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Abstract

Blockchain technology has the potential to disrupt how cryptography is done. In this work, we propose
to view blockchains as an “enabler”, much like indistinguishability obfuscation [BGI+12, GGH+13b,
SW14] or one-way functions, for building a variety of cryptographic systems. Our contributions in this
work are as follows:

1. A Framework for Proof-of-Stake based Blockchains: We provide an abstract framework for formally
analyzing and defining useful security properties for Proof-of-Stake (POS) based blockchain pro-
tocols. Interestingly, for some of our applications, POS based protocols are more suitable. We
believe our framework and assumptions would be useful in building applications on top of POS
based blockchain protocols even in the future.

2. Blockchains as an Alternative to Trusted Setup Assumptions in Cryptography: A trusted setup, such
as a common reference string (CRS) has been used to realize numerous systems in cryptography.
The paragon example of a primitive requiring trusted setup is a non-interactive zero-knowledge
(NIZK) system. We show that already existing blockchains systems including Bitcoin, Ethereum
etc. can be used as a foundation (instead of a CRS) to realize NIZK systems.

The novel aspect of our work is that it allows for utilizing an already existing (and widely trusted)
setup rather than proposing a new one. Our construction does not require any additional func-
tionality from the miners over the already existing ones, nor do we need to modify the underlying
blockchain protocol. If an adversary can violate the security of our NIZK, it could potentially also
take over billions of dollars worth of coins in the Bitcoin, Ethereum or any such cryptocurrency!

We believe that such a “trusted setup” represents significant progress over using CRS published by
a central trusted party. Indeed, NIZKs could further serve as a foundation for a variety of other
cryptographic applications such as round efficient secure computation [KO04, HK07].

3. One-time programs and pay-per use programs: Goldwasser et al. [GKR08] introduced the notion
of one time program and presented a construction using tamper-proof hardware. As noted by
Goldwasser et al. [GKR08], clearly a one-time program cannot be solely software based, as software
can always be copied and run again. While there have been a number of follow up works [GIS+10,
BHR12a, AIKW15, DDKZ13], there are indeed no known constructions of one-time programs which
do not rely on tamper-proof hardware (even if one uses trusted setup or random oracles). Somewhat
surprisingly, we show that it is possible to base one-time programs on POS based blockchain systems
without relying on trusted hardware. Our ideas do not seem to translate over to Proof-of-Work
(POW) based blockchains.

We also introduce the notion of pay-per-use programs which is simply a contract between two
parties — service provider and customer. A service provider supplies a program such that if the
customer transfers a specific amount of coins to the provider, it can evaluate the program on any
input of its choice once, even if the provider is offline. This is naturally useful in a subscription
based model where your payment is based on your usage.
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1 Introduction

The last few years have seen a dramatic rise of cryptocurrencies such as Bitcoin [Nak08] and Ethereum [Woo14].
Some of these cryptocurrencies have a market capitalization running into several billion dollars. This has
fuelled a significant interest in the underlying blockchain technology. Blockchain technology has the potential
to disrupt how cryptography is done. Much of cryptography can be seen as eliminating the need to trust
(and allow for dealing with adversarial parties which can’t be trusted). Indeed the purpose of blockchains is
something similar: eliminate the central point of trust in cryptocurrencies and possibly other applications.
Thus we believe that a sustained effort to bring together “traditional cryptography” with the blockchain
technology has the potential to be truly rewarding.

Blockchain Protocols. In a blockchain protocol, the goal of all parties is to maintain a (consistent)
global ordered set of records. The set of records is “append only”, and publicly visible. Furthermore, records
can only be added using a special mechanism to reach consensus on what must be added to the existing
blockchain. A protocol can employ any arbitrary technique or mechanism for participants to converge on a
uniform and reliable blockchain state.

In most cryptocurrencies instantiated in the blockchain model, the special mechanism to reach consensus
is called a mining procedure. It is used by all parties to extend the blockchain (i.e., add new blocks)
and in turn (potentially) receive rewards for successfully generating a new block consistent with respect to
current blockchain state. The mining procedure is meant to simulate a puzzle-solving race between protocol
participants and could be run by any party. The rewards mostly consist of freshly generated currency.
Presently, the mining procedures employed by most cryptocurrencies could be classified into two broad
categories — Proof-of-Work (POW) and Proof-of-Stake (POS) based puzzles. The basic difference being
that in POW puzzles, the probability of successful mining is proportional to the amount of computational
power; whereas in POS, it is proportional to the number of coins in possession of a miner. Therefore, POW
miners have to spend significant portion of their computational resources (and in turn, monetary resources) to
extend the blockchain and in turn get rewarded, whereas POS miners spend significantly less computational
resources and just need to have a sufficient balance.

Our Contributions. In this work, we propose to view blockchains as an “enabler”, much like indistin-
guishability obfuscation [BGI+12, GGH+13b, SW14] or one-way functions, for building a variety of cryp-
tographic systems. Basing cryptographic system on blockchains can provide very strong guarantees of the
following form: If an adversary could break the security of the cryptographic system, then it could also break
the security of the underlying blockchain allowing it to potentially gain billions of dollars! Indeed, this per-
spective is not new. Previous works [ADMM14b, BK14, ADMM14a, KB14, Jag15, LKW15] in this direction
include using blockchains to construct fair secure multi-party computation, lottery systems, smart contracts
and more. Our contributions in this work include the following:

• A Framework for Proof-of-Stake based Blockchains: We provide an abstract framework for formally
analyzing and defining useful security properties and hardness relations for POS based blockchain
protocols. Interestingly, we observe that for some of our applications, POS based protocols are more
suitable than their POW counterparts. Furthermore, we also show how our framework can be instan-
tiated based on existing POS based protocols [KRDO16, BPS16b].

Previously, various works [GKL15, KP15, PSS16, KRDO16, PS16a, PS16b, BPS16a, BPS16b, GKLP16,
GKL16] have analyzed the blockchain consensus protocols (of existing systems like Bitcoin) proving
some fundamental properties as well as proposed new blockchain protocols. It is important to note that
most of these works consider blockchain protocols with provable security guarantees as an end goal.
However, as mentioned before, we consider blockchains as an “enabler”. Therefore, we believe our
framework and assumptions would be useful in building applications on top of POS based blockchain
protocols even in the future.
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Recently, it was suggested that blockchains could potentially be used to obtain a common random
string as they can be used as a source of public randomness, thereby allowing to generate trusted
random parameters [BCG15, BGZ16]. However, the results presented were limited in the sense that
either adversaries with bounded budget were assumed or no security analysis was provided. We, on the
other hand, proceed in an orthogonal direction by suggesting methods to directly extract cryptographic
hardness from blockchains and developing hard-to-compute trapdoors with respect to blockchains.

• Blockchains as an Alternative to Trusted Setup Assumptions in Cryptography: A trusted setup, such as
a common reference string (CRS) has been used to realize numerous systems in cryptography. Indeed,
several of these systems have been shown to be impossible to realize without a trusted setup. In
this work, we explore using blockchains as an alternative to a trusted setup (typically performed by
a central trusted authority). The paragon example of a primitive requiring trusted setup is a non-
interactive zero-knowledge (NIZK) system. Most well-known NIZK constructions are in the so called
common reference string (CRS) model where there is a trusted third party which publishes some public
parameters. However if the setup is done dishonestly, all security guarantees are lost.

We show that already existing blockchains systems including Bitcoin, Ethereum etc. could potentially
be used as a foundation (instead of a CRS) to realize NIZK systems. Thus, the complex blockchain
system consisting of various miners and users can be seen as a “trusted setup”. The idea of a decentral-
ized setup for realizing NIZKs is not entirely new: Groth and Ostrovsky [GO07] propose NIZKs with
n authorities where a majority of them must be honest. Goyal and Katz [GK08] propose a generalized
model which allows for placing “differing levels of trust” in different authorities. However the novel
aspect of our work is that it allows for utilizing an already existing (and widely trusted) setup rather
than proposing a new one. Our construction does not require any additional functionality from the
miners over the already existing ones, nor do we need to modify the underlying blockchain protocol.1 If
an adversary can violate the security of our NIZK, it could potentially also take over billions of dollars
worth of coins in the Bitcoin, Ethereum or any such cryptocurrency!

We believe that such a “trusted setup” represents significant progress over using CRS published by
a central trusted party. Indeed, NIZKs could further serve as a foundation for a variety of other
cryptographic applications such as round efficient secure computation [KO04, HK07].

• One-time programs and pay-per use programs: Say Alice wants to send a program to Bob. The program
should run only once and then “self destruct”. Is it possible to realize such “one-time programs”?
Goldwasser et al. [GKR08] introduced the notion of one time program and presented a construction
using tamper-proof hardware. A one-time program can be executed on a single input, whose value
can be specified at run time. Other than the result of the computation on this input, nothing else
about the program is leaked. One-time programs, for example, lead naturally to electronic cash or
token schemes: coins or tokens are generated by a program that can only be run once, and thus cannot
be double spent. In the construction of Goldwasser et al. [GKR08], a sender sends a set of very
simple hardware tokens to a (potentially malicious) receiver. The hardware tokens allow the receiver
to execute a program specified by the sender’s tokens exactly once (or, more generally, up to a fixed t
times).

As noted by Goldwasser et al. [GKR08], clearly a one-time program cannot be solely software based,
as software can always be copied and run again. While there have been a number of follow up works
[GIS+10, BHR12a, AIKW15, DDKZ13], there are indeed no known constructions of one-time programs
which do not rely on tamper-proof hardware (even if one uses trusted setup or random oracles). Some-
what surprisingly, we show that it is possible to base one-time programs on POS based blockchain
systems without relying on trusted hardware. Our ideas do not seem to translate over to POW
based blockchains. Our construction assumes the existence of extractable witness encryption (WE)

1We would like to point out that (unlike other works like [ADMM14b, BK14, ADMM14a, KB14]) none of our applications
require the underlying blockchain protocol to provide a sufficiently expressive scripting language. This suggests that our
applications could be based on top of almost all existing blockchain protocols.
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[GGSW13, GKP+13] (which in turn requires strong knowledge assumptions related over multi-linear
maps [GGH13a, CLT13], see also [GGHW14]). However, we stress that our construction does not
require WE for all NP-relations, instead we only need a WE scheme for very specific blockchain de-
pendent relations. As noted by prior works [Jag15, LKW15], we, for example, already know efficient
WE schemes for hash proof system compatible relations [CS02, JR13, BBC+13, Wee10, ABP15] with
some works even achieving certain notions of extractability.2

We also introduce the notion of pay-per-use programs. Informally, a pay-per-use program is a contract
between two parties which we call the service provider and customer. A service provider wants to supply
a program (or service) such that if the customer transfers a specific amount of coins to the provider
(over the blockchain), it can evaluate the program on any input of its choice once. Additionally, the
service provider need not be executing the blockchain protocol after supplying the program, i.e. it could
go offline. We could also generalize this notion to k-time pay-per-use programs. This is naturally useful
in a subscription based model where your payment is based on your usage. The above construction of
one-time programs can be easily extended to obtain pay-per-use k-time programs.

1.1 Technical Overview

First, we discuss an abstract model for blockchain protocols as well as the protocol execution model and
describe various desirable security properties of blockchains. Next, we outline our NIZK construction based
on blockchains and present the main ideas in the security proof. We also overview our construction for OTPs
using blockchains and highlight the necessity of a POS based blockchain in the security proof. Finally, we
briefly discuss how to extend our idea behind constructing OTPs to building pay-per-use programs.

1.1.1 Proof-of-Stake Protocols: Abstraction and Properties

Informally, a blockchain protocol is a distributed consensus protocol in which each participant (locally) stores
an ordered sequence of blocks/records B (simply called blockchain). The goal of all (honest) parties is to
maintain a globally consistent blockchain. Each party can try to include new blocks in their local blockchain
as well as attempt to get it added in blockchains of other parties. Such new blocks are created using a special
block generation procedure (simply called mining) that depends on the underlying consensus mechanism.

In POS based blockchains, each participant (apart from storing a local blockchain B) is also entitled
with some stake in the system, which could be measured as a positive rational value.3 The ideology behind
mining in a POS based system is that the probability any party succeeds in generating the next block (i.e.,
gets to mine a new block) is proportional to its stake. Also, each party that generates a block must provide a
proof-of-stake which could be used as a certificate by other parties to verify correctness. Such proofs-of-stake
are usually provided in the form of signatures, as it prevents unforgeability and permits easy verification.
An important aspect in such POS systems is that the stake distribution (among all parties) evolves over
time, and is not necessarily static.

Recently, few works [GKL15, KP15, PSS16] initiated the study of formal analysis of blockchain protocols.
They formalized and put forth some useful properties for blockchain protocols which were previously discussed
only informally [Nak08, mtg10]. The most well-known properties analyzed are chain consistency and chain

2At first sight one might ask whether a strong assumption like extractable WE is necessary, or could it be relaxed. It turns
out that, to construct one-time programs, it is sufficient and necessary to assume a slightly weaker primitive which we call
one-time extractable WE. A one-time extractable WE is same as a standard extractable WE scheme, except the decryption
algorithm could only be run once on each ciphertext. In other words, if we decrypt a one-time WE ciphertext with a bad witness
the first time, then next time decryption (on that same ciphertext) will always fail even if we use a correct witness. Again this
cannot be solely software based as then ciphertext could always be copied, and thus one-time decryption wouldn’t make sense.
It is straightforward to verify in our OTP construction that we could instead use such a one-time extractable WE scheme.
Additionally, anologous to construction of extractable WE from VBB obfuscation, we could show that a OTP already implies
a one-time extractable WE, therefore our assumption of one-time extractable WE for constructing OTPs is both necessary and
sufficient.

3In cryptocurrencies, stake of any party simply corresponds to the amount of coins it controls.

4



quality.4 At a high level, these can be described as follows.

• `-chain consistency: blockchains of any two honest parties at any two (possibly different) rounds
during protocol execution can differ only in the last ` blocks, with all but negligible probability.

• (µ, `)-chain quality: fraction of blocks mined by honest parties in any sequence of ` or more consec-
utive blocks in an honest party’s blockchain is at least µ, with all but negligible probability.

Previous works demonstrated usefulness of the above properties by showing that any blockchain protocol
(irrespective of it being POW or POS based) satisfying these properties could be used a public ledger and for
byzantine agreement. While the above properties are interesting from the perspective of using blockchains
as an end-goal or achieving consensus, it is not clear whether these could be used to extract some form of
cryptographic hardness. In other words, it does not seem straightforward on how to use these properties if we
want to use blockchains as a primitive/enabler. To this end, we introduce several new security properties that
are aimed directly at extracting cryptographic hardness from POS blockchains. We exhibit their importance
and usability by basing security of all our applications (NIZKs, OTPs and pay-per-use programs) on these
properties. At a high level, the properties could be described as follows.

• (β, `)-sufficient stake contribution: the combined amount of stake whose proof was provided in
any sequence of ` or more consecutive blocks in an honest party’s blockchain is at least β fraction of
the total stake in the system, with all but negligible probability.

• (β, `)-sufficient honest stake contribution: the combined amount of honestly held stake whose
proof was provided in any sequence of ` or more consecutive blocks in an honest party’s blockchain is
at least β fraction of the total stake in the system, with all but negligible probability.

• (α, `1, `2)-bounded stake forking: no adversary can create a fork of length `1 + `2 or more such
that, in the last `2 blocks of the fork, the amount of proof-of-stake provided is more than α fraction of
the total stake in the system, with all but negligible probability.5

• (α, β, `1, `2)-distinguishable forking: with all but negligible probability, any sequence of `1 + `2
or more consecutive blocks in an honest party’s blockchain could always be distinguished from any
adversarially generated fork of same length by measuring the amount of proof-of-stake proven in those
sequences. The fraction of proof-of-stake proven in the (adversarial) fork will be at most α, and in
honest party’s blockchain will be at least β. Hence, any fork which is created by the adversary on its
own off-line is clearly distinguishable from a real blockchain.

Interestingly, we show that these properties with appropriate parameters are already implied (in an almost
black-box way) by chain consistency and quality properties if we assume suitable stake distributions among
honest parties. Since we already know of POS based blockchain protocols [KRDO16, BPS16b] that fit our
abstract framework and satisfy chain consistency and quality, this provides concrete instantiations of our
framework and following applications.

We would like to point out that, in our analysis, we make certain simplifying assumptions about the
blockchain execution model. First, we require that the number of honest miners who actively participate
in mining (i.e., are online) as well as the amount of stake they jointly control does not fall below a certain
threshold. In other words, we expect that (honest) miners which control a significant amount of stake do
not remain offline for arbitrarily long periods. However, we stress that we do not assume that all honest
parties are online, nor do we assume that all honest parties which control a significant fraction of stake are
online. We only require that the number of such honest parties does not fall below a reasonable threshold.
Second, we also expect each honest party to delete the signing keys after they lose significance, i.e. once the
coins associated with a particular key are transferred, then the corresponding signing key must be deleted.

4Previous works also define chain growth as a desideratum, however in this work we will only focus on chain consistency and
quality properties.

5A fork is simply a private chain of blocks which significantly diverges from global blockchain in honest parties’ view.
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More details about our proposed properties as well as their reductions to other desideratum is provided later
in Sections 4 and 5.

Now our applications give evidence that the above security properties as well as our POS framework are
very useful in using POS based blockchains as a primitive, and we believe its scope is beyond this work as
well. Also, we would like to point out that our reductions are not completely tight since we do not assume
any special structure about underlying POS protocols, but instead work with an abstract model. We hope
that future work on POS blockchains will consider these properties as desiderata, thereby proving these
properties directly (possibly in a non-black-box way) with better parameters.

1.1.2 Zero-Knowledge Systems based on Blockchains

For ease of exposition, assume that all parties executing the blockchain protocol have the same amount of
stake (i.e., each new block contains a proof-of-stake of a fixed amount). Also, the adversary controls only a
minority stake in the system (say α). Below we describe a simplified construction. A formal treatment is
given in the main body.

Defining non-interactive zero-knowledge based on blockchains: We would define the zero-knowledge prop-
erty as follows. Very informally, we would require the existence of a simulator which should be able to
simulate the view of the adversary without having access to the witness. In the real experiment, the ad-
versary interacts with the honest parties: the honest prover, the honest miners and other honest blockchain
participants. In the simulated experiment, the adversary interacts with the simulator alone. The simulator
in turn emulates all the honest parties: including the honest prover, and the honest miners. We would
require the view of the adversarial verifier to be computational indistinguishable in the two experiments.
Note that in the simulated experiment, the simulator emulates (or controls) all the honest parties including
even the honest blockchain miners. This can be seen as analogous to the simulator emulating the honest
party publishing the CRS in the CRS model, or, the simulator controlling a majority of the parties in a
secure multi-party computation protocol with honest majority [BGW88], etc.

First, we define the notion of a fork with respect to blockchains. Let B be some blockchain. A fork w.r.t.
B is a sequence of valid blocks that extends some prefix of blockchain B instead of extending B directly
from its end. In other words, a fork is a sequence of valid blocks that starts extending the chain at some
block which is not the most recently added block in B.

The starting point of our construction is the well-known FLS paradigm [FLS99] for transforming proof
of the statement x ∈ L into a witness-indistinguishable proof for the statement — “x ∈ L OR the common
shared random string σ is the output of a pseudorandom generator”. Our idea is to use the already established
blockchain B as the CRS σ, and instead of proving that σ is the output of a pseudorandom generator, we
will prove some trapdoor information (which is hard to compute) w.r.t. to the current blockchain B. A
little more formally, we will generate a witness-indistinguishable proof for the statement — “x ∈ L OR there
exists a long valid fork f w.r.t. blockchain B”.

Suppose Com(·) is a non-interactive statistically binding commitment scheme. Let B denote the current
state of the blockchain and the adversary controls at most α fraction of total stake in the blockchain network.
At a high level, the scheme works as follows. The prover constructs the NIZK as:

• Compute commitments c1 ← Com(w) and c2 ← Com(f) where w is the witness for the given statement
x ∈ L, and f is simply an all zeros string of appropriate length.

• Compute a non-interactive witness indistinguishable (NIWI) argument using witness w proving that
either:

1. c1 is a commitment of a valid witness to x ∈ L, or

2. c2 is a commitment of a long fork w.r.t. blockchain B (i.e., a different sequence of valid blocks)
such that the amount of proof-of-stake present in the fork is a clear majority (of total stake).

Completeness follows directly from the correctness of underlying primitives. To prove the zero-knowledge
property, we would need to construct a simulator which would not have the witness w but could still construct
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proofs which are indistinguishable from honestly generated proofs. Note that the simulator is permitted to
control all honest parties, thus it can access their signing keys. Since honest parties are in (stake) majority,
therefore the simulator could efficiently generate a fork of sufficient length that contains a combined proof
of majority stake. Hence, it could alternatively compute c2 as a commitment to the fork, and generate the
NIWI using the witness for second condition.

Proving soundness of the above construction is not straightforward and turns out to be more complex.
Suppose that an adversary manages to produce a NIZK for a false statement. How could we reduce it to
an attack on some reasonable notion of security of the blockchain? For such a reduction, we would have to
construct an adversary which controls only a minority stake in the system, but it could still generate a fork
which contains a proof of majority stake. However, the above NIZK only contains a commitment to such a
fork. This problem seems to suggest that some form of extraction (of the fork) would be required for the
security reduction to go through. And yet, we don’t have any CRS! To solve this problem we need to modify
our construction such that extraction is possible without any CRS.

Allowing Extraction of f . To this end, we rely on the following idea. Note that each mined block also
contains the public key of the corresponding party. At a very high level, our idea is to secret share the fork
into ` shares, and encrypt ith share under public key of the party that mined ith most recent block (instead
of generating a commitment of the fork). If a certain threshold of these ` parties are honest, then we could
extract the appropriate secret shares and reconstruct the fork.

More formally, let the public keys of the parties who mined at least one block in the last N blocks on
blockchain B be pk1, . . . , pk` where N is a sufficiently big number and ` could be smaller than N (as some
party could have mined multiple blocks). Note that in most blockchain protocols, each mined block contains
the public (verification) key of its miner. We assume that these public keys could be used for encryption as
well.6 Also, recall that the fraction of total stake controlled by adversary is at most α, and for simplicity we
assumed that all parties have the same amount of stake.

Now, the prover uses a β`-out-of-` secret sharing scheme on f to get shares f1, . . . , f`. For all i, the share
fi will be encrypted under pki, where β (< 1) is a scheme parameter such that it is sufficiently higher than
α. The second condition (i.e., trapdoor condition) in the NIWI would now be that all these shares lead to a
valid reconstruction of a string f which represents a long fork such that it contains a proof of majority stake
w.r.t. blockchain B. With this modification, we observe the following:

• Given any β` secret keys corresponding to these public keys, f can be extracted. This is because the
number of blocks a party mines is roughly proportional to its stake. Since we assume that all parties
have same amount of stake, this implies that a set of miners controlling approximately β fraction of
total stake can now extract f .

• Suppose an adversary is able to prove a false statement. As noted above, a set of miners controlling β
fraction of total stake can perform the extraction. Also, these miners can emulate the adversary given
more stake (as the adversary controls at most α of total stake), therefore for appropriate values of α
and β, this would imply an algorithm using which a set of miners controlling only a minority amount
of total stake could generate a sufficiently long fork containing a proof of majority stake. This would
contradict the bounded stake forking property of the blockchain for suitable values of α, β and N .

• Further, this does not affect the zero-knowledge property since the amount of stake controlled by the
adversary is significantly lower than β, therefore the adversary does not learn anything from the secret
shares given to it. Also, the simulator, given signing keys of all honest parties (which control majority
of stake), can still generate such a fork privately thereby using the fork instead of the actual witness
to compute the NIWI.

Tha above construction could be naturally extended to be an argument of knowledge by additionally
secret sharing the witness w analogous to the fork f . Note that in the above exposition we made a few
simplifying assumptions. Thus the current construction does not work as is, and there are a number of

6For instance, most blockchain protocols (like Bitcoin, Ethereum etc.) already use ECDSA based signature schemes for
which we could directly use ECIES-like integrated encryption schemes [Sho01].
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issues which must be resolved. For example, we assumed that the stake distribution was uniform (i.e., all
parties had identical stake). Since this may be arbitrary and not necessarily uniform, the idea of a threshold
secret sharing does not work in general for extraction. Instead we need to use a weighted threshold secret
sharing scheme with the weights being proportional to the respective stakes. Also, it is likely that different
honest parties may have a different view of the last few blocks w.r.t. their local blockchains so we need to
define the notion of forks with respect to the consistent part of the blockchain. It is also possible that some
honest parties might have mined a few blocks in the adversary’s fork before converging with other honest
participants. To overcome such difficulties due to small forks (and other ephemeral consensus problems) in
honest parties local blockchains, we need to make some more modifications like only considering the amount
of proof-of-stake proven in the last few blocks of the fork etc. Finally, we directly reduce the security of our
NIZKAoK construction to chain consistency, sufficient honest stake contribution, and bounded stake forking
properties of the underlying blockchain protocols in our framework. More details are provided in Section 6.

Using POW based blockchains. We note that the above idea could potentially be ported to the POW
based blockchains as well with the following caveat: the NIZK proof generated by the prover would be valid
for a limited period of time. The main modification will be that now the prover simply proves that c2 is a
commitment to a very long fork instead. The rest of the construction would be mostly identical. However,
the proof of security would now rely on the fact that any adversary which controls noticeably less than
half of the computational resources can not compute a fork of length much longer than the honest parties
blockchain. Intuitively, this can not happen because it would imply that any adversary with only minority
voting power could fork the blockchain at any round. It is important to note that unlike the NIZKs based on
POS blockchains, NIZKs based on POW blockchains will only be valid for atmost a bounded period of time
as any verifier must reject such proofs once the length of its local blockchain is comparable to the length of
the fork under c2.

1.1.3 One-Time Programs using Blockchains

There are two main ideas behind constructing one-time programs (OTPs) using blockchains — (1) the
blockchain could be used as a public immutable bulletin board, and (2) any adversarially generated fork
can be distinguished from the real blockchain state. Informally, the scheme works as follows. To compile a
circuit C over blockchain B, the compilation algorithm first garbles the circuit to compute a garbled circuit
and wire keys. Suppose we encrypt the wire keys using public key encryption and set the corresponding
OTP as the garbled circuit and encrypted wire keys. This suggests that the evaluator must interact with the
compiling party to be able to evaluate the program. Since OTPs are not defined in an interactive setting, we
need to somehow allow conditional release/decryption of encrypted wire keys for evaluation. Additionally,
we need to make sure that the evaluator only learns the wire keys corresponding to exactly one input as
otherwise it will not satisfy the one-time secrecy condition. To this end, we encrypt the wire keys using
witness encryption scheme. At a high level, an OTP for a circuit C is generated as follows:

• First, the circuit C is garbled to output a garbled circuit and corresponding input wire keys. Next, for
each input wire, both wire keys are independently encrypted using a witness encryption (WE) scheme
such that to decrypt the evaluator needs to produce a blockchain B′ as a witness where B′ must satisfy
the following conditions — (1) there exists a block in B′ which contains the input (on which evaluator
wants to evaluate), and (2) B′ contains a certain minimum number of blocks, say n, after the block
containing input. The OTP for C will simply be this garbled circuit and all the encrypted wire keys.

• To execute the OTP, the evaluator chooses an input x and must commit it to the blockchain. Next, it
must wait until its input x is added to the blockchain and is extended by n blocks. Let the resulting
blockchain be B̃. The evaluator uses B̃ as the witness to decrypt the wire keys corresponding to the
input x. In particular, for the ith input wire, B̃ would serve as the witness to decrypt exactly one of
the two wire keys depending upon the ith bit of x. Finally, it could evaluate the garbled circuit using
the decrypted wire keys.

8



There are various technical details we omit in the above sketch. For instance, the n blocks added after
the input block must contain a minimum amount of combined proof-of-stake, as otherwise any adversary
could simply generate such n blocks by itself. Also, the witness must be valid only if the user has committed
to a single unique input x, as otherwise the user can commit to multiple inputs in the blockchain and be
able to run the OTP on all of them. Mostly these could be dealt with by adding more checks on witness
blockchain B̃ as part of the relation. Next, we briefly talk about the security.

Suppose that the adversarial user controls only minority stake. The security of this construction relies on
the inability of the user to be able to extend the blockchain B by a sequence of n or more valid blocks without
the support of honest parties. To execute this idea, we additionally check that the sequence of n blocks added
after the input x contain a minimum amount of combined proof-of-stake. For simplicity, consider that we
check whether the sequence of n blocks contain a proof of majority stake. Now the adversary will not
be able to extend B on its own such that it satisfies this constraint. However, during honest execution,
for sufficiently large values of n this will always hold. Therefore, the adversary’s inability to fork directly
reduces the security of the OTP to security of garbling scheme. To formally prove one-time secrecy of
above construction, we reduce security of the above scheme to chain consistency and distinguishable forking
properties of the underlying blockchain protocols in our framework. More details are provided in Section 7.

We would like to point out that this idea fails in POW based systems. This is because after receiving
the OTP, the user can simply go offline and compute multiple forks of the chain starting from B such that
each fork has a different user input. The user can compute such a fork on its own (albeit at a much slower
rate compared to the growth of the original blockchain). Thus, unlike NIZKs, we do not know how to port
the above idea to POW based blockchains.
Input Hiding. We would also like to note that in the above scheme, the evaluator needs to publicly broadcast
its input x. This might not be suitable for applications of one-time programs which want the evaluator’s
input to be hidden. To this end, the scheme could be modified as follows. The evaluator adds to the
blockchain a statistically binding commitment to its input (instead of its actual input x). Now the witness
to decrypt the wire keys would also includes opening for the commitment and the witness relation verifies
opening as well. We discuss additional such improvements later in Section 7.3.2.

Pay-per-use Programs. Lastly, the above construction of one-time programs can also be easily extended
to obtain pay-per-use k-time programs. This can be done by requiring in the witness encryption relation
that in the extension of the blockchain B, apart from x, there is also an evidence of cryptocurrency transfer
of some pre-specified amount to the service provider. This has been discussed in detail later in Section 8.

Comparison with related work. Recently a few other works [Jag15, LKW15, KMG17] also have studied the
possibility of combining witness encryption with blockchains. For instance, in [Jag15, LKW15] that Bitcoin
could be combined with extractable witness encryption to build time-lock encryptions. Their idea was to
exploit the fact that it should be hard for an adversary to generate blocks (i.e., extend blockchain) faster
than the rest of the network. Very briefly, to encrypt data in their schemes, they encrypted it using WE
under the current blockchain such that after say n more blocks have mined, those blocks could be used as
a witness to decrypt the corresponding ciphertext. At a high level, they view mining of these n blocks as
a proof of time being elapsed. At first sight, it might seem that our OTP construction is a straightforward
combination of such time-lock encryptions with garbled circuits, this is not the case. We briefly highlight the
important differences. First, time-lock encryptions used blockchain only as a counter/clock. On the other
hand, we exploit the fact that blockchains could be used as an immutable public bulletin board. Concretely,
in our construction, the evaluator needs to commit its input on the blockchain. Second, in our construction,
it is essential that the underlying blockchain protocol is POS based, whereas [Jag15, LKW15] built schemes
directy on top of Bitcoin. Lastly, we reduce the security of our construction to fundamental properties
over blockchains and give examples of blockchain protocols for which those properties are satisfied, whereas
[Jag15, LKW15] only gave an ad hoc analysis arguing that Bitcoin could be used implement such reference
clocks.
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1.2 Organization

We first provide some background on blockchain protocols in Section 2 and introduce some preliminaries in
Section 3. Next, we provide necessary abstractions and useful security properties for POS based protocols
in Section 4. In Section 5, we prove our security properties for blockchain protocols assuming only some
fundamental properties. We also talk about two POS based protocols which could be used to instantiate our
framework. Next we present our NIZKAoK construction in Section 6. And, in Sections 7 and 8, we present
our constructions for OTPs and pay-per-use programs, respectively.

2 Background on Blockchain Protocols

In this section, we present an abstract model for blockchain protocols as well as the protocol execution
model. Our model is an extension of the model used by Pass et al. [PSS16], which in turn is an extension
of [GKL15].

2.1 Blockchain Protocols

A blockchain protocol Γ consists of 3 polynomial-time algorithms (UpdateState, GetRecords, Broadcast) with
the following syntax.

• UpdateState(1λ): It is a stateful algorithm that takes as input the security parameter λ, and maintains
a local state st.7

• GetRecords(1λ, st): It takes as input the security parameter λ and state st. It outputs the longest
ordered sequence of valid blocks B (or simply blockchain) contained in the state variable, where each
block in the chain itself contains an unordered sequence of records/ messages m.8

• Broadcast(1λ,m): It takes as input the security parameter λ and a message m, and broadcasts the
message over the network to all nodes executing the blockchain protocol. It does not give any output.

As in [GKL15, PSS16], the blockchain protocol is also parameterized by a validity predicate V that
captures semantics of any particular blockchain application. The validity predicate takes as input a sequence
of blocks B and outputs a bit, where 1 certifies validity of blockchain B and 0 its invalidity.9

In a blockchain protocol, the goal of all parties is to maintain a (consistent) global ordered set of records.
The above model tries to abstractly capture the necessary components that any blockchain protocol pos-
sesses. However in this paper, we will mostly be interested in the blockchain-based cryptocurrencies like
Bitcoin [Nak08], Ethereum [Woo14] and their derivatives. Such blockchain protocols support special types
of messages which we call currency transaction messages. Each currency transaction message is associated
with two parties — sender and receiver. It is used to transfer money (coins) from a sender to receiver given
that a sender has sufficient funds (and can prove their ownership). We consider that each party has at least
one unique public identity.

Let A and B be two parties with public identities idA and idB. We will use the message (idA, idB, q, aux)
to denote a transaction of q coins from A to B with some (possibly empty) auxiliary information aux. Such
a message is accompanied with a proof of identity and sufficiency of funds by A to verify validity, however
we choose to avoid it in our abstraction. In Bitcoin as well as most of its derivatives, the identities are
cryptographic hashes of a public verification key, and a proof of identity is a signature on the entire message.

7The local state should be considered as the entire blockchain (i.e., sequence of mined blocks along with metadata) in Bitcoin
and other cryptocurrencies.

8The sequence B should be considered as the entire transaction history in Bitcoin and other cryptocurrencies, where the
blocks are ordered in the sequence they were mined.

9The validity predicate could be used to capture various fundamental properties. E.g., In Bitcoin and other cryptocurrencies,
it could be used to check for double spending, correct mining etc.
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To prove sufficiency of funds, Bitcoin requires sender A to provide prior unspent transaction(s) with A
as receiver, whereas currencies like Ethereum only require A to have sufficient balance where balance is
computed as the difference between total number of coins addressed to A and number of coins spent by A.

In most cryptocurrencies instantiated in the blockchain model, there is a special mining procedure which
is used to extend the blockchain (i.e., add new blocks) and in turn rewards the miner who successfully
generates a new valid block with freshly generated currency. The mining procedure simulates a puzzle-
solving race between protocol participants and could be run by any party executing the blockchain protocol.
Presently, different cryptocurrencies employ different types of puzzles for mining (i.e., achieving consensus
on next block). These could be classified into two broad categories — Proof-of-Work (POW) and Proof-of-
Stake (POS) based puzzles. The basic difference between these is that in POW puzzles the probability of
successful mining is proportional to the amount of computational power, whereas in POS it is proportional to
the balance of miner. Therefore, the POW miners have to spend significant portion of their computational
resources (and in turn, monetary resources/budget) to extend the blockchain and in turn get rewarded,
whereas POS miners spend significantly less computational resources and earn rewards at a rate proportional
to their stake in the system.

We do not provide an explicit procedure for mining in the above abstraction as it is not important for
our applications. In Section 4, we will discuss some important properties and assumptions on the blockchain
protocol. Next we briefly describe our protocol execution model.

2.2 Blockchain Execution

At a very high level, the protocol execution proceeds as follows. Each participant in the protocol runs the
UpdateState algorithm to keep track of the current (latest) blockchain state. This corresponds to listening
on the broadcast network for messages from other nodes. The GetRecords algorithm is used to extract an
ordered sequence of blocks encoded in the blockchain state variable, which is considered as the common
public ledger among all the nodes. And, the Broadcast algorithm is used by a party when it wants to post
a new message on the blockchain. In cryptocurrencies, this corresponds to the scenario when either a miner
wants to broadcast a successfully mined block, or a transaction between nodes. Note that the messages are
accepted by the blockchain protocol only if they satisfy the validity predicate given the current state, i.e.
sequence of blocks.

Following prior works [GKL15, KP15, PSS16], we define the protocol execution in the Universal Compos-
ability framework of [Can01]. For any blockchain protocol ΓV = (UpdateStateV ,GetRecords,Broadcast), the
protocol execution is directed by the environment Z(1λ) where λ is the security parameter. The environment
Z activates the parties as either honest or corrupt, and is also responsible for providing inputs/ records to
all parties in each round. All the corrupt parties are controlled by the adversary A. The adversary is also
responsible for delivery of all network messages. Honest parties start by executing UpdateStateV on input 1λ

with an empty local state st = ε. The execution proceeds as follows and the following description is mostly
taken verbatim from [PSS16] with appropriate modification.

• The execution proceeds in rounds that model time steps. In round r, each honest player i potentially
receives a message(s) m from Z and potentially receives incoming network messages (delivered by A).
It may then perform any computation, broadcast a message (using Broadcast algorithm) to all other
players (which will be delivered by the adversary; see below) and update its local state sti. It could
also attempt to “add” a new block to its chain i.e., run the mining proedure.

• A is responsible for delivering all messages sent by parties (honest or corrupted) to all other parties.
A cannot modify the content of messages broadcast by honest players, but it may delay or reorder the
delivery of a message as long as it eventually delivers all messages within a certain time limit. The
identity of the sender is not known to the recipient.

• At any point, Z can communicate with adversary A or access GetRecords(sti) where sti is the local
state of player i.
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We would like to point out that we only consider static corruptions. The scenario of adaptive corruptions
with erasures has been considered in prior works [GKL15, PSS16], and we believe all our assumptions and
analysis over blockchain protocols holds in that case as well. However, for simplicity of analysis we only
consider static corruptions. More details about the blockchain protocol properties and assumptions are
provided in Sections 4 and 5. We would like to note that it is an interesting open problem to extend our
analysis in presence of adaptive corruptions without erasures.

Admissible environment and compliant executions. In this work, we do not constrain ourselves to
any specific blockchain protocol. Instead we show how to use any blockchain protocol that provides certain
security guarantees. We also point out two proposed POS protocols [KRDO16, BPS16b] for which we show
that all required security properties hold.

Prior works have defined compliant executions for their blockchain protocols by specifying a set of con-
straints on the PPT pair (A,Z). They show that certain desirable security properties are respected except
with negligible probability in any compliant execution. In this work, we prove additional security properties
in an (almost) black-box way for their protocols assuming only the basic properties which they satisfy. There-
fore, we do not provide explicit descriptions of the compliant executions which they consider. However, it is
important to note that our theorems also hold only in any compliant execution expected by the underlying
blockchain protocol.

3 Preliminaries

Notations. We will use bold letters for vectors (e.g., v). For any finite set S, x← S denotes a uniformly
random element x from the set S. Similarly, for any distribution D, x ← D denotes an element x drawn
from distribution D.

Let EXECΓV

(A(x),Z, 1λ) be the random variable denoting the joint view of all parties in the execution of
protocol ΓV with adversary A and environment Z where A is given an additional private input x. This joint

view fully determines the execution. Also, let viewA(EXECΓV

(A(x),Z, 1λ)) denote the view of adversary A
in the protocol execution.

3.1 Public Key Integrated Encryption-Signature Scheme

First, we define an integrated scheme which works both as a public key encryption scheme as well as public key
signature scheme. LetM1 andM2 be the message spaces for encryption and signature scheme respectively.
A public key integrated encryption-signature scheme HS for message spacesM1 andM2 consists of following
polynomial-time algorithms.

• Setup(1λ) : The setup algorithm takes as input the security parameter λ, and outputs a master public-
secret key pair (mpk,msk).

• Enc(mpk,m ∈ M1) : The encryption algorithm takes as input master public key mpk and a message
m, and outputs a ciphertext ct.

• Dec(msk, ct) : The decryption algorithm takes as input master secret key msk and a ciphertext ct, and
outputs a message m.

• Sign(msk,m ∈ M2) : The signing algorithm takes as input master secret key msk and a message m,
and outputs a signature σ.

• Verify(mpk,m ∈ M2, σ) : The verification algorithm takes as input master public key mpk, a message
m and a signature σ, and outputs a bit.
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Correctness. An integrated scheme HS for message spaces M1,M2 is said to be correct if for all λ,
m1 ∈ M1, m2 ∈ M2 and (mpk,msk) ← Setup(1λ), we have that Dec(msk,Enc(mpk,m1)) = m1 and
Verify(mpk,m2,Sign(msk,m2)) = 1.

Security. Informally, an integrated encryption-signature scheme is said to be secure if it is both an un-
forgeable signature scheme as well as an IND-CPA secure public key encryption scheme. More formally,

Definition 3.1. A public key integrated encryption-signature scheme HS = (Setup,Enc,Dec,Sign,Verify) is
a secure integrated scheme if for every PPT adversary A = (A0,A1,A2) there exists a negligible functions
negl1(·),negl2(·), such that for all λ ∈ N, the following holds:∣∣∣∣Pr

[
A1(ct, st) = b

∣∣ (mpk,msk)← Setup(1λ); b← {0, 1}
(m0,m1, st)← ASign(msk,·)

0 (mpk); ct← Enc(mpk,mb)

]
− 1

2

∣∣∣∣ ≤ negl1(λ),

and

Pr

[
Verify(msk,m∗, σ∗) = 1

∣∣ (mpk,msk)← Setup(1λ)

(m∗, σ∗)← ASign(msk,·)
2 (mpk)

]
≤ negl2(λ),

where A2 must never have queried m∗ to signing oracle.

While such an integrated scheme could always be generically constructed from any IND-CPA secure
public key encryption scheme and any EUF-CMA secure public key signature scheme, we hope that the
signature schemes used in current blockchain protocols could be used as integrated encryption-signature
schemes as well. For instance, most blockchain protocols (like Bitcoin, Ethereum etc.) already use ECDSA
based signature schemes for which we could directly use ECIES-like integrated encryption schemes [Sho01].
However this will be a slightly stronger assumption.

3.2 Weighted Threshold Secret Sharing Schemes

A weighted threshold secret sharing scheme consists of a pair of probabilistic algorithms (Share,Rec) with
following syntax.

• Share(s, {wi}i≤n ∈ (Q+)n,W ∈ Q+) : The sharing algorithm takes as input a secret s, a set of weights
{wi}i≤n and a threshold W . It outputs a sequences of n shares {shi}i.

• Rec({shi}i≤m) : The reconstruction algorithm takes as input a set of shares {shi}i≤m, and either
outputs ⊥ or some string t.

Correctness. A weighted threshold secret sharing scheme SS is said to be correct if for all n ∈ N, {wi}i≤n ∈
(Q+)n, W ∈ Q+, s, it holds that for all I ⊆ {1, . . . , n},

Pr

[
Rec({shi}i∈I) = s

∣∣ {shi}i ← Share(s, {wi}i≤n ,W )
∧∑

i∈I
wi ≥W

]
= 1.

Secrecy. Informally, a weighted threshold secret sharing scheme satisfies secrecy if any group of colluding
parties can not learn the secret if the total combined weight of their shares is less than threshold.

Definition 3.2. A weighted threshold secret sharing scheme SS = (Share,Rec) satisfies secrecy if for every
two secrets s1, s2, every share size n, all weight distributions {wi}i≤n, threshold W and subset I ⊆ {1, . . . , n},
if
∑
i∈I wi < W , then the following holds:{

{shi}i∈I : {shi}i ← Share(s1, {wi}i≤n ,W )
}

≈c{
{shi}i∈I : {shi}i ← Share(s2, {wi}i≤n ,W )

}
.
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3.3 Non-Interactive Argument Systems

3.3.1 Non-Interactive Witness Indistinguishable Arguments

Witness indistinguishable (WI) proofs were introduced by Feige and Shamir [FS90] as a natural weakening
of zero-knowledge (ZK) proofs. At a high level, the witness indistinguishability property says that a proof
must not reveal the witness used to prove the underlying statement even if it reveals all possible witnesses
corresponding to the statement. Unlike ZK proofs, WI proofs without interaction in the standard model are
known to be possible. Barak, Ong and Vadhan [BOV07] provided constructions for one-message (completely
non-interactive, with no shared random string or setup assumptions) witness indistinguishable proofs (NI-
WIs) based on ZAPs (i.e., two-message public-coin witness indistinguishable proofs) and Nisan-Wigderson
type pseudorandom generators [NW94]. Groth, Ostrovsky and Sahai [GOS12] gave the first NIWI construc-
tion from a standard cryptographic assumption, namely the decision linear assumption. Recently, Bitansky
and Paneth [BP15] constructed NIWI proofs assuming iO and one-way permutations.

Definition 3.3. (NIWI) A pair of PPT algorithms (P,V) is a NIWI argument system for a language L ∈ NP
with witness relation R if it satisfies the following conditions:

• (Completeness) For all (x,w) such that R(x,w) = 1, there exists a negligible function negl(·) such that

Pr[V(x, π) = 1 : π ← P(x,w)] = 1− negl(|x|).

• (Soundness) For every x /∈ L and all PPT adversaries A, there exists a negligible function negl(·) such
that

Pr[V(x, π) = 1 : π ← A(x)] ≤ negl(|x|).

• (Witness Indistinguishability) For any sequence I = {(x,w1, w2) : R(x,w1) = 1 ∧R(x,w2) = 1}

{π1 : π1 ← P(x,w1)}(x,w1,w2)∈I ≈c {π2 : π2 ← P(x,w2)}(x,w1,w2)∈I

3.3.2 Non-Interactive Zero Knowledge Arguments

The notion of Zero Knowledge for interactive protocols was introduced by Goldwasser, Micali and Rackoff
[GMR89]. A non-interactive zero knowledge argument system is a one-message ZK protocol. However, it is
well known that NIZKs are impossible in the standard model [GO94]. They are usually defined with trusted
setup. The formal definition follows.

Definition 3.4. (NIZK with CRS) A pair of PPT algorithms (K,P,V) is a NIZK argument of knowledge
for a language L ∈ NP with witness relation R if it satisfies the following conditions:

• (Completeness) For all (x,w) such that R(x,w) = 1, there exists a negligible function negl(·) such that

Pr[V(crs, x, π) = 1 : crs← K(1λ); π ← P(crs, x, w)] ≥ 1− negl(λ).

• (Soundness) For every x /∈ L and all PPT adversaries A, there exists a negligible function negl(·) such
that

Pr[V(crs, x, π) = 1 : crs← K(1λ); π ← A(crs, x)] ≤ negl(λ).

• (Knowledge Extractor) There is a PPT algorithm E = (E1, E2), such that for all PPT adversaries A,
there exists a negligible function negl(·) such that

Pr[A(crs) = 1 : crs← K(1λ)] = Pr[A(crs) = 1 : (crs, τ)← E1(1λ)],

and

Pr

[
V(crs, x, π) = 0 ∨R(x,w) = 1 :

(crs, τ)← E1(1λ); (x, π)← A(crs)
w ← E2(crs, τ, x, π)

]
≥ 1− negl(λ).
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• (Zero Knowledge) There is a PPT algorithm Sim for the argument system such that for (x,w) subject
to R(x,w) = 1, the following holds{

(crs, π) : crs← K(1λ); π ← P(x,w)
}
≈c {Sim(x)}

NIZKs are a well studied and fundamental cryptographic primitive. There are numerous constructions
with different setup assumptions. In this work, we construct NIZKs over blockchain protocols without any
additional setup assumption. Below we provide the formal definition.

Definition 3.5. (NIZK over Blockchains) A pair of PPT algorithms (P,V) over a blockchain protocol ΓV

is a NIZK argument of knowledge for a language L ∈ NP with witness relation R if it satisfies the following
conditions:

• (Completeness) For all (x,w) such that R(x,w) = 1, all PPT adversaries A and players i, j in envi-
ronment Z, there exists negligible functions negl1(·),negl2(·) such that

Pr

V(B̃, x, π) = 1 :
view← EXECΓV (

A,Z, 1λ
)

B = GetRecords(viewi); B̃ = GetRecords(viewj)
π ← P(B, x, w)

 ≥ 1− negl1(|x|)− negl2(λ),

where viewi and viewj denote the view of players i and j, and both i, j are honest.10

• (Soundness) For every x /∈ L and all stateful PPT adversaries A and each player i in environment Z,
there exists negligible functions negl1(·),negl2(·) such that

Pr

[
V(B, x, π) = 1 : view← EXECΓV (

A(x),Z, 1λ
)

B = GetRecords(viewi); π ← A

]
≤ negl1(|x|) + negl2(λ),

where viewi denotes the view of player i, and i is honest.

• (Knowledge Extractor) There is a stateful PPT algorithm E , such that for all stateful PPT adversaries
A and each player i in environment Z, there exists negligible functions negl1(·),negl2(·) such that{

viewA
(
EXECΓV (

A,Z, 1λ
))}

≈c
{
viewA

(
EXECΓV (

A, E ,Z, 1λ
))}

and

Pr

[
V(B, x, π) = 0
∨ R(x,w) = 1

: view← EXECΓV (
A, E ,Z, 1λ

)
; (x, π)← A

B = GetRecords(viewi); w ← E(x, π)

]
≥ 1− negl1(|x|)− negl2(λ),

where viewi denotes the view of player i and i is honest, and EXECΓV (
A, E ,Z, 1λ

)
is the random

variable denoting the joint view of all parties in the blockchain execution where adversary A controls
all the corrupt parties, and E controls all the honest parties.

• (Zero Knowledge) There is a stateful PPT algorithm Sim for the argument system such that for all
(x,w) subject to R(x,w) = 1 and all stateful PPT adversaries A and each player i in environment Z,
the following holds {

(π, viewA) : view← EXECΓV (
A,Sim,Z, 1λ

)
π ← Sim(x)

}
≈c{

(π, viewA) : view← EXECΓV (
A,Z, 1λ

)
B = GetRecords(viewi); π ← P(B, x, w)

}
10We have overloaded the notation by using GetRecords algorithm to take as input the view of a party instead of its state.

This is still well defined since the state of any party is part of its view.
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where viewi denotes the view of player i and i is honest, and EXECΓV (
A,Sim,Z, 1λ

)
is the random

variable denoting the joint view of all parties in the blockchain execution where adversary A controls
all the corrupt parties, and Sim controls all the honest parties.

3.4 Garbled Circuits

Our definition of garbled circuits [Yao86] is based upon the work of Bellare et al. [BHR12b]. Let {Cn}n be a
family of circuits where each circuit in Cn takes n bit inputs. A garbling scheme GC for circuit family {Cn}n
consists of polynomial-time algorithms Garble and Eval with the following syntax.

• Garble(1λ, C ∈ Cn): The garbling algorithm takes as input the security parameter λ and a circuit
C ∈ Cn. It outputs a garbled circuit G, together with 2n wire keys {wi,b}i≤n,b∈{0,1}.

• Eval(G, {wi}i≤n): The evaluation algorithm takes as input a garbled circuit G and n wire keys {wi}i≤n
and outputs y ∈ {0, 1}.

Correctness. A garbling scheme GC for circuit family {Cn}n is said to be correct if for all λ, n, x ∈ {0, 1}n
and C ∈ Cn, Eval(G, {wi,xi

}i≤n) = C(x), where (G, {wi,b}i≤n,b∈{0,1})← Garble(1λ, C).

Security. Informally, a garbling scheme is said to be secure if for every circuit C and input x, the garbled
circuit G together with input wires {wi,xi

}i≤n corresponding to some input x reveals only the output of the
circuit C(x), and nothing else about the circuit C or input x.

Definition 3.6. A garbling scheme GC = (Garble,Eval) for a class of circuits C = {Cn}n is said to be a
selectively secure garbling scheme if there exists a polynomial-time simulator Sim such that for all λ, n,
C ∈ Cn and x ∈ {0, 1}n, the following holds:{

Sim
(

1λ, 1n, 1|C|, C(x)
)}
≈c
{

(G, {wi,xi
}i≤n) :

(
G, {wi,b}i≤n,b∈{0,1}

)
← Garble(1λ, C)

}
.

While this definition is not as general as the definition in [BHR12b], it suffices for our construction.

3.5 Witness Encryption

The notion of witness encryption was introduced by Garg et al. [GGSW13]. The following description is
provided as it appears in prior work [GGHW14].

Let L be an NP language with witness relation R. A witness encryption scheme WE for language L with
message space M⊆ {0, 1}∗ consists of polynomial-time algorithms Enc and Dec with following syntax.

• Enc(1λ, x ∈ {0, 1}∗,m ∈ M): The encryption algorithm takes as input the security parameter λ, an
unbounded length string x and a message m. It outputs a ciphertext ct.

• Dec(ct, w ∈ {0, 1}∗): The decryption algorithm takes as input a ciphertext ct and an unbounded length
string w. It either outputs a message m ∈M or a special symbol ⊥.

Correctness. A witness encryption scheme WE for language L is said to be correct if for all λ, (x,w) ∈ R,
m ∈M, Dec(ct, w) = m, where ct← Enc(1λ, x,m).

Security. In this work we will require the witness encryption scheme to provide extractable security.
Informally, such a witness encryption scheme is said to be secure if an adversary can learn some non-trivial
information about the encrypted message only if it knows a witness for the instance used during encryption.
More formally,
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Definition 3.7. A witness encryption scheme WE = (Enc,Dec) for a language L with witness relation R
is extractable secure if for every security parameter λ, every PPT adversary A and polynomial p(·), there
exists a PPT extractor E and polynomial q(·) such that for every pair of messages m0,m1 ∈ M, string
x ∈ {0, 1}∗,

Pr
[
A(1λ, ct) = b

∣∣ b← {0, 1}; ct← Enc(1λ, x,mb)
]
≥ 1

2
+

1

p(λ)

=⇒ Pr
[
(x,w) ∈ R

∣∣ w ← E(1λ, x,m0,m1)
]
≥ 1

q(λ)
.

3.6 One-Time Programs and Compilers

The notion of one-time programs was introduced by Goldwasser et al. [GKR08]. Let {Cn}n be a family
of circuits where each circuit in Cn takes n bit inputs. A one-time compiler OTC for circuit family {Cn}n
consists of polynomial-time algorithms Compile and Eval with the following syntax.

• Compile(1λ, C ∈ Cn): The compilation algorithm takes as input the security parameter λ and a circuit
C ∈ Cn. It outputs a compiled circuit CC.

• Eval(CC, x ∈ {0, 1}n): The evaluation algorithm takes as input a compiled circuit CC and an n-bit
input x, and outputs y ∈ {0, 1} ∪ ⊥.

Correctness. A one-time compiler OTC for circuit family {Cn}n is said to be correct if for all λ, n,
x ∈ {0, 1}n and C ∈ Cn,

Pr[Eval(CC, x) = C(x)
∣∣ CC ← Compile(1λ, C)] ≥ 1− negl(λ),

where evaluation is run only once, and negl(·) is a negligible function.

One-Time Secrecy. Traditionally, security for one-time compilers have been defined in presence of secure
hardware or memory devices. The following definition is based upon the works of [GKR08, GIS+10].

Definition 3.8. A one-time compiler OTC = (Compile,Eval) for a class of circuits C = {Cn}n is said to be
a H/S-secure one-time compiler if for every PPT adversary A, there exists a PPT simulator Sim such that
for all λ, n, C ∈ Cn, the following holds:

{
SimOC(·)

(
1λ, 1n, 1|C|

)}
≈c
{
ACChrdw(1λ, CCsftw) :

CC ← Compile(1λ, C)
(CChrdw, CCsftw) = CC

}
where OC(·) provides one-time access to the circuit C, and CChrdw, CCsftw are the hardware and software

components of the one-time program CC.

Intuitively, the above definition requires that for any one-time program, the output of an adversary
given full access to the software component and black-box access to the hardware component should be
indistinguishable from the output of a simulator with one-time oracle access to the circuit. In this work we
adapt the traditional definition of one-time compilers from a combination of hardware-software setting to
only software setting, but in presence of a blockchain protocol.

Definition 3.9. A one-time compiler OTC = (Compile,Eval) for a class of circuits C = {Cn}n is said to be
a B/C-secure one-time compiler if for every PPT adversary A, there exists a PPT simulator Sim such that
for all λ, n, C ∈ Cn, the following holds:
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{
viewSim

(
EXECΓV

(
SimOC(·)

(
1n, 1|C|

)
,Z, 1λ

))}
≈c{

viewA
(
EXECΓV (

A (CC) ,Z, 1λ
))

: CC ← Compile(1λ, C)
}

where OC(·) provides one-time access to the circuit C.

The above definition permits the adversary A to adaptively choose an input on which it could run the
one-time program CC. In other words, A can select the input after it receives the one-time program. This
definition guarantees one-time secrecy in a strong sense. We also introduce a slightly weaker notion of
selective one-time secrecy as follows.

Definition 3.10. A one-time compiler OTC = (Compile,Eval) for a class of circuits C = {Cn}n is said to
be a B/C-selectively-secure one-time compiler if for every admissible PPT adversary A, there exists a PPT
simulator Sim such that for all λ, n, C ∈ Cn and x ∈ {0, 1}n, the following holds:

{
viewSim

(
EXECΓV

(
Sim

(
1n, 1|C|, x, C(x)

)
,Z, 1λ

))}
≈c{

viewA
(
EXECΓV (

A (CC) ,Z, 1λ
))

: CC ← Compile(1λ, C)
}

where adversary A is admissible if it evaluates the one-time program CC on x before evaluating on any
other input.

4 Proof-of-Stake Protocols: Abstraction and Definitions

In this paper, we work in the execution model for proof-of-stake based protocols described in previous section.
It is reasonable to assume that any adversary in this model would have full access to the blockchain as well
as could possibly affect the protocol execution by adversarially mining for blocks or deviating from the
protocol. It also seems reasonable to assume that no real-world adversary could run with a majority stake,
or in other words majority voting power, as otherwise such an adversary could possibly affect the protocol
execution arbitrarily, thereby destroying any guarantee that we could hope to get. All such restrictions
could be captured by defining the adversary and environment to be sufficiently restrictive by considering
appropriate compliant executions as discussed in previous section.

In this section, we define various security properties for proof-of-stake based blockchain protocols. We
would like to point out that prior works [GKL15, KP15, PSS16, KRDO16, PS16a, PS16b, BPS16a, BPS16b,
GKLP16, GKL16] have mostly considered only chain consistency, chain quality and chain growth as desider-
ata for blockchain protocols. We, on the other hand, also introduce many new security properties inspired
by the notions of stake contribution and adversarial forking in POS based protocols. Later we also show
that existing POS based protocols [KRDO16, BPS16b] already satisfy these stronger security properties. We
believe that these new properties will have wider applicability as already suggested by our NIZK, one-time
program and pay-per-use program constructions.

We also extend the abstraction for blockchain protocols to introduce additional POS specific abstracts.
Below we introduce some necessary notations and definitions.

Notations. We denote by Bd` the chain resulting from the “pruning” last ` blocks in B. Note that for
` ≥ |B|, Bd` = ε. Also, if B1 is a prefix of B2, then we write B1 � B2. We also use B`e to denote the chain

containing last ` blocks in B, i.e. B`e = B \Bd`. Note that for ` ≥ |B|, B`e = B.
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Let EXECΓ(A,Z, 1λ) be the random variable denoting the joint view of all parties in the protocol exe-
cution. This fully determines the execution. Recall that each blockchain protocol is also associated with a
validity predicate, however we avoid explicitly mentioning it whenever possible.

For any POS based blockchain protocol Γ, there exists a polynomial time algorithm stake : {0, 1}∗ ×
{0, 1}∗ → Q+ which takes as inputs the blockchain B and a public identity id, and outputs a rational
value. Concretely, consider a party P with public identity id, we use stake(B, id) to denote the stake of
party P as per the blockchain B. For an adversary A that controls all parties with public identities in the
set X , its total stake as per blockchain B can computed as

∑
id∈X stake(B, id). We overload the notation

and use stake(B,A) to denote A’s total stake, and staketotal to denote the combined stake of all parties i.e.
staketotal =

∑
id stake(B, id). Also, we will simply write stakeA whenever B is clear from context.

For any PPT adversary A, the adversarial stake ratio stake-ratioA(B) w.r.t. blockchain B is defined as
the ratio of A’s total stake over combined stake of all parties. More formally,

stake-ratioA(B) =
stakeA
staketotal

.

We will drop dependence of stake-ratioA on blockchain B whenever clear from context.
Also, let miner : {0, 1}∗×N→ {0, 1}∗ be a function that takes as input the blockchain B and an index i,

and returns the public identity of the party that mined the ith block, where blocks are counted from the head
of the blockchain.11 We overload the notation and use miner(B, [`]) to denote the set of public identities of
all parties that mined at least one block in the last ` blocks of the blockchain B.12

4.1 Chain Consistency

First, we define the chain consistency property for blockchain protocols Γ with environment Z and adversary
A. At a very high level, it states that the blockchains of any two honest parties at any two (possibly different)
rounds during protocol execution can differ only in the last ` blocks with all but negligible probability, where `
parameterizes strength of the property. In other words, this suggests that if any party is honestly executing
the blockchain protocol, then it could always assert that any block which is at least ` blocks deep in its
blockchain is immutable.

A more general definition appears in [PSS16] which is an extension of the common prefix property by
Garay et al. [GKL15]. As in prior works, we first define the consistency predicate and then use it to define
the chain consistency property for blockchain protocols.

Predicate 1. (Consistency) Let consistent be the predicate such that consistent`(view) = 1 iff for all rounds
r ≤ r̃, and all players i, j (potentially the same) in view such that i is honest at round r with blockchain B

and j is honest at round r̃ with blockchain B̃, we have that Bd` � B̃.

Definition 4.1. (Chain Consistency) A blockchain protocol Γ satisfies `0(·)-consistency with adversary A
in environment Z, if there exists negligible function negl(·) such that for every λ ∈ N, ` > `0(λ) the following
holds:

Pr
[
consistent`(view) = 1

∣∣ view← EXECΓ
(
A,Z, 1λ

)]
≥ 1− negl(λ).

4.2 Defining Stake Fraction

For any POS based blockchain protocol, we could define special quantitative measures for a blockchain
analogous to the combined difficulty or ‘length’ measure as in case of POW based protocols. For example,
in Bitcoin ‘length’ of a chain of blocks is computed as the sum of difficulty of all individual blocks where
difficulty is measured as the hardness of puzzle solved.

Note that in any POS based protocol, ideally the number of blocks mined by any party directly depends
on its stake, or in other words, voting power is proportional to the amount of stake with a party. Also, each

11The rightmost (i.e., most recently added) block is called the head of the blockchain.
12Note that a party could potentially mine more than one block in a sequence of ` blocks.
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new block added to the blockchain contains an efficiently verifiable proof of stake provided by a miner in the
form of digital signatures. So, for POS based protocols, we could measure difficulty in terms of the amount
of stake proven per block. The analogy being that solving POW puzzles with high difficulty requires more
work (higher voting power) from a miner, and since voting power in POS based protocols is measured in
terms of stake ratio, so for such protocols difficulty is measured as the amount of stake proven. Below we
formally define such a measure.

Definition 4.2. (Proof-of-Stake Fraction) The proof-of-stake fraction u-stakefrac(B, `) w.r.t. blockchain B
is defined as the combined amount of unique stake whose proof is provided in last ` mined blocks. More
formally, let M = miner(B, [`]),

u-stakefrac(B, `) =

∑
id∈M stake(B, id)

staketotal
.

In the above definition, it is important to note that we are only interested in the amount of unique stake
proven. To understand this, first note that if some party added proof of its stake on the blockchain (i.e.,
mined a new block), then it would increase the probability of other parties mining on top of the newly mined
block instead of mining on top of the previous block. However, if a certain single party with a low total
stake is mining an unreasonably high proportion of blocks in a short span of rounds (or for simplicity all the
blocks) on some chain, then other parties might not want to extend on top of such a blockchain as it could
possibly correspond to an adversarial chain of blocks. So, by considering only unique stake we could use
proof-of-stake fraction to (approximately) distinguish between (possibly) adversarial and honest blockchains
as a higher proof-of-stake fraction increases confidence in that chain.

For some applications, we also need to consider only the amount of stake whose proof was provided by
the honest parties in the blockchain. Below we define the proof-of-honest-stake fraction.

Definition 4.3. (Proof-of-Honest-Stake Fraction) The proof-of-honest-stake fraction u-honest-stakefrac(B, `)
w.r.t. blockchain B is defined as the combined amount of unique stake held by the honest parties whose
proof is provided in last ` mined blocks. More formally, letM = miner(B, [`]) andMhonest denote the honest
parties in M, then

u-honest-stakefrac(B, `) =

∑
id∈Mhonest

stake(B, id)

staketotal
.

4.3 Stake Contribution Properties

In the previous section, we defined the notion of proof-of-stake fraction and proof-of-honest-stake fraction.
Now, we define some useful properties for POS based blockchain protocols inspired by the above stake
abstraction. We know that in any POS based protocol each mined block contains a proof of stake. At a very
high level, the sufficient stake contribution property says that in a sufficiently long sequence of valid blocks,
a significant amount of stake has been proven.

In other words, it says that after sufficiently many rounds, the amount of proof-of-stake added in mining
the ` most recent blocks is a fairly high fraction (at least β) of the total stake in the system, where ` and β are
property parameters denoting the length of chain and minimum amount of stake fraction in it (respectively).
More formally, we define it as follows.

Predicate 2. (Sufficient Stake Contribution) Let suf-stake-contr be the predicate such that suf-stake-contr`(view, β) =
1 iff for every round r ≥ `, and each player i in view such that i is honest at round r with blockchain B,
we have that last ` blocks in blockchain B contain a combined proof of stake of more than β · staketotal, i.e.
u-stakefrac(B, `) > β.

Below we define the sufficient stake contribution property for blockchain protocols.

Definition 4.4. (Sufficient Stake Contribution) A blockchain protocol Γ satisfies (β(·), `0(·))-sufficient stake
contribution property with adversary A in environment Z, if there exists a negligible function negl(·) such
that for every λ ∈ N, ` ≥ `0(λ) the following holds:

Pr
[
suf-stake-contr`(view, β(λ)) = 1

∣∣ view← EXECΓ
(
A,Z, 1λ

)]
≥ 1− negl(λ).
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Previously we defined the notion of proof-of-honest-stake fraction along the lines of proof-of-stake fraction
in which only the amount of honestly held stake was measured. Analogously, we could define the sufficient
honest stake contribution property which says that in a sufficiently long sequence of valid blocks, a significant
amount of honestly held stake has been proven.

Predicate 3. (Sufficient Honest Stake Contribution) Let honest-suf-stake-contr be the predicate such that
honest-suf-stake-contr`(view, β) = 1 iff for every round r ≥ `, and each player i in view such that i is honest
at round r with blockchain B, we have that last ` blocks in blockchain B contain a combined proof of honest
stake of more than β · staketotal, i.e. u-honest-stakefrac(B, `) > β.

Definition 4.5. (Sufficient Honest Stake Contribution) A blockchain protocol Γ satisfies (β(·), `0(·))-sufficient
honest stake contribution property with adversary A in environment Z, if there exists a negligible function
negl(·) such that for every λ ∈ N, ` ≥ `0(λ) the following holds:

Pr
[
honest-suf-stake-contr`(view, β(λ)) = 1

∣∣ view← EXECΓ
(
A,Z, 1λ

)]
≥ 1− negl(λ).

4.4 Bounded Forking Properties

Note that during protocol execution, any adversary could possibly generate a private chain of blocks which
may or may not satisfy blockchain validity predicate, and may significantly diverge from the local blockchain
in the view of honest parties. We call such a private chain of blocks, created by the adversary, a fork. In
this work, we consider the following bounded forking properties which (at a very high level) require that no
polytime adversary can create a sufficiently long fork containing valid blocks such that the combined amount
of proof of stake proven in that fork is higher than certain threshold.

We start by defining the bounded stake forking property which says that if an adversary creates a fork
of length at least `1 + `2 then the proof-of-stake fraction in the last `2 blocks of the fork is not more than
α, where α, `1, `2 are property parameters with α being the threshold and `1 + ` denoting the fork length.
More formally, we first define the bounded stake fork predicate and then use it to define the bounded stake
forking property.

Predicate 4. (Bounded Stake Fork) Let bd-stake-fork be the predicate such that bd-stake-fork(`1,`2)(view, α) =
1 iff for all rounds r ≥ r̃, for each pair of players i, j in view such that i is honest at round r with blockchain

B and j is corrupt in round r̃ with blockchain B̃, if there exists `′ ≥ `1 + `2 such that B̃
d`′
� B and for all˜̀< `′, B̃

d˜̀
6� B, then u-stakefrac(B̃, `′ − `1) ≤ α.

Definition 4.6. (Bounded Stake Forking) A blockchain protocol Γ satisfies (α(·), `1(·), `2(·))-bounded stake
forking property with adversary A in environment Z, if there exists a negligible functions negl(·), δ(·) such

that for every λ ∈ N, ` ≥ `1(λ), ˜̀≥ `2(λ) the following holds:

Pr
[
bd-stake-fork(`,˜̀)(view, α(λ) + δ(λ)) = 1

∣∣ view← EXECΓ
(
A,Z, 1λ

)]
≥ 1− negl(λ).

The above property only stipulates that the proof-of-stake fraction of any adversarially generated fork
is bounded. However, we additionally might expect a POS based blockchain protocol to satisfy the suffi-
cient stake contribution property which states that any honest party’s blockchain will have sufficiently high
proof-of-stake fraction. Therefore, combining both these properties, we could define a stronger property for
blockchain protocols which states that a sufficiently long chain of blocks generated during an honest protocol
execution could always be distinguished from any adversarially generated fork. Also, the combined amount
of stake proven in those sequences (i.e., its proof-of-stake fraction), which could be computed in polynomial
time, could be used to distinguish such sequences. Formally, we could define it as follows.

Definition 4.7. (Distinguishable Forking) A blockchain protocol Γ satisfies (α(·), β(·), `1(·), `2(·))-distinguishable
forking property with adversary A in environment Z, if there exists a negligible functions negl(·), δ(·) such
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that for every λ ∈ N, ` ≥ `1(λ), ˜̀≥ `2(λ) the following holds:

Pr

[
α(λ) + δ(λ) < β(λ) ∧ suf-stake-contr

˜̀
(view, β(λ)) = 1

∧ bd-stake-fork(`,˜̀)(view, α(λ) + δ(λ)) = 1

∣∣∣∣view← EXECΓ
(
A,Z, 1λ

)]
≥ 1− negl(λ).

5 Instantiating our Framework

In this section, we show that the proposed proof-of-stake based blockchain protocols of [KRDO16] and
[BPS16b] satisfy all the properties described in Section 4 for suitable parameters. We start by defining some
additional properties for POS based blockchain protocols and then discuss relations among all these.

5.1 Chain Quality and Bounded Length Forking

Chain Quality. Another important property defined in prior works is of chain quality which was initially
informally discussed on the Bitcoin forum [mtg10], and formally defined by [GKL15]. At a high level, it
says that the number of blocks contributed by the adversary should not be very large, or in other words its
contribution must be proportional to its voting power. Alternatively, this could be interpreted as a measure
of fairness in the protocol and used to define a lower bound on the number of blocks contributed by honest
parties. To be consistent with prior works, we define chain quality predicate with respect to the fraction of
honest blocks.

Predicate 5. (Quality) Let quality be the predicate such that quality`A(view, µ) = 1 iff for every round r ≥ `,
and each player i in view such that i is honest at round r with blockchain B, we have that out of ` blocks
in B`e at least µ fraction of blocks are “honest”.

Note that a block is said to be honest iff it is mined by an honest party. Below we recall the chain quality
property for blockchain protocols as it appears in prior works.

Definition 5.1. (Chain Quality) A blockchain protocol Γ satisfies (µ(·), `0(·))-chain quality with adversary
A in environment Z, if there exists a negligible function negl(·) such that for every λ ∈ N, ` ≥ `0(λ) the
following holds:

Pr
[
quality`A(view, µ(λ)) = 1

∣∣ view← EXECΓ
(
A,Z, 1λ

)]
≥ 1− negl(λ).

Bounded Length Forking. Additionally, we would expect a POS based blockchain protocol to satisfy the
property that — no PPT adversary should be able to generate (with non-negligible probability) a sufficiently
long fork that satisfies all validity conditions and the last block in that fork was mined by an honest party.
The intuition behind this is that if the adversary can generate such a sufficiently long chain, then it would
mean that it could prevent consensus between honest parties for a sufficiently long time. To formally capture
this, we define the bounded length forking property over blockchain protocols as follows.

Predicate 6. (Bounded Length Fork) Let bd-length-fork be the predicate such that bd-length-fork`(view) = 1
iff there exists rounds r, r̃, players i, j in view such that i is honest at round r with blockchain B and j is

corrupt at round r̃ with blockchain B̃, and there exists `′ ≥ ` such that B̃
d`′
� B and for all ˜̀< `′, B̃

d˜̀
6� B,

and the last block in chain B̃ is honest (i.e., not mined by the adversary).

Definition 5.2. (Bounded Length Forking) A blockchain protocol Γ satisfies `0(·)-bounded length forking
property with adversary A in environment Z, if there exists a negligible function negl(·) such that for every
λ ∈ N, ` ≥ `0(λ) the following holds:

Pr
[
bd-length-fork`(view) = 1

∣∣ view← EXECΓ
(
A,Z, 1λ

)]
≤ negl(λ).
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5.2 Proof-of-Stake Blockchain Protocols: Snowwhite,Ouroboros

Very recently, Kiayias et al. [KRDO16] and Pass et al. [BPS16b] proposed POS based blockchain protocols
and proved that their protocols satisfy consistency, chain quality and chain growth properties for suitable
parameters against certain reasonable adversary-environment pairs. Pass et al. proved the following theorem
about their blockchain protocol Γsnowwhite.

Theorem 5.1. ([BPS16b, Theorem 1], Paraphrased) Let n be the number of nodes executing the blockchain
protocol Γsnowwhite, p be the probability that a node is elected leader in a given round13, and α, β be the
respective probabilities of the elected node being honest or corrupt, and γ be the discounted version of α in
presence of adversarial network delays. For any constant ε1, ε2 > 0, any `0 ≥ ε1λ, Γsnowwhite satisfies:

1. `0-consistency,

2. ((1− ε2)(1− β/α), `0)-chain quality,

3. ((1− ε2)γ, (1− ε2)np, `0)-chain growth

against any Γsnowwhite-compliant adversary-environment pair (A,Z).

A similar result was given by Kiayias et al. [KRDO16] as well for their blockchain protocol Γouroboros.
Note that both works only prove the consistency, chain quality and chain growth properties for their pro-
posed protocols. However, in this work we also want the underlying blockchain protocol to satisfy certain
stronger properties — sufficient stake contribution (Definition 4.4), sufficient honest stake contribution (Def-
inition 4.5), bounded stake forking (Definition 4.6) and distinguishable forking (Definition 4.7) for suitable
parameters.

We show in the next section that these properties are already satisfied by both the proposed protocols and
more importantly, we show that sufficient honest stake contribution and bounded stake forking properties
are already implied by consistency and chain quality under simple assumptions about the distribution of
stake between honest parties.

5.3 Relating blockchain properties

In this section, we show how the different blockchain properties described in Section 5.1 are related. First, we
discuss the sufficient honest stake contribution and chain quality properties, and show that if a blockchain
protocol satisfies chain quality (Definition 5.1), then it also satisfies sufficient honest stake contribution
property (Definition 4.5) for appropriate parameters under suitable stake distributions. Next, we also show
that the consistency property (Definition 4.1) implies the bounded length forking property (Definition 5.2).

Finally, we show that the sufficient honest stake contribution and bounded length forking properties along
with the assumption that proof-of-stake is unforgeable imply the bounded stake forking and distinguishable
forking properties with appropriate parameters.

5.3.1 Chain Quality to Sufficient Honest Stake Quantity

Recall that the chain quality property suggests that in a sufficiently long sequence of valid blocks, a significant
fraction of blocks would have been mined by honest parties. In other words, this suggests that no adversary
could generate (with non-negligible probability) an unfair proportion of blocks in a contiguous sequence of
` or more valid blocks. Suppose that in any ` consecutive blocks at least `/2 blocks were mined by honest
parties. Also, for simplicity assume that there are n honest parties and each of them hold exactly c

n fraction
of total stake where c is some constant less than 1. Additionally, assume for simplicity that all these n parties
are online/ actively mining. Now since we know that the probability an honest party gets to mine the next
block is proportional to its stake, thus in this case any honest party is equally likely to mine the next block.
Therefore, if `/2 ≥ n log(n), then in expectation each of the n honest parties must have mined at least one

13In any round, the leader could be regarded as the node that mines the new block.
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block in the sequence of ` blocks.14 A similar claim could also be made with all but negligible probability
with a slightly larger `. Thus, this suggests that after say n2 rounds, all the honest parties must have mined
at least one block which implies that the fraction of total stake proved in these rounds by honest parties is
at least n · cn = c.

In the general case the distribution of stake among honest parties could be arbitrarily skewed (i.e., not
necessarily uniform or even close to uniform), so we can not apply the bounds from the standard coupon
collecting problem directly. However, we show that for most natural stake distributions similar bounds
could be obtained by using appropriate concentration inequalities. Below we formally describe the stake
distribution for which we connect the chain quality and sufficient stake contribution properties.

(m,β, γ)-Stake distribution. Consider the scenario where polynomially many parties are executing the
blockchain protocol Γ with adversary-environment pair (A,Z). If there are at least m honest parties such
that each of these have at least γ fraction of total stake separately and they have β stake ratio altogether,
then such a distribution is considered to be an (m,β, γ)-stake distribution. We would like to note that this
only assumes that each of the m honest parties have at least γ stake ratio, and the actual distribution among
these may be arbitrary.

For such stake distributions, we can claim the following without making any additional assumption.

Theorem 5.2. If a blockchain protocol Γ satisfies (µ, `0)-chain quality property over a (m,β, γ)-stake distri-

bution, then it also satisfies (β, `)-sufficient honest stake contribution property for all ` ≥ log(m) + ω(log(λ))

µγ
.

Proof. Consider an honest party i with blockchain B at round r > `0. Let B1, . . . , B` be the sequence of
last ` > `0 (consecutive) blocks in B. Note that (µ, `0)-chain quality property implies that, with all but
negligible probability, in any sequence of `0 or more consecutive blocks the fraction of blocks mined by honest
parties is at least µ in each honest party’s private blockchain. Thus, we know that at least µ` blocks are
honest in B1, . . . , B`. Let p1, . . . , pm be the honest parties that have stake ratio at least γ. We know that
the probability party pi mines a block is at least γ. Therefore, we can say that

Pr[pi did not mine any block in B1, . . . , B`] ≤ (1− γ)
µ` ≤ e−γµ`.

Using union bound, we can write that

Pr[∃ i such that pi did not mine any block in B1, . . . , B`] ≤ m · e−γµ`.

Substituting ` with
log(m) + ω(log(λ))

µγ
, we get that the above probability is negligible. Therefore, the

protocol also satisfies (β, `)-sufficient honest stake contribution property for all such `. Thus, the theorem
follows.

In the above proof, we would obtain tighter bounds if model the random variables as sub-gamma random
variables and use corresponding concentration bounds. However we only want the parameter ` to be poly-
nomially bounded, thus we avoided a more complicated analysis. Additionally, we could obtain even tighter
lower bounds if we modify the underlying validity predicate of the blockchain protocols, but in this work we
restrict ourselves from make any blockchain protocol specific assumptions.

Also, (by definition) we already know that if a blockchain protocol satisfies (β, `)-sufficient honest stake
contribution property for some parameters (β, `) then it also satisfies (β, `)-sufficient stake contribution
property. Thus, we could also state the following.

Corollary 5.1. If a blockchain protocol Γ satisfies (µ, `0)-chain quality property over a (m,β, γ)-stake

distribution, then it also satisfies (β, `)-sufficient stake contribution property for all ` ≥ log(m) + ω(log(λ))

µγ
.

14The bound of n log(n) follows from the coupon collecting problem.
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We would like to point out that we can not prove sufficient stake contribution property with better
parameters, i.e. higher β values, when compared with sufficient honest stake contribution properties unless we
make additional assumptions about the underlying blockchain protocol. This is because in the adversarially
mined blocks, the adversary could potentially provide proof of extremely little stake fraction. In the worst
case, it could even simply not interact in the protocol execution, thereby not providing any proof-of-stake.
In such a scenario, clearly the sufficient honest stake contribution and sufficient stake contribution properties
will share the same parameters.

Also, note that in the above proof, we assume that at least m honest parties that have stake at least γ
are actively mining, i.e. are online. In other words, we do not assume that all honest parties controlling at
least γ stake are online. Also, in scenarios where honest parties might stop mining (i.e., go offline) for say
δ rounds, we could instead define the set of parties p1, . . . , pm as those that are online. Thus, we could still
prove sufficient stake contribution property but with either lower values of parameter β or larger values of
parameter `. Concretely, the parameter ` will then also depend on δ. We leave further analysis for future
work.

Next we discuss the consistency and bounded length forking properties.

5.3.2 Consistency to Bounded Length Forking

Recall that if a blockchain protocol satisfies chain consistency property, then that suggests that there exists
a polynomial ` such that chains of any two honest parties differ only in the last ` blocks. Alternatively, it
could be interpreted as follows. Let B be the longest most consistent chain (among honest parties) after say
r rounds. We call this as the central blockchain because (with all but negligible probability) it is immutable.
Let us assume that during protocol execution, the adversary was able to create a forked blockchain B′ with
a fork of length `′ > ` w.r.t. to B such that the last block in B′ was mined by some honest party i in round
r′ ≤ r. Since B is the central blockchain, therefore we know that after r rounds B is a prefix of the private
blockchain of party i. This would imply that the private blockchain of party i is not self-consistent as its
chain after rounds r′ and r differ in more than ` blocks which contradicts the consistency property. Thus,
we could conclude the following.

Lemma 5.1. If a blockchain protocol Γ satisfies `-consistency property, then it also satisfies `-bounded
length forking property.

Next we discuss distinguishable forking property and show that if proof-of-stake is unforgeable, then
bounded length forking and sufficient stake contribution properties imply distinguishable forking property.

5.3.3 Distinguishable Forking Property

Suppose that a blockchain protocol satisfies bounded length forking property with parameter `1. Then this
would imply that if the adversary creates a fork of length `′ (≥ `1), then either the last `′ − `1 blocks in its
private blockchain are adversarial (i.e., mined by the adversary), or the adversary was able to prove stake
of honest coins (i.e., prove stake of some coins which belong to an honest party). This is because bounded
length forking says that the length of a fork which ends at an honest block can be at most `1 (with all but
negligible probability), and since the adversary created a fork of length more than `1, we could conclude that
the last `′− `1 blocks can not have been mined by any honest party. Now we know that in cryptocurrencies,
proof-of-stake by any party is provided in the form of a digital signature. Therefore, assuming that no PPT
adversary can forge a signature15, this would imply that (with all but negligible probability) the last `′ − `1
blocks can only contain proof of stake which the adversary controls (i.e., adversary’s coins).

Therefore, we could conclude the following two facts — (1) if a blockchain protocol Γ satisfies `1-bounded
length forking property against all PPT adversaries with at most α stake ratio, then no PPT adversary can

15We would like to point out that here we assume that honest parties delete signing keys after they lose significance/stake,
i.e. once the coins associated are transferred. Now the same analysis does not seem to work if parties are rational not honest
as such parties could potentially sell their old keys. It is an interesting problem to formalize what guarantees can be provided
in such a setting.
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Figure 1: Visualizing Distinguishability Forking property.

create a fork of length `′ such that the last `′−`1 blocks contain a proof of more than α stake ratio unless the
adversary could forge on the underlying signature scheme, and (2) if it also satisfies (β, `2)-sufficient stake
contribution property states that, with all but negligible probability, proof of at least β fraction of stake will
be contained in any sequence of `2 consecutive blocks in an honest party’s blockchain.

For an illustrative explanantion, see Figure 1. Consider a party, controlled by the adversary, with
private blockchain B̃ = (B0, . . . , Bn, B̃n+1, . . . , B̃n+`′) and an honest party with private blockchain B =

(B0, . . . , Bn+`). Now `1-bounded length forking says that block B̃n+`1 (highlighted as green in Figure 1)

will be the last block in B̃ which was mined by some honest party. Therefore, all the blocks after B̃n+`1

(highlighted as red) must have been created by the adversary on its own, thus the amount of stake proved
in these latter (red) blocks could be at most the adversary’s total stake (if forging proof-of-stake is hard).
On the other hand, the amount of stake proved in the latter blocks of an honest party’s blockchain will be
significantly higher as suggested by the sufficient stake contribution property.

Combining the above facts, we could make a stronger claim which intuitively suggests that a sufficiently
long chain of blocks in an honest execution can be distinguished from an adversarially created fork of sufficient
length. This is because the combined amount of stake proven in such a sequence of blocks could be calculated
in polynomial time and it could be used to distinguish such sequences.

Therefore, we could conclude the following.

Theorem 5.3. If a POS based blockchain protocol Γ satisfies `1(·)-bounded length forking property and
(β(·), `2(·))-sufficient stake contribution property against all α(·)-stake bounded PPT adversaries, and un-
derlying signature scheme is secure (i.e., proof of stake is unforgeable), and the following constraint holds:

∃ c > 0,∀λ ∈ N, β(λ)− α(λ) ≥ 1

λc
,

then Γ also satisfies the (α(·), β(·), `1(·), `2(·))-distinguishable forking property.

This follows directly from the discussion at the start of the section, therefore we skip the proof.
Additionally, observe that if a blockchain protocol satisfies distinguishable forking property with param-

eters (α, β, `1, `2) then it also satisfies bounded stake forking property with same parameters. However,
for bounded stake forking property to hold, the protocol need not satisfy the sufficient stake contribution
property. Concretely, we could state the following.

Corollary 5.2. If a POS based blockchain protocol Γ satisfies `1(·)-bounded length forking property against
all α(·)-stake bounded PPT adversaries, and underlying signature scheme is secure (i.e., proof of stake is
unforgeable), then Γ also satisfies the (α(·), `1(·), `2(·))-distinguishable forking property.

Combining all the above lemmas, theorems and corollaries, we could state the following stronger state-
ment.

Theorem 5.4. Let n be the number of nodes executing the blockchain protocol Γsnowwhite, p be the probability
that a node is elected leader in a given round, and δh, δc be the respective probabilities of the elected node
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being honest or corrupt, and δd be the discounted version of δh in presence of adversarial network delays.
If the stake is distributed as a (m,β, γ)-stake distribution and the adversary is α-stake bounded and proof

of stake is unforgeable, then for any constant ε1, ε2 > 0, any `1 ≥ ε1λ, `2 ≥
log(m) + ω(log(λ))

µγ
where

µ = (1− ε2)(1− δc/δh), Γsnowwhite satisfies:

1. `1-consistency,

2. ((1− ε2)(1− δc/δh), `1)-chain quality,

3. ((1− ε2)δd, (1− ε2)np, `1)-chain growth,

4. (β, `2)-sufficient stake contribution,

5. (β, `2)-sufficient honest stake contribution,

6. `1-bounded length forking,

7. (α, `1, `2)-bounded stake forking,

8. (α, β, `1, `2)-distinguishable forking

against any Γsnowwhite-compliant adversary-environment pair (A,Z).

A similar theorem could also be stated for Γouroboros.

6 NIZKs over Blockchain

In this section, we provide our construction for NIZKs from NIWIs and weighted threshold secret sharing
scheme over any POS based blockchain protocol under an additional assumption that each miner’s signing-
verification key pair could be used as an decryption-encryption key pair. In other words, we assume that
the blockchain protocol uses a public key integrated encryption-signature scheme.16 Below we describe the
main ideas.

Outline. Suppose the blockchain protocol satisfies `1-chain consistency, (β, `2)-sufficient honest stake con-
tribution and (1− α, `3, `4)-bounded stake forking properties. By chain consistency property, we know that
all honest parties agree on all but last `1 (or less) blocks of blockchain B. Also, bounded stake forking
property suggests that no PPT adversary can generate a fork of length ≥ `3 + `4 such that the proof-of-stake
fraction after the first `3 blocks of the fork is more than 1− α.

At a high level, the scheme works as follows. An honest prover takes as input an instance-witness pair
(x,w) and a blockchain B. It starts by extracting, from its blockchain, the public identities (thereby public

keys) of all the parties who mined a block in last `2 blocks of blockchain Bd`1 . In other words, it selects a
committee of miners from the most recent part of its blockchain which has become globally persistent. Now,
the NIZK proof of the statement x ∈ L consists of — (1) a set of ciphertexts {ctid} (one for each miner
selected as part of the committee), and (2) a witness-indistinguishable proof for the statement “x ∈ L OR
the ciphertexts {ctid} together encrypt a fork of length more than `3 + `4 such that the proof-of-stake fraction
after the first `3 blocks of the fork is more than 1− α”. In short, the witness-indistinguishable proof proves
that either x ∈ L or the prover can break the bounded stake forking property. Since the above language is in
NP, an honest prover simply encrypts random values in ciphertexts {ctid} and uses witness w for the witness-
indistinguishable proof. The prover outputs its blockchain B, ciphertexts {ctid}, witness-indistinguishable
proof and all the blockchain property parameters.

16As we mentioned before, most blockchain protocols (like Bitcoin, Ethereum etc.) use ECDSA based signature schemes for
which we could directly use ECIES-like integrated encryption schemes [Sho01]. Thus, our NIZKs are instantiable over existing
blockchain protocols.
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The verifier on input an instance x, proof π and blockchain B performs two checks — (1) the prover’s
blockchain is consistent with its local blockchain, and (2) the witness-indistinguishable proof gets verified.
The completeness follows directly from the correctness properties of underlying primitives. Intuitively, the
soundness is guaranteed by the fact that the blockchain protocol satisfies the (1 − α, `3, `4)-bounded stake
forking property, and the system is zero-knowledge because a simulator can generate a witness for the
trapdoor part of the statement (i.e., it could generate a long fork satisfying the minimum proof-of-stake
constraint) as it controls all the honest parties executing the blockchain, therefore it could use their signing
keys to compute such a fork privately. For making the system an argument of knowledge as well, we could
additionally make the prover secret share the witness and encrypt a share to each member of the committee
it selected. It will be crucial that the secret sharing scheme be a weighted threshold scheme as will become
clearer later in this section.

Below we start by describing the valid-fork predicate which will be used later while defining the trapdoor
part of the statement.

Predicate 7. Let valid-fork be the predicate such that it is satisfied iff the blockchain B̃ contains a fork of
length at least `1 + `2 such that the fork satisfies the blockchain validity predicate as well as the the proof-
of-stake fraction in the last `2 blocks of the fork is at least γ. More formally, valid-forkV (B, B̃, `1, `2, γ) = 1

iff there exists `′ ≥ `1 + `2 such that B̃
d`′
� B and for all ˜̀< `′, B̃

d˜̀
6� B, and u-stakefrac(B̃, `′ − `1) ≥ γ.

6.1 Construction

Let ΓV = (UpdateStateV ,GetRecords,Broadcast) be a blockchain protocol, and (PNIWI,VNIWI) is a NIWI
argument system for NP, and SS = (Share,Rec) be a weighted threshold secret sharing scheme, and HS =
(Setup,Enc,Dec,Sign,Verify) be a public key integrated encryption-signature scheme. Below we describe our
NIZK construction for an NP language L over blockchains.

• P
(
params = (1`1 , 1`2 , 1`3 , 1`4 , α, β),B, x, w

)
: The prover algorithm takes as input the length parame-

ters `1, `2, `3, `4, stake fraction parameters α, β, a blockchain B, an instance x and a witness w such
that R(x,w) = 1 where R is the instance-witness relation for language L.

Let B′ correspond to the blockchain B with last `1 blocks pruned, i.e. B′ = Bd`1 . Let M denote
the set of miners who mined at least one block in the last `2 blocks of the blockchain B′, i.e. M =
miner(B′, [`2]). Also, let stakeid = stake(B′, id) and pkid be the stake and public key of party id,
respectively.17 First, it secret shares the witness w and an all zeros string (separately) into |M| shares
with weights {stakeid}id∈M and threshold β · staketotal as follows

{shid,1}id = Share(w, {stakeid}id , β · staketotal; s1), {shid,2}id = Share(0, {stakeid}id , β · staketotal; s2).

Next, it encrypts all these shares as follows

∀ id ∈M, ctid,1 = Enc(pkid, shid,1; rid,1), ctid,2 = Enc(pkid, shid,2; rid,2).

Finally, it computes a NIWI proof π′ for the following statement

∃ {shi, ri}i∈M , s such that

(
{shi}i = Share(w, {stakeid}id , β · staketotal; s) ∧
∀ i, cti,1 = Enc(pki, shi; ri) ∧ R(x,w) = 1

)
∨(

{shi}i = Share(B̃, {stakeid}id , β · staketotal; s) ∧
∀ i, cti,2 = Enc(pki, shi; ri) ∧ valid-forkV (B′, B̃, `3, `4, 1− α)

)

using the NIWI prover algorithm PNIWI with
(
{shid,1, rid,1}id , s1

)
as the witness. Finally, it sets the

proof π as
π =

(
π′,B, {ctid,1, ctid,2}id , params = (1`1 , 1`2 , 1`3 , 1`4 , α, β)

)
.

17Observe that since HS is an integrated encryption-signature scheme, therefore the public verification keys of all parties
executing the blockchain protocol could be used for encryption as well.
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• V (B, x, π) : Let π =
(
π′,B, {cti,1, cti,2}i , params = (1`1 , 1`2 , 1`3 , 1`4 , α, β)

)
. The verifier starts by

checking that blockchains B and B are `1-consistent, i.e. B
d`1 � B, as well as verifier’s blockchain

B is at least as long as prover’s blockchain B, i.e. |B| ≤ |B|. If these check fail, then verifier rejects
the proof and outputs 0. Otherwise, it runs the NIWI verifier algorithm VNIWI to verify proof π′ and
outputs same as the NIWI verifier.

6.2 Security Proof

We will now show that the NIZKs described in Section 6.1 is NIZK argument of knowledge as per Defini-
tion 3.5. More formally, we prove the following theorem where all the parameters are polynomials in the
security parameter λ.

Theorem 6.1. If (PNIWI,VNIWI) is a NIWI argument system (Definition 3.3) for NP, SS is a weighted
threshold secret sharing scheme (Definition 3.2), HS is a secure integrated public key encryption-signature
scheme (Definition 3.1), and blockchain protocol ΓV satisfies `1-chain consistency, (β, `2)-sufficient honest
stake contribution properties against all PPT adversaries with at most α stake ratio, and (1 − α, `3, `4)-
bounded stake forking property against all PPT adversaries with at most α + β stake ratio, then (P,V)
with parameters α, β, `1, `2, `3, `4 is a NIZK argument of knowledge for any NP language L over blockchain
protocol ΓV against all PPT adversaries with at most α stake ratio.

Proof. Below we provide the proofs of completeness, soundness, zero-knowledge and argument of knowledge.

Completeness. Fix any `1, `2, `3, `4, α, β, instance x and witness w. Suppose B,B be the respective
blockchains of the prover and verifier. Let π be the NIZK proof created by prover with parameters `1, `2,
`3, `4, α and β, and blockchain B. We know that π is of the form (π′,B, {cti,1, cti,2}i , params) where π′ is
a NIWI proof of the statement described before.

Since both prover and verifier are running the blockchain protocol honestly, therefore blockchains B and
B are `1-consistent (with all but negligible probability). Thus the consistency checks during verification pass.
Additionally, since R(x,w) = 1 the prover computes the NIWI proof π′ using secret shares of witness w,
thus the verifier accepts the NIWI proof π′ as it follows directly from the correctness of the NIWI argument
system. Therefore, (P,V) satisfies the NIZK correctness condition.

Soundness and Argument of Knowledge. Suppose x /∈ L and a cheating prover succeeds with non-
negligible probability to cause the verifier to accept. Then either the (1 − α, `3, `4)-bounded stake forking
property or the (β, `2)-sufficient honest stake contribution property is not satisfied by the blockchain protocol
ΓV , or the NIWI argument system is not sound.

Consider a cheating prover which runs with at most α stake ratio (i.e., a cheating prover with stake ratio
bounded by α). Assume that it outputs a proof π of the form (π′,B, {cti,1, cti,2}i , params) that gets verified
with non-negligible probability with respect to a blockchain B, where B is some honest party’s blockchain
and params = (1`1 , 1`2 , 1`3 , 1`4 , α, β). First, we know that since π gets verified, B and B are consistent

(i.e., B
d`1 � B and |B| ≤ |B|). Now assuming NIWI soundness condition holds, we know that if π′ gets

verified with non-negligible probability, then the statement it proves must also be true with non-negligible
probability. Since x /∈ L, this suggests that the cheating prover used the witness {shi, ri}i∈M , s such that

{shi}i = Share(B̃, {stakeid}id , β · staketotal; s) ∧
∀ i, cti,2 = Enc(pki, shi; ri) ∧ valid-forkV (B

d`1
, B̃, `3, `4, 1− α)

Therefore, the predicate valid-forkV (B
d`1
, B̃, `3, `4, 1 − α) must be satisfied. Now, since B

d`1 � B and

|B| ≤ |B|, we could also write that valid-forkV (Bd`1 , B̃, `3, `4, 1 − α) is also satisfied. This suggests that B̃
contains a valid fork w.r.t. to an honest party’s blockchain B. Thus, if a cheating prover with only α stake
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ratio succeeds with non-negligible probability, then the blockchain protocol does not satisfy the (1−α, `3, `4)-
bounded stake forking property. More formally, below we sketch an extractor that controls at most α + β
stake ratio, and it runs the prover to either learn the witness or break the assumption that the blockchain
protocol satisfies bounded stake forking property.

For the rest of the analysis we condition on the event that in any `2 consecutive blocks the amount of
honest stake contribution is always more than β. Recall that the (β, `2)-sufficient honest stake contribution
property states that this condition is satisfied with all but negligible probability.

The extractor runs the prover with α stake ratio. The prover outputs a proof π of the form (π′,B, {cti,1, cti,2}i , params)

where params = (1`1 , 1`2 , 1`3 , 1`4 , α, β). Let M = miner(B
d`1
, [`2]). By sufficient honest stake contribution

property, we know that there exists a setM′ ⊆M such that each party inM′ is an honest party executing
the blockchain protocol and the combined stake ratio of M′ is at least β. Let M′ be such a minimal set.
The extractor using secret keys of all parties in M′ decrypts the ciphertexts {cti,1, cti,2}i for all i ∈ M′ to

get the corresponding shares shi,1 and shi,2. Let w = Rec({shi,1}i∈M′) and B̃ = Rec({shi,2}i∈M′). Now if π′

gets verified, then either R(x,w) = 1 or valid-forkV (B
d`1
, B̃, `3, `4, 1− α) is true. Thus, either the extractor

can extract the witness to prove that x ∈ L, or it could generate a fork of length more than `3 + `4 such
that proof-of-stake fraction after the first `3 blocks of the fork is at least 1− α.

Thus if a cheating prover can prove a false statement (i.e., π verifies but x /∈ L), then a set of honest
parties which control only β stake ratio can decrypt the corresponding ciphertexts cti,2 and reconstruct the

secret shares to obtain a forked blockchain B̃ thereby contradicting the fact that the blockchain protocol
satisfies (1− α, `3, `4)-bounded stake forking property. Therefore, assuming that bounded stake forking and
sufficient honest stake contribution properties hold and the NIWI system is sound, then the NIZK system
satisfies soundness as well.

Finally, the fact that the system is an argument of knowledge is immediate from the extraction procedure
described above.

Zero-Knowledge. We start by sketching the simulator Sim. Let A be any real world adversary such
that its stake ratio is at most α. Also, let B be the local blockchain of some honest party. Note that
the simulator controls all honest parties executing the blockchain protocol. On input x and parameters
params = (1`1 , 1`2 , 1`3 , 1`4 , α, β), simulator Sim runs as follows.

• Let B′ = Bd`1 and M = miner(B′, [`2]). Sim extends the blockchain B′ with ` (≥ `1 + `2) dummy
blocks such that each new block satisfies the validity predicate V and is accompanied by a proof-of-
stake generated by Sim using signing keys of the honest parties such that the proof-of-stake fraction in
the last `− `1 blocks is at least 1− α. Let B̃ be the extended blockchain generated by Sim.

• It secret shares an all zeros string and blockchain B̃ into |M| shares with weights {stakeid}id∈M and
threshold β · staketotal as follows

{shid,1}id = Share(0, {stakeid}id , β · staketotal; s1), {shid,2}id = Share(B̃, {stakeid}id , β · staketotal; s2).

• It encrypts all these shares as follows

∀ id ∈M, ctid,1 = Enc(pkid, shid,1; rid,1), ctid,2 = Enc(pkid, shid,2; rid,2).

• Next it computes a NIWI proof π′ as done by an honest prover P, but instead using
(
{shid,2, rid,2}id , s2

)
as the witness.

• Finally, it outputs the proof π as

π =
(
π′,B, {ctid,1, ctid,2}id , params = (1`1 , 1`2 , 1`3 , 1`4 , α, β)

)
.

Remark 6.1. Since the adversarial stake ratio is at most α, thus the amount of stake controlled by honest
parties is at least 1− α. Therefore, the simulator Sim could, in polynomial time, extend B′ with a sequence
of ` dummy blocks as described above as it controls all the honest parties executing the protocol.
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Next, we describe a sequence of games. The output of each game is the proof π and the adversary A’s
transcript.

In the first game, the proof π is honestly generated as in real execution, i.e. by running the NIZK prover
algorithm V with parameters params, blockchain B, instance x and witness w. In the last game, π is generated
as in the case of simulated execution. In the following games, let B′ = Bd`1 and M = miner(B′, [`2]).

Game 1: In this game, the proof π is generated as follows.

1. The prover secret shares the witness w and an all zeros string into |M| shares with weights {stakeid}id∈M
and threshold β · staketotal as follows

{shid,1}id = Share(w, {stakeid}id , β · staketotal; s1), {shid,2}id = Share(0, {stakeid}id , β · staketotal; s2).

2. It encrypts all these shares as follows

∀ id ∈M, ctid,1 = Enc(pkid, shid,1; rid,1), ctid,2 = Enc(pkid, shid,2; rid,2).

3. Next it computes a NIWI proof π′ using
(
{shid,1, rid,1}id , s1

)
as the witness.

4. Finally, it outputs the proof π as

π =
(
π′,B, {ctid,1, ctid,2}id , params = (1`1 , 1`2 , 1`3 , 1`4 , α, β)

)
.

In the following games, let B̃ be the blockchain such that valid-forkV (Bd`1 , B̃, `3, `4, 1 − α) and MA be
the subset of corrupt parties in M, i.e. those which are controlled by the adversary A.

Game 2: This game is same as the previous game, except the prover computes ciphertexts ctid,2 as en-
cryptions of zero instead of shid,2 for all id ∈M \MA.

2. It encrypts all these shares as follows

∀ id ∈MA, ctid,1 = Enc(pkid, shid,1; rid,1), ctid,2 = Enc(pkid, shid,2; rid,2),

∀ id ∈M \MA, ctid,1 = Enc(pkid, shid,1; rid,1), ctid,2 = Enc(pkid, 0; r′id,2).

Game 3: This game is same as the previous game, except the prover computes the shares shid,2 as secret

shares for blockchain B̃ instead.

1. The prover secret shares the witness w and blockchain B̃ into |M| shares with weights {stakeid}id∈M
and threshold β · staketotal as follows

{shid,1}id = Share(w, {stakeid}id , β · staketotal; s1), {shid,2}id = Share(B̃, {stakeid}id , β · staketotal; s2).

Game 4: This game is same as the previous game, except the prover computes ciphertexts ctid,2 as en-
cryptions of shid,2 instead of zero for all id ∈M \MA.

2. It encrypts all these shares as follows

∀ id ∈M, ctid,1 = Enc(pkid, shid,1; rid,1), ctid,2 = Enc(pkid, shid,2; rid,2).

Game 5: This game is same as the previous game, except the witness used for generating the NIWI proof
is switched.

3. Next it computes a NIWI proof π′ using
(
{shid,2, rid,2}id , s2

)
as the witness.
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Game 6: This game is same as the previous game, except the prover computes ciphertexts ctid,1 as en-
cryptions of zero instead of shid,1 for all id ∈M \MA.

2. It encrypts all these shares as follows

∀ id ∈MA, ctid,1 = Enc(pkid, shid,1; rid,1), ctid,2 = Enc(pkid, shid,2; rid,2),

∀ id ∈M \MA, ctid,1 = Enc(pkid, 0; r′id,1), ctid,2 = Enc(pkid, shid,2; rid,2).

Game 7: This game is same as the previous game, except the prover computes the shares shid,1 as secret
shares for an all zeros string instead of witness w.

1. The prover secret shares an all zeros string and blockchain B̃ into |M| shares with weights {stakeid}id∈M
and threshold β · staketotal as follows

{shid,1}id = Share(0, {stakeid}id , β · staketotal; s1), {shid,2}id = Share(B̃, {stakeid}id , β · staketotal; s2).

Game 8: This game is same as the previous game, except the prover computes ciphertexts ctid,1 as en-
cryptions of shid,1 for all id ∈M \MA.

2. It encrypts all these shares as follows

∀ id ∈M, ctid,1 = Enc(pkid, shid,1; rid,1), ctid,2 = Enc(pkid, shid,2; rid,2).

6.2.1 Analysis

We now establish via a sequence of claims that no PPT adversary can distinguish between any two adjacent
games with non-negligible advantage. Since the last game is identical to the simulated execution, therefore
establishing non-negligible gap between adjacent games is sufficient.

Let D be any successful PPT adversary that tries to distinguish between any two successive games. Let
AdviD denote the advantage of algorithm D in distinguishing between Games i and i + 1. We show via a
sequence of claims that AdviD is negligible for all i ≤ 7. Below we discuss our claims in detail.

Claim 6.1. If HS is a secure integrated public key encryption-signature scheme, then for any PPT adversary
D, Adv1

D is negligible in the security parameter λ.

Proof. For proving indistinguishability of Games 1 and 2, we need to sketch n intermediate hybrid games
between these two, where n = |M \MA|. Observe that in Game 1, ciphertexts ctid,2 for all id /∈ MA are
encryptions of shares shid,2; however, in Game 2, they are encryptions of sh′id,2. The high-level proof idea

is to switch ctid,2 from encryptions of shid,2 to encryptions of sh′id,2 one-at-a-time. Intuitively, this could
be done because the adversary A does not control the parties not in MA, therefore it does not know the
corresponding secret keys and hence must break security of the underlying encryption scheme.

Concretely, ith intermediate hybrid between Game 1 and 2 proceeds same as Game 1 except that the
(lexicographically) first i ciphertexts ctid,2 are computed as ctid,2 ← Enc(pkid, sh

′
id,2), and remaining as ctid,2 ←

Enc(pkid, shid,2). For the analysis, Game 1 is regarded as 0th intermediate hybrid, and Game 2 is regarded
as nth intermediate hybrid. D’s advantage in distinguishing any pair of consecutive intermediate hybrid is
negligibly small as otherwise it directly reduces to an attack on IND-CPA security of encryption scheme.
Thus, the claim follows.

Claim 6.2. If SS is a weighted threshold secret sharing scheme, then for any PPT adversary D, Adv2
D is

negligible in the security parameter λ.
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Proof. The proof of this claim follows directly from the secrecy property of the weighted threshold secret
sharing scheme. Note that the adversary only learns the shares encrypted under public keys corresponding
to set MA. Since A’s stake ratio is at most α < β and the combined weight of shares addressed to MA is∑

id∈MA stakeid ≤ stakeA ≤ α, therefore using secrecy property of weighted threshold secret sharing scheme,
we can conclude that {

{shid,2}id∈MA : {shid,2}id ← Share(0, {stakeid}id , β · staketotal)
}

≈c{
{shid,2}id∈MA : {shid,2}id ← Share(B̃, {stakeid}id , β · staketotal)

}
.

Thus, the claim follows.

Claim 6.3. If HS is a secure integrated public key encryption-signature scheme, then for any PPT adversary
D, Adv3

D is negligible in the security parameter λ.

Proof. The proof of this claim is identical to the proof of Claim 6.1.

Claim 6.4. If (PNIWI,VNIWI) is a NIWI argument system for NP, then for any PPT adversary D, Adv4
D is

negligible in |x|.

Proof. Note that in Games 4 and 5, both
(
{shid,1, rid,1}id , s1

)
and

(
{shid,2, rid,2}id , s2

)
are valid witnesses.

Therefore, the proof of this claim follows directly from the witness indistinguishability property of the NIWI
argument system.

Claim 6.5. If HS is a secure integrated public key encryption-signature scheme, then for any PPT adversary
D, Adv5

D is negligible in the security parameter λ.

Proof. The proof of this claim is identical to the proof of Claim 6.1.

Claim 6.6. If (Share,Rec) is a weighted threshold secret sharing scheme, then for any PPT adversary D,
Adv6

D is negligible in the security parameter λ.

Proof. The proof of this claim is identical to the proof of Claim 6.2.

Claim 6.7. If HS is a secure integrated public key encryption-signature scheme, then for any PPT adversary
D, Adv7

D is negligible in the security parameter λ.

Proof. The proof of this claim is identical to the proof of Claim 6.1.

7 One-Time Programs over Blockchain

In this section, we provide our construction for one-time compilers from garbled circuits and extractable
witness encryption over any POS based blockchain protocol. Below we describe the main ideas.

Outline. Suppose the blockchain protocol satisfies (α, β, `1, `2)-distinguishable forking property. We know
that distinguishable forking property suggests that no PPT adversary can generate a fork of length ≥ `1 + `2
such that the proof-of-stake fraction after the first `1 blocks of the fork is more than α. Additionally, it also
implies that the proof-of-stake fraction in any `2 consecutive blocks in an honest party’s blockchain will be
at least β, with β being non-negligibly higher than α.

At a high level, the scheme works as follows. To compile a circuit C over blockchain B, the compilation
algorithm first garbles the circuit to compute a garbled circuit and wire keys. Suppose we encrypt the wire

33



keys using public key encryption and set the corresponding one-time program as the garbled circuit and
encrypted wire keys. This suggests that the evaluator must interact with the compiling party to be able
to evaluate the program. However, one-time programs are not defined in an interactive setting. Therefore,
we need to somehow allow conditional release/ conditional decryption of encrypted wire keys for evaluation.
Additionally, we need to make sure that the evaluator only learns the wire keys corresponding to exactly
one input as otherwise it will not satisfy the one-time secrecy condition. To this end, we encrypt the wire
keys using witness encryption scheme such that, to decrypt the wire keys, the evaluator needs to produce a
blockchain B′ as a witness where B′ must satisfy the following conditions — (1) there exists a block in B′

which contains the input (on which evaluator wants to evaluate the circuit), (2) there are at least `1 + `2
more blocks after the input block such that the proof-of-stake fraction in the last `2 blocks of B′ is more
than β, and (3) there does not exists any other block which posts a different input.

To evaluate such a compiled program, the evaluator needs to post its input on the blockchain, and then
wait for it to get added to blockchain and get extended by `1 + `2 blocks. Afterwards, it could simply use
its blockchain as a witness to decrypt appropriate wire keys and then evaluate the garbled circuit using
those keys. Intuitively, this would satisfy the one-time secrecy property because in order to evaluate the
program on a second input the adversary needs to fork the blockchain before the input block. Now, since
the distinguishable forking property guarantees that no PPT adversary can generate such a fork (of length
more than `1 + `2) with non-negligible probability, therefore one-time secrecy follows.

We start by describing the NP language for which we assume existence of a secure extractable witness
encryption scheme. Next we develop our one-time compilers on top of a blockchain protocol, and finally
show our construction satisfies one-time secrecy property.

7.1 NP Relation on Blockchain Protocols

Let Γ = (UpdateState,GetRecords,Broadcast) be a blockchain protocol with validity predicate V . Consider
the following relation.

Definition 7.1. LetRΓV be a relation on the blockchain protocol ΓV . The instances and witnesses satisfying
the relation are of the form

x = (1λ, st, 1`1 , 1`2 , 1n, β, i, b, uid), w = s̃t.

Let B = GetRecords(1λ, st) and B̃ = GetRecords(1λ, s̃t). The instance-witness pair satisfies the relation
((x,w) ∈ RΓV ) if and only if all the following properties are satisfied:

• Blockchains B and B̃ are valid, i.e. V (B) = V (B̃) = 1

• B is a prefix of B̃, i.e. they are consistent18

• There exists a unique block B∗ ∈ B̃ \B such that the following are satisfied

– There exists a unique record m∗ in B∗ such that m∗ = (uid, y), y is an n-bit string and yi = b

– Let `′ be the number of blocks in blockchain B̃ after block B∗, i.e. B∗ ∈ B̃
d`′

. It should hold that
`′ ≥ `1 + `2 and u-stakefrac(B̃, `′ − `1) > β

Remark 7.1. The uniqueness of block B∗ and record m∗ is defined in the following way. There must not
exist any other block (i.e., apart from B∗) in the entire witness blockchain B̃ such that it contains a record
m of the form (uid, z) where z is any n-bit string. Similarly, there must not exist any record m other than
m∗ in block B∗ that satisfies the same property.

Let LΓV be the language specified by the relation RΓV . This language is in NP because verifying
validity of blockchains take only polynomial time and all the properties in Definition 7.1 could also be
verified simultaneously.

18Formally, the consistency should be checked as Bdκ � B̃ for an appropriate value of parameter κ (Definition 4.1), however
for ease of exposition we avoid it.
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7.2 One-Time Compilers

Let ΓV = (UpdateStateV ,GetRecords,Broadcast) be a blockchain protocol, and GC = (GC.Garble,GC.Eval)
be a garbling scheme for circuit family C = {Cn}n, and WE = (Enc,Dec) be a witness encryption scheme for
language LΓV . Below we describe our one-time compilers OTC = (Compile,Eval) for circuit family C = {Cn}n
in the blockchain model.

• Compile(1λ, 1`1 , 1`2 , β, C ∈ Cn): The compilation algorithm first garbles the circuit C by computing
(G, {wi,b}i≤n,b∈{0,1})← GC.Garble(1λ, C). Next, it encrypts each of the wire keys wi,b separately under
instances xi,b as follows:

∀i ≤ n, b ∈ {0, 1}, xi,b = (1λ, st, 1`1 , 1`2 , 1n, β, i, b, uid = G), cti,b ← Enc(1λ, xi,b, wi,b),

where st is its local blockchain state. Finally, it sets the compiled circuit as CC =
(
1λ, 1`1 , 1`2 , G, {cti,b}i≤n,b∈{0,1}

)
.

• Eval(CC, y ∈ {0, 1}n): Let CC =
(
1λ, 1`1 , 1`2 , G, {cti,b}i≤n,b∈{0,1}

)
. It first posts input y on the

blockchain by running Broadcast algorithm as Broadcast(1λ, (G, y)).

It runs the UpdateState algorithm, and waits for message (G, y) to be posted on the blockchain and
further the chain to be extended by `1 + `2 blocks. After the blockchain gets extended, it uses its own
local state st as a witness to decrypt the wire keys corresponding to input y as

∀i ≤ n, wi = Dec(cti,yi , st).

It then uses these n wire keys to evaluate the garbled circuit, and outputs GC.Eval(G, {wi}i≤n). If the
witnes decryption fails (outputs ⊥), then it also outputs ⊥.

Correctness. Fix any λ, n, `1, `2, β, and circuit C ∈ Cn. Let (G, {wi,b}) ← GC.Garble(1λ, C), xi,b =
(1λ, st, 1`1 , 1`2 , 1n, β, i, b,G), and cti,b ← Enc(1λ, xi,b, wi,b).

For any input y ∈ {0, 1}n, consider that an evaluator runs Broadcast algorithm to post (G, y) on the
blockchain. Let s̃t be the local state of the evaluator after message (G, y) is posted on blockchain and it is
extended by `1+`2 blocks. Assuming that evaluator and compiler’s blockchain are consistent (Definition 4.1),
then with all but negligible probability for all i ≤ n, s̃t could be used as the witness to decrypt ciphertexts
cti,yi as (xi,yi , s̃t) ∈ RΓV . This is true because consistency property guarantees that, with all but negligible

probability, the blockchains B and B̃ will be consistent. Additionally, the stake quantity property (Defini-

tion 4.4) guarantees that (with all but negligible probability) the condition u-stakefrac(B̃, `′− `1) > β will be
satisfied. Therefore, Dec(cti,yi , st) = wi,yi which follows from correctness of the witness encryption scheme.
Finally, GC.Eval(G, {wi,yi}i≤n) = C(y) as it follows from correctness of the garbling scheme. Therefore, OTC
satisfies the one-time compiler correctness condition.

Remark 7.2. Our one-time compiler takes additional parameters `1, `2 and β as inputs, which we refer to
as the hardness parameters. The primary purpose of `1, `2 and β is to connect the efficiency of our compiled
circuit to an appropriate hardness assumption on the blockchain protocol. Informally, increasing value of
`1 and `2 reduces efficiency of our compiled circuit as the evaluator needs to wait for longer time (more
blocks) in order to evaluate the circuit. At the same time, reducing `1 and `2 increases the strength of the
assumption on the blockchain. The latter will get highlighted in the security proof. The effect of choice of
β has an indirect impact on efficiency, although it affects the same way as `1, `2.

7.3 Security Proof

We will now show that the one-time compiler described in Section 7.2 achieves one-time secrecy as per
Definition 3.10. More formally, we prove the following theorem where all the parameters are polynomials in
the security parameter λ.

35



Theorem 7.1. If GC is a secure garbling scheme (Definition 3.6) for circuit family {Cn}n, WE is extractable
secure witness encryption scheme (Definition 3.7) for language LΓV , and (α, β, `1, `2)-distinguishable forking
property (Definition 4.7) holds for blockchain protocol ΓV , then OTC with hardness parameters `1, `2 and
β is a B/C-selectively-secure one-time compiler (Definition 3.10) for circuit family {Cn}n against all PPT
adversaries with at most α stake ratio.

To prove above theorem, we first sketch the simulator Sim. Let A be any real world adversary.

• Sim obtains the input y∗ from A, and also obtains (1n, 1|C|, y′) during initialization. It aborts if y′ 6= y∗.

• It queries the (one-time access) oracle at input y∗ to receive C(y∗).

• It computes the garbled circuit G as (G, {wi}i≤n) ← GC.Sim(1λ, 1n, 1|C|, C(y∗)).

• Next, it computes ciphertexts cti,b as follows:

∀i ≤ n, b = y∗i , xi,b = (1λ, st, 1`1 , 1`2 , 1n, β, i, b,G), cti,b ← Enc(1λ, xi,b, wi),

∀i ≤ n, b 6= y∗i , xi,b = (1λ, st, 1`1 , 1`2 , 1n, β, i, b,G), cti,b ← Enc(1λ, xi,b,0),

where st is its local blockchain state.

• It sets the compiled circuit as CC =
(
1λ, 1`1 , 1`2 , G, {cti,b}i≤n,b∈{0,1}

)
, and sends CC to A.

• Finally, it outputs whatever A outputs.

Remark 7.3. Adversary A could also interact with other parties in the blockchain execution. Sim would
simply forward all of A’s network messages during simulation and honestly simulate the blockchain network,
except if A broadcasts any message of form (G, y) with y 6= y∗ before broadcasting (G, y∗), then it aborts.

Next, we describe a sequence of games. In the following games, A can also participate in the blockchain
execution with the only restriction that it is not allowed to broadcast any message of form (G, y) with y 6= y∗

before broadcasting (G, y∗).

Game 1: In this game, the real world adversary A interacts with the one-time compiler challenger.

1. A sends its input y∗ to the challenger.

2. The challenger garbles the circuit C by computing (G, {wi,b}i≤n,b∈{0,1}) ← GC.Garble(1λ, C). Next, it
encrypts each of the wire keys wi,b as follows:

∀i ≤ n, b ∈ {0, 1}, xi,b = (1λ, st, 1`1 , 1`2 , 1n, β, i, b,G), cti,b ← Enc(1λ, xi,b, wi,b),

where st is its local blockchain state. Finally, it sets the compiled circuit as CC =
(
1λ, 1`1 , 1`2 , G, {cti,b}i≤n,b∈{0,1}

)
,

and sends CC to A.

3. A receives the compiled circuit CC from the challenger, and outputs its complete transcript.

Game 2: This game is same as previous game, except the challenger correctly encrypts the wire keys
corresponding to input y∗ only and creates rest of the n ciphertexts as encryptions of zeros.

1. A sends its input y∗ to the challenger.
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2. The challenger garbles the circuit C by computing (G, {wi,b}i≤n,b∈{0,1}) ← GC.Garble(1λ, C). Next, it
computes ciphertexts cti,b as follows:

∀i ≤ n, b = y∗i , xi,b = (1λ, st, 1`1 , 1`2 , 1n, β, i, b,G), cti,b ← Enc(1λ, xi,b, wi,b),

∀i ≤ n, b 6= y∗i , xi,b = (1λ, st, 1`1 , 1`2 , 1n, β, i, b,G), cti,b ← Enc(1λ, xi,b,0),

where st is its local blockchain state. Finally, it sets the compiled circuit as CC =
(
1λ, 1`1 , 1`2 , G, {cti,b}i≤n,b∈{0,1}

)
,

and sends CC to A.

3. A receives the compiled circuit CC from the challenger, and outputs its complete transcript.

Game 3: This game is same as previous game, except the challenger simulates the circuit instead of
garbling.

1. A sends its input y∗ to the challenger.

2. The challenger computes the garbled circuit G as (G, {wi}i≤n) ← GC.Sim(1λ, 1n, 1|C|, C(y∗)). Next, it
computes ciphertexts cti,b as follows:

∀i ≤ n, b = y∗i , xi,b = (1λ, st, 1`1 , 1`2 , 1n, β, i, b,G), cti,b ← Enc(1λ, xi,b, wi),

∀i ≤ n, b 6= y∗i , xi,b = (1λ, st, 1`1 , 1`2 , 1n, β, i, b,G), cti,b ← Enc(1λ, xi,b,0),

where st is its local blockchain state. Finally, it sets the compiled circuit as CC =
(
1λ, 1`1 , 1`2 , G, {cti,b}i≤n,b∈{0,1}

)
,

and sends CC to A.

3. A receives the compiled circuit CC from the challenger, and outputs its complete transcript.

7.3.1 Analysis

We now establish via a sequence of claims that no PPT adversary with at most α stake ratio can distinguish
between any two adjacent games with non-negligible advantage. Since the last game is identical to the
simulated execution, therefore establishing non-negligible gap between adjacent games is sufficient.

Let D be any successful PPT adversary with α-bounded stake ratio that tries to distinguish between any
two successive games. Let AdviD denote the advantage of algorithm D in distinguishing between Games i
and i+ 1. We show via a sequence of claims that Adv1

D and Adv2
D both are negligible. Below we discuss our

claims in detail.

Claim 7.1. If WE is extractable secure witness encryption scheme for language LΓV , and (α, β, `1, `2)-
distinguishable forking property holds for blockchain protocol ΓV , then for any PPT adversary D with at
most α stake ratio, Adv1

D is negligible in the security parameter λ.

Proof. For proving indistinguishability of Games 1 and 2, we need to sketch n intermediate hybrid games
between these two, where n is the input length in circuit C. Observe that in Game 1, ciphertexts cti,b are
encryptions of garbled circuit input wire keys wi,b for both values of bit b; however, in Game 2, ciphertexts
cti,b are encryptions of wi,b if and only if b = y∗i , and they are encryptions of zeros otherwise. The high-level
proof idea is to switch cti,b from encryptions of wi,b to encryptions of 0 one-at-a-time by using extractable
security of the witness encryption scheme. Intuitively, this could be done because the adversary A is only
allowed to broadcast (G, y∗) before broadcasting any other message of the form (G, y), therefore if A does
not try to fork the blockchain, then it could only generate the witnesses corresponding to instances xi,y∗i .

Concretely, ith intermediate hybrid between Game 1 and 2 proceeds same as Game 1 except that the first
i ciphertexts ctj,b are computed as ctj,b ← Enc(1λ, xj,b,0) if b 6= y∗j , i.e. for j ≤ i and b 6= y∗j , ctj,b are
encryptions of zero, and for j > i or b = y∗j , ctj,b are encryptions of wire keys wj,b under instances xj,b. For

the analysis, Game 1 is regarded as 0th intermediate hybrid, and Game 2 is regarded as nth intermediate
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hybrid. Below we show that D’s advantage in distinguishing any pair of consecutive intermediate hybrid is
negligibly small.

We describe a reduction algorithm B which breaks the bounded forking/mining assumption, if D distin-
guishes between intermediate hybrids i− 1 and i with non-negligible advantage. Since WE is an extractable
secure witness encryption scheme for language LΓV , therefore for every distinguisher D with at most α
stake ratio, there exists a PPT algorithm E that extracts the witness given the challenge messages and the
instance. The reduction algorithm B simply runs the extractor E on inputs security parameter λ, instance
xi,1−y∗i , and messages 0 and wi,1−y∗i . Since E runs in polynomial time, therefore if Adv1

D is non-negligible,
then either WE is not a secure witness encryption scheme for language LΓV , or (α, β, `1, `2)-distinguishable
forking property does not hold for blockchain protocol ΓV .

Claim 7.2. If GC is a secure garbling scheme for circuit family {Cn}n, then for any PPT adversary D, Adv2
D

is negligible in the security parameter λ.

Proof. The proof of this claim follows directly from the security of our garbling scheme. For any circuit
C ∈ Cn, if D distinguishes between Game 2 and 3 with non-negligible probability, then it also breaks security
of garbling scheme GC.

Suppose there exists an adversary D such that Adv2
D is non-negligible in λ. We construct an algorithm B

that can distinguish between a simulated garbled circuit and an honestly generated garbled circuit, therefore
break security of garbling scheme GC. Fix any circuit C ∈ Cn and input y∗ ∈ {0, 1}n. B received a garbled
circuit G along with wire keys wi for i ≤ n. It computes ciphertexts cti,b, and sets the compiled circuit CC
as in Game 3. It send the compiled circuit CC to A, and gives A’s output transcript to distinguisher D.
Finally, B outputs whatever D outputs.

Note that if the garbled circuit G was honestly computed, then B exactly simulates the view of Game
2 to A. Otherwise the view is of Game 3. As a result, if Adv2

D is non-negligible in λ, then B breaks the
garbling scheme’s security with non-negligible advantage.

Remark 7.4. We would like to point out that here we only prove selective security of our one-time compiler
construction. As while defining the simulator we crucially used the fact that the adversary commits to its
input at the beginning. A natural question is whether one could improve the security to full (adaptive)
security by using complexity leveraging.

7.3.2 Discussion

Output Hiding. In the above one-time compiler construction any party executing the blockchain protocol
can evaluate the circuit since the witness used for decrypting the wire keys becomes publicly known. If
we only want the evaluator to learn the output, then the above scheme could be modified as follows —
evaluator broadcasts an instance of a hard language (for which it knows the witness) in addition to the
current message, and the compiler encrypts the wire keys for a modified witness relation such that now the
witness for decrypting the wire keys must also include a witness for the hard to decide instance. For e.g.,
the instance could be a random element in the image set of a one-way function and its preimage would be a
witness.

Input Hiding. We would also like to note that in current construction the evaluator needs to publicly
broadcast its input. This might not be suitable for applications of one-time programs which want the
evaluator’s input to be hidden. To this end, the scheme could be modified as follows — evaluator broadcasts
a binding commitment to its input instead of its actual input, and compiler encrypts the wire keys under
same instances but for a modified witness relation such that now the witness also includes opening for the
commitment and the witness relation verifies opening as well.
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Efficiency. To reduce evaluation time, the compiler instead of using its local state (i.e., entire blockchain)
as part of the instance could use only the last block in its blockchain and then the evaluator would only need
to provide the blocks posted after that as its witness. Additionally, the size of the instance and broadcast
message could be reduced by using a shorter unique identifier instead of the garbled circuit G. For instance,
the identifier could be the hash of garbled circuit. Note that a unique identifier is tied with each input only
to allow more than one program to be evaluated over the blockchain.

Witness Encryption. We would like to point out that in our one-time compiler construction, if we use
only WE for circuits then the evaluator is constrained to run the program within an a-priori bounded as the
witness length will be bounded. However, if the WE scheme supports decryption even for unbounded length
witnesses, then the same scheme will result in general (unconstrained) one-time programs.

On the necessity of Extractable Witness Encryption. One might ask whether a strong assumption
like extractable WE is necessary for constructing one-time programs, or could it be relaxed. It turns out
that, to construct one-time programs, it is sufficient and necessary to assume a slightly weaker primitive
which we call one-time extractable WE. A one-time extractable WE is same as a standard extractable WE
scheme, except on each ciphertext the decryption algorithm could only be run once. In other words, if we
decrypt a one-time WE ciphertext with a bad witness the first time, then next time decryption (on that
same ciphertext) will always fail even if we use a correct witness. Again this cannot be solely software
based as then ciphertext could always be copied, and thus one-time decryption wouldn’t make sense. It is
straightforward to verify in our OTP construction that we could instead use such a one-time extractable WE
scheme. Additionally, anologous to construction of extractable WE from VBB obfuscation, we could show
that a OTP already implies a one-time extractable WE, therefore our assumption of one-time extractable
WE for constructing OTPs is both necessary and sufficient.

8 Pay-Per-Use Programs

In this section we introduce the notion of pay-per-use programs over blockchains. Informally, a pay-per-use
program is a contract between two parties which we call the service provider and customer in the following
exposition. A service provider wants to supply a program (or service) such that any customer who transfers
a specific amount of coins to the provider (over the blockchain) can evaluate the program on any input of its
choice once. Additionally, the service provider need not be executing the blockchain protocol after supplying
the program, i.e. it could go offline.

8.1 Definition

Let {Cn}n be a family of circuits where each circuit in Cn takes n bit inputs, and Γ be a blockchain protocol
with validity predicate V . A pay-per-use compiler PPC for circuit family {Cn}n over blockchain protocol ΓV

consists of polynomial-time algorithms Compile and Eval with the following syntax.

• Compile(1λ, C ∈ Cn, id ∈ {0, 1}∗, q ∈ Q): The compilation algorithm takes as input the security
parameter λ, a circuit C ∈ Cn, a public identity id and a rational number q. It outputs a compiled
circuit CC.

• Eval(CC, x ∈ {0, 1}n, ĩd ∈ {0, 1}∗): The evaluation algorithm takes as input a compiled circuit CC, an

n-bit input x and a public identity ĩd. It outputs y ∈ {0, 1} ∪ ⊥.

Before formally defining correctness and security properties for pay-per-use compilers, we would like to
point out that a pay-per-use program whose functionality remains hidden even after polynomially many and
apriori unbounded number of evaluations is very powerful. For instance, consider a pay-per-use program
in which the provider sets run-time cost to be 0 i.e., the customer does not need to transfer any coin to
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evaluate the program. Such a primitive that provides security for an unbounded number of evaluations will
be equivalent to an appropriate notion of obfuscation. In this work we will be interested in pay-per-use
programs that can be evaluated only at one point as these could be easily generalized to run more than once.
The correctness and security properties are defined below.

Correctness. A pay-per-use compiler PPC for circuit family {Cn}n over blockchain protocol ΓV is said to

be correct if for all λ, n, q ≥ 0, id, ĩd ∈ {0, 1}∗, x ∈ {0, 1}n and C ∈ Cn,

Pr[Eval(CC, x, ĩd) = C(x)
∣∣ CC ← Compile(1λ, C, id, q)] ≥ 1− negl(λ),

where a transaction of q coins was made over ΓV from identity ĩd to id, evaluation is run only once, and
negl(·) is a negligible function.

Definition 8.1. A pay-per-use compiler PPC = (Compile,Eval) for a class of circuits C = {Cn}n over
blockchain protocol ΓV is said to be a selectively-secure pay-per-use compiler if for every admissible PPT
adversary A, there exists a PPT simulator Sim such that for all λ, n, q ≥ 0, C ∈ Cn and x ∈ {0, 1}n ∪ ⊥,
the following holds:

{
viewSim

(
EXECΓV

(
Sim

(
1n, 1|C|, x, C⊥(x), id, q

)
,Z, 1λ

))}
≈c{

viewA
(
EXECΓV (

A (CC) ,Z, 1λ
))

: CC ← Compile(1λ, C, id, q)
}

where C⊥(x) = C(x) for x ∈ {0, 1}n and C⊥(⊥) = ⊥, and adversary A is admissible if:

• x = ⊥ and A never transfers q or more coins to identity id during blockchain execution, or

• x 6= ⊥ and A transfers q coins to identity id and evaluates the program CC on x before evaluating on
any other input.

As before we could also define full security for pay-per-use compilers, as a strengthening of selective
security, by removing the restriction on the adversary to provide its input (if any) on which it will evaluate
CC before it sees the compiled circuit.

Next, we provide our construction for pay-per-use compilers from garbled circuits and extractable witness
encryption over any POS based blockchain protocol. The high level idea is similar to that for one-time
compilers. As before, we start by describing the NP language for which we assume existence of a secure
extractable witness encryption scheme.

8.2 NP Relation on Blockchain Protocols

Let Γ = (UpdateState,GetRecords,Broadcast) be a blockchain protocol with validity predicate V . Consider
the following relation.

Definition 8.2. Let R̃ΓV be a relation on the blockchain protocol ΓV . The instances and witnesses satisfying
the relation are of the form

x = (1λ, st, 1`1 , 1`2 , 1n, β, i, b, id, q), w = s̃t.

Let B = GetRecords(1λ, st) and B̃ = GetRecords(1λ, s̃t). The instance-witness pair satisfies the relation

((x,w) ∈ R̃ΓV ) if and only if all the following properties are satisfied:

• Blockchains B and B̃ are valid, i.e. V (B) = V (B̃) = 1
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• B is a prefix of B̃, i.e. they are consistent19

• There exists a unique block B∗ ∈ B̃ \B such that the following are satisfied

– There exists a unique currency transaction message m∗ in B∗ such that m∗ = (ĩd, id, q, aux = y),
y is an n-bit string, and either i = 0 or yi = b

– Let `′ be the number of blocks in blockchain B̃ after block B∗, i.e. B∗ ∈ B̃
d`′

. It should hold that
`′ ≥ `1 + `2 and u-stakefrac(B̃, `′ − `1) > β

Remark 8.1. The uniqueness of block B∗ and record m∗ is defined analogous to that in Remark 7.1.

Let L̃ΓV be the language specified by the relation R̃ΓV . This language is in NP because verifying
validity of blockchains take only polynomial time and the properties in Definition 8.2 could also be verified
simultaneously.

8.3 Construction

Let ΓV = (UpdateStateV ,GetRecords,Broadcast) be a blockchain protocol, and GC = (GC.Garble,GC.Eval)
be a garbling scheme for circuit family C = {Cn}n, and WE = (Enc,Dec) be a witness encryption scheme

for language L̃ΓV . Below we describe our pay-per-use compilers PPC = (Compile,Eval) for circuit family
C = {Cn}n in the blockchain model.

• Compile(1λ, 1`1 , 1`2 , β, C ∈ Cn, id ∈ {0, 1}∗, q ∈ Q): The compilation algorithm first garbles the circuit
C by computing (G, {wi,b}i≤n,b∈{0,1})← GC.Garble(1λ, C). Next, it encrypts each of the wire keys wi,b
separately under instances xi,b as follows:

∀i ≤ n, b ∈ {0, 1}, xi,b = (1λ, st, 1`1 , 1`2 , 1n, β, i, b, id, q), cti,b ← Enc(1λ, xi,b, wi,b),

where st is its local blockchain state. It also encrypts the garbled circuit G as follows:

x0 = (1λ, st, 1`1 , 1`2 , 1n, β, 0, 0, id, q), ct0 ← Enc(1λ, x0, G),

Finally, it sets the compiled circuit as CC =
(
1λ, 1`1 , 1`2 , id, q, ct0, {cti,b}i≤n,b∈{0,1}

)
.

• Eval(CC, y ∈ {0, 1}n, ĩd ∈ {0, 1}∗): Let CC =
(
1λ, 1`1 , 1`2 , id, q, ct0, {cti,b}i≤n,b∈{0,1}

)
. The evalua-

tion algorithm transfers q coins under its public identity ĩd to id by broadcasting a currency transfer
message with its input y as the auxiliary information. Concretely, it runs Broadcast algorithm as
Broadcast(1λ,m) where m = (ĩd, id, q, aux = y).

Next, it runs the UpdateState algorithm, and waits for message m to be posted on the blockchain and
further the chain to be extended by `1 + `2 blocks. After the blockchain gets extended, it uses its own
local state st as a witness to decrypt the garbled circuit and wire keys corresponding to input y as

G = Dec(ct0, st), ∀i ≤ n, wi = Dec(cti,yi , st).

It then uses these n wire keys to evaluate the garbled circuit, and outputs GC.Eval(G, {wi}i≤n). If the
witnes decryption fails (outputs ⊥), then it also outputs ⊥.

19Formally, the consistency should be checked as Bdκ � B̃ for an appropriate value of parameter κ (Definition 4.1), however
for ease of exposition we avoid it.
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Correctness. Fix any λ, n, q, `1, `2, β, id, and circuit C ∈ Cn. Let (G, {wi,b}) ← GC.Garble(1λ, C),
x0 = (1λ, st, 1`1 , 1`2 , 1n, β, 0, 0, id, q), xi,b = (1λ, st, 1`1 , 1`2 , 1n, β, i, b, id, q), and ct0 ← Enc(1λ, x0, G), cti,b ←
Enc(1λ, xi,b, wi,b).

For any input y ∈ {0, 1}n, consider that an evaluator runs Broadcast algorithm to post the transaction

message m = (ĩd, id, q, y) on the blockchain with public identity ĩd. Let ĩd has a balance of more than q coins,
and s̃t be the local state of the evaluator after message m is posted on blockchain and is extended by `1 + `2
blocks. Assuming that evaluator and compiler’s blockchain are consistent (Definition 4.1), then with all but
negligible probability for all i ≤ n, s̃t could be used as the witness to decrypt ciphertexts ct0 and cti,yi as

(x0, s̃t) ∈ R̃ΓV and (xi,yi , s̃t) ∈ R̃ΓV . This is true because consistency property guarantees that, with all but

negligible probability, the blockchains B and B̃ will be consistent. Additionally, the stake quantity property
(Definition 4.4) guarantees that (with all but negligible probability) the condition u-stakefrac(B̃, `′− `1) > β
will be satisfied. Therefore, Dec(ct0, st) = G and Dec(cti,yi , st) = wi,yi which follows from correctness of
the witness encryption scheme. Finally, GC.Eval(G, {wi,yi}i≤n) = C(y) as it follows from correctness of the
garbling scheme. Therefore, PPC satisfies the pay-per-use compiler correctness property.

Remark 8.2. As in the one-time compilers, our pay-per-use compiler also takes the hardness parameters
`1, `2 and β as additional inputs. Refer to Remark 7.2 for more discussion.

8.4 Security Proof

We will now show that the pay-per-use compiler described in Section 8.3 achieves one-time secrecy as per
Definition 8.1. More formally, we prove the following theorem where all the parameters are polynomials in
the security parameter λ.

Theorem 8.1. If GC is a secure garbling scheme (Definition 3.6) for circuit family {Cn}n, WE is extractable

secure witness encryption scheme (Definition 3.7) for language L̃ΓV , and (α, β, `1, `2)-distinguishable forking
property (Definition 4.7) holds for blockchain protocol ΓV , then OTC with hardness parameters `1, `2 and β is
a selectively-secure pay-per-use compiler (Definition 8.1) for circuit family {Cn}n against all PPT adversaries
with at most α stake ratio.

The proof of above theorem is divided in two parts.

8.4.1 Adversary transfers q coins

In this scenario, we show that the adversary does not learn anything more about the circuit other than its
size and output on the specified point. This proof is identical to that of Theorem 7.1, therefore we only
provide a brief sketch. First, we sketch the simulator Sim. Let A be any real world adversary.

• Sim obtains the input y∗ from A, and also obtains (1n, 1|C|, y′, C(y′), id, q) during initialization. It
aborts if y′ 6= y∗.

• It computes the garbled circuit G as (G, {wi}i≤n) ← GC.Sim(1λ, 1n, 1|C|, C(y′)).

• Next, it computes ciphertexts cti,b as follows:

∀i ≤ n, b = y∗i , xi,b = (1λ, st, 1`1 , 1`2 , 1n, β, i, b, id, q), cti,b ← Enc(1λ, xi,b, wi),

∀i ≤ n, b 6= y∗i , xi,b = (1λ, st, 1`1 , 1`2 , 1n, β, i, b, id, q), cti,b ← Enc(1λ, xi,b,0),

where st is its local blockchain state. It also encrypts the garbled circuit G as

x0 = (1λ, st, 1`1 , 1`2 , 1n, β, i, b, id, q), ct0 ← Enc(1λ, x0, G).

• It sets the compiled circuit as CC =
(
1λ, 1`1 , 1`2 , id, q, ct0, {cti,b}i≤n,b∈{0,1}

)
, and sends CC to A.

• Finally, it outputs whatever A outputs.
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Next, we describe a sequence of games. In the following games, A can also participate in the blockchain
execution with the only restriction that it is not allowed to broadcast any message of form (ĩd, id, q, y) with

y 6= y∗ before broadcasting (ĩd, id, q, y∗).

Game 1: In this game, the real world adversary A interacts with the pay-per-use compiler challenger.

1. A sends its input y∗ to the challenger.

2. The challenger garbles the circuit C by computing (G, {wi,b}i≤n,b∈{0,1}) ← GC.Garble(1λ, C). Next, it
encrypts each of the wire keys wi,b as follows:

∀i ≤ n, b ∈ {0, 1}, xi,b = (1λ, st, 1`1 , 1`2 , 1n, β, i, b, id, q), cti,b ← Enc(1λ, xi,b, wi,b),

where st is its local blockchain state. It also encrypts the garbled circuit G as follows:

x0 = (1λ, st, 1`1 , 1`2 , 1n, β, 0, 0, id, q), ct0 ← Enc(1λ, x0, G),

Finally, it sets the compiled circuit as CC =
(
1λ, 1`1 , 1`2 , id, q, ct0, {cti,b}i≤n,b∈{0,1}

)
, and sends CC to

A.

3. A receives the compiled circuit CC from the challenger, and outputs its complete transcript.

Game 2: This game is same as previous game, except the challenger encrypts only the wire keys corre-
sponding to input y∗ and creates rest of the n ciphertexts as encryptions of zeros. Concretely, the challenger
generates the ciphertexts cti,b as follows

∀i ≤ n, b = y∗i , xi,b = (1λ, st, 1`1 , 1`2 , 1n, β, i, b, id, q), cti,b ← Enc(1λ, xi,b, wi,b),

∀i ≤ n, b 6= y∗i , xi,b = (1λ, st, 1`1 , 1`2 , 1n, β, i, b, id, q), cti,b ← Enc(1λ, xi,b,0),

Game 3: This game is same as previous game, except the challenger simulates the circuit instead of gar-
bling. Concretely, the challenger generates the garbled circuit and wire keys as (G, {wi}i≤n)← GC.Sim(1λ, 1n, 1|C|, C(y∗)).

The proof of indistinguishability between any two successive games is identical to that in Section 7.3.

8.4.2 Adversary does not transfer q coins

Here we show that the adversary does not learn anything about the circuit at all. First, we sketch the
simulator Sim. Let A be any real world adversary.

• Sim obtains (1n, 1|C|,⊥,⊥, id, q) during initialization.

• Next, it computes ciphertexts ct0 and cti,b as encryptions of all zeros:

∀i ≤ n, b ∈ {0, 1}, xi,b = (1λ, st, 1`1 , 1`2 , 1n, β, i, b, id, q), cti,b ← Enc(1λ, xi,b,0),

x0 = (1λ, st, 1`1 , 1`2 , 1n, β, 0, 0, id, q), ct0 ← Enc(1λ, x0,0),

where st is its local blockchain state.

• It sets the compiled circuit as CC =
(
1λ, 1`1 , 1`2 , id, q, ct0, {cti,b}i≤n,b∈{0,1}

)
, and sends CC to A.

• Finally, it outputs whatever A outputs.

Next, we describe a sequence of games. In the following games, A can also participate in the blockchain
execution with the only restriction that it is not allowed to broadcast any message of form (ĩd, id, q, y).
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Game 1: In this game, the real world adversary A interacts with the pay-per-use compiler challenger.

1. The challenger garbles the circuit C by computing (G, {wi,b}i≤n,b∈{0,1}) ← GC.Garble(1λ, C). Next, it
encrypts each of the wire keys wi,b as follows:

∀i ≤ n, b ∈ {0, 1}, xi,b = (1λ, st, 1`1 , 1`2 , 1n, β, i, b, id, q), cti,b ← Enc(1λ, xi,b, wi,b),

where st is its local blockchain state. It also encrypts the garbled circuit G as follows:

x0 = (1λ, st, 1`1 , 1`2 , 1n, β, 0, 0, id, q), ct0 ← Enc(1λ, x0, G),

Finally, it sets the compiled circuit as CC =
(
1λ, 1`1 , 1`2 , id, q, ct0, {cti,b}i≤n,b∈{0,1}

)
, and sends CC to

A.

2. A receives the compiled circuit CC from the challenger, and outputs its complete transcript.

Game 2: This game is same as previous game, except the challenger computes all ciphertexts as encryptions
of zeros. Concretely, the challenger generates the ciphertexts ct0 and cti,b as follows

∀i ≤ n, b ∈ {0, 1}, xi,b = (1λ, st, 1`1 , 1`2 , 1n, β, i, b, id, q), cti,b ← Enc(1λ, xi,b,0),

x0 = (1λ, st, 1`1 , 1`2 , 1n, β, 0, 0, id, q), ct0 ← Enc(1λ, x0,0).

Note that the last game is identical to the simulated execution, therefore establishing non-negligible gap
between Game 1 and 2 is sufficient. Let D be any successful PPT adversary with α-bounded stake ratio that
tries to distinguish between Game 1 and 2, and AdvD denote its advantage. We claim the following.

Claim 8.1. If WE is extractable secure witness encryption scheme for language L̃ΓV , and (α, β, `1, `2)-
distinguishable forking property holds for blockchain protocol ΓV , then for any PPT adversary D with at
most α stake ratio, AdvD is negligible in the security parameter λ.

Proof. The proof of this claim is identical to the proof of Claim 7.1. For proving indistinguishability, we
need to sketch 2n + 1 intermediate hybrid games between these two, where n is the input length in circuit
C. Observe that in Game 1, ciphertexts ct0 and cti,b are encryptions of garbled circuit G and its input wire
keys wi,b (respectively)); however, in Game 2, all these ciphertexts are encryptions of zeros.

The idea is to use a standard hybrid argument over all these ciphertexts and switch these to encryptions
of 0 one-at-a-time by using extractable security of the witness encryption scheme. Intuitively, this could
be done because the adversary A is not allowed to broadcast any currency transaction message of the form
(ĩd, id, q, y) for any n-bit string y. Thus, the only way in which A can generate a valid witness corresponding
to an instance xi,b or x0 is by generating a fork in the blockchain of sufficiently large length (≥ `). However,
this would violate the (α, β, `1, `2)-distinguishable forking property. Since we assume that WE is a secure

witness encryption scheme for language L̃ΓV and the distinguishable forking property holds for blockchain
protocol ΓV , thus the claim follows.
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[BBC+13] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien
Vergnaud. New techniques for sphfs and efficient one-round pake protocols. In Advances
in Cryptology–CRYPTO 2013, 2013.

[BCG15] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On bitcoin as a public randomness
source. Cryptology ePrint Archive, Report 2015/1015, 2015.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6, 2012.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In Proceedings of
the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,
USA, 1988.

[BGZ16] Iddo Bentov, Ariel Gabizon, and David Zuckerman. Bitcoin beacon. arXiv preprint
arXiv:1605.04559, 2016.

[BHR12a] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In Advances in Cryptology - ASIACRYPT
2012, 2012.

[BHR12b] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In CCS
’12, 2012.

[BK14] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In Advances in
Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2014, Proceedings, Part II, 2014.

[BOV07] Boaz Barak, Shien Jin Ong, and Salil Vadhan. Derandomization in cryptography. SIAM J.
Comput., 37(2):380–400, May 2007.

[BP15] Nir Bitansky and Omer Paneth. Zaps and non-interactive witness indistinguishability from
indistinguishability obfuscation. In Theory of Cryptography, pages 401–427. Springer Berlin
Heidelberg, 2015.

[BPS16a] Iddo Bentov, Rafael Pass, and Elaine Shi. The sleepy model of consensus. Cryptology ePrint
Archive, Report 2016/918, 2016. http://eprint.iacr.org/2016/918.

[BPS16b] Iddo Bentov, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs of stake.
Cryptology ePrint Archive, Report 2016/919, 2016. http://eprint.iacr.org/2016/919.

[Can01] Ran Canetti. Universally Composable Security: A new paradigm for cryptographic protocols.
In FOCS ’01, page 136. IEEE Computer Society, 2001. http://eprint.iacr.org/2000/067.

45
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