertions overlap in ω. The
error correction here can be explained as follows: for an insertion error, if ∆ = ω,

10

Algorithm 1: VT-like Systematic Decoding Algorithm for PUFs

Data:
lI = (Length information)
∆ = (Checksum deficiency)
X ′ = (noisy PUF response)
m′ = (bit length for reference PUF response)
Result: Y ′ = (corrected secret bit sequence)

1 if m′ ≡ lI (mod 3) then
/* substitution error or error-free,i.e., m′ = m */

2 if ∆ = 0 then
3 No error ; // Y ′ ← X ′

4 else
5 if ∆ > m′ then
6 X ′[2m′ + 1−∆] = 1 ; // substitution error from 1 to 0

7 else
8 X[∆] = 0 ; // substitution error from 0 to 1

9 end

10 end
11 Y ′ ← X ′

12 else if m′ + 1 ≡ lI (mod 3) then
/* deletion error, i.e., m′ = m− 1 */

13 if ∆ = 0 then
14 Y ′ ← X ′ with 0 inserted at the end
15 else
16 if ∆ > 2 ·m′ + 3− ω then
17 insert 0 at left side of ρ1 1’s on the right ; // ρ1 = 2m′ + 3−∆
18 else
19 insert 1 at right side of λ0 0’s on the left ; // λ0 = 2m′ + 2− ω −∆
20 end
21 Y ′ ← X ′

22 end

23 else
/* insertion error, i.e., m′ = m+ 1 */

24 if ∆ = 0 then
25 Y ′ ← X ′ with 0 deleted at the end
26 else
27 if ∆ > ω then
28 delete 1 at the right side of λ0 0’s on the left ; // λ0 = ∆− ω
29 else
30 delete 0 at the left side of ρ1 1’s on the right ; // ρ1 = ∆
31 end
32 Y ′ ← X ′

33 end

34 return Y ′

11

there is either a 0 or 1 inserted in the beginning. For this case, we delete the first
bit to correct the insertion error. Algorithm 1 shows the decoding procedure for
our proposed VT-like code construction. It generalizes the systematic decoding
process of the previously discussed example.

In Algorithm 1, lI denotes the length information m (mod 3) which is stored
as helper data. It allows to identify the error type. Recall that X ′ is the output
of the measured PUF values and Y ′ is the corrected secret.

We increase argument of the modulo operation to 2m+ 1 to also guarantee
substitution error correction. If we only have insertion or deletion errors, we use
the following code definition which has one bit less redundancy:

{(x1 · · ·xm, p1 · · · pr)|
m∑
i=1

i · xi +

r∑
j=1

2j−1 · pj ≡ 0 (mod m+ 1)}. (11)

4.3 Helper Data

Our coding scheme stores two types of helper data, the length indicator infor-
mation lI and the parity bits pr. We could also directly store the length m in
lI. However, this significantly reduces the number of possible sequences which
is equivalent to a large helper data leakage. The VT-like code can only correct
a single insertion, deletion or substitution such that we only need to correctly
indicate whether the length of the sequence was increased by one, decreased by
one or remained the same. This can also be represented by m (mod 3) which
reveals less information than providing the precise length.

In addition, the parity information is stored as helper data according to [?].
It was shown in [?] that the other linear schemes have a higher efficiency for
the Hamming metric while the parity approach in [?] is less efficient and has
a higher secrecy leakage. However, the other schemes apply an XOR operation
between parts of the helper data and the PUF response. An insertion or deletion
error destroys the mapping such that error correction is no longer possible. This
makes the parity approach currently the only applicable scheme.

4.4 Toy Size Example

In the following toy example, we demonstrate the encoding and decoding of
our VT-like code. Based on PUF nodes with x8 = [5, 4,−3,−6, 7,−1, 2, 4]. The
symbols are encoded according to the bit mapping presented in Section 4.1, i.e.,

enc(x8) = [(0111), (0011), (1011), (10010), (01100), (110), (000), (0011)]. (12)

Afterwards, 4 symbols are combined to one VT codeword. The first 4 symbols are
encoded to a binary sequence of length 17. Therefore lI(x

4) = 17 ≡ 2 (mod 3).
The left half of Equation 5 is

12

17∑
i=1

i xi = 2 + 3 + 4 + 7 + 8 + 9 + 11 + 12 + 13 + 16 = 85 ≡ 15 (mod 35). (13)

The parity bits are a binary representation of 35 − 15 = 20, so p6 = (010100).
For the second part of the PUF response, we analogously calculate the helper
data lI = 15 ≡ 0 (mod 3) and p6 = (001111).

To demonstrate deletion and insertion error correction, let us assume that
during reconstruction one quantization error occurred in the third symbol and
another one in the seventh symbol, such that x′

8
= [5, 4,−2,−6, 7,−1,3, 4].

Therefore the third symbol is encoded to (111) instead of (1011), which cor-

responds to one deletion error. Computing lI(x
′4) = 1 ≡ 16 (mod 3) shows that

the one bit was deleted:

∆ =

m∑
i=1

i x′i +

r∑
j=1

2j−1 pj = 81 + 20 = 101 ≡ 31 (mod 33 + 2). (14)

∆ = 2 · (16 + 1) + 1−ρ1, therefore we have ρ1 = 4 and insert 0 on the left of 4 1s
in the right. Thus, we were able to detect the position of the deletion and correct
the error. For the second half, let us assume that the third symbol shifted from
2 to 3 such that (0010) is forwarded instead of (000). Now lI(x

′4) = 1. Since
I(x4) = 0, one insertion occurred. ∆ = 13, so according to line 28 of Algorithm 1,
we delete the 1 at the right side of 13− 7 = 6 0s.

5 Evaluation

To allow a fair comparison to the state of the art, the results in this section have
been simulated according to the scenario in [?]. We therefore used the following
parameters: The device contains 128 PUF nodes with Gaussian distributed PUF
responses with µ = 1.8·10−13 and σ = 3.6·10−15. Individual measurements of the
nodes are affected by Gaussian distributed, mean-free noise with σN = 2 · 10−16.

5.1 Reliability

In the following, two mechanisms are considered to improve the reliability of the
PUF system. First, we evaluate the effects of the quantization. Afterwards, the
specifics of the VT-like code are analyzed in terms of number of secret bits and
reliability.

Error Reduction by Quantization As a baseline, we first evaluate the per-
formance of a system that only relies on a quantization without any further error

13

correction or leakage mitigation steps. Following [?], the equidistant quantiza-
tion is applied to the PUF response of each individual node. The width of the
quantization intervals is set to

Qw = 2 · y · σN. (15)

As mentioned beforehand, by storing a helper data vector, the quantization
scheme itself has an error tolerance of [−y · σN,+y · σN], i.e., as long as the
error does not exceed this interval no error will occur. Here, y is a parameter
that determines the reliability. This is illustrated in Figure 4a with a yellow
arrow indicating the interval Qw. Later, we will combine this quantization with
Reed–Solomon (RS) codes with different code parameters [?].

(a) Quantization and VT-like code as ECC. (b) Quantization and RS code as ECC.

Fig. 4: Comparison of equidistant quantizations with differing subsequent ECCs.
In 4a, only shifts by small errors are correct, as it is the preferred case to improve
tamper-sensitivity. In contrast, 4b corrects any shift to arbitrary intervals, as
long as the overall error-threshold of the RS code is not exceeded.

Error Reduction by VT-like Code Figure 4a illustrates the difference of the
noise tolerance between the pure quantization and the combination of quanti-
zation with error correction. After error correction using the VT-like code, the
noise tolerance has tripled to 3 · Qw for one value. Therefore, same values of y
now offer a much better reliability compared to a pure quantization.

However, for each segment of nodes still only one error can be corrected
due to the properties of the constructed code. This limitation is preferred, as a
physical attack which causes a large increase in Levenshtein distance from the
reference value should not be corrected. Heavily distorted measurement values
occur from noise only with small probability, so multiple errors outside of the
[−y · σN,+y · σN] interval should cause the system to fail, thereby improving
tamper-sensitivity.

In the following, we add a hat (̂·) to probabilities that refer to corrected
values after the VT-decoding. We calculate the error probability Pn of a node

14

by integrating over the PDF of the noise. Then we apply the VT-like code for
error correction to obtain the corresponding error probability for a segment, if
more than one node is corrupted with dL = 1. Finally, for an error-free device,
all of its segments must be correct. The node error probability is calculated by
the PDF of a Gaussian distribution with N (µ, σ) as follows:

Pn = 1−
∫ +y·σN

−y·σN

N (0, σN).

Without error correction, a segment with m nodes will pass the authentication
process only if all its nodes are quantized correctly. This corresponds to a segment
error probability Ps of

Ps = 1− (1− Pn)m. (16)

In this paper, the aim is to correct the error when the encoded value shifts into
adjacent intervals. Hence, per segment, only one node with dL = 1 must be
corrected. The probability P̂n that a single node is correct after correction is:

P̂n = 1−
∫ +3·y·σN

−3·y·σN

N (0, σN). (17)

The error probability P̂s after VT error correction is

P̂s ≤ 1−
(
m(1− Pn)m−1(Pn − P̂n) + (1− Ps)

)
(18)

= 1−
(
m(1− Pn)m−1(Pn − P̂n) + (1− Pn)m

)
(19)

The probability in (17) assumes that only adjacent intervals differ in one bit,
i.e., a single insertion/deletion/substitution error. However, in the process of
building the codebook, one cannot avoid that nearby intervals other than the
adjacent ones also differ in only one bit.

Hence, the probability of the analytically computed error rate upper bounds
the error probability and simulated results should slightly outperform the calcu-
lations. This difference can be practically observed, whereas the margin is larger
for a higher error-rate and smaller for a lower error-rate. For a device with ν
segments, the overall device error probability P̂d is finally given by

P̂d = 1− (1− P̂s)ν . (20)

If no error correction is carried out, P̂d and P̂s will be replaced by Pd and Ps.

As listed in Table 3, we observe for a device with 128 nodes that increasing y
leads to an improved reliability at the expense of loss in entropy and shortened
length of the bit sequence. Therefore, a designer’s goal is to maximize the number
of secret bits while meeting the reliability requirement.

15

Table 3: Effect of varying parameters of the quantization and resulting data for
entropy, length of bit mapping, and reliability. The entropy is given in bits per
node.

Number min Shannon Bits Bits 97% Confidence
Pd

of Intervals Entropy Entropy per Node per Device Interval

12 (y = 4.95) 2.26 2.92 3.27 419 [406, 430] 9.5× 10−5

14 (y = 4.24) 2.47 3.13 3.36 430 [417, 443] 2.8× 10−3

16 (y = 3.71) 2.65 3.33 3.51 449 [433, 466] 2.6× 10−2

18 (y = 3.30) 2.81 3.49 3.73 478 [457, 500] 1.2× 10−1

20 (y = 2.97) 2.96 3.64 3.92 502 [482, 517] 3.1× 10−1

5.2 Information Leakage caused by ECC

To determine the amount of leakage between encoded sequence Xv helper data
W = (LI, P

∗), we select one of our later results from Table 4 that meets the
reliability requirements and has the largest number of effective secret bits. For
other selected parameters, the calculation is similar.

The first source of leakage is caused by the stored length information lI. It is
stored for each segment and may have 3 possible values only. Therefore I(Xv;LI)
is considered as worst-case if rounded-up, i.e.,

I(Xv;LI) ≤ H(LI) ≤ dlog2(3)e = 2 bits

The second source of leakage is based on the parity bits P ∗ of the VT code. For
a segment with v = 128 node values, the maximum entropy of these parity bits
is therefore considered as information leakage I(Xv;P ∗). Please note, for the
subsequent calculation, the maximum length of the segment is used as upper
bound for the leaked bits. For the specific example, the code size determines
the maximum entropy, i.e., here, resulting in the size of P ∗. The remaining
multiplicative factor of 2 and additive component + 1 is due to the structure of
the code, cf. Equation (5):

I(X128;P ∗) ≤ H(P ∗) (21)

≤ dlog2(2m+ 1)e (22)

= dlog2(2 · 5 · 128 + 1)e (23)

= 11 bits (24)

Hence, the overall number of leaked bits based on a worst-case assumption is

I(X128;W ∗) ≤ 2 + 11 = 13 bits (25)

Concerning the min-entropy that is extracted on average from a device, we con-
sider each node with y = 4.94 (resulting in 12 quantization intervals) which leads
to a min-entropy of 2.26 bit per node, according to Table 3. This gives

16

H̃∞(Xv) = 2.26 · 128 = 289.3 bits (26)

Hence, for a device with 128 nodes, the number of overall effective secret bits is

H̃∞(Xv)− I(Xv;W ∗) = 289.3− 13 = 276.3 bits (27)

5.3 Comparison of Fuzzy Commitment and VT-like Codes

In the following, we compare a fuzzy commitment scheme based on an RS code
and our VT-like code. The results for the RS code are given in Table 4. For the
VT-like code, the results are summarized in Table 5. In either case, we make use
of the min-entropy per node that we obtain from the quantization histogram as
listed in Table 3. The values for y range from 3 to 5 and result in 2.26 to 2.96
bits of min-entropy per node.

Table 4: Evaluation of RS codes for PUFs with v = 128 output symbols. Pn and
Pd are node and device error probabilities. Effective secret bit already account
for the information leakage of the helper data.

y z
RS Code Pn Pd P̂n P̂d Effective

Parameters (before RS) (before RS) (after RS) (after RS) Secret Bits

5 8 (15,13,3) 5.73× 10−7 7.34× 10−5 4.60× 10−12 4.79× 10−10 ≈ 192

3.71 8 (15,11,5) 2.05× 10−4 2.59× 10−2 7.83× 10−10 6.89× 10−8 ≈ 178

3 4 (31,23,8) 2.67× 10−3 2.90× 10−1 3.72× 10−9 3.42× 10−7 ≈ 195

Table 5: Evaluation of error probability and information leakage for the proposed
VT-like code. Ps and Pd are segment and device error probabilities for a PUF
with v = 128 output symbols. Leakage I(Xv;W ∗) is given in terms of bit.

y
Nodes per Ps P̂s P̂d I(Xv;W ∗) Effective Comparison

Segment (before VT) (after VT) (after VT) (in bits) Secret Bits against RS

4.95 4 3× 10−6 3.3× 10−12 1.1× 10−10 ≤ 256 ≈ 33.3

4.95 8 6× 10−6 1.6× 10−11 2.5× 10−10 ≤ 144 ≈ 145.3

4.95 16 1.2× 10−5 6.6× 10−11 5.3× 10−10 ≤ 80 ≈ 209.3

4.95 32 2.4× 10−5 2.7× 10−10 1.1× 10−9 ≤ 44 ≈ 245.3

4.95 64 4.7× 10−5 1.1× 10−9 2.2× 10−9 ≤ 24 ≈ 265.3

4.95 128 9.5× 10−5 4.5× 10−9 4.5× 10−9 ≤ 13 ≈ 276.3 ←

4.24 4 8.8× 10−5 2.9× 10−9 9.4× 10−8 ≤ 256 ≈ 59.8

4.24 8 1.8× 10−4 1.4× 10−8 2× 10−7 ≤ 144 ≈ 171.8

4.24 16 3.5× 10−4 5.9× 10−8 5× 10−7 ≤ 80 ≈ 235.8

4.24 32 7.1× 10−4 2× 10−7 1× 10−6 ≤ 44 ≈ 271.8

17

From the comparison of Tables 4 and 5, we observe a sufficient reliability for
both approaches. The VT-like entries with a lower numbers of effective bits have
been added for explanatory reasons. In terms of effective secret bits, the VT-like
code outperforms the RS code by over 40%. Moreover, its expected implemen-
tation is simplified as no operations in Galois fields are required. Furthermore,
instead of the burst error-correction by the RS code, the VT-like code maintains
a better tamper-sensitivity since mostly adjacent intervals are corrected. An-
other advantage is that its bit mapping introduces less bias and therefore leaks
less information.

Considering Table 5 more closely, we observe that for smaller segments with
less nodes, a better reliability is achieved. However, at the same time more
information is leaked by the helper data. In the simulation of 1.2× 107 devices,
no device failed, which gives a confident error rate � 1× 10−6.

6 Conclusion

The majority of previous fuzzy extractor schemes is limited to binary PUF out-
puts and therefore impractical to use for higher-order alphabets. Moreover, the
few existing works considering higher-order alphabets are limited to fixed-length
bit mappings and equiprobable quantization.

This work introduces a variable-length bit mapping and a corresponding
error correction scheme for an equidistant quantization. Its impact is manifold:
it relieves designers of PUF systems of previously existing constraints regarding
the selection of the quantization scheme, it results in a more efficient scheme and
therefore a longer effective secret bit output, and also improves other desired
properties such as tamper-sensitivity.

For the practical scenario considered, we are able to increase the number of
effective secret bits by 40% while at the same time not requiring complex finite
field operations as it would be the case for an RS decoder. While the results are
already promising, we consider this only as a first step towards a more efficient
use of higher-order alphabet PUFs.

Acknowledgements

The authors from Fraunhofer AISEC have been supported by the Fraunhofer
Internal Programs under Grant No. MAVO 828 432. A. Lenz and A. Wachter-
Zeh have been supported by the Technical University of Munich–Institute for
Advanced Study, funded by the German Excellence Initiative and European
Union Seventh Framework Programme under Grant Agreement No. 291763.
Many thanks to Aysun Önalan for preparing the numbers of the RS-based fuzzy
commitment scheme.

18

References

1. G. E. Suh and S. Devadas, “Physical unclonable functions for device authentication
and secret key generation,” in ACM/IEEE Design Automation Conference (DAC),
2007.

2. J. Guajardo, S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA intrinsic PUFs and
their use for IP protection,” in Workshop on Cryptographic Hardware and Embed-
ded Systems CHES 2007, 2007.

3. P. Tuyls, G.-J. Schrijen, B. Skoric, J. van Geloven, N. Verhaegh, and R. Wolters,
“Read-proof hardware from protective coatings,” in Workshop on Cryptographic
Hardware and Embedded Systems (CHES), 2006.

4. V. Immler, M. Hennig, L. Kürzinger, and G. Sigl, “Practical aspects of quan-
tization and tamper-sensitivity for physically obfuscated keys,” in Workshop on
Cryptography and Security in Computing Systems (CS2), 2016.

5. A. Juels and M. Wattenberg, “A fuzzy commitment scheme,” in ACM Conference
on Computer and Communications Security (CCS), 1999.

6. Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data,” in Advances in Cryptology (EUROCRYPT),
2004.

7. C. Bösch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, and P. Tuyls, “Efficient
helper data key extractor on FPGAs,” in Workshop on Cryptographic Hardware
and Embedded Systems (CHES), E. Oswald and P. Rohatgi, Eds., 2008.

8. M. Yu and S. Devadas, “Secure and robust error correction for physical unclonable
functions,” IEEE Design & Test of Computers, no. 1, 2010.

9. R. Maes, “Physically unclonable functions: Constructions, properties and applica-
tions,” Dissertation, 2012.

10. M. Hiller, D. Merli, F. Stumpf, and G. Sigl, “Complementary IBS: Application spe-
cific error correction for PUFs,” in IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), 2012, pp. 1–6.

11. S. Puchinger, S. Müelich, M. Bossert, M. Hiller, and G. Sigl, “On error correction
for physical unclonable functions,” in International ITG Conference on Systems,
Communications and Coding (SCC), Feb. 2015.

12. M. Hiller, M. Yu, and G. Sigl, “Cherry-picking reliable PUF bits with differen-
tial sequence coding,” IEEE Transactions on Information Forensics and Security,
vol. 11, no. 9, pp. 2065–2076, 2016.

13. S. Puchinger, S. Müelich, M. Bossert, and A. Wachter-Zeh, “Timing attack resilient
decoding algorithms for physical unclonable functions,” in International ITG Con-
ference on Systems, Communications and Coding (SCC), Feb. 2017.

14. G. Tenengolts, “Nonbinary codes, correcting single deletion or insertion (corresp.),”
IEEE Transactions on Information Theory, vol. 30, no. 5, pp. 766–769, 1984.

15. R. R. Varshamov and G. M. Tenengolts, “Codes which correct single asymmetric
errors (in russian),” Automatika i Telemekhanika, 1965.

16. V. Levenshtein, “Binary codes capable of correcting deletions, insertions and re-
versals (in russian),” Doklady Akademii Nauk SSR, vol. 163, no. 4, pp. 845–848,
1965.

17. O. Günlü and O. Iscan, “DCT based ring oscillator physical unclonable func-
tions,” in IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2014, pp. 8248–8251.

18. T. Stanko, F. N. Andini, and B. Skoric, “Optimized quantization in zero leakage
helper data systems,” IEEE Transactions on Information Forensics and Security,
2017.

19

19. J. Delvaux, D. Gu, I. Verbauwhede, M. Hiller, and M. Yu, “Efficient fuzzy extrac-
tion of PUF-induced secrets: Theory and applications,” in Conference on Crypto-
graphic Hardware and Embedded Systems (CHES), 2016.

20. F. Armknecht, R. Maes, A.-R. Sadeghi, F.-X. Standaert, and C. Wachsmann, “A
formalization of the security features of physical functions,” in IEEE Symposium
on Security and Privacy (S&P), 2011, pp. 397–412.

21. B. Colombier, L. Bossuet, V. Fischer, and D. Hely, “Key reconciliation protocols
for error correction of silicon PUF responses,” IEEE Transactions on Information
Forensics and Security, 2017.

22. M. Hiller, M.-D. M. Yu, and M. Pehl, “Systematic Low Leakage Coding for Phys-
ical Unclonable Functions,” in ACM Symposium on Information, Computer and
Communications Security (ASIACCS), 2015.

23. T. Ignatenko and F. M. Willems, “Information Leakage in Fuzzy Commitment
Schemes,” IEEE Transactions on Information Forensics and Security, vol. 5, no. 2,
pp. 337–348, June 2010.

24. R. Maes, V. van der Leest, E. van der Sluis, and F. Willems, “Secure key generation
from biased PUFs: extended version,” Journal of Cryptographic Engineering, vol. 6,
no. 2, pp. 121–137, 2016.

25. J. von Neumann, “Various techniques used in connection with random digits,”
Applied Math Series, 1951.

26. M. Suzuki, R. Ueno, N. Homma, and T. Aoki, “Multiple-valued debiasing for physi-
cally unclonable functions and its application to fuzzy extractors,” in International
Workshop on Constructive Side-Channel Analysis and Secure Design (COSADE),
2017.

27. M. Yu, M. Hiller, and S. Devadas, “Maximum likelihood decoding of device-specific
multi-bit symbols for reliable key generation,” in IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), 2015, pp. 38–43.

28. J. Delvaux and I. Verbauwhede, “Key-recovery attacks on various RO PUF con-
structions via helper data manipulation,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2014.

29. V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and
reversals,” Soviet physics doklady, 1966.

30. N. J. A. Sloane, “On single-deletion-correcting codes,” in Codes and Designs. de
Gruyter, 2002, pp. 273–292.

31. K. Saowapa, H. Kaneko, and E. Fujiwara, “Systematic deletion/insertion error
correcting codes with random error correction capability,” in Defect and Fault
Tolerance in VLSI Systems, 1999.

32. G. I. Davida, Y. Frankel, and B. J. Matt, “On enabling secure applications through
off-line biometric identification,” in IEEE Symposium on Security and Privacy
(S&P), 1998, pp. 148–157.

33. F. Gray, “Pulse code communication,” 1953, US Patent 2,632,058.
34. J. Delvaux, D. Gu, I. Verbauwhede, M. Hiller, and M. Yu, “Secure sketch meta-

morphosis: Tight unified bounds,” IACR eprint archive, 2015.
35. F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes.

North-Holland, 1977.

20

