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Abstract

Trusted parties and devices are commonly used in the real world to securely perform computations
on secret inputs. However, their security can often be compromised by side-channel attacks in which the
adversary obtains partial leakage on intermediate computation values. This gives rise to the following
natural question: To what extent can one protect the trusted party against leakage?

Our goal is to design a hardware device T that allows m ≥ 1 parties to securely evaluate a function
f(x1, . . . , xm) of their inputs by feeding T with encoded inputs that are obtained using local secret
randomness. Security should hold even in the presence of an active adversary that can corrupt a subset
of parties and obtain restricted leakage on the internal computations in T .

We design hardware devices T in this setting both for zero-knowledge proofs and for general multi-
party computations. Our constructions can unconditionally resist either AC0 leakage or a strong form
of “only computation leaks” (OCL) leakage that captures realistic side-channel attacks, providing
different tradeoffs between efficiency and security.
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1 Introduction

There is a long and successful line of work on protecting general computations against partial infor-
mation leakage. Originating from the works on general secure multiparty computation (MPC) [Yao86,
BGW88, CCD88, GMW87], the question has been “scaled down” to the domain of protecting circuits
against local probing attacks [ISW03] and then extended to different types of global information leak-
age [MR04, FRR+10, GR10, JV10, BGJK12, BCH12, DF12, Rot12, GR12, BGJ+13, MV13, BDL14,
DLZ15, GIM+16].

Most of the works along this line consider the challenging goal of protecting computations against
continual leakage. In a general instance of this problem, a desired ideal functionality is specified by a
stateful circuit C, which maps the current input and state to the current output and the next state. The
input and output are considered to be public whereas the state is secret. The goal is to securely realize
the functionality C by a leakage-resilient randomized circuit Ĉ. The circuit Ĉ is initialized with some
randomized encoding ŝ of an initial secret state s. The computation can then proceed in a virtually
unlimited number of rounds, where in each round Ĉ receives an input, produces an output, and replaces
the old encoding of the secret state by a fresh encoding of a new state.

The correctness goal is to ensure that Ĉ[ŝ] has the same input-output functionality as C[s]. The
security goal is defined with respect to a class L of leakage functions `, where each function ` returns
some partial information on the values of the internal wires of Ĉ. The adversary may adaptively choose a
different function ` ∈ L in each round. The security goal is to ensure that whatever the adversary learns
by interacting with Ĉ[ŝ] and by additionally observing the leakage, it can simulate by interacting with
C[s] without obtaining any leakage.

While general solutions to the above problem are known for broad classes of leakage functions L,
they leave much to be desired. Some rely on leak-free hardware components [FRR+10, JV10, DF12,
MV13, GR10]. Others make a heavy use of public-key cryptography [GR10, JV10, BGJK12, BCH12,
GIM+16] or even indistinguishability obfuscation [GIM+16]. Other issues include the need for internal
fresh randomness in each round, big computational overhead that grows super-linearly with the amount
of tolerable leakage, complex and subtle analysis, and poor concrete parameters. All of the above works
suffer from at least some of these limitations.

In this work we take a step back, and study a simpler stateless variant of the problem, where both
C and Ĉ are stateless circuits. The goal is to replace an ideal computation of C(x) by a functionally
equivalent but leakage-resilient computation Ĉ(x̂). Here x is a secret input which is randomly encoded into
an encoded input x̂ to protect it against leakage. Solutions for the above continuous leakage model can be
easily specialized to the stateless model by considering a single round where the input is used as the initial
secret state. This stateless variant of the problem has been considered before [ISW03, MV13, GIM+16],
but mainly as an intermediate step and not as an end goal.

Our work is motivated by the observation that this simpler setting, which is relevant to many real-
world scenarios, does not only offer an opportunity to get around the limitations of previous solutions,
but also poses new challenges that were not addressed before. For instance, can correctness be guaranteed
even when the input encoding x̂ is invalid, in the sense that the output corresponds to some valid input
x? Can the solutions be extended to the case where the encoded inputs for Ĉ are contributed by several,
mutually distrusting, parties? To further motivate these questions, we put them in the context of natural
applications.

Protecting a trusted party. We consider the goal of protecting (stateless) trusted parties against
leakage. Trusted Parties (TPs) are commonly used to perform computations that involve secret inputs.
They are already widely deployed in payment terminals and access control readers, and will be even
more so in future Trusted Platform Modules. TPs have several advantages over distributed protocols
for secure multiparty computation (MPC) [Yao86, BGW88, CCD88, GMW87]. First, they avoid the
expensive interaction typically required by MPC protocols. Second, they are very light-weight and allow
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the computational complexity of the other (untrusted) parties to be independent of the complexity of
the computation being performed. Finally, TPs may offer unconditional security against computationally
unbounded adversaries.

An important special case which is a major focus of this work is that of a hardware implementation
of zero-knowledge (ZK) proofs, a fundamental primitive for identification and a useful building block for
cryptographic protocol design. Informally, a ZK hardware takes a statement and witness from a prover,
and outputs the verified statement, or rej, to a verifier. While there are efficient ZK protocols without
hardware (including non-interactive zero-knowledge protocols (NIZKs) [SMP87, Gol01], or succinct non-
interactive arguments of knowledge (SNARKs) [BCCT12]), such protocols do not (and cannot) have the
last two features of TP-based solutions.

A primary concern when using trusted hardware are so-called “side-channel” attacks which allow
the adversary to obtain leakage on the internal computations of the device (e.g., through measuring its
running time [Koc96], power consumption [KJJ99], or the electromagnetic radiation it emits [QS01]).
Such attacks were shown to have devastating effects on security. As discussed above, a large body of
works attempted to incorporate the information obtained through such leakage into the security model,
and develop schemes that are provably secure in these models. More specifically, these works have focused
on designing leakage-resilient circuit compilers (LRCCs) that, informally, compile any circuit C into its
leakage-resilient version Ĉ, where Ĉ withstands side-channel attacks in the sense that these reveal nothing
about the (properly encoded) input x̂. However, all of the schemes obtained in these works suffer from
some of the limitations discussed above. In particular, none considers the questions of invalid encodings
provided by malicious parties or combining encoded inputs that originate from mutually distrusting
parties. These questions arise naturally in the context of ZK and in other contexts where TPs are used.

1.1 Our Contribution

Our main goal is to study the feasibility and efficiency of protecting TPs against general classes of leakage,
without leak-free hardware or trusted setup. Eliminating the leak-free hardware unconditionally [GR12],
or under computational assumptions [Rot12, DLZ15] has been a major research goal. However, in contrast
to earlier works, we consider here the easier case of realizing a stateless TP in the presence of one-time
leakage.

We model the TP as a leaky (but otherwise trusted) hardware device T that is used by m ≥ 1 parties
to execute a multiparty computation task. More specifically, in this setting each party locally encodes
its input and feeds the encoded input into the device, that evaluates a boolean (or arithmetic) circuit on
the encoded inputs, and returns the output. This computation should preserve the secrecy of the inputs,
as well as the correctness of the output, in the presence of a computationally-unbounded adversary that
corrupts a subset of the parties, and additionally obtains leakage on the internals of the device. (Notice
that the secrecy requirement necessitates some encoding of the inputs, otherwise we cannot protect even
against a probing attack on a single bit.)

We note that the stateless hardware should be reusable on an arbitrary number of different inputs.
Thus, we cannot take previous leakage-secure computation protocols that employ correlated randomness
(such as the ones from [FRR+10, DF12]) and embed this randomness into the hardware. Indeed, we
consider the internals of the hardware as being public, since any secret internal embedded values can be
leaked over multiple invocations.

The model has several different variants, depending on whether the adversary is passive (i.e., only
sees the inputs of corrupted parties and obtains leakage on the internals of the TP) or active (namely,
it may also cause corrupted parties to provide the TP with ill-formed “encoded” inputs that may not
correspond to any inputs for the original computation); whether there is a single party providing input
to the TP (as in the ZK example described below) or multiple parties; whether the TP is deterministic or
randomized (namely, has randomness gates that generate uniformly-random bits); and finally, whether
the output of the TP is encoded or not (in the latter, one cannot protect the privacy of the output
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even when the adversary only obtains leakage on the internals of the TP without corrupting any parties,
whereas in the former the outputs will remain private in this case). We focus on the variant with an
active adversary, and a randomized TP with encoded outputs. We consider both the single-party and
multi-party setting. In the ZK setting, we also construct deterministic TPs (at the expense of somewhat
increasing the complexity of the prover and verifier).

The leakage model. We consider an extended version of the “only computation leaks” (OCL) model
of Micali and Reyzin [MR04], also known as “OCL+” [BCG+11]. Informally, in this context, the wires of
the circuit Ĉ are partitioned into a “left component” ĈL and a “right component” ĈR. Leakage functions
correspond to bounded-communication 2-party protocols between ĈL, ĈR, where the output of the leakage
function is the transcript of the protocol when the views of ĈL, ĈR consist of the internal values of the
wires of these two “components”. Following the terminology of Goyal et al. [GIM+16], we refer to this
model as bounded communication leakage (BCL). The model is formalized in the next definition.

Definition 1.1 (t-BCL [GIM+16]). Let t ∈ N be a leakage bound parameter. We say that a deterministic
2-party protocol is t-bounded if its communication complexity is at most t. Given a t-bounded protocol
Π, we define the t-bounded-communication leakage (t-BCL) function fΠ associated with Π, that given the
views of the two parties, outputs the transcript of Π. The class LtBCL consists of all t-BCL functions fΠ

associated with t-bounded protocols Π, namely: LtBCL = {fΠ : Π is t− bounded}.
We say that a size-s circuit Ĉ is t-BCL resilient if there exists a partition P = {s1, s2} of the wires

of Ĉ, such that the circuit resists any t-BCL function fΠ for a protocol Π that respects the partition P.

We note that BCL is broad enough to capture several realistic leakage attacks such as the sum of
all circuit wires over the integers, as well as linear functions over the wires of the circuit. This captures
several realistic attacks on hardware devices, where a single electromagnetic probe measures involuntary
leakage which can be approximated by a linear function of the wires of the circuit.

1.2 Our Results

We construct TPs for both ZK proofs, and general MPC, which simultaneously achieve many of the
desired features described above: they resist a wide class of leakage functions (BCL), without using any
leak-free components, and are quite appealing from the perspective of asymptotic efficiency, since the
complexity of the parties is independent of the size of the computation. Our constructions combine
ideas and results from previous works on leakage-resilient circuits, with several new ideas, as discussed
in Section 1.3.

TPs for ZK. In the context of ZK, the hardware device enables the verification of NP-statements of
the form “(x,w) ∈ R” for an NP-relation R. That is, the prover provides (x,w) as input to the device,
which computes the function f (x,w) = (x,R (x,w)). Since the device is leaky, the prover is unwilling
to provide its secret witness w to the device “in the clear”. Instead, the prover prepares in advance a
“leak-free” encoding ŵ of w, which it stores on a small isolated device (such as a smartcard or USB
drive). It then provides (x, ŵ) as input to the leaky device (e.g., by plugging in his smartcard) which
outputs the public verification outcome. We say that the hardware device is an L-secure ZK circuit if it
resists leakage from L with negligible error. We construct LtBCL-secure ZK circuits for NP:

Theorem 1.2 (Leakage-secure ZK circuit). For any leakage bound t ∈ N, statistical security parameter
σ ∈ N, and length parameter n ∈ N, any NP-relation R = R (x,w) with verification circuit of size s,
depth d, and n inputs has an LtBCL-secure ZK circuit CR that outputs the outcome of verification, where
LtBCL is the family of all t-BCL functions. Moreover, to prove that (x,w) ∈ R, the prover runs in time

poly (t, σ, n, |w|), and |CR| = Õ (s+ d (t+ σ + n)) + poly (t, σ, n).
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We also construct a variant of the ZK circuit that allows one to “trade” efficiency of the prover and
verifier with the randomness used by the ZK circuit:

Theorem 1.3 (Deterministic leakage-secure ZK circuit). For any leakage bound t ∈ N, statistical se-
curity parameter σ ∈ N, and length parameter n ∈ N, any NP-relation R = R (x,w) with verifica-
tion circuit of size s, depth d, and n inputs has a deterministic LtBCL-secure ZK circuit CR. More-

over, |CR| = Õ (s+ d (t+ σ + n)) + poly (t, σ, n), to prove that (x,w) ∈ R, the prover runs in time
Õ (s+ d (t+ σ + n)) + poly (t, σ, n, |w|), and the verifier runs in time poly (t, σ, n).

General MPC. We consider hardware devices that allow the evaluation of general functions in both
the single-party setting, and the multiparty setting with m ≥ 2. More specifically, we construct m-party
LRCCs that given a circuit C that takes inputs from m parties, output a circuit Ĉ that operates on
encoded inputs and outputs. Informally, we say the m-party LRCC is (L, ε)-secure if the evaluation of Ĉ
guarantees (except with probability ε) privacy of the honest parties’ inputs, and correctness of the output,
in the presence of an adversary that may actively corrupt a strict subset of parties, and obtain leakage
from L on the internals of the device. We construct m-party LRCCs that are secure against t-BCL:

Theorem 1.4 (Leakage-secure m-party LRCC). For any leakage bound t ∈ N, statistical security pa-
rameter σ ∈ N, input and output length parameters n, k ∈ N, and size and depth parameters s, d ∈ N,
any m-party function f : ({0, 1}n)m → {0, 1}k computable by a circuit of size s and depth d has an
m-party

(
LtBCL, ε

)
-secure LRCC, where LtBCL is the family of all t-BCL functions, and ε = negl (σ).

Moreover, the leakage-secure circuit has size Õ (s+ d (t+ σ logm)) + m · poly (t, σ, logm, k), its input
encodings can be computed in time Õ (n) + poly (t, σ, logm, k), and its outputs can be decoded in time
Õ (m · k (t+ σ logm+ k)).

1.3 Our Techniques

1.3.1 Leakage-Resilient Zero-Knowledge

Recall that the leaky ZK device allows a prover P to prove claims of the form “(x,w) ∈ R” for some NP-
relation R. We model the device as a stateless boolean (or more generally, arithmetic) circuit C. Though
C cannot be assumed to withstand leakage, using an LRCC it can be transformed into a leakage-resilient
circuit Ĉ. Informally, an LRCC is associated with a function class L (the leakage class), a (randomized)
input encoding scheme E, and a (deterministic) output decoder DecOut. The LRCC compiles a circuit
C into a (public) circuit Ĉ that emulates C over encoded inputs and outputs. Ĉ resists leakage from L
in the sense that for any input z for C, and any ` ∈ L, the output of ` on the wire values of Ĉ, when
evaluated on E (z), can be efficiently simulated given only the description of C.

Our starting point in constructing leakage-resilient ZK hardware is the recent result of Goyal et
al. [GIM+16], who use MPC protocols to protect computation against BCL leakage. More specifically,
they design information-theoretically secure protocols in the OT-hybrid model that allow a user, aided
by a pair of “honest-but-curious” servers, to compute a function of her input while preserving the privacy
of the input and output even under BCL leakage on the internals of the servers. We observe that
when these server programs are implemented as circuits (in particular, the OT calls are implemented by
constant-sized sub-circuits), this construction gives an LRCC that resists BCL leakage.

In the context of designing leakage-resilient TPs, the main advantage of this construction over previous
information-theoretically secure LRCCs that resist similar leakage classes [FRR+10, DF12, MV13] is
that [GIM+16] does not use any leak-free components. More specifically, these LRCCs use the leak-free
components (or leak-free preprocessing in [GR10]) to generate “masks”, which are structured random
bits that are used to mask the internal computations in Ĉ, thus guaranteeing leakage-resilience.

These leak-free components could be eliminated if the parties include the masks as part of their input
encoding. However, this raises three issues. First, in some constructions (e.g. [FRR+10, DF12, MV13])
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the number of masks is proportional to the size of Ĉ, so the running time of the parties would not be
independent of the computation size (which defeats the purpose of delegating most of the computation
to the TP). Second, in the multi-party setting, it is not clear how to combine the masks provided by
different parties into a single set of masks to be used in Ĉ, such that these masks are unknown to each
one of the parties, which is crucial for the leakage-resilience property to hold. (We show in [Wei] how
to do so for the LRCC of [FRR+10] which resists AC0 leakage, but this construction has the efficiency
shortcomings mentioned above.) Finally, even with a single party, these constructions totally break when
the party provides “ill-formed” masks (namely, masks that do not have the required structure), since
correctness is guaranteed only when the masks have the required structure. This is not only a theoretical
concern, but rather an actual one. To see why, consider the ZK setting. If the prover provides the masks
to the device then it has a way of choosing (ill-formed) masks that flip the output gate, thus causing the
device to accept false NP statements. Alternative “solutions” also fail: the device cannot verify that the
masks provided by the prover are well-formed, since the aforementioned constructions crucially rely on
the fact that the leakage-resilience simulator can use ill-formed masks; and the verifier cannot provide
the masks, since leakage-resilience relies on the leakage function not knowing the masks.

Though using the LRCC of [GIM+16] eliminates all these issues, it has one shortcoming: its leakage-
resilience simulator is inefficient. In the context of ZK hardware, this gives witness-indistinguishability,
namely the guarantee that a malicious verifier that can leak on the internals of the ZK hardware cannot
distinguish between executions on the same statement x with different witnesses w,w′. This falls short
of our desired security guarantee that leakage reveals no information about the witness. (In particular,
notice that if a statement x has only one witness then witness-indistinguishability provides no security.)
We note that this weaker security guarantee is inherent to the construction of [GIM+16].

To achieve efficient simulation, we leverage the fact that the construction of [GIM+16] operates over
encodings that resist BCL leakage. We observe that one can obtain simulation-based security if the
encodings at the output of Ĉ are decoded using a circuit ĈDec that “tolerates” BCL leakage, in the sense
that such leakage on its entire wire values can be simulated given only (related) BCL leakage on the inputs
and outputs of the circuit [BCH12]. Indeed, the simulator can evaluate Ĉ on an arbitrary (non-satisfying)
“witness” (thus generating the entire wire values of Ĉ, and in particular allowing the simulator to compute
any leakage on them), and then simulate leakage on the internals of ĈDec by computing (related) leakage
on its inputs (namely, the outputs of Ĉ) and output (which is (x, 1)). Since the outputs of Ĉ resist BCL
leakage, this is indistinguishable from the leakage on the internal wires of Ĉ, ĈDec when Ĉ is evaluated on
an actual witness. We note that the decoding circuit ĈDec can be constructed using the LRCC of [DF12],
which by a recent result of Bitansky et al. [BDL14] is leakage-tolerant against BCL leakage.

Though this construction achieves efficient simulation, it is no longer sound. Indeed, soundness
crucially relies on the fact that ĈDec emulates CDec (which decodes the output of Ĉ). Recall that in current
LRCC constructions that offer information-theoretic security against wide leakage classes (e.g., [FRR+10,
MV13, DF12]), the correctness of the computation crucially relies on the fact that the masks (which are
provided as part of the input encoding) have the “correct” structure. Consequently, by providing ĈDec

with ill-formed masks, a malicious prover P ∗ can arbitrarily modify the functionality emulated by ĈDec,
and in particular, may flip the output of ĈDec, causing the device to accept x /∈ LR.1 Recall that the
device cannot verify that the masks are well-formed, since this would violate leakage-resilience.

To overcome this, we observe that when ĈDec is generated using the LRCC of Dziembowski and
Faust [DF12], the effect of ill-formed masks on the computation in ĈDec is equivalent to adding a vector
of fixed (but possibly different) field elements to the wires of CDec. Such attacks are called “additive
attacks”, and one can use AMD circuits [GIP+14, GIP15, GIW16] to protect against them. Informally,
AMD circuits are randomized circuits that offer the best possible security under additive attacks, in the
sense that the effect of every additive attack that may apply to all internal wires of the circuit can be

1We note that “ill-formed” encodings do not pose a problem for stateful circuits (intuitively, the compiled circuit can use
the secret state to overcome the influence of ill-formed masks). However, we are interested in stateless circuits.
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simulated by an ideal attack that applies only to its inputs and outputs.
Thus, by replacing CDec with an AMD circuit C ′Dec before applying the LRCC, the effect of ill-formed

encoded inputs is further restricted to an additive attack on the inputs and output of CDec. Finally,
to protect the inputs and outputs of C ′Dec from additive attacks, we use the AMD code of [CDF+08].
(We note that encoding the inputs and outputs of C ′Dec using AMD codes is inherent to any AMD-

based construction, otherwise a malicious prover P ∗ can use ill-formed encoded inputs to Ĉ ′Dec to flip the
output.) As we show in Section 4, the resultant construction satisfies the properties of Theorem 1.2. To
obtain the deterministic circuit of Theorem 1.3, we have the prover provide (as part of its input encoding)
the randomness used by the Ĉ component (which was generated using the LRCC of [GIM+16]), and the
verifier provides the randomness used by the AMD circuit in ĈDec. (We note that the prover cannot
provide this randomness, since the security of AMD circuits crucially relies on their randomness being
independent of the additive attack. Therefore, if the prover provides the randomness for the AMD
circuit, a malicious prover may correlate the randomness used by the AMD circuit with the additive
attack, rendering the AMD circuit useless.)

1.3.2 General Leakage-Resilient Computation

Recall that the setting consists of m ≥ 1 parties that utilize a leaky, but otherwise trusted, device to
compute a joint function of their inputs; while protecting the privacy of the inputs, and the correctness of
the output, against an active adversary that corrupts a subset of the parties, and may also obtain leakage
on the internals of the device. More specifically, we construct m-party LRCCs that given a (boolean or
arithmetic) circuit C with m inputs, output a circuit Ĉ that operates on encoded inputs and outputs.
(Recall that encoded outputs are needed to guarantee privacy against adversaries that do not corrupt
any parties.) As in other LRCCs, the circuit compiler is associated with an input encoder Enc, and an
output decoder Dec (used to encode the inputs to, and the output of, Ĉ, respectively).

The multiparty setting introduces an additional complication which did not arise in the ZK setting.
Recall that the leakage-resilience property of Ĉ crucially relies on the fact that its internal computations
are randomized using masks which are unknown to the leakage function. As already discussed in Sec-
tion 1.3.1, to avoid the need for leak-free hardware we let the participating parties provide these masks.
Consequently, the adversary (who also chooses the leakage function) knows the identity of the masks
provided by all corrupted parties. We note that this issue occurs even in the passive setting, in which
parties are guaranteed to honestly encode their inputs. This raises the following question: how can we
preserve the leakage-resilience property when the leakage function “knows” a subset of the masks?

Our solution is to first replace the circuit C with a circuit C ′ that computes an m-out-of-m additive
secret sharing of the output of C. We then construct the leakage-resilient version Ĉ ′ of C ′ using the LRCC
of [GIM+16], which outputs encodings of the secret shares which C ′ computes. Then, each encoding is
refreshed in a leakage-resilient manner. (This is similar to using a leakage-resilient version of the decoder
in the ZK setting of Section 1.3.1.) More specifically, let Crefresh be a circuit that given an encoding of
some value v outputs a fresh encoding of v. Similar to the construction of ZK circuits in Section 1.3.1,
we replace Crefresh with an AMD circuit C ′refresh that emulates Crefresh but operates on AMD encodings.

Finally, we compile C ′refresh using the LRCC of [DF12] into a leakage-resilient circuit Ĉ ′refresh, which (as
discussed in Section 1.3.1) has the additional feature that ill-formed masks are detected. We use m
copies of Ĉ ′refresh to refresh the m secret shares, where the i’th copy is associated with the i’th party, who
provides (as part of its input encoding) the masks needed for the computation of the i’th copy. Finally,
the decoder Dec decodes the secret shares, and uses them to reconstruct the output.

Having the leakage-resilience circuit generate (encodings of) secret-shares of the output, instead of
(an encoding of) the output itself guarantees leakage-resilience even when the adversary corrupts parties
and learns the masks which they provide for the computation. At a very high level, this holds because
even if the adversary learns (through the leakage, and knowledge of the masks) the entire wire values
of the copies of Ĉ ′refresh associated with corrupted parties, these only reveal information about the secret
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shares which these copies operate on. Therefore, the secrecy of the secret-sharing scheme guarantees
that no information is revealed about the actual output, or inputs, of the computation. Thus, we obtain
Theorem 1.4. (The analysis is in fact much more complex, see Section 7 for the construction and its
analysis.)

1.4 Open Problems

Our work leaves several interesting open problems for further research. One is that of making the TP
deterministic, while minimizing the complexity of the parties. Currently, we can make the TP deter-
ministic, but only at the expense of making the parties work as hard as the entire original computation.
A natural approach is via derandomization of the LRCC of [GIM+16]. Another research direction is to
obtain a better understanding of the leakage classes that can be handled in this model, and extend the
results to the setting of continuous leakage with stateful circuits. Another question is that of improving
the asymptotic and concrete efficiency of our constructions, by providing better underlying LRCCs, or
better analysis of existing ones. These questions are interesting even in the simple setting of a single
semi-honest party.

1.5 Related Work

Originating from [ISW03], MPC techniques are commonly used as a defense against side-channel at-
tacks (see [ADF16, BCPZ16] and references therein). However, except for the works of [ISW03, DDF14]
(discussed below) these techniques either rely on cryptographic assumptions [DLZ15, GIM+16], or on
structured randomness which is generated by leak-free hardware, and is used to mask the internal com-
putations [FRR+10, GR10, BCG+11, DF12, BDL14]. To eliminate the leak-free hardware, the parties
can provide the structured randomness as part of their input encoding. However, since the correctness of
the computation crucially relies on the randomness having the “correct” structure, this allows corrupted
parties to arbitrarily modify the functionality computed by the circuit, by providing randomness that
does not have the required structure.

The only exception to the above are the works of [ISW03, DDF14], that provide provable information-
theoretic security guarantees (without relying on structured randomness) against probing attacks, and
some natural types of “noisy” leakage, but fail to protect against other simple types of realistic attacks,
such as the sum of a subset of wires over the integers. (For example, when an AND gate is implemented
using the LRCC of [ISW03], the sum of a subset of wires in the resultant circuit allows an adversary to
distinguish between the case in which both inputs are 0, and the case in which one of them is 1.)

2 Preliminaries

Notation. Let F be a finite field, and Σ be a finite alphabet (i.e., a set of symbols). For a function f over
Σn, we use supp (f) to denote the image of f , namely supp (f) = {f (x) : x ∈ Σn}. For an NP-relation
R = R (x,w), we denote LR = {x : ∃w, (x,w) ∈ R}. Vectors will be denoted by boldface letters (e.g.,
a). If D is a distribution then X ← D, or X ∈R D, denotes sampling X according to the distribution
D. Given two distributions X,Y , SD (X,Y ) denotes the statistical distance between X and Y . For a
natural n, negl (n) denotes a function that is negligible in n. For a function family L, we sometimes use
the term “leakage family L”, or “leakage class L”. In the following, n usually denotes the input length,
k usually denotes the output length, d, s denote depth and size, respectively (e.g., of circuits, as defined
below), and m is used to denote the number of parties.

Circuits. We consider boolean circuits C over the set X = {x1, · · · , xn} of variables. C is a directed
acyclic graph whose vertices are called gates and whose edges are called wires. The wires of C are labeled
with functions over X. Every gate in C of in-degree 0 has out-degree 1 and is either labeled by a variable
from X and referred to as an input gate; or is labeled by a constant α ∈ {0, 1} and referred to as a constα
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gate. Following [FRR+10], all other gates are labeled by one of the operations ∧,∨,¬,⊕, where ∧,∨,⊕
vertices have fan-in 2 and fan-out 1; and ¬ has fan-in and fan-out 1. We write C : {0, 1}n → {0, 1}k to
indicate that C is a boolean circuit with n inputs and k outputs. The size of a circuit C, denoted |C|, is
the number of wires in C, together with input and output gates.

We also consider arithmetic circuits C over a finite field F and the set X. Similarly to the boolean case,
C has input and constant gates, and all other gates are labeled by one of the following functions +,−,×
which are the addition, subtraction, and multiplication operations of the field. We write C : Fn → Fk to
indicate that C is an arithmetic circuit over F with n inputs and k outputs. Notice that boolean circuits
can be viewed as arithmetic circuits over the binary field in a natural way. Therefore, we sometimes
describe boolean circuits using the operations +,−,× instead of ⊕,¬,∧,∨.

Additive Attacks and Algebraic-Manipulation Detection (AMD) Circuits. Following the
terminology of [GIP15], an additive attack A affects the evaluation of a circuit C as follows. For every
wire connecting gates a and b in C, a value specified by the attack A is added to the output of a and
then the derived value is used for the computation of the gate b. Similarly, for every output gate, a value
specified by A is added to the value of this output. Note that an additive attack on C is a fixed vector
of (possibly different) field elements which is independent from the inputs and internal values of C. We
denote the evaluation of C under additive attack A by CA.

At a high level, an additively-secure implementation of a function f is a circuit which evaluates f ,
and guarantees the “best” possible security against additive attacks, in the sense that any additive attack
on it is equivalent (up to a small statistical distance) to an additive attack on the inputs and outputs of
f . Formally,

Definition 2.1 (Additively-secure implementation [GIP+14]). Let ε > 0. A randomized circuit C : Fn →
Fk is an ε-additively-secure implementation of a function f : Fn → Fk if the following holds.

• Completeness. For every x ∈ Fn, Pr [C (x) = f (x)] = 1.

• Additive-attack security. For any additive attack A there exist aIn ∈ Fn, and a distribution AOut

over Fk, such that for every x ∈ Fn, SD(CA (x) , f
(
x + ain

)
+Aout) ≤ ε.

We also consider the notion of an additively-secure circuit compiler, which is a single PPT algorithm that
compiles a given circuit C into its additively-secure implementation.

Definition 2.2 (Additively-secure circuit compiler). Let n ∈ N be an input length parameter, k ∈ N be
an output length parameter, and ε (n) : N → R+. Let Comp be a PPT algorithm that on input a circuit
C : Fn → Fk, outputs a circuit Ĉ. Comp is an ε (n)-additively-secure circuit compiler over F if for every
circuit C : Fn → Fk that computes a function fC , Ĉ is an ε (n)-additively-secure implementation of fC .

We will need the following theorem.

Theorem 2.3 ([GIW16]). Let n be an input length parameter, and ε (n) : N → R+ be a statistical
error function. Then there exists an ε (n)-additively-secure circuit compiler Comp over F2. Moreover,
on input a depth-d boolean circuit C : {0, 1}n → {0, 1}k, Comp outputs a circuit Ĉ such that |Ĉ|=
|C|·polylog

(
|C|, log 1

ε(n)

)
+poly

(
n, k, d, log 1

ε(n)

)
. Furthermore, there exists a PPT algorithm Alg that on

input C, ε (n), and an additive attack A, outputs a vector ain ∈ {0, 1}n, and a distribution Aout over
{0, 1}k, such that for any x ∈ {0, 1}n it holds that SD(ĈA(x), C(x + ain) +Aout) ≤ ε (n).

Encoding schemes. An encoding scheme E over alphabet Σ is a pair (Enc,Dec) of algorithms, where
the encoding algorithm Enc is a PPT algorithm that given a message x ∈ Σn outputs an encoding x̂ ∈ Σn̂

for some n̂ = n̂ (n); and the decoding algorithm Dec is a deterministic algorithm, that given an x̂ of length
n̂ in the image of Enc, outputs an x ∈ Σn. Moreover, Pr [Dec (Enc (x)) = x] = 1 for every x ∈ Σn. It
would sometimes be convenient to explicitly describe the randomness used by Enc, in which case we think
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of Enc as a deterministic function Enc (x; r) of its input x, and random input r. Following [IWY16], we
say that a vector v ∈ Σn̂(n) is well-formed if v ∈ Enc (0n).
Parameterized encoding schemes. We consider encoding schemes in which the encoding and decoding
algorithms are given an additional input 1t, which is used as a security parameter. Concretely, the encod-
ing length depends also on t (and not only on n), i.e., n̂ = n̂ (n, t), and for every t the resultant scheme is
an encoding scheme (in particular, for every x ∈ Σn and every t ∈ N, Pr

[
Dec

(
Enc

(
x, 1t

)
, 1t
)

= x
]

= 1).

We call such schemes parameterized. For n, t ∈ N, a vector v ∈ Σn̂(n,t) is well-formed if v ∈ Enc
(
0n, 1t

)
.

Furthermore, we sometimes consider encoding schemes that take a pair of security parameters 1t, 1tIn .
(tIn is used in cases when the encoding scheme employs an “internal” encoding scheme, and is used in
the internal scheme.) In such cases, the encoding length depends on n, t, tIn, and the resultant scheme
should be an encoding scheme for every t, tIn ∈ N. We will usually omit the term “parameterized”, and
use “encoding scheme” to describe both parameterized and non-parameterized encoding schemes.

Next, we define leakage-indistinguishable encoding schemes.

Definition 2.4 (Leakage-indistinguishability of functions and encodings, [IWY16]). Let D,D′ be finite
sets, LD = {` : D → D′} be a family of leakage functions, and ε > 0. We say that two distributions
X,Y over D are (LD, ε)-leakage-indistinguishable, if for any function ` ∈ LD, SD (` (X) , ` (Y )) ≤ ε. In
case LD consists of functions over a union of domains, we say that X,Y over D are (LD, ε)-leakage-
indistinguishable if SD (` (X) , ` (Y )) ≤ ε for every function ` ∈ L with domain D.

Let L be a family of leakage functions. We say that a randomized function f : Σn → Σm is
(L, ε)-leakage-indistinguishable if for every x, y ∈ Σn, the distributions f (x) , f (y) are (L, ε)-leakage-
indistinguishable. We say that an encoding scheme E = (Enc,Dec) is (L, ε)-leakage-indistinguishable if
for every large enough t ∈ N, Enc

(
·, 1t
)

is (L, ε)-leakage indistinguishable.

AMD Encoding Schemes. Informally, an AMD encoding scheme is an encoding scheme which
guarantees that additive attacks on codewords are detected by the decoder (except with small probability),
where the decoder outputs (in addition to the decoded output) also a flag indicating whether an additive
attack was detected. Formally,

Definition 2.5 (AMD encoding scheme, [CDF+08, GIP+14]). Let F be a finite field, n ∈ N be an
input length parameter, t ∈ N be a security parameter, and ε (n, t) : N × N → R+. An (n, t, ε (n, t))-
algebraic manipulation detection (AMD) encoding scheme (Enc,Dec) over F is an encoding scheme with
the following guarantees.

• Perfect completeness. For every x ∈ Fn, Pr
[
Dec

(
Enc

(
x, 1t

)
, 1t
)

= (0,x)
]

= 1.

• Additive soundness. For every 0n̂(n,t) 6= a ∈ Fn̂(n,t), and every x ∈ Fn,

Pr
[
Dec

(
Enc

(
x, 1t

)
+ a, 1t

)
/∈ ERR

]
≤ ε (n, t)

where ERR = (F \ {0})× Fn, and the probability is over the randomness of Enc.

We will use the following theorem from the full version of [GIP+14].

Theorem 2.6 (AMD encoding scheme, [GIP+14]). Let F be a finite field, and n, t ∈ N. Then there exists
an
(
n, t, |F|−t

)
-AMD encoding scheme (Enc,Dec) with encodings of length n̂ (n, t) = O (n+ t). Moreover,

encoding and decoding of length-n inputs with parameter t can be performed by circuits of size O (n+ t).

2.1 Leakage-Resilient Circuit Compilers (LRCCs)

In this section we define the notion of a leakage-resilient circuit compiler. This notion, and its variants
defined in later sections, will be extensively used in this work.
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Definition 2.7 (Circuit compiler with abort). We say that a triplet (Comp,E,DecOut) is a circuit com-
piler with abort if:

• E = (Enc,Dec) is an encoding scheme, where Enc on input x ∈ Fn, and 1t, 1tIn, outputs a vector x̂
of length n̂ for some n̂ = n̂ (n, t, tIn).

• Comp is a polynomial-time algorithm that given an arithmetic circuit C over F, and 1t, outputs an
arithmetic circuit Ĉ.

• DecOut is a deterministic decoding algorithm associated with a length function n̂Out : N → N that
on input x̂ ∈ Fn̂Out(n) outputs (f, x) ∈ F× Fn.

We require that (Comp,E,DecOut) satisfy the following correctness with abort property: there ex-
ists a negligible function ε (t) = negl (t) such that for any arithmetic circuit C, and input x for C,

Pr
[
DecOut

(
Ĉ (x̂)

)
= (0, C (x))

]
≥ 1− ε (t), where x̂← Enc

(
x, 1t, 1|C|

)
.

Informally, a circuit compiler is leakage resilient for a class L of functions if for every “not too large”
circuit C, and every input x for C, the wire values of the compiled circuit Ĉ, when evaluated on a random
encoding x̂ of x, can be simulated given only the description of C; and functions in L cannot distinguish
between the actual and simulated wire values.

Notation 2.8. For a Circuit C, a function ` : F|C| → Fm for some natural m, and an input x for C,
[C, x] denotes the wire values of C when evaluated on x, and ` [C, x] denotes the output of ` on [C, x].

Definition 2.9 (LRCC). Let t ∈ N be a security parameter, and F be a finite field. For a function class
L, ε (t) : N→ R+, and a size function S (n) : N→ N, we say that (Comp,E,DecOut) is an (L, ε (t) ,S (n))-
LRCC if there exists a PPT algorithm Sim such that the following holds. For all sufficiently large t, every
arithmetic circuit C over F of input length n and size at most S (n), every ` ∈ L of input length |Ĉ|, and

every x ∈ Fn, we have SD
(
`
[
Sim

(
C, 1t

)]
, `
[
Ĉ, x̂

])
≤ ε (t), where x̂← Enc

(
x, 1t, 1|C|

)
.

If the above holds with an inefficient simulator Sim, then we say that (Comp,E) is an (L, ε (t) ,S (n))-
relaxed LRCC.

2.2 Gadget-Based Leakage-Resilient Circuit Compilers

In this section we describe gadget-based LRCCs [ISW03, FRR+10, DF12], which are the basis of all
our constructions. We choose to describe the operation of these compilers over a finite field F, but the
description naturally adjusts to the boolean case as well. At a high level, given a circuit C, a gadget-based
LRCC replaces every wire in C with a bundle of wires, which carry an encoding of the wire value, and
every gate with a sub-circuit that emulates the operation of the gate on encoded inputs. More specifically:
Gadgets. A bundle is a sequence of field elements, encoding a field element according to some encod-
ing scheme E; and a gadget is a circuit which operates on bundles and emulates the operation of the
corresponding gate in C. A gadget has both standard inputs, that represent the wires in the original
circuit, and masking inputs (so-called “masks”), that are used to achieve privacy. More formally, a gad-
get emulates a specific boolean or arithmetic operation on the standard inputs, and outputs a bundle
encoding the correct output. Every gadget G is associated with a set MG of “well-formed” masking input
bundles (e.g., in the LRCC of [FRR+10], MG consists of sets of 0-encodings). For every standard input
x, on input a bundle x encoding x, and any masking input bundles m ∈ MG, the output of the gadget
G should be consistent with the operation on x. For example, if G computes multiplication, then for
every standard input x = (x1, x2), for every bundle encoding x = (x1,x2) of x according to E, and for
every masking input bundles m ∈ MG, G (x,m) is a bundle encoding x1 × x2 according to E. Because
the encoding schemes we use have the property that the encoding function is onto its range, we may
think of the masking input bundles m as encoding some set mask of values. The internal computations
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in the gadget will remain private as long as its masking input bundles are a uniformly random encoding
of mask, regardless of the actual value of mask.
Gadget-based LRCCs. In our constructions, the compiled circuit Ĉ is obtained from a circuit C
by replacing every wire with a bundle, and every gate with the corresponding gadget. Recall that the
gadgets also have masking inputs (which in previous works [FRR+10, DF12] were generated by leak-free
hardware). These are provided as part of the encoded input of Ĉ, in the following way. E = (Enc,Dec)
uses an “inner” encoding scheme EIn = (EncIn,DecIn), where Enc uses EncIn to encode the inputs of C,
concatenated with 0tIn for a “sufficiently large” tIn (these 0-encodings will be the masking inputs of the
gadgets, that are used to achieve privacy); and Dec uses DecIn to decode its input, and discards the last
tIn symbols.

3 LRCCs Used in this Work

In this section we review the various LRCC constructions used in this work.

3.1 The LRCC of [GIM+16]

We use a slight modification of the LRCC of Goyal et al. [GIM+16], which we describe in this section.
Their construction uses small-bias encodings over F2, namely encodings for which linear distinguishers
obtain only a small distinguishing advantage between encodings of 0 and 1. Formally:

Definition 3.1 (Small-bias encoding schemes). Let ε ∈ (0, 1), and (Enc,Dec) be an encoding scheme
over F2 with encodings of length n̂. We say that (Enc,Dec) is ε-biased if for every x ∈ F2, and every
∅ 6= S ⊆ [n̂], |Pr [PS (Enc (x)) = 1]− Pr [PS (Enc (x)) = 0]| ≤ ε, where PS (z) = ⊕i∈Szi, and the probability
is over the randomness of Enc.

At a high level, given a circuit C (which, without loss of generality, contains only NAND gates), its
leakage-resilient version is constructed in three steps: first, C is compiled into a parity resilient circuit
C⊕, which emulates the operation of C on small-bias encodings of its inputs, and resists leakage from
the class of all parity function (namely, all functions that output the parity of a subset of wires). C⊕
is constructed using a single constant-size gadget G that operates over the small-bias encoding. Second,
a GMW-style 2-party protocol π is constructed, which emulates C⊕ (gate-by-gate) on additive secret
shares of the input, and outputs additive secret shares of the output. π uses an oracle to the functionality
computed by the gadget G. In the final step, each oracle call to G is replaced with a constant number of
OT calls, and the resultant 2-party protocol is converted into a boolean circuit, in which the OT calls are
implemented using a constant number of gates.2 The resultant circuit C ′ operates on encoded inputs,
and returns encoded outputs. More specifically, the encoding scheme first encodes each input bit using
the small-bias encoding, then additively secret shares these encodings into two shares.

The reason we need to modify the compiler is the small-bias encoding it uses. The LRCC can use any
small-bias encoding, and [GIM+16] construct a robust gadget G, that can emulate any constant-sized
boolean function, over inputs and outputs encoded according to any constant-sized small-bias encoding
(the inputs and outputs may actually be encoded using different encoding schemes). However, the specific
encoding used in [GIM+16] is insufficient for our needs. More specifically, we need an encoding scheme(
Enc : {0, 1} × {0, 1}c → {0, 1}c′ ,Dec : {0, 1}c′ → {0, 1}2

)
(for some natural constants c, c′)3 satisfying

the following two properties for some constant ε > 0.

• Property (1): (Enc,Dec) is ε-biased, and |supp (Enc (0; ·))| = |supp (Enc (1; ·))|.
2We note that the conversion from protocol to circuit is not explicitly described in [GIM+16].
3Dec returns a pair of bits of which one is a flag indicating whether decoding failed. This is necessary since for c′ > c+ 1,

not all possible inputs to Dec are valid encoding.
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• Property (2): For every ~0 6= A ∈ {0, 1}c′ , and every b ∈ {0, 1},
Prr∈R{0,1}c [Enc (b; r)⊕A ∈ supp (Enc (1⊕ b; ·))] ≤ ε.

The first property is needed for the leakage-resilience property of the LRCC of [GIM+16]. The second
property implies that with constant probability, additive attacks on encodings are “harmless”, in the
sense that they either do not change the encoded value, or result in an invalid encoding. The reason that
the second property is needed will become clear in Section 4.1.

Since the encoding scheme used in [GIM+16] does not possess property (2), we replace it with an
encoding that does.4 As noted in [GIM+16], a probabilistic argument implies that for a large enough
constant c, and c′ = 2c, most encoding schemes with a 1:1 Enc satisfy property (1). A similar argument
shows that most encoding schemes posses property (2). Therefore, there exists an encoding scheme(
Enc⊕ : {0, 1} × {0, 1}c → {0, 1}2c,Dec⊕ : {0, 1}2c → {0, 1}2

)
with both properties. (Moreover, one can

find an explicit description of this scheme, since c is constant.) Since G is a generic gadget, that can be
used to emulate any function over any encoding, we can replace the encoding scheme of [GIM+16] with(
Enc⊕,Dec⊕

)
.

We are now ready to define the encoding used by the LRCC of [GIM+16].

Construction 3.2. The encoding scheme
(
EncGIMSS,DecGIMSS

)
over F2 is defined as follows:

• for every x ∈ F2, EncGIMSS
(
x, 1t

)
:

– Generates x1, · · · , xt ← Enc⊕ (x).

– Picks xL,xR ∈ F2ct
2 uniformly at random subject to the constraint that xL⊕ xR =

(
x1, · · · , xt

)
.

• DecGIMSS : F2ct
2 × F2ct

2 → F2
2, on input

(
xL,xR

)
operates as follows:

– Computes x = xL ⊕ xR, and denotes x =
(
x1, · · · , xt

)
. (Intuitively, xL,xR are interpreted as

random secret shares of x, and x consists of t copies of encodings, according to Enc⊕, of a bit
b.)

– For every 1 ≤ i ≤ t, let (fi, xi) = Dec⊕
(
xi
)
. (This step decodes each of the t copies of b.)

– If there exist 1 ≤ i1, i2 ≤ t such that fi1 6= 0, or xi1 6= xi2, then sets f = 1. Otherwise, sets
f = 0. (This step checks that all copies of b are consistent, and that no flag is set, otherwise
the decoder sets a flag f .)

– Outputs
(
f, x1

)
.

We will need the fact that every additive attack on encodings generated by Construction 3.2 is either
“harmless” (in the sense that it does not change the encoded value), or causes a decoding failure. This
is formalized in the next lemma.

Lemma 3.3. Let t ∈ N be a security parameter. Then for every ~0 6= A ∈ F4ct
2 , and for every x ∈ F2,

Pr
[
DecGIMSS

(
EncGIMSS

(
x, 1t

)
+ A

)
/∈ {(0, x) ,ERR}

]
= negl (t) .

Proof. Let ~0 6= A =
(
AL,AR

)
∈ F2ct

2 × F2ct
2 , and let

(
xL,xR

)
← EncGIMSS

(
x, 1t

)
. Then on input(

yL,yR
)

=
(
xL,xR

)
+
(
AL,AR

)
, the decoder DecGIMSS first computes

x′ =
(
x1′, · · · , xt′

)
= yL ⊕ yR = xL ⊕ xR ⊕AL ⊕AR

and then for every 1 ≤ i ≤ t, computes (fi, x
′
i)← Dec⊕

(
xi, 1t

)
. We consider two possible cases.

4To improve efficiency of our construction by a factor of 2, one could use the encoding of [GIM+16] (in which c′ = c+ 1)
throughout the circuit, and only use our new encoding for the outputs of the circuit. However, to simplify the construction
we choose to use the same encoding throughout the circuit.
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First, if AL ⊕AR = ~0, then x′ = xL ⊕ xR, namely the additive attack cancels out, and so the output
of DecGIMSS would be (0, x) (with probability 1) by the correctness of the scheme.

Second, assume that AL ⊕ AR 6= ~0 and DecGIMSS
(
x⊕A, 1t

)
6= (0, x). We show that in this case

DecGIMSS outputs ERR except with negligible probability. Recall that Enc⊕ has the property that for
every ~0 6= A′, and every z ∈ F, Pr

[
Enc⊕ (z)⊕A′ ∈ supp

(
Enc⊕ (z̄)

)]
≤ ε for some constant ε ∈ (0, 1),

where the probability is over the randomness used by Enc⊕ to generate the encoding. Consequently, for
every 1 ≤ i ≤ t, Pr

[
Dec⊕

(
xi′
)

= (0, x̄)
]
≤ ε. Since DecGIMSS outputs (0, x̄) only if all xi′ decoded to x̄,

and each of these t copies was generated using fresh, independent randomness in Enc⊕, this happens only
with probability εt = negl (t).

The final modification we need is in the gadget G. Notice that unlike the semi-honest setting considered
in [GIM+16], in our setting the parties provide the inputs to the leakage-resilient circuit, where a malicious
party may provide inputs that are not properly encoded, and therefore do not correspond to any input
for the original circuit. (We note that the inputs are the only encodings that may be invalid, since G
is guaranteed to always output valid encodings.) To guarantee correctness of the computation even in
this case, the encoded inputs should induce inputs to the original circuit. Therefore, we have G interpret
invalid encodings as encoding the all-zeros string. More specifically, given encodings x̂, ŷ, G operates
as follows: decodes x̂, ŷ to obtain x, y, where if decoding failed then x, y are set to the all-zero strings;
computes z = NAND (x, y); and outputs a fresh encoding of z.

Combining the aforementioned modifications, we have the following.

Construction 3.4 (LRCC, [GIM+16]). Let c ∈ N and ε ∈ (0, 1) be constants, t, tIn ∈ N be security
parameters, and n ∈ N be an input length parameter. Let

(
Enc⊕ : F2 × Fc2 → F2c

2 ,Dec
⊕ : F2c

2 → F2

)
be an

encoding scheme satisfying properties (1) and (2) described above. (We also use Enc⊕,Dec⊕ to denote the
natural extension of encoding and decoding to bit strings, where every bit is encoded or decoded separately.)
The relaxed LRCC with abort

(
CompGIMSS,EGIMSS

In ,DecGIMSS
Out

)
is defined as follows.

• The input encoding scheme EGIMSS
In =

(
EncGIMSS

In ,DecGIMSS
In

)
is defined as follows:

– for every x ∈ F2, EncGIMSS
In

(
x, 1tIn

)
=
(
xL,xR, r

)
where xL,xR are a random additive secret

sharing of Enc⊕ (x), and r ∈R FtIn2 .

– DecGIMSS
In

(((
xL,xR

)
, r
)
, 1tIn

)
computes (f, x) = Dec⊕

(
xL + xR

)
, and outputs x.

• The output decoding algorithm DecGIMSS
Out : Fn·t·2c2 × Fn·t·2c2 → Fn+1

2 , on input
(
xL,xR

)
=((

xL1 , · · · ,xLn
)
,
(
xR1 , · · · ,xRn

))
operates as follows:

– For every 1 ≤ i ≤ n, computes (fi, xi) = DecGIMSS
((

xLi ,x
R
i

)
, 1t
)

(where DecGIMSS is the
decoder from Construction 3.2).

– If there exist 1 ≤ i ≤ n such that fi 6= 0, outputs (1, 0n). Otherwise, outputs (f, x1, · · · , xn).

• Let r ∈ N denote the number of random inputs used by each gadget G. Then CompGIMSS, on input 1t

and a circuit C : Fn → Fk containing s NAND gates, outputs a circuit CGIMSS : F4c·n
2 × Fr(s+t·k)

2 →
F4c·k·t

2 generated as follows:

– Let C ′ : F2c·n
2 × Fr·s2 → F2c·k

2 denote the circuit in which every gate of C is replaced with the
gadget G of [GIM+16] that emulates a NAND gate over encodings generated by Enc⊕. The
random inputs used by the gadgets in C ′ are taken from the second input to C ′ (each random
input is used only once).

– Let C ′′ : F2c·n
2 × Fr(s+t·k)

2 → F2c·k·t
2 denote the circuit obtained from C ′ by adding after each

output gadget of C ′ (namely each gadget whose output is an output of C ′) t gadgets G emulating
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the identity function. As in C ′, the random inputs used by the gadgets in C ′′ are taken from
the second input to C ′′. (This step encodes each output bit using the repetition code.)5

– Let π denote a 2-party GMW-style protocol in the OT-hybrid model which emulates C ′′ gadget-
by-gadget on inputs encoded according to EncGIMSS (i.e., on additive shares of encodings ac-
cording to Enc⊕). Then CGIMSS is the circuit obtained from π by implementing the programs
of the parties as a circuit, where each OT call with inputs (x0, x1) , b is implemented using
the following constant-sized circuit: OT ((x0, x1) , b) =

(
x0 ∧ b̄

)
⊕ (x1 ∧ b). (The wires of this

circuit are divided between the parties as follows: the input wires x0, x1 are assigned to the OT
sender; whereas the wires corresponding to b, b̄, the outputs of the ∧ gates, and the output of
the ⊕ gate, are assigned to the OT receiver.6)

Goyal et al. [GIM+16] show that Construction 3.4 resists BCL (Definition 1.1):

Theorem 3.5 (Implicit in [GIM+16]). For every leakage-bound t ∈ N, input and output lengths n, k ∈ N,
and size bound s ∈ N, there exists an

(
LtBCL, 2

−t, s
)
-relaxed LRCC with abort, where LtBCL is the family

of all t-BCL functions. Moreover, on input a size-s, depth d circuit C : {0, 1}n → {0, 1}k, the leakage-
resilient circuit CGIMSS has size Õ

(
s+ td+ t2

)
, the input encoder EncGIMSS

In can be implemented by

a circuit of size Õ (n+ t), and the output decoder DecGIMSS
Out can be implemented by a circuit of size

Õ
(
t2 + tk

)
.7

3.2 The Leakage-Tolerant Circuit-Compiler of [DF12]

In this section we describe the leakage-tolerant circuit-compiler (LTCC) obtained from [DF12] through
the transformation of [BDL14]. Informally, the LRCC of Dziembowski and Faust [DF12], denoted DF-
LRCC, is a gadget-based LRCC which uses the inner-product encoding scheme that encodes a value x as
a pair of vectors whose inner-product is x:

Definition 3.6 (Inner product encoding scheme). Let F be a finite field, and n ∈ N be an input length
parameter. The inner product encoding scheme EIP = (EncIP,DecIP) over F is a parameterized encoding
scheme defined as follows:

• For every input x = (x1, · · · , xn) ∈ Fn, and security parameter t ∈ N, EncIP
(
x, 1t

)
=((

yL1 ,y
R
1

)
, · · · ,

(
yLn ,y

R
n

))
, where for every 1 ≤ i ≤ n, yLi ,y

R
i are random in (F \ {0})t subject to

the constraint that 〈yLi ,yRi 〉 = xi.

• For every t ∈ N, and every
((

yL1 ,y
R
1

)
, · · · ,

(
yLn ,y

R
n

))
∈ F2nt, DecIP

((
yL1 ,y

R
1

)
, · · · ,

(
yLn ,y

R
n

))
=(

〈yL1 ,yR1 〉, · · · , 〈yLn ,yRn 〉
)
.

More specifically, the DF-LRCC is an LRCC variant in which the compiled circuit takes un-encoded
inputs, as well as masking inputs that are used in the gadgets. The construction uses 4 gadgets: a refresh
gadget which emulates the identity function, and is used to generate fresh encodings of the wires; a
generalized-multiplication gadget which emulates the function fc (x, y) = c−x×y, for a constant c ∈ F; a
multiplication by a constant gadget that emulates the function fc (x) = c×x, for a constant c ∈ F; and an

5This step, which we add to the LRCC of [GIM+16], is used to reduce the decoding error when the LRCC is used to
construct leakage-secure ZK circuits in Section 4.1. We note that this modification preserves the parity-resilience property
since it is equivalent to duplicating each output of C t times before transforming it into C′.

6Notice that this division of the wires preserves the leakage-resilience guarantee of [GIM+16]. Indeed, in [GIM+16] the
view of the OT sender contains the input wires x0, x1, whereas the view of the OT receiver contains the input wire b and the
output of the OT (i.e., the output of the ⊕ gate). Notice that b̄ and the outputs of the ∧ gates are computable from b and the
OT output, so the view of the OT receiver contains exactly the same information in [GIM+16] and in our implementation
of their protocol.

7The output decoder in the original construction of [GIM+16] has size Õ (t + k), the decoder of Construction 3.4 is larger
due to the modified encoding we use, which replaces each encoded output bit with t copies.
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addition by a constant gadget that emulates the function fc (x) = c+ x, for a constant c ∈ F. (The field
operations ×,+,− can be implemented using a constant number of these gadgets.) We will only need the
following property of these gadgets: the effect of evaluating a gadget with ill-formed masking inputs is
equivalent to an additive attack on the gate that the gadget emulates (this is formalized in Lemma 3.16).

Construction 3.7 (Gadgets for an LRCC, [DF12]). Let F be a finite field, and EIP = (EncIP,DecIP)
denote the inner product encoding over F of Definition 3.6. Each gadget consists of a left component
CL, and a right component CR that are connected to each other. We use the term “X is sent from
component Y to component Z” to denote that the value X computed in component Y is the input to some
sub-computation performed in component Z.

1. Refresh gadget:8 inputs
(
aL,aR

)
∈ EncIP(a, 1t

2
) for a ∈ F, and masking inputs((

rL,1, rL,2
)
,
(
rR,1, rR,2

))
∈ EncInDF(0, 1t

2
); outputs

(
aL′,aR′

)
∈ EncIP(a, 1t

2
).

(a) CL generates b ∈ Ft2 such that bi =
(
aLi
)−1 × rL,1i for every 1 ≤ i ≤ t2, and sends b to CR.

(b) CR computes c ∈ Ft2 such that ci = bi × rR,1i for every 1 ≤ i ≤ t2.

(c) CR computes aR′ = aR + c.

(d) CR generates d ∈ Ft2 such that di =
(
aR′i
)−1 × rR,2i for every 1 ≤ i ≤ t2, and sends d to CL.

(e) CL computes e ∈ Ft2 such that ei = di × rL,2i for every 1 ≤ i ≤ t2.

(f) CL computes aL′ = aL + e..

2. Multiplication by constant gadget: inputs constant c ∈ F \ {0}, and
(
aL,aR

)
∈ EncIP

(
a, 1t

)
for a ∈ F; output

(
bL, bR

)
∈ EncIP

(
c× a, 1t

)
.

(a) CL computes bLi = c× aLi for every 1 ≤ i ≤ t.
(b) CR sets bR = aR.

3. Addition by constant gadget: inputs constant c ∈ F, and
(
aL,aR

)
∈ EncIP

(
a, 1t

)
for a ∈ F;

output
(
bL, bR

)
∈ EncIP

(
c+ a, 1t

)
.

(a) CL sets bL = aL, and sends aL1 to CR.

(b) CR sets bR = aR +
((

aL1
)−1 × c, 0, · · · , 0

)
.

4. Generalized multiplication gadget: inputs a constant c ∈ F,
(
aL,aR

)
∈ EncIP

(
a, 1t

)
,
(
bL, bR

)
∈

EncIP
(
b, 1t

)
for a, b ∈ F, and masking inputs

((
rL,1, rL,2

)
,
(
rR,1, rR,2

))
∈ EncInDF

(
0, 1t

)
; output(

cL, cR
)
∈ EncIP

(
c− a× b, 1t

)
.

(a) CL generates a t × t Matrix L = aL
(
bL
)T

=
(
aLi × bLj

)
i,j∈[t]

. We interpret L as a length-t2

vector.

(b) CR enerates a t × t Matrix R = aR
(
bR
)T

=
(
aRi × bRj

)
i,j∈[t]

. We interpret R as a length-t2

vector.

(c) CL, CR evaluate the Refresh gadget with inputs L,R, and masking inputs((
rL,1, rL,2

)
,
(
rR,1, rR,2

))
, to obtain L′,R′ (which are length-t2 vectors).

(d) CL sends L′1, L
′
t+1, · · ·L′t2 to CR.

(e) CR computes d = 〈
(
L′t+1, · · ·L′t2

)
,
(
R′t+1, · · · , R′t2

)
〉.

8This refresh gadget is a simpler construction than the original gadget of [DF12], due to [And12].
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(f) CR computes cR = − (R′1, · · · , R′t) +
(

(L′1)−1 (c− d) , 0, · · · , 0
)

.

(g) CL computes cL = (L′1, · · · , L′t).

Remark 3.8 (Amplifying correctness). The execution in each gadget can fail (if the generated encodings
are not valid inner-product encodings). However, [DF12] show that for |F| = Ω (t), if each computation
step is implemented using t copies of the corresponding gadget (and the output of the computation step
is set to the output of the first gadget whose output is valid), then each computation step succeeds except
with negl (t) probability. In what follows, we implicitly assume that each computation step is implemented
using this amplification technique over t gadgets.

As explained in Section 1.3.1, we use a leakage-tolerant variant of the DF-LRCC. Roughly speaking,
a leakage-tolerant circuit operates on un-encoded inputs and outputs (the input encoding function simply
returns the inputs, concatenated with masking inputs), where any leakage on the computation can be
simulated by related leakage on the inputs and outputs alone. (Leakage on the inputs and outputs is
unavoidable since these are provided to the circuit “in the clear”.) Formally,

Definition 3.9 (LTCC (for BCL)). Let t, ε (t) ,S (n) be as in Definition 2.9, let n, k ∈ N be input and
output length parameters (respectively), and let LtBCL be the family of t-BCL functions. We say that
a pair (Comp,E) is an

(
LtBCL, ε (t) , S (n)

)
-leakage-tolerant circuit-compiler (LTCC) if Comp,E have the

syntax of Definition 2.7, and satisfy the following properties for some negligible function ε (t) = negl (t):

• Correctness. For any arithmetic circuit C, and input x for C, Pr
[
Ĉ (x̂) = C (x)

]
≥ 1 − ε (t),

where x̂← Enc
(
x, 1t, 1|C|

)
.

• (Oblivious) leakage-tolerance. There exists a partition P = ((n1, n2) , (k1, k2)) of input and
output lengths, and a PPT algorithm Sim such that the following holds for all sufficiently large
t ∈ N, all n, k ∈ N, every arithmetic circuit C : Fn → Fk of size at most S (n), and every ` ∈ LtBCL

of input length |Ĉ|. Sim is given C, and outputs a view translation circuit T = (T1, T2) such that
for every (x1, x2) ∈ Fn1 × Fn2,

SD
(
` (T1 (x1, C (x1, x2)1) , T2 (x2, C (x1, x2)2)) , `

[
Ĉ, (x1, x2)

])
≤ ε (t)

where C (x1, x2) = (C (x1, x2)1 , C (x1, x2)2) ∈ Fk1 × Fk2.

We use a recent result of Bitansky et al. [BDL14], that show a general transformation from LRCCs
with a strong simulation guarantee against OCL, to LTCCs. Recently, Dachman-Soled [DLZ15] observed
that the DF-LRCC has this strong simulation property, namely the transformation can be applied directly
to the DF-LRCC.9 The final LTCC will use the following circuit CLR−DF:

Definition 3.10. Let t ∈ N be a security parameter, and let r = r (t) denote the maximal length of
masking inputs used by a gadget of Construction 3.7. For an arithmetic circuit C : Fn → Fk containing
+ and × gates, defined the circuit CLR−DF : Fn+r(t)·(n+|C|) → Fk as follows:

• The input (x = (x1, · · · , xn) ,m) ∈ Fn ×
(
supp

(
EncInDF

(
0, 1t

)))|C|+n
of CLR−DF is interpreted as an

input x for C, and a collection m of masking inputs for gadgets.

• Every gate of C is replaced with the corresponding gadget (as defined in Construction 3.7), and
gadgets corresponding to output gates are followed by decoding sub-circuits (computing the decoding
algorithm DecIP of the inner product encoding of Definition 3.6). The masking inputs used in the
gadgets are taken from m (every masking input in m is used at most once).

9We note that though Bitansky et al. [BDL14] construct leakage-tolerant circuits based on the DF-LRCC, since they are
interested in obtaining UC-security against continuous leakage, they use a more complex variant of the LRCC. We prefer to
use the DF-LRCC directly, since it suffices for our needs, and gives a much simpler construction.
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• Following each input gate xi, an encoding sub-circuit (with some fixed, arbitrary randomness hard-
wired into it) is added, computing the inner-product encoding of xi.

• A refresh gadget is added following every encoding sub-circuit, where the masking inputs used in the
gadgets are taken from m.

We now describe the LTCC of [DF12]. To simplify the notations and constructions, we define the
LTCC only for circuits operating on pairs of inputs.

Construction 3.11 (Leakage-tolerant circuit compiler, [DF12] and [BDL14]). Let t, tIn ∈ N, and n ∈ N
be an input length parameter. Let S : N4 → N be a length function whose value is set below. The LTCC(
CompDF,EDF

)
is defined as follows:

• EDF =
(
EncDF,DecDF

)
, where:

– For every x ∈ Fn, EncDF
(
x, 1t, 1tIn

)
=
(
x,
(
EncInDF

(
0, 1t

))2tIn), where
(
EncInDF

(
0, 1t

))k
denotes

k random and independent evaluations of EncInDF

(
0, 1t

)
.

– DecDF
(
(x,m) , 1t, 1tIn

)
= x.

• CompDF, on input an arithmetic circuit C : FnL × FnR → Fk, outputs the circuit CDF :
F2nR+nL+S(t,nL,nR,|C|) → Fk constructed as follows:

– Construct a circuit C1 : FnR×FnR → FnR that evaluates the function f1 (x, y) = x+y. Denote
s1 = |C1|, and let C ′1 be the circuit obtained from C1 by the transformation of Definition 3.10.
(Notice that if y is uniformly random then C ′1 outputs a one-time pad encryption of x.)

– Construct the circuit C2 : FnL+nR × FnR → Fk such that C2 ((z, c) , y) = C (c+ y, z). Denote
s2 = |C2|, and let C ′2 be the circuit obtained from C2 by the transformation of Definition 3.10.
(Notice that if c is a one-time pad encryption of some value x with pad y, then C ′2 emulates
C on x and z.)

– Let r = r (t) denote the total length of masking inputs used by a gadget of Construction 3.7.
Then S = S (t, nL, nR, |C|) = r (t) · (s1 + s2 + nL + 4nR). (Notice that S is the number of
masking inputs used in C ′1 and C ′2.)

– CDF (x, y, z) = C ′2 (z, (C ′1 (x, y)) , y). (Intuitively, CDF first uses C ′1 to encrypt x with pad y,
and then evaluates C ′2 on the encryption output by C ′1, z and pad y.)

We note that the correctness error of the LTCC of Theorem 3.2 might be abused by malicious parties
(e.g., a malicious ZK prover in Section 4.1, or malicious parties in Section 7) to violate the correctness of
the computation, which we overcome by checking whether a correctness error occurred, as described in
the following remark.

Remark 3.12 (Dealing with gadget failures). We will actually use a modified version of Construc-
tion 3.11, in which CDF also computes an error flag, indicating whether the computation failed in one of
its gadget (i.e., failed in all t copies of the gadget, see Remark 3.8). More specifically, each of the two
parties implementing the gadget computes in the clear a flag indicating whether its encoding of the output
is a valid encoding (i.e., all entries are non-zero), and each party locally combines the flags it generated
for all the gadgets. This additional computation is needed since malicious parties (e.g., a malicious prover
in the leakage-secure ZK circuit of Construction 4.2) may not choose the masking inputs at random, and
might generate them in a “smart” way which will always cause gadgets to fail.

We note that thought these flags are generated in the clear, they do not violate the leakage-tolerance
property of Construction 3.11. The reason is these flags are generated locally (by each of the parties), and
so could be generated by the leakage function from the simulated wire values which the LT simulator (of
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Definition 3.9) generates. This observation gives a reduction from any t-BCL function on the modified
circuit to a t-BCL function on the original circuit, and so when using Construction 3.11 as a building
block, we will implicitly disregard these additional wires (remembering that any leakage on the modified
circuit with the flags can be generated by related leakage on the original circuit). Finally, we note that in
an honest execution the flag is set only with negligible probability (and so the fact that the flag is computed
in the clear does not violate leakage-resilience).

Remark 3.13. To combine Construction 3.11 with Construction 3.4, we assume that Construction 3.11 is
implemented using a boolean circuit (implementing group operations via operations over F2) that operates
over a standard basis.

Dziembowski and Faust (Corollary 2 in the full version of [DF12]) show that the DF-LRCC resists OCL
leakage, which by the result of [BDL14] implies the existence of an LTCC against such leakage. Combined
with Lemma 3.15 below (which shows a relation between OCL and BCL), we have the following:

Theorem 3.14 ([DF12] and [BDL14], and Lemma 3.15). Let t ∈ N be a leakage bound, and n, k ∈ N
be input and output length parameters. Then for every polynomial p (t) there exist a finite field F of size

Ω(t), and a negligible function ε (t) = negl (t) for which there exists an
(
Lt̃BCL, ε (t) , p (t)

)
-LTCC, where

t̃ = 0.16t log2|F|−1− log2|F|, and LTBCL is the family of all t̃-BCL functions.

Theorem 3.14 relies on the next lemma which states that security against so-called “only computation
leaks” (OCL) implies security against BCL. (One can also show that 2t-BCL implies resilience against t-
OCL.) Recall that in the context of OCL, the wires of the leakage-resilient circuit Ĉ are divided according
to some partition P, into two “parts” ĈL, ĈR. The input encodings of Ĉ are also divided into two parts,
e.g., an encoding x̂ is divided into x̂L (which is the input of ĈL) and x̂R (which constitutes the input to ĈR)
The adversary can (adaptively) pick functions fL1 , · · · , fLnL

, and fR1 , · · · , fRnR
for some nL, nR ∈ N, where

the combined output lengths of fL1 , · · · , fLnL
(and fR1 , · · · , fRnR

) is at most t. In the execution of Ĉ on x̂, the

adversary is given fLi

[
ĈL, x̂L

]
, 1 ≤ i ≤ nL and fRi

[
ĈR, x̂R

]
, 1 ≤ i ≤ nR, and chooses the next leakage

functions based on previous leakage. The output of the leakage is taken to be the combined outputs of
all leakage functions fL1 , · · · , fLnL

, fR1 , · · · , fRnR
. We say that a circuit is

(
LtOCL, ε

)
-leakage-resilient with

relation to the partition P =
(
ĈL, ĈR

)
, if the real-world output of the OCL functions can be efficiently

simulated (given only the description of the circuit, and its outputs if Ĉ computes the outputs in the
clear), and the statistical distance between the actual and simulated wire values is at most ε. (We refer
the reader to, e.g., [DF12] for a more formal definition of OCL.) We note that we allow the adversary
to leak on the two components of the computation in an arbitrary order, a notion which is sometimes
referred to as “OCL+”.

Lemma 3.15 (OCL+-resilience implies BCL-resilience). Let ε ∈ (0, 1) be an error bound, t ∈ N be a
leakage bound, and C be a boolean circuit. If C is

(
LtOCL, ε

)
-leakage-resilient with relation to partition P,

then C is also (L, ε)-leakage-resilient for the family L of all t-BCL functions with relation to the same
partition P.

Proof (sketch). Let ` be a t-BCL function that corresponds to a two party protocol Π, defined in
relation to partition P. Let NextMsgL,NextMsgR be the next-message functions defining the messages
the parties send, given their current view, and assume without loss of generality that the left party
sends the first message in the protocol. Let (x̂L, x̂R) be the input on which Ĉ is evaluated, and denote

WL =
[
ĈL, x̂L

]
, and WR =

[
ĈR, x̂R

]
.

To generate the transcript of Π, the adversary operates as follows. First, it picks fL1 (z) =
NextMsgL (z). Then, given fL1 (WL), which is the first message that the left party sends in Π, it picks
fR1 to be the function which NextMsgR computes, conditioned on the event that fL1 (WL) was the first
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message which the right party received, and sends fR1 , to be evaluated on WR. The adversary continues
in this way until all messages of Π have been computed. Since Π is t-bounded, then in particular each of
the two participating parties sends at most t bits, namely the leakage functions we have defined leak at
most t bits on each of WL,WR. Therefore, the t-OCL resilience of C guarantees that the leakage can be
efficiently simulated, up to statistical distance ε.

The following property of Construction 3.11 will be used to guarantee correctness of our constructions
in the presence of malicious parties.

Lemma 3.16 (Ill-formed masking inputs correspond to additive attacks). Let S : N4 → N be the length
function from Definition 3.10. Then Construction 3.11 has the following property. For every circuit
C : FnL×FnR → Fk, every security parameter t ∈ N, and every m ∈ FS(t,nL,nR,|C|), there exists an additive
attack Am on C such that for every x ∈ FnL+nR , and every x̂ = (x,m) it holds that CDF (x̂) = CAm (x).
Moreover, there exists a PPT algorithm Alg such that Alg (m) = Am.

Proof. We analyze the effect of ill-formed masking inputs m in the gadgets of Construction 3.7, and
show that they correspond to applying an additive attack on the underlying gate.

• Refresh gadget. Denote m = 〈rL,1, rR,1〉+〈rL,2, rR,2〉 (which, if the masking inputs are ill-formed,
may not be 0). Then the output of the gadget encodes the value 〈aL′,aR′〉. We analyze this value.

〈aL′,aR′〉 =
∑t2

i=1 a
L′
i , a

r′
i which, by the definition of aL′,aL′ is equal to

t2∑
i=1

(
aLi + ei

) (
aRi + ci

)
=

t2∑
i=1

aLi a
R
i +

t2∑
i=1

ei
(
aRi + ci

)
+

t2∑
i=1

aLi ci = a+
t2∑
i=1

eia
R′
i +

t2∑
i=1

aLi ci

which, by the definition of c, e, is equal to

a+

t2∑
i=1

(
aR′i
)−1

rR,2i rL,2i aR′i +
t2∑
i=1

aLi

(
aL,1i

)−1
rL,1i rR,1i = a+ 〈rL,1, rR,1〉+ 〈rL,2, rR,2〉 = a+m

Moreover, notice that m can be efficiently computed from rL,1, rR,1, rL,2, rR,2 by computing
〈rL,1, rR,1〉+ 〈rL,2, rR,2〉.

• Generalized multiplication gadget. Denote m = 〈rL,1, rR,1〉+ 〈rL,2, rR,2〉. The output of the
gadget encodes the value 〈cL, cR〉 =

∑t
i=1 c

L
i c
R
i which, by the definition of cL, cR, is equal to

L′1

(
−R′1 +

(
L′1
)−1

(c− d)
)

+
t∑
i=2

L′i ·
(
−R′i

)
= c−

t∑
i=1

L′iR
′
i− d = c−

t2∑
i=1

L′iR
′
i−m = c− a× b−m

where the second-but-last equality follows from the analysis of the refresh gadget.

• Multiplication and addition by constant gadgets. Notice that these gadget do not use
any masking inputs, and so the computation in these gadgets is always correct (corresponds to
computation under the all-zeros attack).

4 Leakage-Secure Zero-Knowledge

In this section we describe our leakage-secure zero-knowledge circuits. At a high level, an L-secure ZK
circuit for a family L of functions is a randomized algorithm Gen that given an error parameter ε, and
an input length n, outputs a randomized prover input encoder EncP , and a circuit T . T takes an input
from a prover P , and returns output to a verifier V , and is used by P to convince V that x ∈ LR. T
guarantees soundness, and zero-knowledge even when V obtains leakage from L on the internals of T .
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Definition 4.1 (L-secure ZK circuit). Let R = R (x,w) be an NP-relation, L be a family of functions,
and ε > 0 be an error parameter. We say that Gen is an L-secure zero-knowledge (ZK) circuit if the
following holds.

• Syntax. Gen is a deterministic algorithm that has input ε, 1n, runs in time poly (n, log (1/ε)),
and outputs (EncP , T ) defined as follows. EncP is a randomized circuit that on input (x,w) such
that |x| = n (x is the input, and w is the witness) outputs the prover input y for T ; and T is a
randomized circuit that takes input y and returns z ∈ {0, 1}n+1.

• Correctness. For every ε > 0, every n ∈ N, and every (x,w) ∈ R such that |x| = n,
Pr [T (EncP (x,w)) = (x, 1)] ≥ 1 − ε, where (EncP , T ) ← Gen (ε, 1n), and the probability is over
the randomness used by EncP , T .

• Soundness. For every (possibly malicious, possibly unbounded) prover P ∗, every ε > 0, every n ∈
N, and any x /∈ LR such that |x| = n, Pr [T (P ∗ (x)) = (x, 1)] ≤ ε, where (EncP , T ) ← Gen (ε, 1n),
and the probability is over the randomness used by P ∗, T .

• L-Zero-knowledge. For (x,w) ∈ R we define the following experiments.

– For a (possibly malicious, possibly unbounded) verifier V ∗, define the experiment
RealV ∗,Gen (x,w, ε) where V ∗ has input x, ε, and chooses a leakage function ` ∈ L, and
RealV ∗,Gen (x,w, ε) = (T (EncP (x,w)) , ` [T,EncP (x,w)]), where (EncP , T ) ← Gen (ε, 1n), and
[T, y] denotes the wires of T when evaluated on y.

– For a simulator algorithm Sim that has input x, ε, and one-time oracle access to `, the experi-
ment IdealSim,R (x,w, ε) is defined as follows: IdealSim,R (x,w, ε) = Sim` (ε, x), where Sim` (ε, x)
is the output of Sim, given one-time oracle access to `.

We say that Gen has L-zero-knowledge (L-ZK) if for every (possibly malicious, possibly unbounded)
verifier V ∗ there exists a simulator Sim such that for every ε > 0, every n ∈ N, and every (x,w) ∈ R
such that |x| = n, SD (RealV ∗,Gen (x,w, ε) , IdealSim,R (x,w, ε)) ≤ ε.

4.1 The Leakage-Secure ZK Circuit

We now construct the leakage-secure ZK circuit by combining the LRCC
(
CompGIMSS,EGIMSS

Inp ,DecGIMSS
Out

)
of Theorem 3.5 with the LTCC

(
CompDF,EDF

)
of Theorem 3.14.

At a high level, we compile the verification circuit CR of an NP-relationR using CompGIMSS, where the
prover provides the encoded input and witness for the compiled circuit ĈR. ĈR has encoded outputs, and
only guarantees that BCL leakage cannot distinguish between the executions on two different witnesses.
To achieve full-fledged ZK, we use CompDF to decode the outputs of ĈR. Recall that circuits compiled
with CompDF have masking inputs, and moreover, their leakage-tolerance property crucially relies on
the fact that the masks are unknown to the leakage function. Therefore, these masking inputs must be
provided by the prover as part of the input encoding (which is generated using EncP ). However, since the
correctness of the computation is guaranteed only when the masking inputs are well-formed, a malicious
prover P ∗ can violate soundness by providing ill-formed masking inputs (which were not drawn according
to the “right” distribution), and thus modify the computed functionality, and potentially cause the circuit
to accept x /∈ LR. As discussed in Section 3.2, the effect of ill-formed masking inputs corresponds to
applying an additive attack on the original decoding circuit, so we can protect against such attacks by
first replacing the decoding circuit with an AMD circuit.

Construction 4.2 (Leakage-secure ZK circuit). Let n ∈ N be an input length parameter, t ∈ N be a
security parameter, and c ∈ N be a constant. Let R = R (x,w) be an NP-relation, with verification circuit
CR of size s = |CR|. The leakage-secure ZK circuit uses the following building blocks (where any field
operations are implemented via bit operations).
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• The LRCC
(
CompGIMSS,EGIMSS

In =
(
EncGIMSS

In ,DecGIMSS
In

)
,DecGIMSS

Out

)
of Theorem 3.5 (Construc-

tion 3.4), and its underlying small-bias encoding scheme
(
Enc⊕ : F2 × Fc2 → F2c

2 ,Dec
⊕ : F2c

2 → F2
2

)
.

• The LTCC
(
CompDF,EDF

)
of Theorem 3.14 (Construction 3.11) over a field F = Ω (t), and its

underlying encoding scheme EIn
DF =

(
EncInDF,Dec

In
DF

)
.

• The additively-secure circuit compiler Compadd of Theorem 2.3.

• The AMD encoding scheme
(
Encamd,Decamd

)
of Theorem 2.6, with encodings of length n̂amd (n, t).

On input 1n, 1t, Gen outputs (EncP , T ) defined as follows.

• For every input x ∈ {0, 1}n, and witness w, EncP (x,w) =
(
EncGIMSS

(
(x,w) , 1t

)
,EncInDF

(
0s
′
, 1t
))

for a parameter s′ whose value is set below.

• Let nw be a bound on the maximal witness length for inputs of length n. T is obtained by concate-
nating the decoding component T ′′ to the verification component C ′′ (namely, applying T ′′ to the
outputs of C ′′) which are defined next.

1. The verification component C ′′. Define C ′ : Fn+nw
2 → Fn+1

2 as C ′ (x,w) = (x,CR (x,w)).
Let C ′2 denote the circuit that emulates C ′, but replaces each output bit with (the bit string
representation of) the bit as an element of F. Then C ′′ = CompGIMSS (C ′2).

2. The decoding component.

– Construct the circuit Camd : F2c·t·(n+1) → Fn̂amd(n+1,t) that operates as follows:

∗ Decodes its input using DecGIMSS
Out to obtain the output (f, x, z).

∗ If f = 1, x /∈ {0, 1}n, or z 6= 1, then Camd sets z′ = 0. Otherwise, it sets z′ = 1.

∗ Generates e← Encamd
(
(x, z′) , 1t

)
, and outputs e.

– Generate Ĉamd = Compadd
(
Camd

)
.

– Generate T ′ = CompDF
(
Ĉamd

)
. Let s′ denote the number of masking inputs used in T ′.

– Construct the circuit T ′′ that on input y, operates as follows:

∗ Computes (fL, fR, e) = T ′ (y). (Recall that fL, fR are flags indicating whether a gadget
of T ′ has failed.)

∗ Computes (f, x, z) = Decamd
(
e, 1t

)
, where f, z ∈ F and x ∈ Fn. If f = fL = fR = 0,

x ∈ {0, 1}n, and z = 1 then T ′ outputs (x, 1). Otherwise, it outputs 0n+1.

4.2 Proof of Theorem 1.2

In this section we prove Theorem 1.2. We first prove, in the following series of lemmas, the properties of
the ZK circuit of Construction 4.2

Lemma 4.3 (Correctness of Construction 4.2). If |F| = Ω (t), then Construction 4.2 is correct.

Proof. Let R = R (x,w) be an NP-relation with verification circuit CR, and let (x,w) ∈ R. Let ε > 0
be an error parameter. We show that when Construction 4.2 is instantiated with a large enough security
parameter t, then except with probability ε, T (EncP (x,w)) outputs (x, 1).

Since T is obtained as the concatenation of C ′′ and T ′′, we analyze each of these ingredients sepa-
rately. C ′′ is obtained by applying the LRCC of [GIM+16] (Construction 3.4) to C ′. Since (as proven
in [GIM+16]) Construction 3.4 has perfect correctness, when DecGIMSS

Out is applied to the output z of C ′′,
it outputs (x, 1) (with probability 1).

As for T ′ = CompDF
(
Compadd

(
Camd

))
, by the perfect correctness of the AMD encoding scheme,

and the additively-secure circuit compiler, both Camd and Ĉamd have perfect completeness. Therefore,
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if T ′ perfectly emulates Compadd
(
Camd

)
then when T ′ is applied to the output of C ′′ its output is

in supp
(
Encamd ((x, 1) , 1n)

)
, so T ′′ outputs (x, 1) as we set out to prove. Since T ′ perfectly emulates

Compadd
(
Camd

)
unless one of its gadgets fails, it suffices to prove that except with probability ε, no

gadget in T ′ fails (i.e., has incorrect output). Let δ (t) be the negligible function that bounds the failure
probability of the gadgets in T ′ (such a function exists; see Remark 3.8). Let s = |CR|, and let s′ denote
the number of gadgets in T ′. Then there exists a constant c ∈ N such that s′ = c · s (this follows from
Constructions 3.11 and 4.2, and since each field operation can be implemented using a constant number
of gadgets from Construction 3.2). Let t0 ∈ N be such that for every t ≥ t0, s′ · δ (t) ≤ ε. We instantiate
Construction 4.2 with security parameter t0, in which case the output is correct except with probability
ε.

Lemma 4.4 (Soundness of Construction 4.2). If |F| = Ω (t) then Construction 4.2 is sound.

Proof. Let x /∈ LR, and let ε > 0. Let x̂, ŵ denote the encodings which P ∗ provides as input to C ′′,
and assume these are valid encodings of some x′, w′. (This assumption is without loss of generality, since
invalid encodings are interpreted by the gadget G in C ′′ as encoding the all-zeros string.) Since C ′′ does
not use any structured randomness, conditioned on the event that the inputs are valid encodings, C ′′

perfectly emulates C ′2, and outputs a valid encoding of its output. Therefore, the output ŷ of C ′′ encodes
y = (x′, CR (x′, w′)) (where each bit is replaced with the bit-string representation of the corresponding
field element in F).

Let m′ denote the masking inputs which P ∗ provided for T ′′. Notice first that if the masking inputs
cause some gadget of T ′ to fail, then either fL or fR (computed in Step (2) of Construction 4.2) are set,
in which case the output is (x′, 0). Therefore, we can condition on the event that no gadget failed.

Lemma 3.16 guarantees that there exists an additive attack Am′ on Ĉamd10 such that T ′ (ŷ,m′) =

Ĉamd,Am′
(ŷ).

Moreover, the additive-security of Ĉamd guarantees that there exists an ideal additive attack ain on
the inputs of Camd, and a distribution AOut over the outputs of Camd, such that

SD
(
Ĉamd,Am′

(ŷ) , Camd
(
ŷ + ain

)
+AOut

)
≤ εamd (t) = negl (t) .

Consequently, SD
(
T (P ∗ (x)) , T ′′

(
Camd

(
ŷ + ain

)
+AOut

))
≤ εamd (t). We show that

Pr
[
T ′′
(
Camd

(
ŷ + ain

)
+AOut

)
= (x, 1)

]
≤ ε′ (t), by considering several possible cases. Choosing t

to be large enough such that εamd (t) + ε′ (t) < ε proves the lemma. Fix some aout ← AOut.

1. aout 6= 0. Since T ′′ uses Decamd to decode the outputs of Camd (which are AMD encodings), then
the additive soundness of the AMD encoding guarantees that the decoding of each output symbol
fails except with probability |F|−t, so decoding the outputs of Camd fails except with probability
(n+ 1) |F |−t (which, since |F| = Ω (t) is negl (t) for every t ≥ n). Therefore, we can condition on
the event that aout = 0.

2. ain 6= 0. Notice that ŷ, as the output of C ′′, is a valid encoding, and recall that it consists of n+ 1
collections ŷ1, · · · , ŷn+1, where each collection consists of t encodings ŷi,1, · · · , ŷi,t of the same value
yi. We assume that ŷ + ain does not encode y, since the case that it encodes y is covered by the
case that ain = 0. Since ŷ + ain does not encode y, there are two possible cases.

• ŷ+ain is an invalid encoding. In this case, the decoding inside Camd fails except with probability
(n+ 1) |F|−t. Conditioned on the event that the decoding failed, Camd outputs an AMD
encoding of 0, in which case T ′′ outputs 0n+1. (Indeed, since we have conditioned on the event
that aout = 0, the decoding in T ′′ returns z = 0.)

10If m′ consists of well-formed vectors then the corresponding additive attack on Ĉamd is the all-zero string.

24



• ŷ+ain is a valid encoding of y′ 6= y, and assume y′i 6= yi. In particular, ain succeeded in flipping
the encoded value in each of the encodings ŷi,1, · · · , ŷi,t (since during decoding, these values
are compared). Since the encodings scheme E⊕ has ε′-additive soundness, for each 1 ≤ j ≤ t
this happens only with probability ε′, and so the probability that this occurs for all 1 ≤ j ≤ t
copies is at most (ε′)t = negl (t).

3. ain = 0. Recall that y = (x′, CR (x′, w′)) is the value encoded by ŷ. We consider two possible
cases.

• First, if x′ 6= x then since we have conditioned on the event that aout = 0, then the AMD
decoding in T succeeds, and returns x′. Therefore, the output in any case is not (x, 1) (with
probability 1).

• If x′ = x then CR (x′, w′) = 0. Since we have conditioned on the event that aout = 0, the AMD
decoding in T returns z = 0, so T outputs 0n (with probability 1).

The following notation will be useful for the formulate the zero-knowledge property of Construc-
tion 4.2.

Notation 4.5. For a finite field F, a parameter k ∈ N, and a family L of leakage functions, denote by
Lkf the family of all functions `kf such that `kf (y1, · · · , yN ) = ` (y1, · · · , yN , f (yN−k+1, · · · , yN )). (That is,

the inputs to ` are the inputs to `kf , and the output of f on the last k inputs of `kf .)

Recall that LtBCL denotes the family of all t-BCL functions (as defined in Definition 1.1).

Lemma 4.6 (Zero-knowledge of Construction 4.2). Let t ∈ N be a leakage bound, R be an NP-relation
with verification circuit CR of input length n and size |CR| = s, and ε > 0. Let DecGIMSS

Out be the output-
decoder of Construction 3.4, and let Ĉamd denote the circuit constructed from DecGIMSS

Out in Step (2) of
Construction 4.2. Let s′ denote the combined sizes of the circuits C ′1, C

′
2 of Construction 3.11, when they

are constructed for the circuit Ĉamd. If:

• Construction 3.11 is an
(
LtBCL, ε, s

′)-LTCC with a simulator SimDF that outputs a view-translation
circuit T , and

• Construction 3.4 is an
(
LtBCL, ε, s

)
-relaxed LRCC with abort.

Then Construction 4.2 is L-leakage resilient, with statistical distance 2ε+ negl (t).

Before proving the lemma, we describe the high-level idea of the simulation. The simulator Sim
honestly evaluates C ′′ on an arbitrary input, to obtain an encoding ŷ of the output. Then, Sim uses the
simulator SimDF of Construction 3.11 (whose existence is guaranteed from the leakage-tolerance property
of the compiler) to construct a view-translator circuit (T1, T2) which, given the inputs and outputs of T ′′,
generates a simulated wire assignment to its wires. Applying T ′′ to ŷ, and combining this with the wire
values of C ′′, gives simulated wire values for T ′′.
Proof. The assumptions of the lemma guarantee that when the compilers of Constructions 3.4 and 3.11
are applied to the verification circuit CR, as they are in the construction of T , the resultant circuits C ′′, T ′′

are leakage-resilient, and leakage-tolerant, respectively. Let V ∗ be a malicious (possibly unbounded)
verifier, then the simulator Sim, on input (ε, x) performs the following:

1. Obtaining the leakage function. Invokes V ∗ on input x, to obtain a leakage function `.

2. Generating the view-translator for T ′′. Runs the simulator SimDF to obtain view-translator
circuits (T1, T2).
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3. Simulating the wire values of C′′. Encodes the all-zeros string using EncP , and evaluates C ′′

on the encoding. Let WR denote the wires values of C ′′ in this evaluation. Let WOut denote the
restriction of WR to the outputs of C ′′.

4. Simulating the wire values of T ′′. Generates a fresh encoding y ← Encamd
(
(x, 1) , 1t

)
and

uses (T1, T2), with inputs (WOut, y) to obtain simulate wire values ŴDec of T ′. Constructs the wire

values WDec by honestly computing Decamd
(
y, 1t

)
and concatenating these wires values to ŴDec.

5. Outputs ((x, 1) , ` (WR,WDec)).

We now claim that for every ε > 0, every n ∈ N, every (x,w) ∈ R such that |x| = n, and every ` ∈ L it
holds that

SD ((T (EncP (x,w)) , ` [T,EncP (x,w)]) , Sim (x, ε)) ≤ 2ε. (1)

Notice that the output of T ′ is negl (t)-statistically close in both worlds, since x ∈ LR and so by correct-
ness, the output of T is (x, 1) except with probability negl (t), so we can condition on the event that (x, 1)
it the output in both worlds (this can only increase the statistical distance by an additive negl (t) factor),
in which case y is identically distributed to the output of T ′, so we can condition both distributions on
the event that y was the output of T ′ in both worlds.

We show that when Construction 4.2 is applied with a large enough t, both distributions in Eq. (1)
are ε- statistically-close to the hybrid distribution H defined as follows:

• Encode (x̂, ŵ) ← EncP (x,w), and evaluates C ′′ on (x̂, ŵ). Let W ′R denote the wire values of C ′′

during this evaluation, and W ′Out denote its restriction to the outputs of C ′′.

• Compute a fresh encoding y ← Encamd
(
(x, 1) , 1t

)
, and apply (T1, T2) to (W ′Out, y) to obtain simu-

lated wire values Ŵ ′Dec of T ′, and generate the wire valuesW ′Dec by honestly computing Decamd
(
y, 1t

)
and concatenating these wires values to Ŵ ′Dec.

• H = (y, ` (W ′R,W ′Dec)).

SD ((y, ` [T, (EncP (x,w))]) ,H) ≤ ε, because the only difference between both distributions is the wire
values of T ′ (in particular, we can condition both distributions on some possible value for the wires of
C ′′), and so the leakage-tolerance of Construction 3.11 guarantees that the statistical distance is at most
ε.

Second, we claim that SD (H, Sim (x, ε)) ≤ ε. Since we have conditioned on the event that the output
of T ′ is y, it suffices to show that SD (` (W ′R,W ′Dec) , ` (WR,WDec)) ≤ ε. Notice that ` (W ′R,W ′Dec) =
` (W ′R, (T1, T2) (W ′Out, y)), and ` (WR,WDec) = ` (WR, (T1, T2) (WOut, y)). Since we have conditioned on

the value of y, it can be fixed into T1, T2, and let `′ be the function that on input W̃R first computes

W̃ ′ = (T1, T2)
(
W̃Dec

)
, where W̃Dec are the last 4tc (n+ 1) wires in W̃R (i.e., the wires that correspond to

the output of C ′′), and then computes `
(
W̃R, W̃ ′

)
. Then `′ ∈ LtBCL, `′ (W ′R) = ` (W ′R, (T1, T2) (W ′Out, y)),

and `′ (WR) = ` (WR, (T1, T2) (WOut, y)). Therefore, by the relaxed leakage-resilience property of Con-
struction 3.4, the statistical distance is at most ε.

We are now ready to prove Theorem 1.2.
Proof (of Theorem 1.2). We show that Construction 4.2 has the required properties. Let DecGIMSS

Out be
the output-decoder of Construction 3.4, and let Ĉamd denote the circuit constructed from DecGIMSS

Out in
Step (2) of Construction 4.2. Let s′ denote the combined sizes of the circuits C1, C2 of Construction 3.11,
when they are constructed for the circuit Ĉamd. Since

∣∣Camd
∣∣ = poly (|x|), and the blowup in C1, C2 is

polynomial in |x|, there exists a polynomial p (n) such that for all n, p (n) ≥ s′ (n).
For a parameter t, let f (t) denote the minimal size of F for which Lemmas 4.3, 4.4, and 4.6,

and Theorem 3.14, hold, and notice that f (t) = O (t). Let t′ ∈ N be such that for every t′′ ≥ t′,
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t′′ ≤ 0.16t′′ log2 f (t′′) − 1 − log2 f (t′′). We instantiate Construction 4.2 with security parameter
t̂ = max {t′, t, σ, n}, where n = |x| is the input length. Then correctness and soundness follow di-
rectly from Lemma 4.3 and Lemma 4.4, respectively. As for zero-knowledge, Theorem 3.14 guar-
antees that there exists a negligible function εDF

(
t̂
)

= negl
(
t̂
)
, such that Construction 3.11 is an(

LtBCL, ε
DF
(
t̂
)
, p
(
t̂
))

-LTCC with simulator SimDFthat outputs view-translation circuits (T1, T2). More-

over, Theorem 3.5 guarantees that Construction 3.4 is an
(
LtBCL, 2

−t̂, s
)

-relaxed LRCC with abort.

Therefore, by Lemma 4.6, Construction 4.2 is L-leakage-resilient with statistical distance 2ε′ + negl
(
t̂
)
,

where ε′ = max
{
εDF

(
t̂
)
, 2−t̂

}
= negl (σ).

Regarding the complexity of the construction, given a size-s, depth-d circuit CR with length-n
inputs, |C ′2| = s + n, and consequently |C ′′| = Õ

(
s+ n+ dt̂+ t̂2

)
(by Theorem 3.5). Moreover,

since
∣∣DecGIMSS

out

∣∣ = Õ
(
t̂2 + t̂n

)
, and has depth O

(
log t̂

)
(by the definition of DecGIMSS

Out , see Construc-

tion 3.4) and
∣∣Encamd

∣∣ = O
(
n+ t̂

)
(by Theorem 2.6, when instantiated with security parameter t̂), then∣∣Camd

∣∣ = Õ
(
t̂2 + t̂n

)
, and so

∣∣∣Ĉamd
∣∣∣ =

(
t̂2 + t̂n

)
· poly log

(
t̂n
)

+ poly
(
n, log t̂, t̂

)
= poly

(
t̂, n
)

(by The-

orem 2.3, when instantiated with error parameter 2−t̂). Since the LTCC of Theorem 3.14 has poly-
nomial blowup, |T ′| = poly

(
t̂, n
)

= poly (t, σ, n), and consequently |T ′′| = poly (t, σ, n). Therefore,

the overall size of the leakage-secure ZK circuit is Õ (s+ d ·max {t, σ, n}) + poly (t, σ, n). Finally, the
prover only: (1) encodes its input and witness using EncGIMSS

In , which (by Theorem 3.5) takes time
Õ
(
n+ |w|+ t̂

)
= Õ (n+ |w|+ t+ σ); and (2) generate the masking inputs for T ′ (there are O (|T ′|) such

inputs, and each masking input can be generated in polynomial time (in its length)), which takes time
poly (t, σ, n). Therefore, the prover runs in time poly (t, σ, n, |w|).

The proof of Theorem 1.3 is similar to that of Theorem 1.2. Here we only sketch the main differences.
Proof (Of Theorem 1.3 (sketch)). The leakage-secure ZK circuit is obtained by modifying Construc-
tion 4.2 to take the randomness needed for C ′′ from the prover, and the randomness needed for Ĉamd from
the verifier. (Notice the randomness used by Ĉamd includes the randomness used to generate the AMD
encoding e in Camd, as well as the randomness used by the additively-secure implementation.) First,
notice that letting the prover chose the randomness of C ′′ does not violate soundness, notice that Con-
struction 3.4 has perfect correctness, and so the output of C ′′ will be exactly the output of C ′2, regardless
of the randomness chosen by the prover. Second, to see why letting the verifier choose the randomness for
Ĉamd preserves the zero-knowledge property, notice that we can condition both the real and ideal worlds
on the randomness selected by the verifier for the execution. Hard-wiring this randomness into Ĉamd

gives (the same) deterministic circuit in both worlds, and so we can repeat the proof of Lemma 4.6 for
this new circuit (since now the randomness provided by the verifier constitutes part of the description of
the circuit Ĉamd, which is in any case public in the context of leakage-tolerance and leakage-resilience).

Regarding the prover and verifier runtime, since C ′′ uses O (|C ′′|) random bits, the prover runtime is

poly (t, σ, n, |w|)+Õ
(
s+ d ·max {t, σ, n}+ (max {t, σ, n})2

)
= poly (t, σ, n, |w|)+Õ (s+ d ·max {t, σ, n}).

Regarding the verifier runtime, since
∣∣∣Ĉamd

∣∣∣ = poly
(
t̂, n
)

= poly (t, σ, n), and it uses a polynomial amount

of randomness, the verifier runs in time poly (t, σ, n).

5 Multiparty LRCCs: Definition

In this section we define the notion of multiparty LRCCs, a generalization of leakage-secure ZK circuits
to evaluation of general functions with m ≥ 1 parties. We first formalize the notion of secure computation
with a single piece of trusted (but leaky) hardware device, where security with abort holds in the presence
of adversaries that corrupt a subset of parties, and obtain leakage (from a pre-defined leakage class) on
the internals of the device. This raises the following points.
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1. The output should include a flag signaling whether there was an abort.

2. Leakage on the wires of the device should reveal nothing about the internal computations, or the
inputs of the honest parties, other than what can be computed from the output. This necessitates
randomized computation.

3. The inputs should be encoded, otherwise leakage on the input wires may reveal information that
cannot be computed from the outputs. This should be contrasted with the ZK setting, in which x
is assumed to be public, and so when all parties are honest the output is (x, 1) and can therefore
be computed in the clear.

To guarantee that an adversary that only obtains leakage on the internals of the device (but does not
corrupt any parties) learns nothing about the inputs or internal computations, the outputs must be
encoded. Therefore, the device, which is implemented as a circuit, is associated with an input encoding
algorithm Enc, and an output decoding algorithm Dec. The above discussion is formalized in the next
definition.

Definition 5.1 (Secure function implementation). Let m ∈ N, f : ({0, 1}n)m → {0, 1}k be an m-
argument function, L be a family of leakage functions, and ε > 0. We say that (Enc, C,Dec) is an
m-party (L, ε)-secure implementation of f if it satisfies the following requirements.

• Syntax:

– Enc : {0, 1}n → {0, 1}n̂ is a randomized function, called the input encoder.

– C :
(
{0, 1}n̂

)m → {0, 1}k̂ is a randomized circuit.

– Dec : {0, 1}k̂ → {0, 1}k+1 is a deterministic function called the output decoder.

• Correctness. For every x1, · · · , xm ∈ {0, 1}n,

Pr [Dec (C (Enc (x1) , · · · ,Enc (xm))) = (0, f (x1, · · · , xm))] ≥ 1− ε.

• Security. For every adversary A there exists a simulator Sim such that for every input
(x1, · · · , xm) ∈ ({0, 1}n)m, and every leakage function ` ∈ L, SD (Real, Ideal) ≤ ε, where Real, Ideal
are defined as follows.

Real:

– A picks a set B ⊂ [m] of corrupted parties, and (possibly ill-formed) encoded inputs x′i ∈ {0, 1}n̂
for every i ∈ B.

– For every uncorrupted party j /∈ B, let x′j = Enc (xj).

– If B 6= ∅ then z = (C (x′1, · · · , x′m) ,Dec (C (x′1, · · · , x′m))), otherwise z is empty. (Intuitively, z
represents the information A has about the output of C. If B = ∅ then A learns nothing.)

– Real =
(
B, {x′i}i∈B , ` [C, (x′1, · · · , x′m)] , z

)
.

Ideal:

– Sim picks a set B ⊂ [m] of corrupted parties and receives their inputs {xi}i∈B. Sim then chooses
effective inputs wi ∈ {0, 1}n for every i ∈ B, and obtains f (w1 · · · , wm), where wj = xj for
every j /∈ B.

– Sim chooses b ∈ {0, 1}. (Intuitively, b indicates whether to abort the computation.)

– If B 6= ∅ and b = 0, set y = (0, f (w1, · · · , wm)), if B 6= ∅ and b = 1, set y =
(
1, 0k

)
, and if

B = ∅ then y is empty.
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– Let
(
W, {x′i}i∈B

)
← Sim (f (w1, · · · , wm)), where W contains a bit for each wire of C, and

x′i ∈ {0, 1}n̂ for every i ∈ B. Denote the restriction of W to the output wires by WOut.

– If B 6= ∅, let z = (WOut, y). Otherwise, z is empty.

– Ideal =
(
B, {x′i}i∈B , ` (W ) , z

)
.

We say that (Enc, C,Dec) is a passive-secure implementation of f if the security property holds with the
following modifications: (1) A does not choose x′i, i ∈ B, and instead, x′i ← Enc (xi) for every i ∈ B; and
(2) Sim always chooses b = 0.

We now define an m-party LRCC which, informally, is an asymptotic version of Definitions 5.1.

Definition 5.2 (m-party circuit). Let m ∈ N. We say that a boolean circuit C is an m-party circuit if
its input can be partitioned into m equal-length strings, i.e., C : ({0, 1}n)m → {0, 1}k for some n, k ∈ N.

Definition 5.3 (Multiparty LRCCs and passive-secure multiparty LRCCs). Let m ∈ N, L be a family
of leakage functions, S (n) be a size function, and ε (n) : N→ R+. Let Comp be a PPT algorithm that on
input m, and an m-party circuit C : ({0, 1}n)m → {0, 1}k, outputs a circuit Ĉ.

We say that (Enc,Comp,Dec) is an m-party (L, ε (n) , S (n))-leakage-resilient circuit compiler (m-
party LRCC, or multiparty LRCC) if there exists a PPT simulator Sim such that for all sufficiently large
n’s, and every m-party circuit C : ({0, 1}n)m → {0, 1}k of size at most S (n) that computes a function

fC ,
(
Enc, Ĉ,Dec

)
is an (L, ε (n))-secure implementation of fC , where the security property holds with

simulator Sim that is given the description of C, and has black-box access to the adversary. We say that

(Enc,Comp,Dec) is a passively-secure m-party (L, ε (n) , S (n))-LRCC if
(
Enc, Ĉ,Dec

)
is an (L, ε (n))-

passively-secure implementation of fC , where security holds with simulator Sim.

Remark 5.4. Definitions 5.1- 5.3 naturally extend to the arithmetic setting in which C is an arithmetic
circuit over a finite field F. When discussing the arithmetic setting, we explicitly state the field over which
we are working (e.g., we use “multiparty LRCC over F” to denote that the multiparty LRCC is in the
arithmetic setting with field F).

6 A Passive-Secure Multiparty LRCC

In this section we construct a passive-secure multiparty LRCC (this construction is somewhat more
efficient than the (fully-secure) multiparty LRCC which will be described in Section 7, and its analysis
will be a warm-up for the analysis of the multiparty LRCC). As described in Section 1.3.2, the high-
level idea of the leakage-resilient circuit Ĉ for a given circuit C is as follows. First, we use the LRCC
of [GIM+16] to generate a leakage-resilient version of the circuit Cshare that emulates C but outputs a
secret-sharing of the outputs. Then, we refresh each secret-share using a circuit ĈDec, generated from
a refreshing circuit CDec using the LTCC of [DF12]. More specifically, we use multiple copies of ĈDec,
where the i’th copy refreshes the i’th secret share, and takes its masking inputs from the i’th party. (We
note that there is no need to protect against invalid input encodings using AMD circuits, since in the
passive setting all input encodings are valid.) This intuition is formalized in the following construction.

Construction 6.1 (Passive-secure multiparty LRCC). Let m ∈ N denote the number of parties, t ∈ N
be a security parameter, n ∈ N be an input length parameter, and k ∈ N be an output length parameter.
The m-party passive-secure LRCC uses the following building blocks:

• The LRCC
(
CompGIMSS,EGIMSS

In =
(
EncGIMSS

In ,DecGIMSS
In

)
,DecGIMSS

Out

)
of Theorem 3.5 (Construc-

tion 3.4), and its underlying small-bias encoding scheme
(
Enc⊕ : F2 × Fc2 → F2c

2 ,Dec
⊕ : F2c

2 → F2

)
.

Let n̂In (n, t) (n̂ (n, t)) denote the length of encodings which EncInGIMSS (DecGIMSS
Out ) outputs (takes as

input).
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• The LTCC
(
CompDF,EDF

)
of Theorem 3.14 (Construction 3.11) over a field F = Ω (t), and its

underlying encoding scheme EIn
DF =

(
EncInDF,Dec

In
DF

)
that outputs encodings of length n̂DF (n, t).

The m-party passive-secure LRCC (Enc,Comp,Dec) is defined as follows.

• For every n, t, tIn ∈ N and every x ∈ Fn, Enc
(
x, 1t, 1tIn

)
=
(
EncGIMSS

In

(
x, 1t, 1tIn

)
,EncDF

In

(
0tIn , 1t

))
.

• For every y =
(
y1, · · · , ym

)
∈
(
F n̂In(k+1,t)

)m
, Dec

(
y, 1t

)
computes

(
fi, z

i
)

= DecOut
GIMSS

(
yi, 1t

)
, and

outputs
(
0,
∑m

i=1 z
i
)
.

• Comp on input m ∈ N, and an m-party circuit C : (Fn)m → Fk:

1. Constructs the circuit Cshare : (Fn)m → Fmk that operates as follows:

– Evaluates C on inputs x1, · · · , xm to obtain the output y = C (x1, · · · , xm).

– Generates y1, · · · , ym−1 ∈R Fk, and sets ym = y ⊕
∑m−1

i=1 yi. (y1, · · · , ym are random
additive secret shares of y.)

– For every 1 ≤ i ≤ m, generates y′i by replacing each bit of yi with (the bit string represen-
tation of) the bit as an element of F.

– Outputs (y′1, · · · , y′m).

2. Computes C ′ = CompGIMSS
(
Cshare

)
.

3. Constructs the circuit CDec : Fn̂(k,t) → Fn̂In(k+1,t) that operates as follows:

– Decodes its input using DecGIMSS
Out to obtain (f, z).

– Generates a random encoding EncInGIMSS

(
(f, z) , 1t

)
, and outputs it.

4. Generate C ′′ = CompDF
(
CDec

)
.

5. Outputs the circuit Ĉ obtained by concatenating a copy of C ′′ to each of the m outputs of C ′.
(We note that the i’th copy of C ′′ takes its masking inputs from the encoding of the i’th input
to Ĉ.)

The next theorem states that Construction 6.1 is a passive-secure multiparty LRCC.

Theorem 6.2. Let n, k ∈ N be input and output length parameters, S (n) : N → N be a size function,
ε (n) : N→ (0, 1) be an error function, t ∈ N be a leakage bound, and m ∈ N denote the number of parties.
Let L denote the family of all t-BCL functions. If:

•
(
CompGIMSS,EncGIMSS

In ,DecGIMSS
Out

)
is an (L, ε,S (n) + 2m)-relaxed LRCC with abort, where

DecGIMSS
Out ,EncGIMSS

In can be evaluated using circuits of size sGIMSS, and

•
(
CompDF,EDF

)
is an

(
L, ε, 2sGIMSS

)
-LTCC.

Then Construction 6.1 is a passively-secure m-party (L, (2m+ 1) ε,S (n))-LRCC.

Proof. First, it follows directly from the construction that the compiler has the required syntax. Second,
notice that for every m-party circuit C, the circuit Cshare obtained in Step (1) of Construction 6.1 satisfies∣∣Cshare

∣∣ ≤ |C| + 2m, and the circuit CDec obtained in Step (3) of Construction 6.1 satisfies
∣∣CDec

∣∣ ≤
2sGIMSS. Therefore, if |C| ≤ S (n), then the leakage-resilience of

(
CompGIMSS,EncGIMSS

In ,DecGIMSS
Out

)
guarantees that the circuit C ′ obtained in Step (2) is (L, ε)-leakage-resilient, and the leakage-tolerance of(
CompDF,EDF

)
guarantees that the circuit C ′′ obtained in Step (4) is (L, ε)-leakage-tolerant. (This will

be needed to argue security.)
Correctness. The perfect correctness of CompGIMSS guarantees that C ′ perfectly emulates Cshare, i.e.,
C ′ outputs an encoding (which can be decoded using DecGIMSS

Out ) of the output of Cshare, which in turn is
(by the definition of Cshare) an additive secret sharing of the output of C. Moreover, the 1− ε correctness
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of CompDF guarantees that except with probability ε, each copy of C ′′ perfectly emulates CDec when its
inputs are well formed. Using the union bound, except with probability mε all copies of C ′′ perfectly
emulate CDec. Therefore, conditioned on this event the output of Ĉ on well-formed input encodings of
(x1, · · · , xm) is an additive secret sharing of C (x1, · · · , xm). Consequently, the output is C (x1, · · · , xm)
except with probability at most mε.
Security. We describe a simulator Sim that simulates the wire values of Ĉ. Sim uses the adversary A as
a black-box to determine the set B = {i1, · · · , ir} of corrupted parties (Sim chooses to corrupt the same
set of parties).

We first consider the case that B = ∅. In this case, Real =
(
B, `

[
Ĉ, (x̂1, · · · , x̂m)

])
, where for every

1 ≤ i ≤ m, x̂i ← Enc
(
xi, 1

t, 1tIn
)
. The simulator operates as follows.

1. Obtaining the leakage function. Invokes A on input 1n to obtain a leakage function `.

2. Simulating the wire values of C′. Uses Enc to generate m encodings of 0n, and evaluates C ′ on
these encodings. Let W̃ denote the wires values of C ′ in this evaluation. Let W̃1

Out, · · · , W̃m
Out denote

the restriction of W̃ to the m outputs of C ′. (Intuitively, the simulator emulates the evaluation of
C ′ when the inputs of all parties are the all-0 strings.)

3. Simulating the wire values of C′′.

• Runs the simulator SimDF to obtain view-translator circuits (T1, T2).

• Generates m random encodings y1, · · · , ym ← EncInGIMSS

(
0k+1, 1t, 1tIn

)
. (Intuitively, y1, · · · , ym

simulate the output encodings of C ′′.)

• For every 1 ≤ i ≤ m, Sim uses (T1, T2), with inputs
(
W̃ i

Out, y
i
)

to obtain simulated wire values

W̃ i
Dec for the i’th copy of C ′′.

• Sets ŴDec =
(
W̃1

Dec, · · · , W̃m
Dec

)
.

4. Outputs
(
W̃, W̃Dec

)
.

Let Ideal =
(
B, `

(
W̃, W̃Dec

))
. We now claim that for every ε > 0, every n ∈ N, every (x1, · · · , xm) ∈

({0, 1}n)m, and every ` ∈ L it holds that SD (Real, Ideal) ≤ (2m+ 1) ε. Since B is identically dis-
tributed in both distributions, it suffices to bound the statistical distance conditioned on B. Let

Real′ = `
[
Ĉ, (x̂1, · · · , x̂m)

]
, Ideal′ = `

(
W̃, W̃Dec

)
. We show that for a large enough t, Real′, Ideal′ are

both statistically close to the hybrid distribution H defined as follows:

• For every 1 ≤ i ≤ m, encode x̂i ← Enc
(
xi, 1

t, 1|C|
)
, and evaluates C ′ on (x̂1, · · · , x̂m). Let W ′

denote the wire values of C ′ during this evaluation, and W ′Out denote its restriction to the outputs
of C ′.

• interpret W ′Out as m encodings W1′
Out, · · · ,Wm′

Out. For every 1 ≤ i ≤ m, decode yi =
DecOut

GIMSS

(
W i′

Out, 1
t
)
, and compute a fresh encoding yi′ ← EncInGIMSS

(
yi, 1t

)
.

• For every 1 ≤ i ≤ m, apply (T1, T2) to
(
W i′

Out, y
i′) to obtain simulated wire values W i′

Dec of the i’th
copy of C ′′.

• Set W ′Dec =
(
W1′

Dec, · · · ,Wm′
Dec

)
.

• H = ` (W ′,W ′Dec).
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SD
(
Real′,H

)
≤ mε. Indeed, the only difference between these distributions is the wire values of the

m copies of C ′′ (in particular, we can condition both distributions on some possible value for the wires of
C ′), and so we can bound the statistical distance using the leakage-tolerance of Construction 3.11 and a
hybrid argument over the copies of C ′′. More specifically, we define a sequence H0,H1, · · · ,Hm of hybrids
which are generated identically to H, except that in Hi, the wires of the first i copies of C ′′ are honestly
generated, and the wires of the copies i + 1, · · · ,m of C ′′ are generated using the translation circuits
(T1, T2). Then H0 = H,Hm = Real′, and so if SD

(
Real′,H

)
> mε then there exists an 1 ≤ i ≤ m such

that SD
(
Hi,Hi−1

)
> ε. Let W−i denote all wires except for the internal wires of the i’th copy of C ′′ (in

particular, W−i also includes the inputs and outputs of the i’th copy). Using an averaging argument, we
can fix all wires inW−i while preserving the statistical distance. Let `′ be the leakage function (withW−i
hard-wired into it) that on input wire values Wi of the i’th copy of C ′′, applies ` to (W−i,Wi). Then
`′ ∈ L. Let W i

i ,W
i−1
i denote the wire values of C ′′ in Hi,Hi−1, respectively, and let yi, zi denote the

input and output (respectively) of the i’th copy of C ′′ (notice that these are the same in both hybrids,
since we have conditioned on W−i). Then `′

(
W i−1
i

)
= `′

(
(T1, T2)

(
yi, zi

))
. Moreover, by the negation

assumption
SD
(
`
(
W i
i

)
, `′
(
(T1, T2)

(
yi, zi

)))
= SD

(
`
(
W i
i

)
, `′
(
W i−1
i

))
> ε

which contradicts the L-leakage-tolerance of Construction 3.11.
Second, we claim that SD

(
H, Ideal′

)
≤ (m+ 1) ε. Recall that

H = `
(
W ′, (T1, T2)

(
W1′

Out, y
1′) , · · · , (T1, T2)

(
Wm′

Out, y
m′))

and
Ideal′ = `

(
W̃, (T1, T2)

(
W̃1

Out, y
1
)
, · · · , (T1, T2)

(
W̃m

Out, y
m
))

.

We define an additional hybrid distribution H′ =
(
W̃, (T1, T2)

(
W̃1

Out, y
1′
)
, · · · , (T1, T2)

(
W̃m

Out, y
m′
))

(That is, H′ is identical to Ideal′, except that to simulate the internal wires of the m copies of C ′′, the
outputs are sampled according to the distribution over

(
y1′, · · · , ym′

)
.) Then:

• SD
(
H′, Ideal′

)
≤ mε. Indeed, we can condition both distributions on the value of W̃, and

let `′ be the leakage function (with W̃ hard-wired into it) that on input
(
z1, · · · , zm

)
, outputs

`
(

(T1, T2)
(
W̃1

Out, z
1
)
, · · · , (T1, T2)

(
W̃m

Out, z
m
))

. Then `′ ∈ L, H′ ≡ `′
(
y1′, · · · , ym′

)
, whereas

Ideal′ ≡ `′
(
y1, · · · , ym

)
. Therefore, SD

(
H′, Ideal′

)
≤ mε by the leakage-resilience of EncInGIMSS and

a union bound. (The L-leakage-resilience of the LRCC of Theorem 3.5 guarantees that the input
encoding is (L, ε)-leakage-indistinguishable, since leakage functions may choose to leak only on the
inputs of the compiled circuit.)

• SD (H′,H) ≤ ε. Indeed, since the outputs y1′, · · · , ym′ of the m copies of C ′′ are identically dis-
tributed in both distributions, we can condition both distributions on these values. Let `′ be
the leakage function (with

(
y1′, · · · , ym′

)
hard-wired into it) that on input wire value W ′′ for C ′,

extracts the outputs
(
W1′′

Out, · · · ,Wm′′
Out

)
of C ′, generates, W i′′

Dec = (T1, T2)
(
W i′′

Out, y
i′
)

for every

1 ≤ i ≤ m, and outputs `
(
W ′′,W1′′

Dec, · · · ,Wm′′
Dec

)
. Then `′ ∈ L, and notice that `′ (W ′) = H, whereas

`′
(
W̃
)

= H′. Since W ′, W̃ are both generated by evaluating C ′ on different inputs, the L-leakage-

resilience of the LRCC of Theorem 3.5 guarantees that SD
(
`′ (W ′) , `′

(
W̃
))

= SD (H,H′) ≤ ε.

Next, we consider the case that B 6= ∅. The difference from the first case is that now Real includes the
output of Ĉ, the decoded output of Dec, and the inputs chosen by the adversary for the corrupted parties;
and Sim receives the outcome of the computation, and is required to simulate the outputs of Ĉ, and the
inputs chosen by the adversary. The simulator operates as follows. (Notice that the only differences from
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the case that B = ∅ are: (1) in Step (3), when for the parties in B, Sim generates encodings of their actual
inputs; and (2) in Step (2), when Sim uses the actual output of C to generate the output of C ′′.)

1. Obtaining B and the leakage function. Invokes A on input 1n to obtain the set B of corrupted
parties, and a leakage function `.

2. Obtaining inputs (of corrupted parties) and output. Chooses to corrupt the set B, and
obtains {xi}i∈B (Which it also forwards to A), and y = C (x1, · · · , xm).

3. Simulating the wire values of C′. For every i ∈ B, computes x̂i ← Enc
(
xi, 1

t, 1|C|
)
, and for

every i /∈ B, generates x̂i ← Enc
(
0n, 1t, 1|C|

)
. Sim then evaluates C ′ on (x̂1, · · · , x̂m), and let W̃

denote the wires values of C ′ in this evaluation. Let W̃1
Out, · · · , W̃m

Out denote the restriction of W̃ to
the m outputs of C ′. (Intuitively, the simulator emulates the evaluation of C ′ when the inputs of
all honest parties are the all-0 strings.)

4. Simulating the wire values of C′′.

• Runs the simulator SimDF to obtain view-translator circuits (T1, T2).

• For every i ∈ B, sets yi = DecGIMSS
Out

(
W̃ i

Out, 1
t, 1|C|

)
.

• Picks yi, i /∈ B uniformly at random subject to the constraint that y = ⊕mi=1y
i, and generates

a random encoding ỹi ← EncGIMSS

(
yi, 1t, 1|C|

)
.

• For every i /∈ B, uses (T1, T2), with inputs
(
W̃ i

Out, ỹ
i
)

to obtain simulated wire values W̃ i
Dec

for the i’th copy of C ′′.

• For every i ∈ B, honestly evaluates C ′′ with input W̃ i
Out, and masks as defined in x̂i, to obtain

the wires values W̃ i
Dec of the i’th copy of C ′′, and its output ỹi.

• Sets W̃Dec =
(
W̃1

Dec, · · · , W̃m
Dec

)
.

5. Outputs
(
{x̃i}i∈B , W̃, W̃Dec

)
.

Let
Ideal =

(
B, {x̂i}i∈B , `

(
W̃, W̃Dec

)
,
((
ỹ1, · · · , ỹm

)
, y
))

and
Real =

(
B,
{
x′i
}
i∈B , ` (W,WDec) ,

((
ŷ1, · · · , ŷm

)
, y
))

whereW,WDec are the wire values of C ′, and the m copies of C ′′ (respectively) in the real world execution
on the inputs {x′i}i∈B chosen by the adversary (and honest encodings x̂i of xi for every i /∈ B), and(
ŷ1, · · · , ŷm

)
are the outputs of the m copies of C ′′.

We claim that for every n ∈ N, every (x1, · · · , xm) ∈ ({0, 1}n)m, and every ` ∈ L it holds that
SD (Real, Ideal) ≤ (2m− 1) ε. Since B is identically distributed in both distributions, and so are the output
y and the inputs {x̂i}i∈B , {x′i}i∈B (in both cases these are honestly-generated encodings of {xi}i∈B), it
suffices to prove indistinguishability conditioned on these values. Let

Ideal′ =
(
`
(
W̃, W̃Dec

)
,
(
ỹ1, · · · , ỹm

))
and

Real′ =
(
` (W,WDec) ,

(
ŷ1, · · · , ŷm

))
.

We show that for a large enough t, Real′, Ideal′ are both statistically close to the hybrid distribution H
defined as follows:
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• For every i /∈ B, encode x̂′i ← Enc
(
xi, 1

t, 1|C|
)
. For every i ∈ B, set x̂′i = x̂i ({x̂i}i∈B are the input

encodings both Real, Ideal were conditioned on), and evaluates C ′ on (x̂′1, · · · , x̂′m). Let W ′ denote
the wire values of C ′ during this evaluation, and W ′Out denote its restriction to the outputs of C ′.
Interpret W ′Out as m encodings W1′

Out, · · · ,Wm′
Out.

• For every i /∈ B, decode yi = DecOut
GIMSS

(
W i′

Out, 1
t
)
, compute a fresh encoding yi′ ← EncInGIMSS

(
yi, 1t

)
,

and apply (T1, T2) to
(
W i′

Out, y
i′) to obtain simulated wire values W i′

Dec of the i’th copy of C ′′.

• For every i ∈ B, honestly evaluate C ′′ with input W i′
Out, and masks as defined in x̂′i, to obtain the

wires values W i′
Dec of the i’th copy of C ′′, and its output yi′.

• Set W ′Dec =
(
W1′

Dec, · · · ,Wm′
Dec

)
.

• H = (` (W ′,W ′Dec) , (y
′
1, · · · , y′m)).

We first claim that SD
(
Real′,H

)
≤ (m− |B|) ε ≤ (m− 1) ε. Indeed, the only difference between these

distributions is the wire values of the m − |B| copies of C ′′ that correspond to the output shares of the
honest parties. Similar to the case that B = ∅, we can bound the statistical distance using a hybrid
argument, moving from H to Real′ by changing the wire values of one of these copies (i.e., a copy of C ′′

that decodes the share of an honest party) at a time, from simulated to actual wire values.
Second, we claim that SD

(
H, Ideal′

)
≤ mε. We define an additional hybrid distribution H′ which is

generated similar to H, except that for i /∈ B, the internal wires W̃ i′
Dec of the i’th copy of C ′′ are generated

as (T1, T2)
(
W i′

Out, ỹ
i
)
, where the ỹi’s for i /∈ B are generated as in Ideal (i.e., as encodings of yi’s that are

random subject to the constraint that together with yi, i ∈ B they sum to y). Then:

• SD (H′,H) ≤ (m− 1) ε. Indeed, we can condition both distributions on the values ofW ′,
{
W i′

Dec

}
i∈B,

and
{
yi′
}
i∈B. Let `′ be the leakage function (with W,

{
W i′

Dec

}
i∈B, and

{
yi′
}
i∈B hard-wired

into it) which on input
{
zi
}
i/∈B, operates as follows. For every i /∈ B, it computes W i′

Dec =

(T1, T2)
(
W i′

Out, z
i
)
, and outputs `

(
W ′,W1′

Dec, · · · ,Wm′
Dec

)
. Then `′ ∈ L, H ≡ `′

(
y1′, · · · , ym′

)
, whereas

H′ ≡ `′
(
ỹ1, · · · , ỹm

)
. Therefore, SD (H′,H) ≤ (m− |B|) ε ≤ (m− 1) ε by the leakage-resilience of

EncInGIMSS and the union bound. (The L-leakage-resilience of the LRCC of Theorem 3.5 guarantees
that the input encoding is (L, ε)-leakage-indistinguishable, since leakage functions may choose to
leak only on the inputs of the compiled circuit.)

• SD (H′, Ideal) ≤ ε. Notice first that
{
W̃ i

Out

}
i∈B
≡
{
W i′

Out

}
i∈B since Cshare outputs a random additive

secret sharing of C’s output (and B 6= [m], so the shares of i ∈ B are uniformly random in both
distributions), and C ′ outputs random encodings of the outputs of Cshare. Consequently, the outputs
ỹ1, · · · , ỹm of the m copies of C ′′ are identically distributed in both distributions: for i /∈ B this is
by the choice of ỹi; whereas for i ∈ B this is because in both distributions they are generated in the
same way from the inputs of the copies of C ′′ that correspond to i ∈ B. Moreover, since for every
i /∈ B, W i′

Dec and W̃ i
Dec are obtained by honestly evaluating the i’th copy of C ′′, and the same masks

are used in both (the masks are provided as part of the encoding x̂i, which we have fixed), then
these wires are also identical in both distributions, and we can further condition both distributions

on the value of these wires. Let `′ be the leakage function (with
(
ỹ1, · · · , ỹm

)
and

{
W̃ i

Dec

}
i∈B

hard-

wired into it) that on input wire value W ′′ for C ′ operates as follows. First, it extracts the outputs(
W1′′

Out, · · · ,Wm′′
Out

)
of C ′. Then, for every i /∈ B it generates W i′′

Dec = (T1, T2)
(
W i′′

Out, ỹ
i
)

. Finally,

it outputs `
(
W ′′,

{
W̃ i

Dec

}
i∈B

,
{
W i′′

Dec

}
i/∈B

)
. Then `′ ∈ L, and notice that `′ (W ′) = H′, whereas

`′
(
W̃
)

= Ideal. SinceW ′, W̃ are both generated by evaluating C ′ on different inputs, the L-leakage-

resilience of the LRCC of Theorem 3.5 guarantees that SD (H′, Ideal) = SD
(
`′ (W ′) , `′

(
W̃
))
≤ ε.
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Second, we claim that SD
(
H, Ideal′

)
≤ ε. Indeed, since the output

(
ŷ1, · · · , ŷm

)
of C ′′ is identically

distributed in both distributions, we can condition both distributions on this value. Let `′ be the leakage

function (with
(
ŷ1, · · · , ŷm

)
hard-wired into it) that on input wire value W ′′ for C ′, extracts the outputs

W ′′Out of C ′, generates W ′′Dec = (T1, T2)
(
W ′′Out,

(
ŷ1, · · · , ŷm

))
, and outputs ` (W ′′,W ′′Dec). Then `′ ∈ L,

and notice that `′
(
W̃
)

= `
(
W̃, W̃Dec

)
, whereas `′ (W ′) = ` (W ′,W ′Dec). SinceW ′, W̃ are both generated

by evaluating C ′ on different inputs, the L-leakage-resilience of the LRCC of Theorem 3.5 guarantees

that SD
(
`′ (W ′) , `′

(
W̃
))

= SD (H, Ideal) ≤ ε.

7 A Multiparty LRCC

In this section we construct a multiparty LRCC that withstands active adversaries. The high-level idea of
the construction is as follows. Given an m-party protocol C, we first replace it with a circuit Cshare that
emulates C but outputs a secret-sharing of the outputs, then compile Cshare using the LRCC of [GIM+16].
We then refresh each of the shares using a circuit CDec. However, to guarantee leakage-resilience, and
correctness of the computation in the presence of actively-corrupted parties, we first replace the circuit
CDec with its additively-secure version C ′Dec, then compile C ′Dec using the LTCC of [DF12] to obtain a

leakage-tolerant circuit Ĉ ′Dec. We use m copies of Ĉ ′Dec, where the i’th copy refreshes the i’th secret
share, using masking inputs provided by the i’th party. Each party provides, as its input encoding to the
device, both a leakage-resilient encoding of its input, and the masking inputs needed for the computation
in ĈDec. (We note that the only difference from the construction of a passive-secure MPCC is that CDec is
replaced with an AMD circuit.) The output decoder decodes each of the secret shares, and reconstructs
the output from the shares (unless it detects that one of the parties provided ill-formed masking inputs,
in which case the computation aborts). This is formalized in the next construction.

Construction 7.1 (Multiparty LRCC). Let m ∈ N denote the number of parties, t ∈ N be a security
parameter, n ∈ N be an input length parameter, k ∈ N be an output length parameter, and c ∈ N be a
constant. The m-party LRCC uses the following building blocks:

• The LRCC
(
CompGIMSS,EGIMSS

In =
(
EncGIMSS

In ,DecGIMSS
In

)
,DecGIMSS

Out

)
of Theorem 3.5 (Construc-

tion 3.4), where the outputs of the leakage-resilient circuit are encoded by the encoding scheme(
EncGIMSS : F2 → F4ct

2 ,DecGIMSS : F4ct
2 → F2

2

)
.

• The LTCC
(
CompDF,EDF

)
of Theorem 3.14 (Construction 3.11) over a field F = Ω (t), and its

underlying encoding scheme EIn
DF =

(
EncInDF,Dec

In
DF

)
that outputs encodings of length n̂DF (n, t).

• The additively-secure circuit compiler Compadd of Theorem 2.3.

The m-party LRCC (Enc,Comp,Dec) is defined as follows.

• For every n, t, tIn ∈ N and every x ∈ Fn, Enc
(
x, 1t, 1tIn

)
=
(
EncGIMSS

In

(
x, 1t, 1tIn

)
,EncDF

In

(
0tIn , 1t

))
.

• For every y =
((
f1
L, f

1
R, y

1
)
, · · · , (fmL , fmR , ym)

)
∈
(
F 2+2tc(k+1)

)m
, Dec

(
y, 1t

)
computes

(
fi, z

i
)

=

DecOut
GIMSS

(
yi, 1t

)
. If f iL = f iR = f0i = 0 for all 1 ≤ i ≤ m then Dec outputs

(
0,
∑m

i=1 z
i
)
, otherwise

it outputs
(
1, 0k

)
. (Intuitively, each triplet

(
f iL, f

i
R, y

i
)

consists of a pair of flags output by the
LTCC, indicating whether the computation in one of its gadgets failed; and an encoding of a flag,
concatenated with an additive secret share of the output.)

• Comp on input m ∈ N, and an m-party circuit C : (Fn)m → Fk:

1. Constructs the circuit Cshare : (Fn)m → Fmk that operates as follows:

35



– Evaluates C on inputs x1, · · · , xm to obtain the output y = C (x1, · · · , xm).

– Generates y1, · · · , ym−1 ∈R Fk, and sets ym = y ⊕
∑m−1

i=1 yi. (y1, · · · , ym are random
additive secret shares of y.)

– For every 1 ≤ i ≤ m, generates y′i by replacing each bit of yi with (the bit string represen-
tation of) the bit as an element of F.

– Outputs (y′1, · · · , y′m).

2. Computes C ′ = CompGIMSS
(
Cshare

)
.

3. Construct the circuit CDec : F4ct(k+1) → F4ct(k+1) that operates as follows:

– Decodes its input using DecGIMSS
Out to obtain a flag f ∈ F2 and output z ∈ Fk.

– If f = 1, sets z′ = 0k, otherwise z′ = z.

– Generates e← EncGIMSS

(
(f, z′) , 1t

)
, and outputs e.

4. Generate Ĉamd = Compadd
(
CDec

)
.

5. Generate C ′′ = CompDF
(
Ĉamd

)
.

6. Outputs the circuit Ĉ obtained by concatenating a copy of C ′′ to each of the m outputs of C ′.
(We note that the i’th copy of C ′′ takes its masking inputs from the encoding of the i’th input
to Ĉ.)

The next theorem states that Construction 7.1 is a multiparty LRCC.

Theorem 7.2 (Multiparty LRCC). Let n, k ∈ N be input and output length parameters, S (n) : N → N
be a size function, ε (n) , ε′ (n) : N → (0, 1) be error functions, t ∈ N be a leakage bound, let c ∈ N be a
constant, and let m ∈ N denote the number of parties. Let L denote the family of all t-BCL functions.
If:

•
(
CompGIMSS,EncGIMSS

In ,DecGIMSS
Out

)
is an (L, ε,S (n) + 2m)-relaxed LRCC with abort, where for se-

curity parameter t, DecGIMSS
Out ,EncGIMSS can be evaluated using circuits of size sGIMSS (t),

• Compadd is an ε′ (n)-additively-secure circuit compiler over F, where there exist: (1) B : N → N
such that for any circuit C, Compadd (C) has size at most B (|C|); and (2) a PPT algorithm Alg′

that given an additive attack A outputs the ideal attack
(
ain,AOut

)
(whose existence follows from

the additive-attack security property of Definition 2.2), and

•
(
CompDF,EDF

)
is an

(
L, ε, B

(
2sGIMSS (t) + ck

))
-LTCC.

Then Construction 7.1 is an m-party (L, (2m+ 1) ε (n) + ε′ (n) + negl (t) ,S (n))-LRCC.
Moreover, if on input a circuit of size s, CompGIMSS,CompDF output circuits of size ŝGIMSS (s), and

sDF (s), respectively, then on input a circuit C of size s, the compiler of Construction 7.1 outputs a circuit
Ĉ of size ŝGIMSS (s+ 2m) + sDF

(
B
(
2sGIMSS (t) + ck

))
.

Proof. We show that Construction 7.1 has the required properties. It follows directly from the con-
struction that the compiler has the required syntax.
Complexity. Let C be a circuit to be compiled, and denote s = |C|. Then the circuit Cshare constructed
in Step (1) has size s + 2m. By the assumptions of the theorem, the circuit C ′ Constructed in Step (2)
has size ŝGIMSS (s+ 2m). Moreover, since DecGIMSS

Out ,EncGIMSS have size sGIMSS (t), then there exists a
constant c ∈ N such that the circuit CDec constructed in Step (3) has size 2sGIMSS (t)+ ck. Consequently,
the circuit Ĉamd from Step (4) has size B

(
2sGIMSS (t) + ck

)
, and so the circuit C ′′ from Step (5) has size

sDF
(
B
(
2sGIMSS (t) + ck

))
. Therefore, the combined size of the compiled circuit Ĉ is ŝGIMSS (s+ 2m) +

sDF
(
B
(
2sGIMSS (t) + ck

))
.
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In particular, we have shown that for every m-party circuit C,
∣∣Cshare

∣∣ ≤ |C| + 2m,

and
∣∣∣Ĉamd

∣∣∣ ≤ B
(
2sGIMSS (t) + ck

)
. Therefore, if |C| ≤ S (n), then the leakage-resilience of(

CompGIMSS,EncGIMSS
In ,DecGIMSS

Out

)
guarantees that C ′ is (L, ε)-leakage-resilient, and the leakage-tolerance

of
(
CompDF,EDF

)
guarantees that C ′′ is (L, ε)-leakage-tolerant. (This will be needed to argue security.)

Correctness. The perfect correctness of CompGIMSS guarantees that C ′ perfectly emulates Cshare, i.e.,
C ′ outputs an encoding (which can be decoded using DecGIMSS

Out ) of the output of Cshare, which in turn
is (by the definition of Cshare) an additive secret sharing of the output of C. Moreover, the 1 − ε
correctness of CompDF guarantees that except with probability ε, each copy C ′′ perfectly emulates Ĉamd

when its inputs are well formed (which corresponds to the case in which there is no additive attack on
Ĉamd). Using the union bound, except with probability mε all copies of C ′′ perfectly emulate Ĉamd,
and conditioned on this event, the perfect correctness of Compamd guarantees that C ′′ perfectly emulates
CDec. Therefore, when Ĉ is evaluated on a well-formed encoding of (x1, · · · , xm), conditioned on the event
that non of the copies of C ′′ failed, its output is identically distributed to valid encodings, according to
EncGIMSS, of an additive secret sharing of C (x1, · · · , xm). Finally, the perfect correctness of the encoding
scheme (EncGIMSS,DecGIMSS) guarantees that all the decodings in Dec succeed, and so the output is
C (x1, · · · , xm). In summary, the output is C (x1, · · · , xm) except with probability mε.
Security. We describe a simulator Sim that simulates the wire values of Ĉ. Sim uses the adversary A as
a black-box to determine the set B = {i1, · · · , ir} of corrupted parties (Sim chooses to corrupt the same
set of parties).

We first consider the case that B = ∅. The proof of this case follows identically to the case B = ∅ in
the proof of Theorem 6.2, except that EncGIMSS (instead of EncEncGIMSS) is used to generate the outputs of
the copies of C ′′, and we use the fact that the L-leakage-resilience of the LRCC of Theorem 3.5 implies
that encodings generated by EncGIMSS are L-leakage-indistinguishable (since it is used to generate the
output encodings of the leakage-resilient circuit, and leakage functions can choose to leak only on the
outputs).

Next, we consider the case that B 6= ∅. There are two main differences from the case that B = ∅: (1)
Real now includes the output of Ĉ, the decoded output of Dec, and the inputs chosen by the adversary
for the corrupted parties, and Sim receives the outcome of the computation, and is required to simulate
the outputs of Ĉ, and the inputs chosen by the adversary; and (2) the adversary may provide ill-formed
encodings as its input to the computation.

The simulator will first invoke A on input 1n to obtain the set B of corrupted parties, and a leakage
function `. Sim then chooses to corrupt the set B of parties, and receives their inputs {xi}i∈B, which it
also provides to A. It then receives from A effective inputs {w̃′i}i∈B to be used for the computation. For
every i ∈ B, Sim interprets w̃′i =

(
x̃′i,mask′i

)
, where x̃′i is the encoded input of the i’th party to C ′, and

mask′i are the masks it provides for the i’th copy of C ′′. (Notice that this interpretation is consistent with
the way Ĉ interprets its input encoding.) Recall that if x̃′i is not a valid encoding according to EncInGIMSS

then it is interpreted in Ĉ as encoding 0n. Therefore, we can assume without loss of generality that every
x̃′i is a valid encoding of some x′i ∈ Fn2 (since for invalid encodings x̃′i, we set x′i = 0n). We consider two
possible cases, according to whether the masks mask′i are well-formed or not.

First, consider the case that for every i ∈ B, mask′i consists of well-formed masks (i.e., inner-product
encodings of 0). In this case, Sim chooses {x′i}i∈B as the effective inputs of the parties in B. The simulator
then receives y = C (x′1, · · · , x′n), where for every i /∈ B, x′i = xi. The simulator uses {w̃i}i∈B as the inputs
the adversary would have used in the real world. Notice that in this case, all masks used in the copies
of C ′′ are well-formed, so no additive attack is launched on the copies of Ĉamd, and consequently they
emulate the computation in CDec. The proof now continues similarly to the case B 6= ∅ in the proof of
Theorem 6.2. The only differences are that Sim:

• Uses w̃′i as the inputs of the parties in B (instead of generating them as valid encodings of xi).

• Uses EncGIMSS (instead of EncInGIMSS) to generate the encodings at the outputs of the copies of C ′′.
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• Sets the value of b (which indicates whether to abort the computation or not) based on whether
any of the copies of C ′′ corresponding to parties in B set a flag. More specifically, if for some i ∈ B
the i’th copy of C ′′ outputs f iL 6= 0 or f iR 6= 0 then Sim chooses b = 1 (indicating to abort the
computation), otherwise it chooses b = 0.

The analysis of the simulator now follows similarly to the proof of Theorem 6.2. The difference
(other than the aforementioned modifications in the simulation) is that active parties may influence the
computation in the copies of C ′′ by choosing masking inputs that would cause a gadget to fail. (We note
that since the masking inputs used in all the copies of C ′′ are well-formed, this is the only reason the
decoding in Dec might fail, and cause the output

(
1, 0k

)
.) However, this would only influence the copy

of C ′′ corresponding to that malicious party, and the probability that the copy fails happens with the
same probability in both the real world and the simulation (since the distribution over the inputs and
masking inputs of the copy is the same in both worlds). (We note that for copies of C ′′ that correspond to
i /∈ B, the gadgets might fail only with negligible probability, since in a real-world execution this happens
only with negligible probability, and the simulated and actual leakage on C ′′ is statistically close by the
leakage-tolerance of the LTCC.)

Finally, consider the case that not all mask′i are well-formed, i.e., there for at least one i ∈ B, mask′i
is not an inner-product encoding of the all-zeros string. Let I =

{
i ∈ B : mask′i is ill formed

}
. Then

Lemma 3.16 guarantees that for every i0 ∈ I, there exists an additive attack Ai0 such that evaluating
the i0’th copy of C ′′ with masks mask′i0 is equivalent to evaluating the underlying circuit Ĉamd under the
additive attack Ai0 . Moreover, this attack can be efficiently extracted from mask′i0 . Then the additive-

attack security of Ĉamd guarantees that there exists an ideal additive attack ain
i0

on the inputs of CDec,

and a distribution Ai0 over additive attacks on the outputs of CDec, such that for any input z of CDec,

SD
(
Ĉamd,Ai0 (z) , CDec

(
z + ain

i0

)
+Ai0

)
≤ ε′ (n), and these ideal attacks can be efficiently computed from

Ai0 . We consider two possible cases.
First, assume that ain

i0
6= ~0 for some i0 ∈ I. In this case, Sim chooses b = 1 (i.e., chooses to abort the

computation). (Notice that Sim can determine whether ain
i0
6= ~0, since ain

i0
can be computed efficiently from

ain
i0

, which can be computed efficiently from Ai0 .) The simulation in the case continues in the following
way:

1. Simulating the wire values of C′. For every i ∈ B, Sim sets x̃i = x̃′i, and for every i /∈ B,

Sim generates x̃i ← EncGIMSS

(
0n, 1t

)
. Sim then evaluates C ′ on (x̃1, · · · , x̃m), and let W̃ denote

the wires values of C ′ in this evaluation. Let W̃1
Out, · · · , W̃m

Out denote the restriction of W̃ to the
m outputs of C ′. (Intuitively, the simulator emulates the evaluation of C ′ on the effective inputs
chosen by the adversary, using the all-0 string as the input for the honest parties.)

2. Simulating the wire values of C′′.

• Runs the simulator SimDF to obtain view-translator circuits (T1, T2).

• For every i ∈ B, honestly evaluates C ′′ with input W̃ i
Out, and masks maski, to obtain the wires

values W̃ i
Dec of the i’th copy of C ′′, and its output ỹi.

• For every i /∈ B, picks yi ∈R Fk2 uniformly at random, and generates a random encoding ỹi ←
EncGIMSS

(
yi, 1t, 1|C|

)
. Then, Sim uses (T1, T2), with inputs

(
W̃ i

Out, ỹ
i
)

to obtain simulated

wire values W̃ i
Dec for the i’th copy of C ′′.

• Sets W̃Dec =
(
W̃1

Dec, · · · , W̃m
Dec

)
.

3. Outputs
(
{w̃′i}i∈B , W̃, W̃Dec

)
.
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Let
Ideal =

(
B,
{
w̃′i
}
i∈B , `

(
W̃, W̃Dec

)
,
((
ỹ1, · · · , ỹm

)
,
(

1, 0k
)))

and
Real =

(
B,
{
w̃′i
}
i∈B , ` (W,WDec) ,

((
y1′, · · · , ym′

)
, y′
))

where W,WDec are the wire values of C ′, and the m copies of C ′′ (respectively) in the real world exe-
cution on the inputs {w̃′i}i∈B chosen by the adversary (and honest encodings x̂i of xi for every i /∈ B),(
y1′, · · · , ym′

)
are the outputs of the m copies of C ′′, and y′ is the output of the decoder Dec.

We claim that for every n ∈ N, every (x1, · · · , xm) ∈ ({0, 1}n)m, and every ` ∈ L it holds that
SD (Real, Ideal) ≤ (m− |B|+ 2) ε+ ε′+ negl (t) ≤ (m+ 2) ε+ ε′+ negl (t). Since B, {w̃′i}i∈B are identically
distributed in both distributions (in both cases these were chosen by the adversary), it suffices to prove
indistinguishability conditioned on these values. Moreover, since ain

i0
6= ~0 for some i0 ∈ I, then except

with probability ε′, the evaluation of the i0’th copy of C ′′ with mask′i0 is equivalent to evaluating CDec

under the additive attack ain
i0

on its inputs. Lemma 3.3 guarantees that this attack is detected by the

decoder DecOut
GIMSS except with negl (t) probability, so the i0’th copy of C ′′ will set a flag, which (by the

definition of Dec) will cause the output to be
(
0, 1k

)
. Therefore, we can further condition both Real, Ideal

on the event that an additive attack was detected, and the output of Dec is
(
0, 1k

)
(this will only increase

the statistical distance by at most ε′ + negl (t)).
Let

Ideal′ =
(
`
(
W̃, W̃Dec

)
,
(
ỹ1, · · · , ỹm

))
and

Real′ =
(
` (W,WDec) ,

(
y1′, · · · , ym′

))
.

We show that for a large enough t, Real′, Ideal′ are both statistically close to the hybrid distribution H
defined as follows:

• For every i /∈ B, encode x̂′i ← Enc
(
xi, 1

t, 1|C|
)
. For every i ∈ B, set x̂′i = x̃′i ({x̃′i}i∈B are the input

encodings both Real, Ideal were conditioned on), and evaluate C ′ on (x̂′1, · · · , x̂′m). Let W ′ denote
the wire values of C ′ during this evaluation, and W ′Out denote its restriction to the outputs of C ′.
Interpret W ′Out as m encodings W1′

Out, · · · ,Wm′
Out.

• For every i /∈ B, decode yi = DecOut
GIMSS

(
W i′

Out, 1
t
)
, compute a fresh encoding yi′ ← EncInGIMSS

(
yi, 1t

)
,

and apply (T1, T2) to
(
W i′

Out, y
i′) to obtain simulated wire values W i′

Dec of the i’th copy of C ′′.

• For every i ∈ B, honestly evaluate C ′′ with inputW i′
Out, and masks mask′i, to obtain the wires values

W i′
Dec of the i’th copy of C ′′, and its output yi′.

• Set W ′Dec =
(
W1′

Dec, · · · ,Wm′
Dec

)
.

• H =
(
` (W ′,W ′Dec) ,

(
y1′, · · · , ym′

))
.

We first claim that SD
(
Real′,H

)
≤ (m− |B|) ε. Indeed, the only difference between these distributions

is the wire values of the m− |B| copies of C ′′ that correspond to the output shares of the honest parties.
Similar to the case that B = ∅, we can bound the statistical distance using a hybrid argument, moving
from H to Real′ by changing the wire values of one of these copies (i.e., a copy of C ′′ that decodes the
share of an honest party) at a time, from simulated to actual wire values.

Second, we claim that SD
(
H, Ideal′

)
≤ 2ε. We define an additional hybrid distribution H′ which is

generated similar to H, except that for i /∈ B, the internal wires W̃ i′
Dec of the i’th copy of C ′′ are generated

as (T1, T2)
(
W i′

Out, ỹ
i
)
, where the ỹi’s for i /∈ B are generated as in Ideal (i.e., encode uniformly random

values). Then SD (H′, Ideal) ≤ ε by similar arguments to the ones used to prove the case B 6= ∅ in the
proof of Theorem 6.2. Similar arguments show also that SD (H′,H) ≤ ε, where we also use the fact
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that at least one of the copies of C ′′ caught the additive attack (since we have conditioned on this case),
and therefore outputted 0k. Consequently, the output of Ĉ contains at most k − 1 of the k additive
secret shares of the output, and so all these shares (and in particular, the shares corresponding to honest
parties) are random in H (i.e., identically distributed to how they were chosen in H′).

Now, consider the case that ain
i0

= ~0 for all i0 ∈ I. In this case, Sim choses {x̃′i}i∈B as the inputs of
the corrupted parties, and receives the output y = f (x′1, · · · , x′m), where for every i /∈ B, x′i = xi. Then,
Sim operates as follows:

1. Simulating the wire values of C′. For every i ∈ B, Sim sets x̃i = x̃′i, and for every i /∈ B,

generates x̃i ← EncGIMSS

(
0n, 1t

)
. Sim then evaluates C ′ on (x̃1, · · · , x̃m), and let W̃ denote the

wires values of C ′ in this evaluation. Let W̃1
Out, · · · , W̃m

Out denote the restriction of W̃ to the m
outputs of C ′. (Intuitively, the simulator emulates the evaluation of C ′ on the effective inputs
chosen by the adversary, using the all-0 string as the input for the honest parties.)

2. Simulating the wire values of C′′.

• Runs the simulator SimDF to obtain view-translator circuits (T1, T2).

• For every i ∈ B, honestly evaluates C ′′ with input W̃ i
Out, and masks maski, to obtain the wires

values W̃ i
Dec of the i’th copy of C ′′, and its output ỹi. Let yi = DecGIMSS

(
W̃ i

Out, 1
t
)

.

• Picks yi, i /∈ B uniformly at random subject to the constraint that y = ⊕mi=1y
i, and generates a

random encoding ỹi ← EncGIMSS

(
yi, 1t, 1|C|

)
. Then, Sim uses (T1, T2), with inputs

(
W̃ i

Out, ỹ
i
)

to obtain simulated wire values W̃ i
Dec for the i’th copy of C ′′.

• Sets W̃Dec =
(
W̃1

Dec, · · · , W̃m
Dec

)
.

3. Outputs
(
{w̃′i}i∈B , W̃, W̃Dec

)
.

4. Deciding whether to abort. For every i ∈ B, checks whether a gadget failed in the i’th copy
of C ′′, and if so chooses b = 1. Otherwise, computes Dec

((
ỹ1, · · · , ỹm

)
, 1t
)
, and if decoding failed

(i.e., Dec set a flag) then Sim picks b = 1. Otherwise, it sets b = 0.

Let
Ideal =

(
B,
{
w̃′i
}
i∈B , `

(
W̃, W̃Dec

)
,
((
ỹ1, · · · , ỹm

)
, z
))

where z =
(
1, 0k

)
if Sim chose b = 1, otherwise z = (0, y), and

Real =
(
B,
{
w̃′i
}
i∈B , ` (W,WDec) ,

((
y1′, · · · , ym′

)
, y′
))

where W,WDec are the wire values of C ′, and the m copies of C ′′ (respectively) in the real world exe-
cution on the inputs {w̃′i}i∈B chosen by the adversary (and honest encodings x̂i of xi for every i /∈ B),(
y1′, · · · , ym′

)
are the outputs of the m copies of C ′′, and y′ is the output of the decoder Dec.

We claim that for every n ∈ N, every (x1, · · · , xm) ∈ ({0, 1}n)m, and every ` ∈ L it holds that
SD (Real, Ideal) ≤ (m− |B|+ 2) ε+ ε′+ negl (t) ≤ (m+ 2) ε+ ε′+ negl (t). Since B, {w̃′i}i∈B are identically
distributed in both distributions (in both cases these were chosen by the adversary), it suffices to prove
indistinguishability conditioned on these values.

Let
Ideal′ =

(
`
(
W̃, W̃Dec

)
,
((
ỹ1, · · · , ỹm

)
, z
))

and
Real′ =

(
` (W,WDec) ,

((
y1′, · · · , ym′

)
, y′
))
.

We show that for a large enough t, Real′, Ideal′ are both statistically close to the hybrid distribution H
defined as follows:
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• For every i /∈ B, encode x̂′i ← Enc
(
xi, 1

t, 1|C|
)
. For every i ∈ B, set x̂′i = x̃′i ({x̃′i}i∈B are the input

encodings both Real, Ideal were conditioned on), and evaluate C ′ on (x̂′1, · · · , x̂′m). Let W ′ denote
the wire values of C ′ during this evaluation, and W ′Out denote its restriction to the outputs of C ′.
Interpret W ′Out as m encodings W1′

Out, · · · ,Wm′
Out.

• For every i /∈ B, decode yi = DecOut
GIMSS

(
W i′

Out, 1
t
)
, compute a fresh encoding yi′′ ← EncInGIMSS

(
yi, 1t

)
,

and apply (T1, T2) to
(
W i′

Out, y
i′′) to obtain simulated wire values W i′

Dec of the i’th copy of C ′′.

• For every i ∈ B, honestly evaluate C ′′ with inputW i′
Out, and masks mask′i, to obtain the wires values

W i′
Dec of the i’th copy of C ′′, and its output yi′.

• Set W ′Dec =
(
W1′

Dec, · · · ,Wm′
Dec

)
.

• Compute y′′ = Dec
((
y1′′, · · · , ym′′

)
, 1t
)
.

• H =
(
` (W ′,W ′Dec) ,

(
y1′′, · · · , ym′′

)
, y′′
)
.

We first claim that SD
(
Real′,H

)
≤ (m− |B|) ε. Indeed, the only difference between these distributions

is the wire values of the m− |B| copies of C ′′ that correspond to the output shares of the honest parties.
Similar to the case that B = ∅, we can bound the statistical distance using a hybrid argument, moving
from H to Real′ by changing the wire values of one of these copies (i.e., a copy of C ′′ that decodes the
share of an honest party) at a time, from simulated to actual wire values.

Second, we claim that SD
(
H, Ideal′

)
≤ (m+ 1) ε. We define an additional hybrid distribution H′

which is generated similar to H, except that for i /∈ B, the internal wires W i′
Dec of the i’th copy of C ′′

are generated as (T1, T2)
(
W i′

Out, ỹ
i
)
, where the ỹi’s for i /∈ B are generated as in Ideal (i.e., are uniformly

random), and ȳ′′ is generated as the output of Dec on
{
ỹi
}
i∈B ,

{
yi′′
}
i/∈B. Then:

• SD (H′,H) ≤ εm. Indeed, we can condition both distributions on the value of
W ′, and let `′ be the leakage function (with W ′ hard-wired into it) that on input(
z1, · · · , zm

)
, outputs `

(
(T1, T2)

(
W1′

Out, z
1
)
, · · · , (T1, T2) (Wm′

Out, z
m)
)
. Then `′ ∈ L, H ≡(

`′
(
y1′′, · · · , ym′′

)
,
(
y1′′, · · · , ym′′

)
, y′′
)
, whereas H′ ≡

(
`′
(
ȳ1, · · · , ȳm

)
,
(
ȳ1, · · · , ȳm

)
, ȳ′′
)
, where for

i ∈ B, ȳi = ỹi, and for i /∈ B, ȳi = yi′′. We claim first that ȳ′′, y′′ are identically distributed. In
both distributions, these are obtained as the output of Dec. Since

(
y1′′, · · · , ym′′

)
,
(
ȳ1, · · · , ȳm

)
are

additive secret shares of y, then if decoding succeeds, Dec outputs (0, y) in both cases. Moreover,
the probability that decoding fails is identical in both distributions (in which case Dec outputs(
1, 0k

)
), since it depends on the outputs of the copies of C ′′ that correspond to i ∈ B, and these

are identically generated in both distributions. Second,
(
y1′′, · · · , ym′′

)
,
(
ȳ1, · · · , ȳm

)
are identically

distributed:
{
yi′′
}
i∈B ≡

{
ȳi
}
i∈B since these were generated in the same way, and

{
yi′′
}
i∈B ,

{
ȳi
}
i∈B

are both random shares subject to the constraint that together with the shares of i ∈ B, they sum
to y. Consequently, we can condition both distributions on the outputs of the copies of C ′′, and the
output of Dec. This implies that SD (H′,H) = SD

(
`′
(
ȳ1, · · · , ȳm

)
, `′
(
y1′′, · · · , ym′′

))
≤ εm by the

leakage-resilience of EncInGIMSS, and using the union bound. (The L-leakage-resilience of the LRCC
of Theorem 3.5 guarantees that the input encoding is (L, ε)-leakage-indistinguishable, since leakage
functions may choose to leak only on the inputs of the compiled circuit.)

• SD
(
H′, Ideal′

)
≤ ε. Notice first that the outputs ỹ1, · · · , ỹm of the m copies of C ′′ are identically

distributed in both distributions, and consequently so is the output of Dec. Therefore, we can con-
dition both distributions on these values. Moreover, the inputs to the copies of C ′′ that correspond
to i ∈ B are also identically distributed in both distributions (these are uniformly random values)

and consequently for i ∈ B, the internal wires W̃ i
Dec of the i’th copy of C ′′ are also identically

distributed (since they were generated in the same way). Therefore, we can further condition on
these values.
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Let `′ be the leakage function (with
(
ỹ1, · · · , ỹm

)
, and

{
W̃ i

Dec

}
i∈B

hard-wired into it) that on input

wire value W ′′ for C ′, extracts the outputs
{
W i′′

Out

}
i/∈B of C ′ that correspond to i /∈ B, generates

W i′′
Dec = (T1, T2)

(
W i′′

Out, ỹ
i
)

for every i /∈ B, and outputs `
(
W ′′,W1′′

Dec, · · · ,Wm′′
Dec

)
. Then `′ ∈ L, and

notice that `′ (W ′) = H′ (under our conditioning), whereas `′
(
W̃
)

= Ideal′ (under our conditioning).

SinceW ′, W̃ are both generated by evaluating C ′ on different inputs, the L-leakage-resilience of the

LRCC of Theorem 3.5 guarantees that SD
(
`′ (W ′) , `′

(
W̃
))

= SD
(
H′, Ideal′

)
≤ ε.

We are now ready to prove Theorem 1.4.
Proof (Of Theorem 1.4). We show that Construction 7.1 has the required properties. Let
C : ({0, 1}n)m → {0, 1}k be a circuit of size s. Then the circuit Cshare constructed in Step (1) of
Construction 7.1 has size s + 2m. Moreover, for parameter t, the circuit CDec constructed in Step (3)
has size sDec = Õ (tk), and depth O (log t) (this follows from the definition of DecGIMSS

Out and EncGIMSS).
Therefore, Ĉamd has size poly (t, k) and error negl (t) (this follows from Theorem 2.3). Therefore, there

exists a polynomial p (t) such that for all t, p (t) ≥
∣∣∣Ĉamd

∣∣∣ (here, we fix k and increase t).

For a parameter t, let f (t) denote the minimal size of F for which Theorem 3.14 holds with
relation to p (t), and notice that f (t) = O (t). Let t′ ∈ N be such that for every t′′ ≥ t′,
t′′ ≤ 0.16t′′ log2 f (t′′) − 1 − log2 f (t′′). We instantiate Construction 7.1 with security parameter
t̂ = max {t′, t, σ · logm, k} for the LTCC of Theorem 3.14, and security parameter t̃ = max {t, σ logm} for
the LRCC of Theorem 3.5. Then correctness follows directly from Theorem 7.2. As for soundness, Theo-
rem 3.14 guarantees that there exists a negligible function εDF

(
t̂
)

= negl
(
t̂
)
, such that Construction 3.11

is an
(
LtBCL, ε

DF
(
t̂
)
, p
(
t̂
))

-LTCC with simulator SimDF that outputs view-translation circuits (T1, T2),

where p
(
t̂
)
≥
∣∣∣Ĉamd

∣∣∣ by the choice of t̂. Moreover, Theorem 3.5 guarantees that when instantiated with

security parameter t̃, Construction 3.4 is an
(
LtBCL, 2

−t̃, s+ 2m
)

-relaxed LRCC with abort. Therefore,

by Theorem 7.2, the circuit output by Construction 7.1 is
(
LtBCL, ε

′ + negl
(
t̂
))

-leakage-resilient, where

ε′ = (2m+ 1) max
{
εDF

(
t̂
)
, 2−t̃

}
= negl (σ).

Regarding the complexity of the construction, if C has size s and depth d, then (as noted above)∣∣Cshare
∣∣ = s+ 2m, and consequently |C ′′| = Õ

(
s+ 2m+ dt̃+ t̃2

)
(by Theorem 3.5). Moreover,

∣∣∣Ĉamd
∣∣∣ ≤

poly
(
t̂, k
)
, and since the compiler of Theorem 3.14 causes a polynomial blowup, each copy of C ′′ has size

poly
(
t̂, k
)
, so over all the size of the leakage-resilient circuit Ĉ obtained from C is Õ

(
s+ 2m+ dt̃+ t̃2

)
+

m · poly
(
t̂, k
)

= Õ (s+m+ d ·max {t, σ logm}) + m · poly (t, σ, logm, k) = Õ (s+ d (t+ σ logm)) + m ·
poly (t, σ, logm, k).

As for the input encoding, each party: (1) encodes its input to C ′′ by running EncGIMSS
In , which (by

Theorem 3.5) takes time Õ
(
n+ t̃

)
= Õ (n+ max {t, σ logm}) = Õ (n+ t+ σ logm); and (2) generate

the masking inputs for its copy of C ′′ (there are O (|C ′′|) such inputs, and each masking input can be
generated in polynomial time (in its length)), which takes time poly

(
t̂, k
)

= poly (t, σ, logm, k). Therefore,

the inputs can be encoded in time prover runs in time Õ (n) + poly (t, σ, logm, k).
As for the output decoding, Dec evaluates DecGIMSS

Out m times, where each evaluation takes time
Õ
(
t̂2 + t̂k

)
= Õ (k ·max {t, σ logm, k}) = Õ (k (t+ σ logm+ k)), then compares the O (m) flags to 0,

which takes O (m) time, and finally sums the m secret shares, which takes O (mk) time (since each secret
share has length k). Overall, decoding takes Õ (m · k (t+ σ logm+ k)) time.
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