
Improving Stateless Hash-Based Signatures

Jean-Philippe Aumasson1 and Guillaume Endignoux2

1 Kudelski Security, Switzerland
2 firstname.surname@m4x.org

Abstract. We present several optimizations to SPHINCS, a stateless
hash-based signature scheme proposed by Bernstein et al. in 2015: PORS,
a more secure variant of the HORS few-time signature scheme used in
SPHINCS; secret key caching, to speed-up signing and reduce signa-
ture size; batch signing, to amortize signature time and reduce signature
size when signing multiple messages at once; mask-less constructions
to reduce the key size and simplify the scheme; and Octopus, a tech-
nique to eliminate redundancies from authentication paths in Merkle
trees. Based on a refined analysis of the subset resilience problem, we
show that SPHINCS’ parameters can be modified to reduce the signa-
ture size while retaining a similar security level and computation time.
We then propose Gravity-SPHINCS, our variant of SPHINCS embody-
ing the aforementioned tricks. Gravity-SPHINCS has shorter keys (32
and 64 bytes instead of ≈ 1 KB), shorter signatures (≈ 30 KB instead of
41 KB), and faster signing and verification for a same security level as
SPHINCS.

1 Introduction

In 2015 Bernstein et al. presented SPHINCS [5], a stateless hash-based signature
scheme combining Goldreich’s [12, §6.4.2] binary authentication tree of one-time
signatures (OTS) and Reyzin2’s [19] hash to obtain a random subset (HORS)
construction of a few-time signature (FTS) scheme, with two main optimizations.

1. Inner nodes of the tree are not OTSs but Merkle trees whose leaves are OTSs,
namely Winternitz OTS (WOTS) [17,13] instances. Each node can then sign
up to 2x children nodes instead of 2, where x is the height of the Merkle
tree—SPHINCS thus uses a hyper-tree. This change increases signing time
because each Merkle tree on the path to a leave needs to be generated for
every signature, but reduces the signature size because fewer OTS instances
are included in the signature.

2. Leaves of the hyper-tree are not OTSs but FTSs, namely HORS with tree
instances (HORST), a version of HORS that uses a binary tree to compress
the HORS public key. Leaves can then sign more than one message, which
increases the resilience to path collisions, hence reducing the height needed
for the hyper-tree.

SPHINCS-256, the main SPHINCS instance proposed in [5], has ≈ 1 KB private
and public keys, 41 KB signatures, and offers 128-bit quantum security provided
that no more than 250 signatures are issued. A 41 KB signature is fine in some
use cases, but can induce significant extra cost if many signatures are stored,
compared to pre-quantum constructions. Likewise, key sizes—especially public
keys—can be prohibitive in low-memory platforms. For this reason, it makes
sense to try to shave off a few bytes from SPHINCS signatures and keys.

This Paper. After briefly describing HORST and SPHINCS in §2, we present
the following optimizations to SPHINCS in §3.

– PORS, a more secure variant of HORS (§§3.1).
– Secret key caching, to speed-up signing and reduce signature size (§§3.2).
– Batch signing, to amortize signature time and reduce signature size (§§3.3).
– Mask-less hashing, to reduce the key size (§§3.4).
– Octopus, to avoid redundancies in Merkle tree authentication paths of

HORST, and thus reduce signature size (§§3.5).

Based on these optimizations and on refined analyses of the subset resilience
problem and of mask-less constructions—whose details could not be included
for lack of space, but have been made public [2,10]—we show that SPHINCS
parameters can be modified to reduce the signature size while retaining a similar
security level. §4 then describes Gravity-SPHINCS, a signature scheme based
on SPHINCS with shorter keys (32 and 64 bytes instead of ≈ 1KB), shorter
signatures (≈ 30 KB instead of 41 KB), and faster signing and verification.

2 HORST and SPHINCS

We briefly describe how HORST and SPHINCS work, however a comprehensive
specification of SPHINCS would take too much space so we refer readers to the
original paper [5]. Note that contrary to the SPHINCS paper, we use the more
common and practical convention that a tree’s level 0 is the root, and not the
leaf level.

2.1 HORST

HORST is a few-time signature scheme proposed by the SPHINCS authors as a
variant of HORS [19], which works as follows.

A HORS private key is a list of t values (eki)i=0...t−1, where t = 2τ for τ ∈ N∗.
The public key is the list (pki = hash0(eki))i=0...t−1 where hash0 is a one way
function. For example, 128-bit secure HORS may use 256-bit eki’s.

Signing a message M with HORS works as follows, given a parameter k < t.

– Derive a set of k indices {Vi}i=0,...,k−1 from hash1(M), where hash1 is a hash
function, by splitting the hash into k chunks of τ bits converted into integers
in {0, . . . , t− 1}.

Fig. 1: Binary hash tree of a HORST signature, with t = 8 hashes (thus a tree
depth of τ = 3), a subset of k = 2 hashes, C = 2 subtrees (with roots in dark
grey in the dashed rectangle), and indices V0 = 2, V1 = 5. The nodes in black
and dark grey are part of the signature, the nodes in pale grey are computed
during the verification, and the root node is the public key.

– Return sig = (sigi)i=0,...,k−1 where sigi = ekVi .

Verification computes the k indices Vi from M and checks that hash0(sigi) equals
pkVi for all i.

HORS with trees (HORST) as used in SPHINCS replaces the t-value public
key with a single value. This value is the root of the Merkle tree whose leaves are
the pki’s. A HORST signature consists of k eki’s along with their k authentication
paths, i.e. the list of sibling nodes required to “connect” each pki to the root.
Because the k authentication paths will likely share high-level authentication
nodes, an optimization made in SPHINCS is to include in the signature all
nodes at some level. This avoids storing authentication nodes above that level.
Figure 1 shows a simplistic example of HORST with the latter optimization.

The more HORST signatures are issued, the more private eki’s are revealed
to an attacker, and they will eventually be able to forge signatures by finding
a message that hashes to a set of known indices. The cost of such an attack is
analyzed in [19] and [5], and in further details in [2], to cover the case of adaptive
attacks.

2.2 SPHINCS

SPHINCS is a complex scheme, and the description in [5] may not be sufficient
to fully understand it. In our experience the best way to understand SPHINCS
is to look at an implementation—such as the simple Python version at https:

//github.com/joostrijneveld/SPHINCS-256-py, or others listed at https:

//ianix.com/pqcrypto/pqcrypto-deployment.html—or, better, to write one.
Yet we’ll try here to introduce the main ideas of SPHINCS, by describing it as a
combination of four types of trees. The four types of trees are the following (see
Figure 2).

https://github.com/joostrijneveld/SPHINCS-256-py
https://github.com/joostrijneveld/SPHINCS-256-py
https://ianix.com/pqcrypto/pqcrypto-deployment.html
https://ianix.com/pqcrypto/pqcrypto-deployment.html

Merkle

. . .

. . .

Merkle

. . .

. . .

HORST

WOTS

Hyper-tree

Fig. 2: Sketch of the SPHINCS construction.

1. The main hyper-tree, of height h (60 in SPHINCS-256). The root of this
tree is part of the public key. The leaves of this tree are HORST instances
(type-4 trees). This hyper-tree is divided into d (12 in SPHINCS-256) layers
of type-2 trees.

2. The subtrees, which are Merkle trees of height h/d (60/12 = 5 in SPHINCS-
256). The leaves of these trees are roots of type-3 trees; said roots are com-
pressed public keys of WOTS instances, that connect to a tree at the next
layer.

3. The WOTS public key compression trees, which are L-trees (and not nec-
essarily complete binary trees), of height dlog2 `e when there are ` leaves.
The leaves of this tree are components of a WOTS public key (67 values of
256 bits each in SPHINCS-256). The associated WOTS instance signs a tree
root at the next layer.

4. At the bottom of the hyper-tree, the HORST public key compression trees
are Merkle trees of height τ = log2 t, where t is the number of public key
elements in the HORST instances (216 in SPHINCS-256).

Signing with SPHINCS then works like this:

1. Derive a leaf index from the message and the private key. This index identifies
one of the 2h HORST instances (relative to the main hyper-tree), that will
be used to sign the message.

2. Generate the HORST instance whose seed is derived from the private key and
from the leaf index, and sign the message with this HORST instance. The

HORST signature includes k keys and their respective authentication paths,
and is part of the SPHINCS signature. Obtain the HORST tree-compressed
public key p.

3. For each layer of the hyper-tree, sign the public key p (obtained from the
lower layer) using the correct WOTS instance (derived from the leaf index);
add this WOTS signature and associated type-3 authentication path to the
SPHINCS signature. Compute the authentication path of this WOTS in-
stance within the type-2 subtree; add this path to the SPHINCS signature
and let p be the subtree root.

This is really a bird eye’s view of SPHINCS, and we omitted many details. See
the paper [5] for a more formal description.

3 Improvements

In this section, we present our optimizations for SPHINCS.

3.1 From HORS to PORS

HORS was only partially studied, as [19] only considered non-adaptive attacks.
But [2] recently showed that the textbook version of HORS is susceptible to
adaptive attacks, and that its simplicity can be exploited to further reduce its
security. Indeed, nothing prevents some of the k indices to collide (yielding only
κ < k distinct indices), reducing the size of the obtained subset and making
forgeries easier.

HORS’ original hash-based index generation is simple and fast, yet its speed
is not critical in SPHINCS, where Winternitz OTS (WOTS) and Merkle trees
dominate the computational cost. We therefore propose a slightly more complex
construction, PORS, for PRNG to obtain a random subset. Instead of using a
hash function, we seed a PRNG from the message (and salt) and query it until
we obtain k distinct indices (Figure 3). The computational overhead is minimal,
for a significant security increase.

In the original SPHINCS, adversaries have full control over the selected leaf in
the hyper-tree. Instead, we propose to generate this leaf index with the PRNG,
in order to reduce the attack surface. This increased security level allows to
reduce the hyper-tree height by 2 layers of WOTS, saving 4616 bytes.

More details and a security analysis are given in [2].

Remark. In SPHINCS, the public saltR is computed by the signer as hash(salt‖M)
for a secret salt.3 This means that if the message M is long, the signer needs
to compute two long hashes: R = hash(salt‖M) and the HORST subset as
hash(R‖M). Instead, with PORS we propose to compute a long hash H =
hash(M) and then two small hashes as R = hash(salt‖H) and seed = hash(R‖H)
as a seed for the PRNG. This halves the computational overhead for long mes-
sages.

3 Here hash means “some hash function”, not necessarily the same in all places.

M,R H

i SPHINCS leaf

2 8 c 5 c

(a) HORS.

M,R G i

SPHINCS leaf

2 8 c 5 c e

(b) PORS.

Fig. 3: Comparison of the HORS and PORS constructions to obtain a random
subset from a message M and a salt R. In HORS (left), the hash function output
is split into τ -bit blocks that may collide. If the scheme is used in SPHINCS,
the signer (or attacker) provides the leaf index i. In PORS (right), a PRNG is
used to produce as many τ -bit numbers as necessary, as well as the leaf index i
if used in SPHINCS.

3.2 Secret Key Caching

XMSS [6] is a signature scheme similar to SPHINCS but with shorter signatures
at the expense of being stateful. For example, the XMSS-T variant [14] produces
signatures of 8.8 KB for a capacity of 260 messages and 128-bit quantum security.
The main difference with SPHINCS is that the hyper-tree of SPHINCS is divided
into many layers (d = 12) because these trees have to be recomputed on-the-fly
for each signature.

But XMSS benefits from efficient incremental algorithms to amortize the
computational cost over many signatures [15,20,7]. Consequently, SPHINCS au-
thors proposed to divide a hyper-tree of height 60 into 12 layers of Merkle trees,
each of height 5, meaning that there are 12 WOTS signatures to connect these
layers. Most of the size of a SPHINCS signature is used by WOTS signatures,
each containing ` = 67 hash values, or 2144 bytes per WOTS signature. In con-
trast, an authentication path in a Merkle tree of height 5 requires only 5 hash
values, or 160 bytes.

However, the root layer of SPHINCS contains only one tree, recomputed for
every signature independently of the selected path in the hyper-tree. The signer
can thus cache this layer during key generation in order to save computation time
later. Further, we can choose a larger height for this root tree than the other
layers, because the cost of key generation is amortized over many signatures (up
to 250 for SPHINCS), and in practice key generation does not have the same
latency constraints as signing. For the same hyper-tree height, caching reduces
the number of layers, which means fewer WOTS per signature, thus smaller
signatures.

For example, for a total hyper-tree height of 60 we can use a top layer of
height 20, and 8 other layers of height 5, saving 3 WOTS instances. In the top
tree, the signer can cache the first 15 levels (that is, 216− 1 hashes of 32 bytes)
with 2 MB of memory. At signature time, the signer regenerates the 8 lower
layers and the bottom 5 levels of the top layer, as on Figure 4. Compared to

(a) SPHINCS.

cached key

(re)computed
at signing

time

computed
at key

generation
time

(b) Secret key caching.

Fig. 4: Secret key caching. Triangles represent Merkle trees, black circles rep-
resent WOTS signatures. In SPHINCS (left) the hyper-tree is simply made of
equal-height trees. With secret key caching (right), a large root Merkle tree is
computed at key generation (dashed triangle) and part of it is cached in the
secret key (grey triangle). At signature time, the relevant lower part of this root
tree is recomputed, along with lower layers in the hyper tree.

SPHINCS, this saves 201 hashes per signature, or 6432 bytes, and speeds up
signature and verification due to fewer WOTS instances.

Note that caching does not make the scheme stateful. Contrary to the state
of XMSS, our cache is static and not modified by the signing process. The cache
can be recomputed on-demand from a small secret seed. This means that one
can easily set-up new signing machines by sending a secret seed; there is no need
to send the full cache. Similarly, the cache doesn’t need to be stored in persistent
memory, it can be regenerated after a reboot, a machine reinstallation, etc.

Last, parameters are easy to adapt to the user’s configuration. If the signing
machine is not powerful enough—such as an embedded device with low mem-
ory and power—a smaller cache can be used. On the contrary, more powerful
machines can use a larger cache to further reduce signature size.

3.3 Batch Signing

To amortize the cost of signing over many messages, several batching meth-
ods have been developed. Some methods leverage the algebraic structure of the
signature scheme [11,3], but others are more generic: in 1999, Pavlovski et al.
proposed a generic batch signing method [18] that gathers all the messages,
computes a Merkle tree from their respective hashes, and signs only the Merkle
tree root with a traditional signature scheme. The signature of each message
then contains the signature of the Merkle tree root and the authentication path
for the corresponding message (Figure 5).

In the context of hash-based signatures, batch signing has additional advan-
tages, because of the limits on the number of signatures imposed by WOTS

Signature

M1 M2 Mi

Merkle
tree

. . .

Fig. 5: Pavlovski’s batch signing [18]. A batch of messages M1, . . . ,Mi are hashed
together in a Merkle tree. The root of this tree is authenticated with an expensive
signature scheme.

and HORS/PORS. A way to increase the number of signatures is to use a large
hyper-tree structure as in XMSS and SPHINCS, but this increases the signature
size.

With batch signing, the total number of messages signed can be reduced, and
consequently each signature can be made smaller. For example, one can define
a signing period W (e.g. a millisecond for TLS connections, a day for software
updates), group all messages within each period, and release a single signature
at the end of the period. For a given use case, the frequency of signatures 1/W
is predictable and allows to adapt the signature parameters to the life duration
of a key pair. Further, such a scheme is still flexible and allows to occasionally
shorten a period (e.g. if an emergency security update must be issued before the
end of the day). We note that the precise signing period W is private to the
signer, so there is no need to synchronize clocks with recipients.

Batch signing also allows to allocate more computing power to each signature,
because this cost is amortized among many messages. Indeed, if N messages
are signed within a period, computing N signatures each in time t (without
batching) takes the same resources as computing 1 signature in time Nt (with
batch signing). In SPHINCS, this allows to increase the height of each layer in
the hyper tree, hence reducing the total number of WOTS signatures and the
signature size.

Practical Parameters. With a hyper-tree of height 60, SPHINCS authors
targeted at most 250 messages per key pair, arguing that it would take more
than 30 years to exhaust a key at a rate of 220 messages per second. Even for
highly interactive environments, a period W of one millisecond reduces the target
to 240 batch signatures for more than 30 years per key pair, with 210 messages
per batch. The latency overhead of one millisecond seems acceptable, given that
signing time is an order of magnitude larger on a single CPU4.

4 In SPHINCS, signing takes of the order of 50 million cycles [5].

With that in mind, the hyper-tree height of SPHINCS can be reduced by 10,
hence removing 2 layers of WOTS signatures, saving 144 hashes, or 4608 bytes.
On the other hand, the batching Merkle tree adds 10 authentication nodes per
signature, i.e. 320 bytes. A batch index must also be sent, for example on 2 bytes.
Overall, batch signing saves 4286 bytes. The height of internal Merkle trees can
also be increased to save additional WOTS signatures.

Real-Time Deployment. Batch signing also offers advantages for highly in-
teractive environments (e.g. TLS servers). First, the marginal cost of signing an
additional message in a batch is in the order of a few hash evaluations, much
faster than computing a full signature. Consequently, batch signing can easily
adapt to load variations by gathering more messages in a single Merkle tree,
which reduces the risk of denial-of-service attacks that flood the signer with
messages. Second, the overall memory footprint for a signer transmitting signa-
tures to N recipients is reduced to a single signature and a Merkle tree with
N leaves, instead of N signatures. Here again, the cost of signing an additional
message is very small, i.e. in the order of a few hashes.

Multi-Authentication. Additionally, Pavlovski’s batch signing allows to au-
thenticate a subset of the messages with a single signature. Consider the case
of a software repository with daily updates, where each user wants a subset of
the packages. After downloading the packages, they only need to fetch one sig-
nature for the day and a Merkle authentication path for each package in their
chosen subset. They can even use an authentication octopus, as described in
§§3.5. This amortizes the signature size compared to fetching a full signature
for each package. The marginal cost for authenticating an additional package is
O(logN) where N is the total number of packages in the repository.

3.4 Mask Off

Recent versions of Merkle tree and Winternitz OTS constructions [9,13] inter-
leave hash evaluations with masking. The public key contains a list of uniformly
generated random masks, and each hash evaluation is preceded by XOR-ing a
mask. The mask to select depends on the location of this hash evaluation in the
tree.

Masking allows to relax security requirements to second-preimage resistance
instead of collision resistance, but this reduction is less tight and security de-
grades with the total number of hash evaluations in the construction (for exam-
ple, 2h for a Merkle tree of height h). Moreover, against quantum computers,
collision resistance and second-preimage resistance have approximately the same
generic security of O(2n/2) for n bits of output [4]. A recent paper described new
collision-finding quantum algorithms [8], that are faster but at the expense of
more memory use, which makes them less efficient than (parallel) classical ones.

We thus propose to remove masks in these constructions (Figure 6), to obtain
a simpler design and reduce the size of public keys. Security proofs for mask-less
constructions are given in [10, Ch.6].

H

mi

(a) Masked hashing in SPHINCS.

H

(b) Mask off.

Fig. 6: Mask-less hashing in Merkle trees. In the masked construction (left), the
hash function H is assumed to be second-preimage-resistant. In the mask-less
construction (right), H is assumed to be collision-resistant.

3.5 Eliminating Redundancies: Octopus

A significant part of the size of a SPHINCS signature is taken by a single HORST
instance, and in particular by k = 32 authentication paths in a HORST tree of
height 16. SPHINCS already shortened these authentication paths from length 16
to 10 by including all nodes at level 6, as there is a lot of redundancy next to the
root (Figure 1). In total, authentication paths contain 384 values, or 12 288 bytes.
Yet, on average most of the nodes at level 6 can be inferred from authentication
paths, so there is still some redundancy. Besides, some authentication paths may
merge below this threshold of 6, introducing even more redundancy. We thus
propose to use a dynamic strategy to include only necessary values, in what we
call an authentication octopus. As we show, this approach saves 1909 bytes on
average for SPHINCS signatures, and 1024 bytes in the worst case.

Algorithm. The algorithm on Figure 7 computes the optimal authentication
octopus, that is, the optimal set of nodes to be included in the signature, given
a list of leaf indices to authenticate. This algorithm works as follows. First, the
leaf indices are sorted to facilitate identification of siblings, with the convention
that we count indices from 0 to 2h − 1 from left to right. Then, for each level of
the Merkle tree, in a bottom-up order, the algorithm converts the sequence of
indices to authenticate at level `+ 1 into a sequence of authentication nodes at
level `+ 1 and a sequence of indices to authenticate at level ` (Figure 8).

More precisely, at a given level, for each index we add its parent to the list of
indices at the upper level. We then compute the index of its sibling, by flipping
the least significant bit. If the next index to authenticate happens to be the
sibling, then we skip the sibling, to avoid adding their common parent twice.
Otherwise, we add the sibling to the list of authentication nodes. Because the
list of indices is always sorted in increasing order, checking the next index is
sufficient to identify siblings.

Signature and verification algorithms are easily derived from this algorithm.

proc Octopus([x1, . . . , xk], h)
Indices← sorted([x1, . . . , xk])
Auth← []
for ` = h− 1 down to 0

NewIndices← []
j ← 0
while j < Indices.length()

x← Indices[j]
NewIndices.append(bx/2c)
sibling ← x⊕ 1
if j + 1 < Indices.length() ∧ Indices[j + 1] = sibling

j ← j + 1
else

Auth.append((` + 1, sibling))
j ← j + 1

Indices← NewIndices
return Auth

Fig. 7: Algorithm to compute the optimal authentication octopus. The inputs
are the list of leaf indices to authenticate and the Merkle tree height; the result
is the list of authentication nodes. Each authentication node contains a level
0 ≤ ` ≤ h and an index 0 ≤ i < 2`. The sorted() function takes as input a list of
integers and returns this list sorted in increasing order.

We now analyze the number of authentication nodes output by the octopus
algorithm of Figure 7, in the extreme and average cases.

Best and Worst Cases. We can rephrase the problem as follows. Starting
from k tentacles (authentication paths) at the bottom of the tree, we obtain a
single root. This means that there are k − 1 merges in the octopus.

Now, note that if two tentacles merge at level `, they have identical authen-
tication nodes between level ` and the root. Their authentication nodes at level
`+ 1 are mutual siblings, hence redundant. Therefore, if a merge occurs at level
` then ` + 2 authentication nodes are redundant (Figure 9). To count the to-
tal number of redundant nodes in an octopus, we can simply add the redundant
nodes of each merge. Indeed, we can construct an octopus by successively adding
tentacles; each new tentacle merges at some level ` and saves `+ 2 nodes.

In the best case, all merges are close to the leaves, whereas in the worst case
all merges are close to the root. There are however some constraints because the
octopus is embedded in a Merkle tree.

– There cannot be more than 2` merges at level `.
– If there are k`+1 tentacles at level `+ 1, there cannot be more than bk`+1/2c

merges at level `.

level `

level ` + 1

Fig. 8: One iteration of the optimal octopus algorithm. Starting form a set of
nodes to authenticate at level `+ 1 (black), an iteration computes the set of au-
thentication nodes at level `+1 (dark grey), and the set of nodes to authenticate
at level `, by identification of siblings.

level 0

level `

Fig. 9: Merging of two tentacles at level `. The merge removed `+2 authentication
nodes (dark grey). The authentication nodes are identical at levels 1 to `, and
no authentication node is needed at level `+ 1.

To simplify the analysis, we first assume that k is a power of two, and then
consider the general case.

Lemma 1. Let k and h be integers such that k is a positive power of 2 and
k ≤ 2h. Then, given k leaves to authenticate in a Merkle tree of height h, the
octopus authentication algorithm of Figure 7 outputs between h − log2 k and
k(h− log2 k) authentication nodes (inclusive).

To give a visual interpretation, in the best case the octopus is shaped like a
broom with a stick of length h− log2 k at the top, whereas in the worst case it
is shaped like a rake with k teeth of length h− log2 k at the bottom.

Proof. In the worst case, all levels up to log2 k − 1 are saturated with merges,
and the number of redundant nodes is:

log2 k−1∑
`=0

2`(`+ 2) = k log2 k

In the best case, there are k/2 merges at level h − 1, k/4 merges at level
h− 2, . . . , and 1 merge at level h− log2 k. The number of redundant nodes is:

log2 k∑
`=1

k

2`
(h− `+ 2) = (k − 1)h+ log2 k

The result follows. ut

Theorem 1. Let k and h be integers such that k ≤ 2h. Then, given k leaves to
authenticate in a Merkle tree of height h, if the octopus authentication algorithm
of Figure 7 outputs oct authentication nodes, then:

h− dlog2 ke ≤ oct ≤ k(h− blog2 kc)

Proof. We let k′ = 2blog2 kc be the largest power of two smaller than or equal
to k. In the worst case, all levels up to log2 k

′ − 1 are saturated with merges,
and level log2 k

′ contains k− k′ merges. By Lemma 1, the number of redundant
nodes is:

k′ log2 k
′ + (k − k′)(log2 k

′ + 2) ≥ k log2 k
′

so the number of authentication nodes is at most k(h− blog2 kc).
In the best case, all merges are at the bottom levels. In particular, it is

possible to merge k tentacles in the dlog2 ke bottom levels. The only remaining
tentacle at level h− dlog2 ke needs h− dlog2 ke authentication nodes. ut

Corollary 1. Compared to the SPHINCS construction, octopus authentication
saves at least k hash values—assuming that x is rounded to log2 k in SPHINCS.

Average Case. We denote by mH(h, k) the random variable equal to the min-
imal number of hash values necessary to authenticate k uniformly distributed
distinct leaves in a Merkle tree of height h. We denote by EmH(h, k) the expecta-
tion of mH(h, k), i.e. the average number of hash values. We follow a bottom-up
approach to derive a recurrence relation between consecutive levels, i.e. EmH(h, ·)
and EmH(h+ 1, ·), and can then solve the problem by dynamic programming.

We also denote by P (h, k, i) the probability that given k uniformly dis-
tributed tentacles at level h+ 1, i merges occur at level h.

Lemma 2. The probability P (h, k, i) is equal to:

P (h, k, i) =

(
2h+1

k

)−1(
2h

k − i

)(
k − i
i

)
2k−2i

Proof. There are
(
2h+1

k

)
equiprobable sets of k distinct indices at level h+ 1. At

level h, there are
(

2h

k−i
)

choices of k − i merged slots, out of which
(
k−i
i

)
choices

of i slots that contain a merge. For each of the k − 2i non merged slots at level
h, there are two possible indices at level h+ 1. ut

Theorem 2. EmH(h, k) satisfies the following recurrence relation:

EmH(0, 1) = 0

EmH(h+ 1, k) =

bk/2c∑
i=0

(k − 2i+ EmH(h, k − i))P (h, k, i)

Proof. First, EmH(0, 1) = 0, because no authentication node is needed for a tree
reduced to one node.

We now remark that if k leaf indices are uniformly distributed, and that
they have merged into t tentacles at some upper level `, these t tentacles are
also uniformly distributed at level `. This is independent of how the k merged
into t, so we can view the subtree above level ` as a standalone tree of height `.

This allows to derive the recurrence relation between consecutive levels. In-
deed, i merges occur at level h with probability P (h, k, i). In that case, k − 2i
authentication nodes are necessary at level h+ 1, and EmH(h, k− i) authentica-
tion nodes are necessary at upper levels on average. ut

We also derive a recurrence relation to compute the standard deviation of

mH(h, k). Recall that it is equal to

√
E(2)
mH(h, k)− EmH(h, k)

2
, where E(2)

mH(h, k)

is the expectation of mH(h, k)
2
. We can compute it with the following relation.

E(2)
mH(h+1, k) =

bk/2c∑
i=0

(
(k − 2i)

2
+ 2(k − 2i)EmH(h, k − i) + E(2)

mH(h, k − i)
)
P (h, k, i)

Application to SPHINCS. Solving the recurrences by dynamic program-
ming, we obtain EmH(h = 16, k = 32) ≈ 324.3 for the proposed SPHINCS pa-
rameters, with a standard deviation of 7.1. In contrast, the HORST construction
in SPHINCS uses k(h−x)+2x = 384 authentication values (for x = 5 or x = 6).
Even in the worst case, octopus authentication uses only k(h − log2 k) = 352
authentication values. Octopus authentication thus saves 1024 bytes in the worst
case and 1909 bytes on average, compared to the threshold method proposed for
HORST in SPHINCS.

4 Gravity-SPHINCS

Gravity-SPHINCS is our improved version of SPHINCS, which incorporates the
improvements discussed. For lack of space we can’t provide a complete specifi-
cation in this paper, so we focus on the main differences between SPHINCS and
the optimizations implemented in Gravity-SPHINCS.

4.1 Parameters

Gravity-SPHINCS inherits some parameters from SPHINCS (hash length, Win-
ternitz depth, etc.), and has new ones. In the list below h denotes the height

of subtrees (contrary to the main tree height in SPHINCS), and Bn = {0, 1}n
denotes the set of n-bit strings:

– the hash output bit length n, a positive integer
– the Winternitz depth w, a power of two such that w ≥ 2 and log2 w

divides n
– the PORS set size t, a positive power of two
– the PORS subset size k, a positive integer such that k ≤ t
– the internal Merkle tree height h, a positive integer
– the number of internal Merkle trees d, a non-negative integer
– the cache height c, a non-negative integer
– the batching height b, a non-negative integer
– the message space M, usually a subset of bit strings {0, 1}∗

From these parameters are derived:

– the Winternitz width ` = µ + blog2 (µ(w − 1))/ log2 wc + 1 where µ =
n/ log2 w

– the PORS set T = {0, . . . , t− 1}
– the address spaceA = {0, . . . , d}×{0, . . . , 2c+dh−1}×{0, . . . ,max(`, t)−1}
– the public key space PK = Bn
– the secret key space SK = B2

n

– the signature space SG = Bn×Bkn×B
≤k(log2 t−blog2 kc)
n ×(B`n ×Bhn)

d×Bcn
– the batched signature space SGB = Bbn × {0, . . . , 2b − 1} × SG
– the public key size, of n bits
– the secret key size, of 2n bits
– the maximal signature size, of

sigsz = (1 + k + k(log2 t− blog2 kc) + d(`+ h) + c)n bits

– the maximal batched signature size, of sigsz + bn+ b bits

4.2 Primitives

An instance of Gravity-SPHINCS is based on four primitives that depend on the
parameters n and M:

– a length-preserving hash function F : Bn → Bn
– a length-halving hash function H : B2

n → Bn
– a pseudo-random function G : Bn×A → Bn (that takes as input a seed and

address)
– a general-purpose hash function H∗ :M→ Bn

4.3 Internal Algorithms

We describe the algorithms used for functionalities that are not in the original
SPHINCS.

Octopus Authentication. Octopus-authh : B2h

n ×{0, . . . , 2h − 1}k → B∗n×Bn
This function takes as input 2h leaf hashes xi ∈ Bn and 1 ≤ k ≤ 2h distinct

leaf indices 0 ≤ ji < 2h sorted in increasing order, and outputs the associated
octopus authentication nodes oct ∈ B∗n and the octopus root r ∈ Bn. It is defined
by recurrence on h as:

– Octopus-auth0(x0, j1) = (∅, x0),
– Octopus-authh+1(x0, x1, . . . , x2i, x2i+1, j1, . . . , jk) is computed as

j′1, . . . , j
′
κ ← unique(bj1/2c, . . . , bjk/2c)

oct′, r ← Octopus-authh(H(x0, x1), . . . ,H(x2i, x2i+1), j′1, . . . , j
′
κ)

z1, . . . , z2κ−k ← (j1 ⊕ 1, . . . , jk ⊕ 1) \ (j1, . . . , jk)

a1, . . . , a2κ−k ← (xz1 , . . . , xz2κ−k)

oct← (a1, . . . , a2κ−k, oct
′)

where unique() removes duplicates in a sequence, and A \B denotes the set
difference. This definition may seem complex, but it is just a mathematical
formalization of Figures 7 and 8.

Octopus Root Extraction. Octopus-extracth,k : Bkn×{0, . . . , 2h − 1}k×B∗n →
Bn ∪ {⊥}

Here again we formalize Figures 7 and 8. This function (with 1 ≤ k ≤
2h) takes as input k leaf hashes xi ∈ Bn, k leaf indices 0 ≤ ji < 2h and an
authentication octopus oct ∈ B∗n, and outputs the associated Merkle tree root
r ∈ Bn, or ⊥ if the number of hashes in the authentication octopus is invalid. It
is defined by recurrence on h as:

– Octopus-extract0,1(x1, j1, oct) =

{
x1 if oct = ∅
⊥ otherwise

– Octopus-extracth+1,k(x1, . . . , xk, j1, . . . , jk, oct) is computed as
j′1, . . . , j

′
κ ← unique(bj1/2c, . . . , bjk/2c)

L← Octopus-layer((x1, j1), . . . , (xk, jk), oct)

⊥ if L = ⊥
Octopus-extracth,κ(x′1, . . . , x

′
κ, j
′
1, . . . , j

′
κ, oct

′) if L = (x′1, . . . , x
′
κ, oct

′)

where Octopus-layer() is defined by recurrence as:

– Octopus-layer(x1, j1, oct) =


⊥ if oct = ∅
H(x1, a), oct′ if oct = (a, oct′) ∧ j1 mod 2 = 0

H(a, x1), oct′ if oct = (a, oct′) ∧ j1 mod 2 = 1
– Octopus-layer(x1, j1, x2, j2, . . . , xk, jk, oct) is

H(x1, x2),Octopus-layer(x3, j3, . . . , xk, jk, oct) if j1 ⊕ 1 = j2

⊥ if j1 ⊕ 1 6= j2 ∧ oct = ∅
H(x1, a),Octopus-layer(x2, j2, . . . , xk, jk, oct

′) if oct = (a, oct′) ∧ j1 mod 2 = 0

H(a, x1),Octopus-layer(x2, j2, . . . , xk, jk, oct
′) if oct = (a, oct′) ∧ j1 mod 2 = 1

Operations on Addresses. Before describing PORS as used in Gravity-SPHINCS,
we need to describe operations on addresses within the hyper-tree. Each WOTS
and PORST instance has a unique address that allows to generate its secret
values on demand, and each address contains:

– a layer 0 ≤ i ≤ d in the hyper-tree, where 0 is the root layer, d − 1 is the
last WOTS layer and d is the PORST layer;

– an instance index j in the layer, with 0 ≤ j < 2c+(i+1)h if i < d and
0 ≤ j < 2c+dh if i = d;

– a counter λ in the instance, with 0 ≤ λ < ` if i < d and 0 ≤ λ < t if i = d.

We define the following functions to manipulate addresses.

– The function make-addr : {0, . . . , d} × N → A takes as input a layer i ∈
{0, . . . , d} and an index j ∈ N and returns the address a = (i, j mod 2c+dh, 0) ∈
A.

– The function incr-addr : A × N → A takes as input an address a = (i, j, λ)
and an integer x and returns the address a′ = (i, j, λ + x) ∈ A with the
counter incremented by x.

PRNG to Obtain a Random Subset. The function PORS : Bn × Bn →
N × T k takes as input a salt s ∈ Bn and a hash x ∈ Bn, and outputs a hyper-
tree index λ ∈ N and k distinct indices xi, computed as follows.

– Compute g ← H(s, x).
– Let a← make-addr(0, 0).
– Compute b ← G(g, a) and interpret it as the big-endian encoding of an

integer β ∈ {0, . . . , 2n − 1}.
– Compute λ← β mod 2c+dh. In other words, λ is the big-endian interpreta-

tion of the c+ dh last bits of the block b.
– Initialize X ← ∅ and j ← 0.
– While |X| < k do the following:
• increment j ← j + 1,
• compute b← G(g, incr-addr(a, j)),
• split b into ν = bn/ log2 tc blocks of log2 t bits, as b1|| . . . ||bν = b,
• for i ∈ {1, . . . , ν} interpret bi as the big-endian encoding of an integer
bi ∈ T ,

• for i ∈ {1, . . . , ν}, if |X| < k update X ← X ∪ {bi}.
– Compute (x1, . . . , xk)← sorted(X).

PORST Signature. The function PORST-sign : Bn×A×T k → Bkn×B∗n×Bn
takes as input a secret seed ∈ Bn, a base address a ∈ A and k sorted indices
xi ∈ T , and outputs the associated PORST signature (σ, oct) ∈ Bkn × B∗n and
PORST public key p ∈ Bn, computed as follows.

– For i ∈ {1, . . . , t} compute the secret value si ← G(seed, incr-addr(a, i− 1)).
– For j ∈ {1, . . . , k} set the signature value σj = sxj .
– Compute the authentication octopus and root as

oct, p← Octopus-authlog2 t
(s1, . . . , st, x1, . . . , xk)

PORST Public Key Extraction. The function PORST-extractpk : T k ×
Bkn × B∗n → Bn ∪ {⊥} takes as input k indices xi ∈ T and a PORST signature
(σ, oct) ∈ Bkn×B∗n, and outputs the associated PORST public key p ∈ Bn, or ⊥
if the authentication octopus is invalid, computed as:

p← Octopus-extractlog2 t,k
(σ, x1, . . . , xk, oct)

4.4 Batch Operations

Single-message signature S and verification V in Gravity-SPHINCS are very
similar to SPHINCS. Therefore, we only describe the new batch operations.

Batch Signature. The batch signature procedure SB takes as input a sequence
of messages (M1, . . . ,Mi) ∈Mi with 0 < i ≤ 2b and a secret key sk = (seed, salt)
along with its secret cache, and outputs i signatures σj computed as follows.

– For j ∈ {1, . . . , i} compute the message digest mj ← H∗(Mj).
– For j ∈ {i+ 1, . . . , 2b} set mj ← m1.
– Compute m← Merkle-rootb(m1, . . . ,m2b).
– Compute σ ← S(sk,m), result of the non-batch signature procedure.
– For j ∈ {1, . . . , i} the j-th signature is σj ← (j, Aj , σ), where Aj is the

authentication path Aj ← Merkle-authb(m1, . . . ,m2b , j).

Batch Verification. The batch verification procedure VB takes as input a
public key pk, a message M ∈M and a signature (j, A, σ), and works as follows.

– Compute the message digest m← H∗(M).
– Compute the Merkle root m← Merkle-extractb(m, j,A).
– Return V(pk,m, σ), the result of the non-batch verification procedure.

4.5 Instances Proposed

We propose parameters and primitives for Gravity-SPHINCS, with:

– hash output of n = 256 bits to aim for 128-bit collision-resistance, both
classical and quantum;

– Winternitz depth w = 16, a good trade-off between size and speed often
chosen in similar constructions (XMSS, SPHINCS);

– PORS set size t = 216, here again a good trade-off between size and speed
chosen in SPHINCS.

For the hash functions, we use 6-round version Haraka-v2-256 as F and 6-round
Haraka-v2-512 as H. We thus extend the original Haraka-v2 construction [16]
with an additional round, to obtain collision resistance. For the general-purpose
hash function H∗ we use SHA-256. For G we use a construction that is essentially
AES-256-CTR.

We propose the following instances, summarized in Table 1.

name log2 t k h d c sigsz capacity

NIST-fast 16 28 5 10 14 35 168 264

NIST 16 28 8 6 16 26 592 264

NIST-slow 16 28 14 4 8 22 304 264

fast 16 32 5 7 15 28 928 250

batched 16 32 8 3 16 20 032 240

small 16 24 5 1 10 12 640 210

Table 1: Proposed Gravity-SPHINCS parameters for 128-bit quantum security.
The capacity is the number of messages (or batches thereof) that can be signed
per key pair. The maximal signature size sigsz is in bytes and does not include
batching. Public keys are always 32 bytes, secret keys are always 64 bytes.

– Three modes suitable for the NIST call for proposals for post-quantum sig-
nature schemes. Submission requirements mandate a capacity of at least
264 messages per key pair [1, Section 4.A.4]. We propose several trade-offs
between signing time and signature size.

– A mode suitable to sign up to 250 messages, for comparison with SPHINCS [5].
– A batched mode, suitable to sign up to 240 batches. This is a reasonable

alternative for a capacity of 250 messages (with batches of 210 messages), for
applications that can handle batching.

– A small mode with a capacity of 210 messages, for applications that don’t
need to sign many messages.

Verification times are similar in all cases, and much faster than signing.

References

1. Submission requirements and evaluation criteria for the post-quantum cryptogra-
phy standardization process. NIST (Dec 2016), http://csrc.nist.gov/groups/
ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.

pdf

2. Aumasson, J.P., Endignoux, G.: Clarifying the subset resilience problem. Cryptol-
ogy ePrint Archive, Report 2017/909 (2017)

3. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponen-
tiation and digital signatures. In: EUROCRYPT (1998)

4. Bernstein, D.J.: Cost analysis of hash collisions: Will quantum computers make
sharcs obsolete? SHARCS09 Special-purpose Hardware for Attacking Crypto-
graphic Systems p. 105 (2009)

5. Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R., Pa-
pachristodoulou, L., Schneider, M., Schwabe, P., Wilcox-O’Hearn, Z.: SPHINCS:
practical stateless hash-based signatures. In: EUROCRYPT (2015)

http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf

6. Buchmann, J.A., Dahmen, E., Hülsing, A.: XMSS - A practical forward secure
signature scheme based on minimal security assumptions. In: Post-Quantum Cryp-
tography (2011)

7. Buchmann, J.A., Dahmen, E., Schneider, M.: Merkle tree traversal revisited. In:
Post-Quantum Cryptography (2008)

8. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum col-
lision search algorithm and implications on symmetric cryptography. Cryptology
ePrint Archive, Report 2017/847 (2017)

9. Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital signatures out of second-
preimage resistant hash functions. In: Post-Quantum Cryptography (2008)

10. Endignoux, G.: Design and implementation of a post-quantum hash-based crypto-
graphic signature scheme. Master’s thesis, EPFL (2017)

11. Fiat, A.: Batch RSA. In: CRYPTO (1989)
12. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cam-

bridge University Press (2004)
13. Hülsing, A.: W-OTS+ - shorter signatures for hash-based signature schemes. In:

AFRICACRYPT (2013)
14. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based

signatures. In: PKCS (2016)
15. Jakobsson, M., Leighton, F.T., Micali, S., Szydlo, M.: Fractal merkle tree repre-

sentation and traversal. In: CT-RSA (2003)
16. Klbl, S., Lauridsen, M.M., Mendel, F., Rechberger, C.: Haraka v2 - efficient short-

input hashing for post-quantum applications. Cryptology ePrint Archive, Report
2016/098 (2016)

17. Merkle, R.C.: A certified digital signature. In: CRYPTO (1989)
18. Pavlovski, C., Boyd, C.: Efficient batch signature generation using tree struc-

tures. In: International Workshop on Cryptographic Techniques and E-Commerce,
CrypTEC. vol. 99 (1999)

19. Reyzin, L., Reyzin, N.: Better than BiBa: Short one-time signatures with fast
signing and verifying. In: ACISP (2002)

20. Szydlo, M.: Merkle tree traversal in log space and time. In: EUROCRYPT (2004)

	Improving Stateless Hash-Based Signatures

