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Abstract

We revisit security proofs for various cryptographic primitives in the auxiliary-input random-
oracle model (AI-ROM), in which an attacker A can compute arbitrary S bits of leakage about
the random oracle O before attacking the system and then use additional T oracle queries to O
during the attack. This model has natural applications in settings where traditional random-
oracle proofs are not useful: (a) security against non-uniform attackers; (b) security against
preprocessing. We obtain a number of new results about the AI-ROM:

• Unruh (CRYPTO ’07) introduced the pre-sampling technique, which generically reduces
security proofs in the AI-ROM to a much simpler P -bit-fixing random-oracle model (BF-
ROM), where the attacker can arbitrarily fix the values of O on some P coordinates,
but then the remaining coordinates are chosen at random. Unruh’s security loss for this
transformation is

√
ST/P . We improve this loss to the optimal value O(ST/P ), obtaining

nearly tight bounds for a variety of indistinguishability applications in the AI-ROM.

• While the basic pre-sampling technique cannot give tight bounds for unpredictability ap-
plications, we introduce a novel “multiplicative version” of pre-sampling, which allows to
dramatically reduce the size of P of the pre-sampled set to P = O(ST ) and yields nearly
tight security bounds for a variety of unpredictability applications in the AI-ROM. Quali-
tatively, it validates Unruh’s “polynomial pre-sampling conjecture”—disproved in general
by Dodis et al. (EUROCRYPT ’17)—for the special case of unpredictability applications.

• Using our techniques, we reprove nearly all AI-ROM bounds obtained by Dodis et al. (using
a much more laborious compression technique), but we also apply it to many settings where
the compression technique is either inapplicable (e.g., computational reductions) or appears
intractable (e.g., Merkle-Damg̊ard hashing).

• We show that for any salted Merkle-Damg̊ard hash function with m-bit output there exists
a collision-finding circuit of size Θ(2m/3) (taking salt as the input), which is significantly
below the 2m/2 birthday security conjectured against uniform attackers.

• We build two compilers to generically extend the security of applications proven in the
traditional ROM to the AI-ROM. One compiler simply prepends a public salt to the random
oracle, showing that salting generically provably defeats preprocessing.

Overall, our results make it much easier to get concrete security bounds in the AI-ROM. These
bounds in turn give concrete conjectures about the security of these applications (in the standard
model) against non-uniform attackers.
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1 Introduction

We start by addressing the two main themes of this work—non-uniformity and random oracles—in
isolation, before connecting them to explain the main motivation for this work.

Non-uniformity. Modern cryptography (in the “standard model”) usually models the attacker
A as non-uniform, meaning that it is allowed to obtain some arbitrary (but bounded) “advice”
before attacking the system. The main rationale to this modeling comes from the realization that
a determined attacker will know the security parameter n of the system in advance and might be
able to invest a significant amount of preprocessing to do something “special” for this fixed value of
n, especially if n is not too large (for reasons of efficiency), or the attacker needs to break a lot of
instances online (therefore amortizing the one-time offline cost). Perhaps the best known example of
such attacks comes from rainbow tables ([32, 47]; see also [39, Section 5.4.3]) for inverting arbitrary
functions; the idea is to use one-time preprocessing to initialize a clever data structure in order to
dramatically speed up brute-force inversion attacks. Thus, restricting to uniform attackers might
not accurately model realistic preprocessing attacks one would like to protect against. However,
there are other, more technical, reasons why this choice is convenient:

• Adleman [2] showed that non-uniform polynomial-time attackers can be assumed to be deter-
ministic (formally, BPP/poly = P/poly), which is handy for some proofs.

• While many natural reductions in cryptography are uniform, there are several important
cases where the only known (or even possible!) reduction is non-uniform. Perhaps the best
known example are zero-knowledge proofs [29, 28], which are not closed under sequential
composition unless one allows non-uniform attackers (and simulators; intuitively, in order to
use the simulator for the second zero-knowledge proof, one must use the output of the first
proof’s simulator as an auxiliary input to the verifier).1 Of course, being a special case of
general protocol composition, this means that any work—either using zero-knowledge as a
subroutine or generally dealing with protocol composition—must use security against non-
uniform attackers in order for the composition to work.

• The non-uniform model of computation has many applications in complexity theory, such
as the famous “hardness-vs-randomness” connection (see [46, 35, 36, 34, 37]), which roughly
states that non-uniform hardness implies non-trivial de-randomization. Thus, by defining
cryptographic attackers as non-uniform machines, any lower bounds for such cryptographic
applications might yield exciting de-randomization results.

Of course, despite the pragmatic, definitional, and conceptual advantages of non-uniformity, one
must ensure that one does not make the attacker “too powerful,” so that it can (unrealistically) solve
problems which one might use in cryptographic applications. Fortunately, although non-uniform
attackers can solve undecidable problems (by encoding the input in unary and outputting solutions
in the non-uniform advice), the common belief is that non-uniformity cannot solve interesting “hard
problems” in polynomial time. As one indirect piece of evidence, the Karp-Lipton theorem [38]
shows that if NP has polynomial-size circuits, then the polynomial hierarchy collapses. And, of
course, the entire field of cryptography is successfully based on the assumption that many hard
problems cannot be solved even on average by polynomially sized circuits, and this belief has not
been seriously challenged so far.

1There are some workarounds (see [27]) that permit one to define zero-knowledge under uniform attackers, but they
are much harder to work with than assuming non-uniformity, and, as a result, were not adopted by the community.
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Hence, by and large it is believed by the theoretical community that non-uniformity is the right
cryptographic modeling of attackers, despite being overly conservative and including potentially
unrealistic attackers.

The random-oracle model. Hash functions are ubiquitous in cryptography. They are widely
used to build one-way functions (OWFs), collision-resistant hash functions (CRHFs), pseudorandom
functions/generators (PRFs/PRGs), message authentication codes (MACs), etc. Moreover, they
are often used together with other computational assumptions to show security of higher-level
applications. Popular examples include Fiat-Shamir heuristics [24, 1] for signature schemes (e.g.,
Schnorr signatures [50]), full-domain-hash signatures [8], or trapdoor functions (TDFs) [8] and
OAEP [9] encryption, among many others.

For each such application Q, one can wonder how to assess its security ε when instantiated
with a concrete hash function H, such as SHA-3. Given our inability to prove unconditional lower
bounds, the traditional approach is the following: Instead of proving an upper bound on ε for some
specific H, one analyzes the security of Q assuming H is a truly random (aka “ideal”) function O.
Since most Q are only secure against computationally bounded attackers, one gives the attacker A
oracle access to O and limits the number of oracle queries that A can make by some parameter T .
This now becomes the traditional random-oracle model (ROM), popularized by the seminal paper
of Bellare and Rogaway [8].

The appeal of the ROM stems from two aspects. First, it leads to very clean and intuitive security
proofs for many primitives that resisted standard-model analysis under natural security assumptions
(see some concrete examples below). Second, this resulting ROM analysis is independent of the
tedious specifics of H, is done only once for a given hash-based application, and also provides
(for non-pathological Q’s) the best possible security one might hope to achieve with any concrete
function H. In particular, we hope that a specific hash function H we use is sufficiently “well-
designed” that it (essentially) matches this idealized bound. If it does, then our bound on ε was
accurate anyway; and, if it does not, this usually serves as strong evidence that we should not
use this particular H, rather than the indication that the idealized analysis was the wrong way
to guess the exact security of Q. Ironically, in theory we know that the optimistic methodology
above is false [12, 11, 45, 30, 5], and some applications secure in the ROM will be insecure for any
instantiation of H, let alone maintain the idealized bound on ε. Fortunately, all counterexamples of
this kind are rather artificial, and do not shed much light on the security of concrete schemes used
in practice, such as the use of hash functions as OWFs, CRHFs, PRFs, PRGs, MACs, and also as
parts of natural signature and encryption schemes used in practice [24, 50, 9, 8]. In other words,
despite purely theoretical concerns, the following random-oracle methodology appears to be a good
way for practitioners to assess the best possible security level of a given (natural) application Q.

Random-oracle methodology. For “natural” applications of hash functions, the con-
crete security proven in the random-oracle model is the right bound even in the standard
model, assuming the “best possible” concrete hash function H is chosen.

Random oracles and non-uniformity. The main motivation for this work is to examine the
soundness of the above methodology, while also being consistent with the fact that attackers should
be modeled as non-uniform. We stress that we are not addressing the conceptual question of whether
non-uniform security is the “right” way to model attackers in cryptography, as this is the subject
of a rather heated on-going debate between theoreticians and practitioners; see [49, 10] for some
discussion on the subject. Instead, assuming we want to model attackers as non-uniform (for the

2



reasons stated above and to be consistent with the theoretical literature), and assuming we want to
have a way of correctly assessing the concrete, non-asymptotic security for important uses of hash
functions in applications, we ask: is the random oracle methodology a sound way to achieve this
goal? Unfortunately, with the traditional modeling of the random oracle, the answer is a resounding
“NO,” even for the most basic usages of hash functions, as can be seen from the following examples.

(i) In the standard model, no single function H can be collision-resistant, as a non-uniform
attacker can trivially hardwire a collision. In contrast, a single (non-salted) random oracle O
is trivially collision-resistant in the ROM, with excellent exact security O(T 2/M), where M is
the range of O. This is why in the standard model one considers a family of collision-resistant
hash functions whose public key, which we call salt, is chosen after A gets its non-uniform
advice. Interestingly, one of the results in this paper will show that the large gap (finding
collisions in time M1/2 vs. M1/3) between uniform and non-uniform security exists for the
popular Merkle-Damg̊ard construction even if salting is allowed.

(ii) In the standard model, no PRG candidate H(x) can have security better than 2−n/2 even
against linear-time (in n) attackers [3, 21, 10], where n is the seed-length of x. In contrast,
an expanding random oracle O(x) can be trivially shown to be (T/2n)-secure PRG in the
traditional ROM, easily surpassing the 2−n/2 barrier in the standard model (even for huge T
up to 2n/2, let alone polynomial T ).

(iii) The seminal paper of Hellman [32], translated to the language of non-uniform attackers, shows
that a random function H : [N ]→ [N ] can be inverted with constant probability using a non-
uniform attacker of size O

(
N2/3

)
, while Fiat and Naor [23] extended this attack to show that

every (even non-random) function H can be inverted with constant probability by circuits
of size at most N3/4. In contrast, if one models H as a random oracle O, one can trivially
show that O is a OWF with security O (T/N) in the traditional ROM. For example, setting
T = N2/3 (or even T = N3/4), one would still get negligible security N−1/3 (or N−1/4),
contradicting the concrete non-uniform attacks mentioned above.

To put it differently, once non-uniformity is allowed in the standard model, the separations between
the random-oracle model and the standard model are no longer contrived and artificial but rather
lead to impossibly good exact security of widely deployed applications.

Auxiliary-input ROM. The above concern regarding the random-oracle methodology is not
new and was extensively studied by Unruh [52] and Dodis et al. [19]. Fortunately, these works
offered a simple solution, by extending the traditional ROM to also allow for oracle-dependent
auxiliary input. The resulting model, called the auxiliary-input random-oracle model (AI-ROM), is
parameterized by two parameters S (“space”) and T (“time”) and works as follows: First, as in
the traditional random-oracle model, a function O is chosen uniformly from the space of functions
with some domain and range. Second, the attacker A in the AI-ROM consists of two entities A1

and A2. The first-stage attacker A1 is computationally unbounded, gets full access to the random
oracle O, and computes some “non-uniform” advice z of size S. This advice is then passed to
the second-stage attacker A2, who may make up to T queries to oracle O (and, unlike A1, might
have additional application-specific restrictions, like bounded running time, etc.). This naturally
maps to the preprocessing model discussed earlier and can also be used to analyze security against
non-uniform circuits of size C by setting S = T = C.2 Indeed, none of the concerns expressed in

2But separating S and T can also model non-uniform RAM computation with memory S and query complexity T .

3



examples (i)-(iii) remain valid in AI-ROM: (i) O itself is no longer collision-resistant since A1 can
precompute a collision; (ii)-(iii) the generic non-uniform PRG or OWF attacks mentioned earlier
can also be performed on O itself (by letting A1 treat O as any other function H and computing
the corresponding advice for A2). In sum, the AI-ROM model allows us to restate the modified
variant of the random oracle methodology as follows:

AI-Random-Oracle Methodology. For “natural” applications of hash functions, the
concrete security proven in the AI-ROM is the right bound even in the standard model
against non-uniform attackers, assuming the “best possible” concrete hash function H
is chosen.

Dealing with auxiliary information. The AI-ROM yields a clean and elegant way towards
obtaining meaningful non-uniform bounds for natural applications. Unfortunately, obtaining such
bounds is considerably more difficult than in the traditional ROM. In retrospect, such difficulties
are expected, since we already saw several examples showing that non-uniform attackers are very
powerful when exact security matters, which means that the security bounds obtained in the AI-
ROM might often be noticeably weaker than in the traditional ROM. From a technical point, the
key difficulty is this: conditioned on the leaked value z, which can depend on the entire function
table of O in some non-trivial manner, many of the individual values O(x) are no longer random
to the attacker. And this ruins many of the key techniques utilized in the traditional ROM, such
as: (1) lazy sampling, which allows the reduction to sample the not-yet-queried values of O at
random, as needed, without worrying that such lazy sampling will be inconsistent with the past;
(2) programmability, which allows the reduction to dynamically define some value of O in a special
(still random) way, as this might be inconsistent with the leakage value z it has to produce before
knowing how and where to program O; (3) distinguishing-to-extraction argument, which states that
the attacker cannot distinguish the value of O from random without explicitly querying it (which
again is false given auxiliary input). For these reasons, new techniques are required for dealing with
the AI-ROM. Fortunately, two such techniques are known:

• Pre-sampling technique. This beautiful technique was introduced in the original, pioneer-
ing work of Unruh [52]. From our perspective, we will present Unruh’s pre-sampling technique
in a syntactially different (but technically equivalent) way which will be more convenient for
our presentation. Specifically, Unruh implicitly introduced an intermediate oracle model,
which we term the bit-fixing random-oracle model (BF-ROM),3 which can be arbitrarily fixed
on some P coordinates, but then the remaining coordinates are chosen at random and inde-
pendently of the fixed coordinates. Moreover, the non-uniform S-bit advice of the attacker
can only depend on the P fixed points, but not on the remaining truly random points. Intu-
itively, dealing with the BF-ROM—at least when P is small—appears to be much easier than
with the AI-ROM, as many of the traditional ROM proof techniques can be adapted provided
that one avoids the “pre-sampled” set. Quite remarkably, for any value P , Unruh showed
that any (S, T )-attack in the AI-ROM will have similar advantage in (appropriately chosen)
P -BF-ROM, up to an additive loss of δ(S, T, P ), which Unruh upper bounded by

√
ST/P .

This yields a general recipe for dealing with the AI-ROM: (a) prove security ε(S, T, P ) of
the given application in the P -BF-ROM;4 (b) optimize for the right value of P by balancing
ε(S, T, P ) and δ(S, T, P ) (while also respecting the time and other constraints of the attacker).

3This naming in inspired by the bit-fixing source [13] from complexity theory.
4Observe that the parameter S is still meaningful here. A1 fixes O at P points but only passes S bits of advice to

A2. While none of information-theoretic proofs in this paper really use this, for computational reductions S ”passes
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• Compression technique. Unfortunately, Dodis et al. [19] showed that the concrete security
loss δ(S, T, P ) =

√
ST/P proven by Unruh is not strong enough to get tight bounds for any

of the basic applications of hash functions, such as building OWFs, PRGs, PRFs, (salted)
CRHFs, and MACs. To remedy the situation, Dodis et al. [19] showed a different, less general
technique for dealing with the AI-ROM, by adapting the compression paradigm, introduced
by Gennaro and Trevisan [26, 25] in the context of black-box separations, to the AI-ROM.
The main idea is to argue that if some AI-ROM attacker succeeds with high probability in
breaking a given scheme, then that attacker can be used to reversibly encode (i.e., compress)
a random oracle beyond what is possible from an information-theoretic point of view. Since
we are considering attackers who perform preprocessing, our encoding must include the S-
bit auxiliary information produced by the attacker. Thus, the main technical challenge in
applying this technique is to ensure that the constructed encoding compress by (significantly)
more than S bits. Dodis et al. [19] proceeded by successfully applying this idea to show nearly
tight (and always better than what was possible by pre-sampling) bounds for a variety of
natural applications, including OWFs, PRGs, PRFs, (salted) CRHFs, and MACs.

Pre-sampling or compression? The pre-sampling and compression techniques each have their
pros and cons, as discussed below.

On a positive, pre-sampling is very general and seems to apply to most applications, as analyzing
the security of schemes in BF-ROM is not much harder than in the traditional ROM. Moreover, as
shown by Unruh, the pre-sampling technique appears at least “partially friendly” to computational
applications of random oracles (specifically, Unruh applied it to OAEP encryption [9]). Indeed, if
the size P of the pre-sampled set is not too large, then it can be hardwired as part of non-uniform
advice to the (efficient) reduction to the computational assumption. In fact, in the asymptotic
domain Unruh even showed that the resulting security remains “negligible in security parameter
λ,” despite not being smaller than any concrete negligible function (like the inverse Ackermann
function).5

On a negative, the concrete security bounds which are currently obtainable using this tech-
nique are vastly suboptimal, largely due to the big security loss

√
ST/P incurred by using Un-

ruh’s bound [52]. Moreover, for computational applications, the value of P cannot be made larger
than the size of attacker for the corresponding computational assumption. Hence, for fixed (“non-
asymptotic”; see Footnote 5) polynomial-size attackers, the loss

√
ST/P cannot be made negligible.

Motivated by this, Unruh conjectured that the security loss of pre-sampling can be improved by a
tighter proof. Dodis et al. [19] showed that the best possible security loss is at most ST/P . For
computational applications, this asymptotically disproves Unruh’s conjecture, as ST/P is still non-
negligible for polynomial values of P (although we will explain shortly that the situation is actually
more nuanced).

Moving to the compression technique, we already mentioned that it led Dodis et al. [19] to
establishing nearly tight AI-ROM bounds for several information-theoretic applications of random
oracles. Unfortunately, each proof was noticeably more involved than the original ROM proof, or
than the proof in the BF-ROM one would do if applying the more intuitive pre-sampling technique.
Moreover, each primitive required a completely different set of algorithmic insights to get the re-

through” for the final non-uniform attacker against the computational assumption, and it is necessary to have S � P
in this case.

5Any AI-ROM attacker of size t = t(λ) getting inverse polynomial advantage δ = 1/p(λ) for infinitely many λ’s
has advantage δ −

√
ST/P in the BF-ROM, which can be made to be δ/2 by suitably choosing P ≈ O(t2/δ2), which

is polynomial and therefore suited for a reduction to a computational hardness assumption.
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quired level of compression. And it is not entirely clear how far this can go. For example, we do not
see any way to apply the compression paradigm to relatively basic applications of hash functions
beyond using the hash function by itself as a given primitive; e.g., to show AI-ROM security of
the classical Merkle-Damg̊ard paradigm [43, 17] (whose tight AI-ROM security we will later estab-
lish in this work). Moreover, unlike pre-sampling, the compression paradigm cannot be applied
at all to computational applications, as the compressor and the decompressor are computationally
unbounded.

1.1 Our Results

We obtain a number of results about dealing with the AI-ROM, which, at a high-level, take the
best features from pre-sampling (simplicity, generality) and compression (tightness).

Improving Unruh. Recall, Unruh [52] showed that one can move from the AI-ROM to the P -
BF-ROM at the additive cost δ(S, T, P ) ≤

√
ST/P , and Dodis et al. [19] showed that δ(S, T, P ) =

Ω (ST/P ) in general. We show that the true additive error bound is indeed δ(S, T, P ) = Θ(ST/P ),
therefore improving Unruh’s bound by a quadratic factor; see Theorem 5. Namely, the effect of
S bits of auxiliary information z = z(O) against an attacker making T adaptive random-oracle
queries can be simulated to within an additive error O(ST/P ) by fixing the value of the random
oracle on P points (which depend on the function z), and picking the other points at random and
independently of the auxiliary information.

While the quadratic improvement might appear “asymptotically small,” we show that it already
matches the near-tight bound for all indistinguishability applications (specifically, PRGs and PRFs)
proved by [19] using much more laborious compression arguments. For example, to match the
ε = O(

√
ST/N + T/N) bound for PRGs with seed domain N , we show using a simple argument

that the random oracle is ε′ = O(P/N + T/N)-secure in the P -BF-ROM, where the first term
corresponds to the seed being chosen from the pre-sampled set, and the second term corresponds
to the probability of querying the oracle on the seed in the attack stage. Setting P = O(

√
STN) to

balance the P/N and ST/P terms, we immediately get our final bound, which matches that of [19].
For illustrative purposes, we also apply our improved bound to argue the AI-ROM security of a
couple of indistinguishability applications not considered by [19]. First, we show an improved—
compared to its use as a (standard) PRF—bound for the random oracle as a weak PRF, which is
enough for chosen-plaintext secure symmetric-key encryption. Our proof is a very simple adaptation
of the PRF proof in the BF-ROM, while we believe the corresponding compression proof, if possible
at all, would involve noticeable changes to the PRF proof of [19] (due to the need for better
compression to get the improved bound). Second, we also apply it to a typical example of a
computational application, namely, the (KEM-variant of the) TDF-based public-key encryption
scheme Encf (m;x) = (f(x),O(x) ⊕ m) from the original Bellare-Rogaway paper [8], where f is
a trapdoor permutation (part of the public key, while the inverse is the secret key) and x is the
randomness used for encryption. Recall that the compression technique cannot be applied to such
applications.

To sum up, we conjecture that the improved security bound ST/P should be sufficient to get
good bounds for most natural indistinguishability applications; these bounds are either tight, or at
least they match those attainable via compression arguments (while being much simpler and more
general).
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Improved pre-sampling for unpredictability applications. Even with our improved bound
of ST/P for pre-sampling, we will not match the nearly tight compression bounds obtained by Dodis
et al. [19] for OWFs and MACs. In particular, finding the optimal value of P will result in “square
root terms” which are not matched by any existing attacks. As our key insight, we notice that
this is not due to the limitations of pre-sampling (i.e., going through the BF-ROM), but rather to
the fact that achieving an additive error is unnecessarily restrictive for unpredictability applications.
Instead, we show that if one is happy with a multiplicative factor of 2 in the probability of breaking
the system, then one can achieve this generically by setting the pre-sampling set size P ≈ ST ; see
Theorem 6.

This has a number of implications. First, with this multiplicative pre-sampling technique, we
can easily match the compression bounds for the OWF and MAC unpredictability applications
considered by Dodis et al. [19], but with much simpler proofs. Second, we also apply it to a natural
information-theoretic application where we believe the compression technique will fail to get a good
bound; namely, building a (salted) CHRF family via the Merkle-Damg̊ard paradigm, where the
salt is the initialization vector for the construction (see Theorem 12). The salient feature of this
example is that the random oracle is applied in iteration, which poses little difficulties to adapting
the standard-ROM proof to the BF-ROM, but seems to completely blow up the complexity of the
compression arguments, as there are too many possibilities for the attacker to cause a collision
for different salts when the number of blocks is greater than 1.6 The resulting AI-ROM bound
O(ST 2/M) becomes vacuous for circuits of size roughly M1/3, where M is the range of the com-
pression function. This bound is well below the conjectured M1/2 birthday security of CRHFs based
on Merkle-Damg̊ard against uniform attackers. Quite unexpectedly, we show that M1/3 security
we prove is tight: there exists a (non-uniform) collision-finding attack implementable by a circuit
of size O

(
M1/3

)
(see Theorem 13)! This example illustrates once again the the surprising power of

non-uniformity.

Implications to computational reductions. Recall that, unlike compression techniques, pre-
sampling can be applied to computational reductions, by “hardwiring” the pre-sampling set of size
P into the attacker breaking the computational assumption. However, this means that P cannot
be made larger than the maximum allowed running time t of such an attacker. Since standard
pre-sampling incurs additive cost Ω(ST/P ), one cannot achieve final security better that ST/t,
irrespective of the value of ε in the (t, ε)-security of the corresponding computational assumption.
For example, when t is polynomial (in the security parameter) and ε� 1/t is exponentially small,
we only get inverse polynomial security (at most ST/t) when applying standard pre-sampling. In
contrast, the multiplicative variant of pre-sampling sets the list size to be roughly P ≈ ST , which
is polynomial for polynomial S and T and can be made smaller than the complexity t of the
standard model attacker for the computational assumption we use. Thus, when t is polynomial
and ε is exponentially small, we will get negligible security using multiplicative pre-sampling. For
a concrete illustrative example, see the bound in Theorem 15 when we apply our improved pre-
sampling to the natural computational unpredictability application of Schnorr signatures [50].7 To
put it differently, while the work of Dodis et al. [19] showed that Unruh’s “pre-sampling conjecture”
is false in general—meaning that negligible security is not possible with a polynomial list size P—we
show that it is qualitatively true for unpredictability applications, where the list size can be made

6The same difficulty of compression should also apply to indistinguishability applications of Merkle-Damg̊ard, such
as building PRFs [6].

7Interestingly, general Fiat-Shamir transform is not secure in AI-ROM, and thus our proof used the specifics of
Schnorr’s signatures.
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polynomial (roughly ST ).

Moreover, we show that in certain computational indistinguishability applications, we can still
apply our improved pre-sampling technique inside the reduction, and get final security higher than
the ST/t barrier mentioned above. We illustrate this phenomenon in our analysis of TDF encryption
(cf. Theorem 16) by separating the probability of the attacker’s success into 2 disjoint events: (1) the
attacker, given ciphertext f(x), managed to query the random oracle on the TDP preimage x ; (2)
the attacker succeeds in distinguishing the value O(x) from random without querying O(x). Now,
for the event (1), we can reduce to the TDP security with polynomial list size using our improved
multiplicative pre-sampling (since is an unpredictability event), while for the event (2), we can
prove information-theoretic security using standard additive pre-sampling, without the limitation of
having to upper bound P by the running time of the TDP attacker. It is an interesting open question
to classify precisely the type of indistinguishability applications where such “hybrid” reduction
technique can be applied.

Going to the traditional ROM. So far, the general paradigm we used is to reduce the hard-
to-analyze security of any scheme in the AI-ROM to the much simpler and proof-friendly security
of the same scheme in the BF-ROM. However, an even simpler approach, if possible, would be to
reduce the security in the AI-ROM all the way to the traditional ROM. Of course, we know that
this is impossible without any modifications to the scheme, as we have plenty of examples where
the AI-ROM security of the scheme is much weaker than its ROM security (or even disappears
completely). Still, when a simple modification is possible without much inconvenience to the users,
reducing to the ROM has a number of obvious advantages over the BF-ROM:

• While much simpler than in the AI-ROM, one must still prove a security bound in BF-ROM. It
would be much easier if one could just utilize an already proven result in ROM and seamlessly
“move it” to the AI-ROM at a small cost.

• Some natural schemes secure in the traditional ROM are insecure in the BF-ROM (and also
in the AI-ROM) without any modifications. Simple example include the general Fiat-Shamir
heuristic [24, 1] or the FDH signature scheme [8] (see Section C.1). Thus, to extend such
schemes to the AI-ROM, we must modify them anyway, so we might as well try to generically
ensure that ROM security is already enough.

As our next set of results, we show two simple compilers which build a hash function O′ to be
used in AI-ROM application out of hash function O used in the traditional ROM application. Both
results are in the common-random-string model. This means that they utilize a public random
string (which we call salt and denote a) chosen after the auxiliary information about O is computed
by the attacker. The honest parties are then assumed to have reliable access to this a value. We
note that in basic applications, such as encryption and authentication, the salt can simply be chosen
at key generation and be made part of the public key/parameters, so this comes at a small price
indeed.

The first transformation analyzed in Section 6.1 is simply salting; namely O′a(x) = O(a, x),
where a is a public random string chosen from the domain of size K. This technique is widely
used in practice (going back to password hashing [44]), and was analyzed by Dodis et al. [19] in the
context of AI-ROM, by applying the compression argument to show that salting provably defeats
preprocessing for the few natural applications they consider (OWFs, PRGs, PRFs, and MACs).
What our work shows is that salting provably defeats pre-processing generically, as opposed to a

8



few concrete applications analyzed by [19].8 Namely, by making the salt domain K large enough,
one gets almost the same security in AI-ROM than in the traditional ROM. To put differently, when
salting is possible, one gets the best of both worlds: security against non-uniform attacks, but with
exact security matching that in the traditional ROM.

The basic salting technique sacrificed a relatively large factor of K from the domain of the
random oracle O in order to build O′ (for K large enough to bring the “salting error” down). When
the domain of O is an expensive resource, in Section 6.2 we also design a more domain-efficient
compiler, which only sacrifices a small factor k ≥ 2 in the domain of O, at the cost that each
evaluation of O′ takes k ≥ 2 evaluations of O (and the “salting error” decays exponentially in k).
This transformation is based on the adaptation of the technique of Maurer [42], originally used in
the context of key-agreement with randomizers. While the basic transformation needs O(k logN)
bits of public salt, we also show than one can reduce the number of random bits to O(k + logN).
And since we do not envision k to be larger than O(logN) for any practical need, the total length
of the salt is always O(logN).

Our main lemma. The key technical contribution of our work is Lemma 1, proved in Section 2.1,
which roughly shows that a random oracle with auxiliary input is “close” to the convex combination
of “P -bit-fixing sources” (see Definition 1). Moreover, we give both additive and multiplicative
versions of this “closeness,” so that we can later use different parameters to derive our Theorem 5 (for
indistinguishability applications in the AI-ROM) and Theorem 6 (for unpredictability applications
in the AI-ROM) in Section 2.2.

1.2 Other Related Work

Most of the related work was already mentioned earlier. The realization that multiplicative error
is enough for unpredictability applications, and this can lead to non-trivial savings, is related to
the work of Dodis et al. [20] in the context of improved entropy loss of key derivation schemes.
Tessaro [51] generalized Unruh’s presampling techniques to the random-permutation model, albeit
without improving the tightness of the bound.

De et al. [18] study the effect of salting for inverting a permutation O as well as for a specific
pseudorandom generator based on one-way permutations. Chung et al. [14] study the effects of
salting in the design of collision-resistant hash functions, and used Unruh’s pre-sampling technique
to argue that salting defeats preprocessing in this important case. Using salting to obtain non-
uniform security was also advocated by Mahmoody and Mohammed [41], who used this technique
for obtaining non-uniform black-box separation results.

Finally, the extensive body of work on the bounded storage model [42, 4, 22, 53] is related to the
special case of AI-ROM, where all T queries in the second stage are done by the challenger to derive
the key (so that one tries to minimize T to ensure local computability), but the actual attacker is
not allowed any such queries after S-bit preprocessing.

8Of course, by performing a direct analysis of the salted scheme (e.g., using Theorems 5 or 6), we might get better
exact security bounds than by using our general result; namely, shorter salt would be enough to get the claimed
amount of security. Still, for settings where obtaining the smallest possible salt value is not critical, the simplicity
and generality of our compilers offer a convenient and seamless way to argue security in AI-ROM without doing a
direct analsyis.
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2 Dealing with Auxiliary Information

Since an attacker with oracle-dependent auxiliary input may obtain the output of arbitrary functions
evaluated on a random oracle’s function table, it is not obvious how the security of schemes in
the auxiliary-input random-oracle model (AI-ROM) can be analyzed. To remedy this situation,
Unruh [52] introduced the bit-fixing random-oracle model (BF-ROM), in which the oracle is fixed
on a subset of the coordinates and uniformly random and independent on the remaining ones, and
showed that such an oracle is indistinguishable from an AI-RO.

In Section 2.1, we improve the security bounds proved by Unruh [52] in the following two
ways: First, we show that a BF-RO is indistinguishable from an AI-RO up to an additive term of
roughly ST/P , where P is the size of the fixed portion of the BF-RO; this improves greatly over
Unruh’s bound, which was in the order of

√
ST/P . Second, we prove that the probability that

any distinguisher outputs 1 in the AI-ROM is at most twice the probability that said distinguisher
outputs 1 in the BF-ROM—already when P is roughly equal to ST .

Section 2.2 contains the formalizations of the AI and BF-ROMs, attackers with oracle-dependent
advice, and the notion of application. As a consequence of the connections between the two models,
the security of any application in the BF-ROM translates to the AI-ROM at the cost of the ST/P
term, and, additionally, the security of unpredictability applications translates at the mere cost of
a multiplicative factor of 2 (as long as P ≥ ST ). The corresponding theorems and their proofs can
also be found in Section 2.2.

2.1 Replacing Auxiliary Information by Bit-Fixing

In this section, we show that any random oracle about which an attacker may have a certain
amount of auxiliary information can be replaced by a suitably chosen convex combination of bit-
fixing sources. This substitution comes at the price of either an additive term to the distinguishing
advantage or a multiplicative one to the probability that a distinguisher outputs 1. To that end,
consider the following definition:

Definition 1. An (N,M)-source is a random variable X with range [M ]N . A source is called

• (1− δ)-dense if for every subset I ⊆ [N ],

H∞(XI) ≥ (1− δ) · |I| · logM = (1− δ) · logM |I|.

• (P, 1− δ)-dense if it is fixed on at most P coordinates and is (1− δ)-dense on the rest,

• P -bit-fixing if it is fixed on at most P coordinates and uniform on the rest.

That is, the min-entropy of every subset of the function table of a δ-dense source is at most a
fraction of δ less than what it would be for a uniformly random one.

Lemma 1. Let X be distributed uniformly over [M ]N and Z := f(X), where f : [M ]N → {0, 1}S
is an arbitrary function. For any γ > 0 and P ∈ N, there exists a family {Yz}z∈{0,1}S of convex
combinations Yz of P -bit-fixing (N,M)-sources such that for any distinguisher D taking an S-bit
input and querying at most T < P coordinates of its oracle,∣∣P[DX(f(X)) = 1

]
− P

[
DYf(X)(f(X)) = 1

]∣∣ ≤ (S + log 1/γ) · T
P

+ γ

and
P
[
DX(f(X)) = 1

]
≤ 2(S+log 1/γ)T/P · P

[
DYf(X)(f(X)) = 1

]
+ γ .
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Lemma 1 is proved using a technique (cf. Claim 2) put forth by Göös et al. [31] in the area
of communication complexity. The technique was also adopted in a paper by Kothari et al. [40],
who gave a simplified argument for decomposing high-entropy sources into bit-fixing sources with
constant density (cf. Definition 1). For self-containment, Section A of the appendix contains a proof
of this decomposition technique. Furthermore, the proof of Claim 3 below uses the well-known H-
coefficient technique by Patarin [48], while following a recent re-formulation of it due to Hoang and
Tessaro [33].

Proof. Fix an arbitrary z ∈ {0, 1}S and let Xz be the distribution of X conditioned on f(X) = z.
Let Sz = N logM −H∞(Xz) be the min-entropy deficiency of Xz. Let γ > 0 be arbitrary.

Claim 2. For every δ > 0, Xz is γ-close to a convex combination of finitely many (P ′, 1− δ)-dense
sources for

P ′ =
Sz + log 1/γ

δ · logM
.

The proof of Claim 2 can be found in Section A of the appendix.

Let X ′z be the convex combination of (P ′, 1− δ)-dense sources that is γ-close to Xz for a δ = δz
to be determined later. For every (P ′, 1 − δ) source X ′ in said convex combination, let Y ′ be the
corresponding P ′-bit-fixing source Y ′, i.e., X ′ and Y ′ are fixed on the same coordinates to the
same values. The following claim bounds the distinguishing advantage between X ′ and Y ′ for any
T -query distinguisher.

Claim 3. For any (P ′, 1−δ)-dense source X ′ and its corresponding P ′-bit-fixing source Y ′, it holds
that for any (adaptive) distinguisher D that queries at most T coordinates of its oracle,∣∣∣P[DX′ = 1

]
− P

[
DY ′ = 1

]∣∣∣ ≤ Tδ · logM,

and
P
[
DX′ = 1

]
≤ MTδ · P

[
DY ′ = 1

]
.

Proof. Assume without loss of generality that D is deterministic and does not query any of the fixed
positions. Let TX′ and TY ′ be the random variables corresponding to the transcripts containing
the query/answer pairs resulting from D’s interaction with X ′ and Y ′, respectively. For a fixed
transcript τ , denote by pX′(τ) and pY ′(τ) the probabilities that X ′ and Y ′, respectively, produce
the answers in τ if the queries in τ are asked. Observe that these probabilities depend only on X ′

resp. Y ′ and are independent of D.

Observe that for every transcript τ ,

pX′(τ) ≤ M−(1−δ)T and pY ′(τ) = M−T (1)

as X ′ is (1− δ)-dense and Y ′ is uniformly distributed.

Since D is deterministic, P[TX′ = τ ] ∈ {0, pX′(τ)}, and similarly, P[TY ′ = τ ] ∈ {0, pY ′(τ)}.
Denote by TX the set of all transcripts τ for which P[TX′ = τ ] > 0. For such τ , P[TX′ = τ ] = pX′(τ)
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and also P[TY ′ = τ ] = pY ′(τ). Towards proving the first part of the lemma, observe that∣∣∣P[DX′ = 1
]
− P

[
DY ′ = 1

]∣∣∣ ≤ SD(TX′ , TY ′)

=
∑
τ

max {0,P[TX′ = τ ]− P[TY ′ = τ ]}

=
∑
τ∈TX

max {0, pX′(τ)− pY ′(τ)}

=
∑
τ∈TX

pX′(τ) ·max

{
0, 1− pY ′(τ)

pX′(τ)

}
≤ 1−M−Tδ ≤ Tδ · logM,

where the first sum is over all possible transcripts and where the last inequality uses 2−x ≥ 1 − x
for x ≥ 0.

As for the second part of the lemma, observe that due to (1) and the support of TX′ being a
subset of TY ′ ,

P[TX′ = τ ] ≤ MTδ · P[TY ′ = τ ]

for any transcript τ . Let TD be the set of transcripts where D outputs 1. Then,

P[DX′ = 1] =
∑
τ∈TD

P[TX′ = τ ] ≤ MTδ ·
∑
τ∈TD

P[TY ′ = τ ] = MTδ · P[DY ′ = 1].

Let Y ′z be obtained by replacing every X ′ by the corresponding Y ′ in X ′z. Setting δz = (Sz +
log 1/γ)/(P logM), Claims 2 and 3 imply∣∣∣P[DXz(z) = 1

]
− P

[
DY ′z (z) = 1

]∣∣∣ ≤ (Sz + log 1/γ) · T
P

+ γ , (2)

as well as
P
[
DXz(z) = 1

]
≤ 2(Sz+log 1/γ)T/P · P

[
DY ′z (z) = 1

]
+ γ . (3)

Moreover, note that for the above choice of δz, P
′ = P , i.e., the sources Y ′ are fixed on at most P

coordinates, as desired.

Claim 4. Ez[Sz] ≤ S and Ez[2
SzT/P ] ≤ 2ST/P .

Proof. Observe that H∞(Xz) = H∞(X|Z = z) = H(X|Z = z) since, conditioned on Z = z, X is
distributed uniformly over all values x with f(x) = z. Therefore,

Ez[Sz] = N logM −Ez[H∞(X|Z = z)] = N logM −Ez[H(X|Z = z)]

= N logM −H(X|Z) ≤ S .

Again due to the uniformity of X, P[f(X) = z] = 2−Sz . Hence,

Ez[2
SzT/P ] =

∑
z

2−Sz · 2SzT/P =
∑
z

2−Sz(1−T/P ) .
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Because T < P , one can use Hölder’s inequality and obtain

∑
z

2−Sz(1−T/P ) ≤

(∑
z

(
2−Sz(1−T/P )

)1/(1−T/P )
)1−T/P

·

(∑
z

1P/T

)T/P
= 11−T/P · 2ST/P = 2ST/P .

The lemma now follows (using Yz := Y ′z ) by taking expectations over z of (2) and (3) and applying
Claim 4.

2.2 From the BF-ROM to the AI-ROM

2.2.1 Capturing the Models

Before Lemma 1 from the preceding section can be used to show how security proofs in the BF-
ROM can be transferred to the AI-ROM, it is necessary to formally define the two models as well as
attackers with oracle-dependent advice and the notion of an application. The high-level idea is to
consider two-stage attackers A = (A1,A2) and (single-stage) challengers C with access to an oracle
O. Oracles have two interfaces pre and main, where pre is accessible only to A1, which may pass
auxiliary information to A2, and both A2 and C may access main.

Oracles. An oracle O has two interfaces O.pre and O.main, where O.pre is accessible only once
before any calls to O.main are made. Oracles used in this work are:

• Random oracle RO(N,M): Samples a random function table F ← FN,M , where FN,M
is the set of all functions from [N ] to [M ]; offers no functionality at O.pre; answers queries
x ∈ [N ] at O.main by the corresponding value F [x] ∈ [M ].

• Auxiliary-input random oracle AI-RO(N,M): Samples a random function table F ←
FN,M ; outputs F at O.pre; answers queries x ∈ [N ] at O.main by the corresponding value
F [x] ∈ [M ].

• Bit-Fixing random oracle BF-RO(P,N,M): Samples a random function table F ← FN,M ;
takes a list at O.pre of at most P query/answer pairs that override F in the corresponding
positions; answers queries x ∈ [N ] at O.main by the corresponding value F [x] ∈ [M ].

• Standard model: Neither interface offers any functionality.

The parameters N , M are occasionally omitted in contexts where they are of no relevance. Similarly,
whenever evident from the context, explicitly specifying which interface is queried is omitted.

Attackers with oracle-dependent advice. Attackers A = (A1,A2) consist of a preprocessing
procedure A1 and a main algorithm A2, which carries out the actual attack using the output of A1.
Correspondingly, in the presence of an oracle O, A1 interacts with O.pre and A2 with O.main.

Definition 2. An (S, T )-attacker A = (A1,A2) in the O-model consists of two procedures

• A1, which is computationally unbounded, interacts with O.pre, and outputs an S-bit string,
and
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• A2, which takes an S-bit auxiliary input and makes at most T queries to O.main.

In certain contexts, additional restrictions may be imposed on A2, captured by some parameters p.
A is referred to as (S, T, p)-attacker in such cases. Examples of such parameters include time and
space requirements of A2 or a limit on the number of queries of a particular type that A2 makes
to a challenger it interacts with. Observe that the parameter S is meaningful also in the standard
model, where it measures the length of standard non-uniform advice to the attacker. The parameter
T , however, is not relevant as there is no random oracle to query in the attack stage. Consequently,
standard-model attackers with resources p are referred to as (S, ∗, p)-attackers.

Applications. Let O be an arbitrary oracle. An application G in the O-model is defined by
specifying a challenger C, which is an oracle algorithm that has access to O.main, interacts with the
main stage A2 of an attacker A = (A1,A2), and outputs a bit at the end of the interaction. The
success of A on G in the O-model is defined as

SuccG,O(A) := P
[
AO.main

2 (AO.pre
1 )↔ CO.main = 1

]
,

where AO.main
2 (AO.pre

1 )↔ CO.main denotes the bit output by C after its interaction with the attacker.
This work considers two types of applications, captured by the next definition.

Definition 3. For an indistinguishability application G in the O-model, the advantage of an at-
tacker A is defined as

AdvG,O(A) := 2

∣∣∣∣SuccG,O(A)− 1

2

∣∣∣∣ .
For an unpredictability application G, the advantage is defined as

AdvG,O(A) := SuccG,O(A) .

An application G is said to be ((S, T, p), ε)-secure in the O-model if for every (S, T, p)-attacker A,

AdvG,O(A) ≤ ε .

Combined query complexity. In order to enlist Lemma 1 for proving Theorems 5 and 6 below,
the interaction of some attacker A = (A1,A2) with a challenger C in the O-model must be “merged”

into a single entity D = (D1,D2) that interacts with oracle O. That is, D(·)
1 := A(·)

1 and D(·)
2 (z) :=

A(·)
2 (z)↔ C(·) for z ∈ {0, 1}S . D is called the combination of A and C, and the number of queries it

makes to its oracle is referred to as the combined query complexity of A and C. For all applications
in this work there exists an upper bound T comb

G = T comb
G (S, T, p) on the combined query complexity

of any attacker and the challenger.

2.2.2 Additive Error for Arbitrary Applications

Using the first part of Lemma 1, one proves the following theorem, which states that the security
of any application translates from the BF-ROM to the AI-ROM at the cost of an additive term of
roughly ST/P , where P is the maximum number of coordinates an attacker A1 is allowed to fix in
the BF-ROM.
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Theorem 5. For any P ∈ N and every γ > 0, if an application G is ((S, T, p), ε′)-secure in the
BF-RO(P )-model, then it is ((S, T, p), ε)-secure in the AI-RO-model, for

ε ≤ ε′ +
(S + log γ−1) · T comb

G

P
+ γ ,

where T comb
G is the combined query complexity corresponding to G.

Proof. Fix P as well as γ. Set BF-RO := BF-RO(P ) and let G be an arbitrary application and C
the corresponding challenger. Moreover, fix an (S, T )-attacker A = (A1,A2), and let {Yz}z∈{0,1}S
be the family of distributions guaranteed to exist by Lemma 1, where the function f is defined by
A1. Consider the following (S, T )-attacker A′ = (A′1,A′2) (expecting to interact with BF-RO):

• A′1 internally simulates A1 to compute z ← AAI-RO.pre
1 . Then, it samples one of the P -bit-fixing

sources Y ′ making up Yz and presets BF-RO to match Y ′ on the at most P points where Y ′

is fixed. The output of A′1 is z.

• A′2 works exactly as A2.

Let D be the combination of A2 = A′2 and C. Hence, D is a distinguisher taking an S-bit input and
making at most T comb

G queries to its oracle. Therefore, by the first part of Lemma 1,

SuccG,AI-RO(A) ≤ SuccG,BF-RO(A′) +
(S + log γ−1) · T comb

G

P
+ γ .

Since there is only an additive term between the two success probabilities, the above inequality
implies

AdvG,AI-RO(A) ≤ AdvG,BF-RO(A′) +
(S + log γ−1) · T comb

G

P
+ γ

for both indistinguishability and unpredictability applications.

2.2.3 Multiplicative Error for Unpredictability Applications

Using the second part of Lemma 1, one proves the following theorem, which states that the security
of any unpredictability application translates from the BF-ROM to the AI-ROM at the cost of a
multiplicative factor of 2, provided that A1 is allowed to fix roughly ST coordinates in the BF-ROM.

Theorem 6. For any P ∈ N and every γ > 0, if an unpredictability application G is ((S, T, p), ε′)-
secure in the BF-RO(P,N,M)-model for

P ≥ (S + log γ−1) · T comb
G ,

then it is ((S, T, p), ε)-secure in the AI-RO(N,M)-model for

ε ≤ 2ε′ + γ ,

where T comb
G is the combined query complexity corresponding to G.

Proof. Using the same attacker A′ as in the proof of Theorem 5 and applying the second part of
Lemma 1, one obtains, for any P ≥ (S + log γ−1) · T comb

G ,

SuccG,AI-RO(A) ≤ 2(S+log 1/γ)T comb
G /P · SuccG,BF-RO(A′) + γ

≤ 2 · SuccG,BF-RO(A′) + γ ,
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which translates into
AdvG,AI-RO(A) ≤ 2 ·AdvG,BF-RO(A′) + γ

for unpredictability applications.

2.2.4 The Security of Applications in the AI-ROM

The connections between the auxiliary-input random-oracle model (AI-ROM) and the bit-fixing
random-oracle model (BF-ROM) established above suggest the following approach to proving the
security of particular applications in the AI-ROM: first, deriving a security bound in the easy-to-
analyze BF-ROM, and then, depending on whether one deals with an indistinguishability or an
unpredictability application, generically inferring the security of the schemes in the AI-ROM, using
Theorems 5 or 6.

The three subsequent sections deal with various applications in the AI-ROM: Section 3 is de-
voted to security analyses of basic primitives, where “basic” means that the oracle is directly used
as the primitive; Section 4 deals with the collision resistance of hash functions built from a ran-
dom compression function via the Merkle-Damg̊ard construction (MDHFs); and, finally, Section 5
analyzes several cryptographic schemes with computational security.

3 Basic Applications in the AI-ROM

This section treats the AI-ROM security of one-way functions (OWFs), pseudorandom generators
(PRGs), normal and weak pseudorandom functions (PRFs and wPRFs), and message-authentication
codes (MACs). More specifically, the applications considered are:

• One-way functions: For an oracle O : [N ] → [M ], given y = O(x) for a uniformly random
x ∈ [N ], find a preimage x′ with O(x′) = y.

• Pseudo-random generators: For an oracle O : [N ] → [M ] with M > N , distinguish
y = O(x) for a uniformly random x ∈ [N ] from a uniformly random element of [M ].

• Pseudo-random functions: For an oracle O : [N ] × [L] → [M ], distinguish oracle access
to O(s, ·) for a uniformly random s ∈ [N ] from oracle access to a uniformly random function
F : [L]→ [M ].

• Weak pseudo-random functions: Identical to PRFs, but the inputs to the oracle are
chosen uniformly at random and independently.

• Message-authentication codes: For an oracle O : [N ] × [L] → [M ], given access to an
oracle O(s, ·) for a uniformly random s ∈ [N ], find a pair (x, y) such that O(s, x) = y for an
x on which O(s, ·) was not queried.

The asymptotic bounds for the applications in question are summarized in Table 1. For OWFs,
PRGs, PRFs, and MACs, the resulting bounds match the corresponding bounds derived by Dodis
et al. [19], who used (considerably) more involved compression arguments; weak PRFs have not
previously been analyzed.

The precise statements and the corresponding proofs can be found in the following sections; the
proofs all follow the paradigm outlined in Section 2.2.4 of first assessing the security of a particular
application in the BF-ROM and then generically inferring the final bound in the AI-ROM using
Theorems 5 or 6.
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AI-ROM Security Bound in [19] Lower Bound

OWFs ST
N + T

N same min
{
ST
N ,
(
S2T
N2

)1/3}
+ T

N

PRGs
(
ST
N

)1/2
+ T

N same
(
S
N

)1/2
+ T

N

PRFs
(S(T+qprf)

N

)1/2
+ T

N same
(
S
N

)1/2
+ T

N

wPRFs
(S(T+qprf)qprf

LN

)1/2
+ T

N not analyzed not known

MACs
S(T+qsig)

N + T
N + 1

M
S(T+qsig)

N + T
N + T

M min
{
ST
N ,
(
S2T
N2

)1/3}
+ T

N

Table 1: Asymptotic upper and lower bounds on the security of basic primitives against (S, T )-
attackers in the AI-ROM, where qprf and qsig denote PRF and signing queries, respectively, and
where (for simplicity) N = M for OWFs. Observe that attacks against OWFs also work against
PRGs and PRFs.

3.1 One-Way Functions

The application GOWF,N,M in the O(N,M)-model is defined via the challenger COWF,N,M that picks
an x ∈ [N ], passes y := O(x) to the attacker, and outputs 1 if and only if the attacker returns a
value x′ ∈ [N ] with O(x′) = y.

Theorem 7. Application GOWF,N,M is ((S, T ), ε)-secure in the AI-RO(N,M)-model, where

ε = Õ

(
ST

min(N,M)
+

T

min(N,M)

)
.

Proof. Observe that for the OWF application, T comb = T + 1. Let α := min(N,M). It suffices to
show that in the O := BF-RO(P,N,M)-model, G := GOWF,N,M is ((S, T ), ε̂)-secure for

ε̂ = O

(
P

α
+
T

α

)
.

Then, by setting γ := 1/α and P := (S + logα)T comb = Õ (ST ) and applying Theorem 6, the
desired conclusion follows.

Towards proving the bound in the BF-RO, suppose P + T < N/2 since otherwise the bound of
O((P + T )/N) holds trivially. Let A = (A1,A2) be an (S, T )-attacker. Without loss of generality,
assume A is deterministic, A2 makes distinct queries to non-prefixed coordinates only, and, at the
cost of one additional query, always queries its output. Let L = {(x′1, y′1), . . . , (x′P , y

′
P )} be the

points of O fixed by A1, and let Q = {(x1, y1), . . . , (xT , yT )} the queries A2 makes, along with the
corresponding answers. In slight abuse of notation, let x ∈ L stand for x = x′j for some j ∈ [P ].

Let E ′ be the event that the challenge equals one of the prefixed images of O, i.e., E ′ = {y = y′j}
for some j ∈ [P ]. Moreover, for i ∈ [T ], let Ei be the event that the ith query to O inverts y, i.e.,
y = yi. Observe that

SuccG,BF-RO(A) ≤ P[E ′] + P[∪i Ei | E ′] .
Note that if x /∈ L, y is independent from y′i for any i ∈ [P ]. Hence,

P[E ′] ≤ P[x ∈ L] + P[E ′ | x /∈ L] ≤ P

N
+
P

M
≤ 2P

α
.
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As per the second probability, observe that

P[∪i Ei | E ′] ≤
∑
i

P[Ei | E1 ∩ . . . ∩ E i−1 ∩ E ′] .

For any fixed i, conditioned on particular values y1 6= y, . . . , yi−1 6= y, the event Ei = {yi = y}
occurs if either xi = x or if xi 6= x and yi = y. In the latter case, additionally conditioned on
xi 6= x, yi is independent of y. Hence,

P[Ei | E1 ∩ . . . ∩ E i−1 ∩ E ′] ≤
1

N − P − (i− 1)
+

1

M
≤ 2

N
+

1

M
≤ 3

α
,

where the second inequality uses P + T < N/2. Thus, overall,

SuccG,O(A) ≤ O

(
P

α
+
T

α

)
.

There exists an attack using rainbow tables [32] that achieves an advantage of

min

{
ST

N
,

(
S2T

N2

)1/3
}

+
T

N
.

3.2 Pseudorandom Generators

The application GPRG,N,M in the O(N,M)-model is defined via the challenger CPRG,N,M that picks
uniformly at random a bit b, a value x ∈ [N ], as well as a value y1 ∈ [M ], computes y0 := O(x),
passes yb to the attacker, and outputs 1 if and only if the attacker returns a bit b′ = b.

Theorem 8. Application GPRG,N,M is ((S, T ), ε)-secure in the AI-RO(N,M)-model, where

ε = Õ

(√
ST

N
+
T

N

)
.

Proof. Observe that for the PRGs, T comb = T +1. It suffices to show that in the O := BF-RO(P,N,
M)-model, G := GPRG,N,M is ((S, T ), ε̂)-secure for

ε̂ = O

(
P

N
+
T

N

)
.

Then, by setting γ := 1/N and P :=
√
STN and applying Theorem 5, the desired conclusion

follows.

Towards proving the bound in the BF-RO, suppose P + T < N/2 since otherwise the bound of
O((P + T )/N) holds trivially. Let A = (A1,A2) be an (S, T )-attacker. Without loss of generality,
assume A is deterministic, and A2 makes distinct queries to non-prefixed coordinates only. Let
L = {(x′1, y′1), . . . , (x′P , y

′
P )} be the points of O fixed by A1, and let Q = {(x1, y1), . . . , (xT , yT )} the

queries A2 makes, along with the corresponding answers.

Let E ′ be the event that the seed equals one of the prefixed coordinates of O, i.e., E ′ = {x = x′j}
for some j ∈ [P ]. Moreover, for i ∈ [T ], let Ei be the event that the ith query to O equals the seed
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x, i.e., x = xi. Observe that A only has non-zero advantage if either E ′ or, for some i ∈ [T ], Ei
occurs. Clearly,

P[E ′] ≤ P

N
.

Furthermore, using an argument along the lines to that of the proof of Theorem 7,

P[∪i Ei | E ′] ≤ T

N − P − T
≤ 2T

N
,

where the last inequality uses P + T ≤ N/2. Overall,

AdvG,O(A) ≤ O

(
P

N
+
T

N

)
.

The best known attack on PRGs is by De et al. [18] and achieves advantage Ω
(√

S/N
)

for the

case T = 0.

3.3 Pseudorandom Functions

Application GPRF,N,L,M in the O(NL,M)-model is defined via the following challenger CPRF,N,L,M :
It picks uniformly at random a bit b and a key s ∈ [N ]. Then, if the attacker queries x ∈ [L], the
challenger answers it by O(s, x) if b = 0 or by F (x) for a function table F : [L] → [M ] chosen
uniformly at random.

For attackers A = (A1,A2) against PRFs, we make explicit the number qprf of evaluation queries
A2 asks from the challenger.

Theorem 9. Application GPRF,N,L,M is ((S, T, qprf), ε)-secure in theAI-RO(NL,M)-model, where

ε = Õ

(√
S(T + qprf)

N
+
T

N

)
.

Proof. Observe that for the PRFs, T comb = T + qprf . It suffices to show that in the O :=
BF-RO(P,NL,M)-model, G := GPRF,N,L,M is ((S, T, qprf), ε̂)-secure for

ε̂ = O

(
P

N
+
T

N

)
.

Then, by setting γ := 1/N and P :=
√
S(T + qprf)N and applying Theorem 5, the desired conclusion

follows.

The proof proceeds similarly to the case of PRGs. In particular, one observes that A only has
non-zero advantage if one of the prefixed coordinates or one of the queries to O is of the type (s, ·),
where s is the key chosen by the challenger. As for PRGs, this probability can easily be bounded
by O (P/N + T/N).

De et al. [18] provide an attack on PRGs. It achieves advantage Ω
(√

S/N
)

for the case T = 0 and

can be extended to pseudorandom functions [19].
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3.4 Weak Pseudorandom Functions

ApplicationGwPRF,N,L,M in theO(NL,M)-model is defined via the following challenger CwPRF,N,L,M :
It picks uniformly at random a bit b and a key s ∈ [N ]. Then, whenever the attacker sends a re-
quest, the challenger chooses a random x ∈ [L] and answers the request by (x,O(s, x)) if b = 0 or
by (x, F (x)) for a function table F : [L]→ [M ] chosen uniformly at random.

For attackers A = (A1,A2) against wPRFs, we make explicit the number qprf of evaluation
queries A2 asks from the challenger.

Theorem 10. Application GwPRF,N,L,M is ((S, T, qprf), ε)-secure in theAI-RO(NL,M)-model, where

ε = Õ

(√
S(T + qprf)qprf

NL
+
T

N

)
.

Proof. Observe that for the wPRFs, T comb = T + qprf . It suffices to show that in the O :=
BF-RO(P,NL,M)-model, G := GwPRF,N,L,M is ((S, T, qprf), ε̂)-secure for

ε̂ = O

(
qprfP

NL
+
T

N

)
.

Then, by setting γ := 1/N and P :=
√
S(T + qprf)NL/qprf and applying Theorem 5, the desired

conclusion follows.

The proof proceeds similarly to the case of PRFs. In particular, one observes that A only has
non-zero advantage if (1) one of the random queries matches one of the prefixed coordinates or (2)
one of the queries to O is of the type (s, ·), where s is the key chosen by the challenger. Similarly
to the proof for PRFs, this probability can easily be bounded by O (qprfP/NL+ T/N).

3.5 Message-Authentication Codes

Application GMAC,N,L,M in the O(NL,M)-model is defined via the following challenger CMAC,N,L,M :
It initially chooses a key s ∈ [N ] uniformly at random and answers attacker queries x ∈ L by
returning O(s, x). The attacker wins if he submits a pair (x, y) ∈ [L]× [M ] with O(s, x) = y for a
previously unqueried x.

For attackers A = (A1,A2) against MACs, we make explicit the number qsig of signing queries
A2 asks from the challenger.

Theorem 11. The application GMAC,N,L,M is ((S, T, qsig), ε)-secure in theAI-RO(NL,M)-model,
where

ε = Õ

(
S(T + qsig)

N
+
T

N
+

1

M

)
.

Proof. Observe that for the MAC application, T comb = T + qsig. It suffices to show that in the
O := BF-RO(P,NL,M)-model, G := GMAC,N,L,M is ((S, T, qsig), ε̂)-secure for

ε̂ = O

(
P

N
+
T

N
+

1

M

)
.

Then, by setting γ := 1/N and P := (S + logN)T comb = Õ (S(T + qsig)) and applying Theorem 6,
the desired conclusion follows.
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Similarly to all previous proofs, the advantage of A is at most 1/M unless one of the prefixed
coordinates or queries to O is of the type (s, ·), where s is the key chosen by the challenger. This
event is easily upper bounded by O (P/N + T/N).

There exists an inversion attack using rainbow tables [32] that achieves an advantage of

min

{
ST

N
,

(
S2T

N2

)1/3
}

+
T

N
.

4 Collision Resistance in the AI-ROM

A prominent application missing from Section 3 is that of collision resistance, i.e., for an oracle
O : [N ] × [L] → M , given a uniformly random salt value a ∈ [N ], finding two distinct x, x′ ∈ [L]
such that O(a, x) = O(a, x′). The reason for this omission is that in the BF-ROM, the best possible
bound is easily seen to be in the order of P/N+T 2/M . Even applying Theorem 6 for unpredictability
applications with P ≈ ST results in a final AI-ROM bound of roughly ST/N + T 2/M , which is
inferior to the optimal bound of S/N + T 2/M proved by Dodis et al. [19] using compression.

However, hash functions used in practice, most notably SHA-2, are based on the Merkle-
Damg̊ard mode of operation for a compression function O : [M ]× [L]→ [M ], modeled as a random
oracle here. Specifically, a B-block message y = (y1, . . . , yB) with yj ∈ [L] is hashed to OB(y),
where

O1(y1) = O(a, y1) and Oj(y1, . . . , yj) = O(Oj−1(y1, . . . , yj−1), yj) for j > 1.

While—as pointed out above—Dodis et al. [19] provide a tight bound for the one-block case, it
is not obvious at all how their compression-based proof can be extended to deal with even two-block
messages. Fortunately, no such difficulties appear when we apply our technique of going through
the BF-ROM model, allowing us to derive a bound in Theorem 12 below.

Formally, the collision resistance of Merkle-Damg̊ard hash functions (MDHFs) in theO(ML,M)-
model is captured by the application GMDHF,M,L, which is defined via the following challenger
CMDHF,M,L: It initially chooses a public initialization vector (IV) a ∈ [M ] uniformly at random and
sends it to the attacker. The attacker wins if he submits y = (y1, . . . , yB) and y′ = (y′1, . . . , y

′
B′)

such that y 6= y′ and OB(y) = OB′(y′).
For attackers A = (A1,A2) in the following theorem, we make the simplifying assumption that

T > max(B,B′). We prove the following bound on the security of MDHFs in the AI-ROM:

Theorem 12. Application GMDHF,M,L is ((S, T,B), ε)-secure in the AI-RO(ML,M)-model, where

ε = Õ

(
ST 2

M
+
T 2

M

)
.

Proof. Observe that for the MDHFs application, T comb = T + max(B,B′) = O (T ). It suffices to
show that in the O := BF-RO(P,ML,M)-model, G := GMDHF,M,L is ((S, T ), ε̂)-secure for

ε̂ = O

(
PT

M
+
T 2

M

)
.

Then, by setting γ := 1/N and P := (S + logN)T comb = Õ (ST ) and applying Theorem 6, the
desired conclusion follows.
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Towards proving the bound in the BF-RO, let A = (A1,A2) be an (S, T )-attacker. With-
out loss of generality, assume A is deterministic, A2 makes distinct queries to non-prefixed co-
ordinates only, and, at the cost of one additional query, always queries its output. Let L =
{((a′1, x′1), y′1), . . . , ((a′P , x

′
P ), y′P )} be the points of O fixed by A1, and let Q = {((a1, x1), y1), . . . ,

((aT , xT ), yT )} the queries A2 makes, along with the corresponding answers.

Call a salt value a′ ∈ [M ] dirty if it appears in L. Moreover, call it reachable if there exists
a chain from the IV a chosen by the challenger, i.e., if there exist j1, . . . , jd such that aj1 = a,
O(aj1 , xj1) = aj2 , . . . ,O(ajd , xjd) = a′. Let Ri denote the set of values a′ is reachable after the first
i queries A2 makes to O. The set Ri is called dirty if some a′ ∈ Ri is dirty and clean otherwise.
Finally, for every i ∈ [T ], (ai, xi) is said to form a collision if ai ∈ Ri and O(ai, xi) ∈ Ri.

Assume without loss of generality that the queries of A2 contain the evaluation of OB(y) and
OB′(y′). The success probability of A2 is at most

T∑
i=1

(
P[(ai, xi) forms collision | Ri is clean] + P[Ri+1 is dirty | Ri is clean]

)
≤

T∑
i=1

(
i

M
+
P

M

)
= O

(
PT

N
+
T 2

N

)
.

Observe that if S and T are taken to be the circuit size, the bound in Theorem 12 becomes
vacuous for circuits of size M1/3, i.e., it provides security only well below the birthday bound and
may therefore seem extremely loose. Quite surprisingly, however, it is tight:

Theorem 13. There exists an (S, T )-attacker A = (A1,A2) against application G := GMDHF,M,L

in the O := AI-RO(ML,M)-model with advantage at least

AdvG,O(A) = Ω̃

(
ST 2

M
+

1

M

)
,

assuming ST 2 ≤M/2 and L ≥M .

The attack is loosely based on rainbow tables [32] and captured by the following (S, T )-attacker
A = (A1,A2):

• A1: Obtain the function table F : [M ]× [L]→ [M ] from O. For i = 1, . . . ,m := S/(3dlogLe),
proceed as follows:

1. Choose ai,0 ∈ [M ] uniformly at random.

2. Compute ai,`−1 ← F (`−1)(ai,0, 0), where ` := bT/2c.9

3. Find values xi 6= x′i such that ai,` := F (ai,`−1, xi) = F (ai,`−1, x
′
i); abort if no such values

exist.

Output the triples (ai,`−1, xi, x
′
i) for i = 1, . . . ,m.

• A2: Obtain the public initialization vector a from CMDHF,M,L and the m triples output by A1.
Proceed as follows:

9F (k) stands for the k-fold application of F , and, for the sake of concreteness, let [L] = {0, . . . , L− 1}.
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1. If a = ai,`−1 for some i, return (xi, x
′
i).

2. Otherwise, set ã← a and for j = 1, . . . , T , proceed as follows:

(a) Query ã← O(ã, 0).

(b) If ã = ai,`−1 for some i, return (0j‖xi, 0j‖x′i); otherwise return (0, 1).

Lemma 14. The advantage of the (S, T )-attacker A = (A1,A2) against G = GMDHF,M,L in the
O = AI-RO(ML,M)-model is

AdvG,O(A) ≥ ST 2

50M logL
+

1

M
,

assuming ST 2 ≤M/2.

Proof. First, observe that the probability that for one of the values ai,`−1, there is no collision
(xi, x

′
i) is at most

m · M !

MM
≤ m · e−(M−1)/2 ≤ S · e−M/2

if L = M and zero if L > M .

Let A := {ai,j | i = 1, . . . ,m, j = 0, . . . , `− 1} be the set of values encountered while building
the m chains during preprocessing. Observe that the attack always succeeds if ã ∈ A within the
first ` queries A2 makes to O, as in such a case ai,`−1 (for the appropriate i) can be reached in the
remaining ` queries.

For j = 0, . . . , `, let Ej be the event that ã ∈ A for the first time after the jth query to O. Then,
conditioned on a particular set A,

P[Ej ] =

(
1− |A|

M

)j
· |A|
M
≥
(

1− j|A|
M

)
· |A|
M
≥ |A|

2M
,

using Bernoulli’s inequality as well as the facts that j ≤ T , |A| ≤ m`, and m`T ≤ ST 2 ≤ M/2.
Since the events Ej are disjoint, the probability that ã ∈ A within the first ` queries is at least

`|A|
2M

≥ T |A|
4M

.

Putting the above together, one obtains

AdvG,O(A) ≥ E

[
T |A|
4M

]
− S · e−M/2 ,

and, hence, it only remains to compute the expected size of |A|. Towards this, following [32], let
Ei,j be the event that ai,j is new when discovered during preprocessing. Note that

P[Ei,j ] ≥ P[Ei,0 ∩ . . . ∩ Ei,j ]

≥
j∏

k=0

P[Ei,k | Ei,0 ∩ . . . ∩ Ei,k−1]

≥
(
M − i`
M

)j+1

≥ 1− 2m`2

M
≥ 1− ST 2

M
≥ 1

2
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since at most i` values are not new when ai,k is chosen. Therefore,

E[|A|] ≥
m∑
i=1

`−1∑
j=0

P[Ei,j ] ≥
m`

2
≥ ST

12dlogLe
.

Combining all of the above yields

AdvG,O(A) ≥ ST 2

49M logL
− S · e−M/2 ≥ ST 2

50M logL
.

The additional term 1/M is the probability that the attack’s output (0, 1) in case of failure is a
collision.

It should be noted that in practice hash functions use a fixed IV a, and, therefore—in contrast
to, e.g., function inversion, where usually the cost of a single preprocessing stage can be amortized
over many inversion challenges—the rather sizeable amount of preprocessing required by the attack
to just find a collision may not be justified. However, in some cases, the hash function used in a
particular application (relying on collision-resistance) is salted by prepending a random salt value
to the input. Such salting essentially corresponds to the random-IV setting considered here, and,
therefore, the attack becomes relevant again as one might be able to break many instances of the
application using a single preprocessing phase.

5 Computationally Secure Applications in the AI-ROM

This section illustrates the bit-fixing methodology on two typical computationally secure applica-
tions: (1) Schnorr signatures [50], where Theorem 6 can be applied since forging signatures is an
unpredictability application, and (2) trapdoor-function (TDF) key-encapsulation (KEM) [8], where
an approach slightly more involved than merely analyzing security in the BF-ROM and applying
Theorem 5 is required in order to get a tighter security reduction; see below.

(Please refer to Section B of the appendix for the definitions of digital signatures, KEMs, TDFs,
and other standard concepts used in this section.)

Fiat-Shamir with Schnorr. Let G be a cyclic group of prime order |G| = N . The Schnorr
signature scheme Σ = (Gen, Sig,Vfy) in the O(N2, N)-model works as follows:

• Key generation: Choose x ∈ ZN uniformly at random, compute y ← gx, and output sk := x
and vk := y.

• Signing: To sign a message m ∈ [N ] with key sk = x, pick r ∈ ZN uniformly at random,
compute a← gr, query c← O(a,m), set z ← r + cx, and output σ := (a, z).

• Verification: To verify a signature σ = (a, z) for a message m with key vk = y, query

c ← O(a,m), and check whether gz
?
= ayc. If the check succeeds and c 6= 0, accept the

signature, and reject it otherwise.

For attackers A = (A1,A2) in Theorem 15, which assesses the security of Fiat-Shamir with Schnorr
in the AI-ROM, we make the running time t and space complexity s of A2 explicit. Moreover, if
A is an attacker against GDS,Σ, there is an additional parameter qsig that restricts A2 to making at
most qsig signing queries.
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Theorem 15. Assume GDL,G for a prime |G| = N is ((S′, ∗, t′, s′), ε′)-secure, and let Σ = (Gen, Sig,
Vfy) be the Schnorr scheme. Then, for any T, qsig ∈ N, GDS,Σ is ((S, T, t, s, qsig), ε)-secure in the
AI-RO(N2, N)-model for

ε = Õ

(√
Tε′ +

Sqsig(qsig + T )

N

)
,

any S ≤ S′/Õ (T + qsig), t ≤ t′ − Õ (S(T + qsig)), and s ≤ s′ − Õ (S(T + qsig)).

Proof. Let P ∈ N be arbitrary, and set BF-RO := BF-RO(P,N2, N) and AI-RO := AI-RO(N2, N).
One first shows that GDS,Σ is ε-secure in the BF-RO-model for

ε ≤ 2 ·max

(
ε′ + E,

T

N
+
√
Tε′
)

for

E ≤
qsig(qsig + T + P + 1)

N
.

Then, by observing that T comb
GDS,Σ = qsig + T + 1 for digital signatures, setting γ := 1/N as well as

P := (S + logN)T comb
GDS,Σ , and applying Theorem 6 to the above, one gets a final security bound of

Õ

(√
Tε′ +

Sqsig(qsig + T )

N

)
Let A = (A1,A2) be an (S, T, t, s, qsig)-attacker against GDS,Σ in the BF-RO-model. Consider

attacker A′ = (A′1,A′2) against GDL,G:

• A′1: Run A1 internally, to get the list L of coordinates and values A1 would fix its oracle to as
well as the auxiliary information z that A1 would pass to A2. For every entry ((a,m), c) ∈ L,
compute the discrete logarithm r of a and store ((a,m), c, r) in enhanced list L′. Output
(z,L′).

• A′2: First, consider the following algorithm A(y, h1, . . . , hT ), which internally runs A2:

1. Run A2(z) and answer oracle queries made by A2 using the values h1, . . . , hT . When
A2 asks to see a signature of m, generate a simulated triple (a, c, z) (by choosing z and
c uniformly at random and setting a ← gzy−c) and return σ = (a, z). If A2 has made
an oracle query (a,m) or if there exists a tuple ((a,m), ·, ·) ∈ L′, halt and output (0, 0).
Otherwise, answer oracle queries for (a,m) by c.

2. When A2 terminates and outputs a valid forgery (m∗, σ∗) for σ∗ = (a∗, z∗) proceed as
follows:

(a) If ((a∗,m∗), c∗, r∗) ∈ L′, for some c∗ and r∗, compute x ← (z∗ − r∗)/c∗ and output
(−1, x).

(b) If (a∗,m∗) was the J th oracle query by A2, output (J, (σ∗,m∗)).

If no valid forgery is output, output (0, 0).

A′2, on input y and auxiliary input (z,L′), proceeds as follows: It picks uniformly random
values h1, . . . , hT , and runs A(y, h1, . . . , hT ; ρ), where ρ are the uniformly random coins for
use by A. Then:

– If A outputs (−1, x), A′2 outputs x.
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– If A outputs (0, 0), A′2 aborts.

– If A outputs (J, σ), A′2 chooses fresh (h′J , . . . , h
′
T ) and runs A(y, h1, . . . , hJ−1, h

′
J , . . . , h

′
T ;

ρ). If the output is (J, σ′) and hJ 6= h′J , A′2 extracts x := (z − z′)/(hJ − h′J) from
σ = (a, z) and σ′ = (a, z′) and outputs it. Otherwise, A′2 aborts.

Observe that for the above choice of P , A′ is an (S′, T ′, t′, s′)-attacker.

Consider the first execution of algorithm A(y, h1, . . . , hT ; ρ). The probability that the output
has J 6= 0 is at least ε′ − E, where

E ≤
qsig(qsig + T + P + 1)

N
.

Consider the following two cases:

• The probability that J = −1 is at least ε/2 − E. In that case, A′2 has success probability
ε′ ≥ ε/2− E, or, equivalently, ε ≤ 2(ε′ + E).

• The probability that J > 0 is at least ε/2. Following the forking lemma in [7, Lemma 1], the
probability that A′2 succeeds is at least

ε′ ≥ ε

2

(
ε

2T
− 1

N

)
,

which implies

ε ≤ 2 ·
(
T

N
+
√
Tε′
)
.

For comparison, note that the security of Schnorr signatures in the standard ROM is

O

(√
Tε′ +

qsig(qsig + T )

N

)
,

i.e., in the AI-ROM the second term worsens by a factor of S.

TDF Key Encapsulation. Let F be a trapdoor family (TDF) generator. TDF encryption is a
key-encapsulation mechanism Π = (Gen,Enc,Dec) that works as follows:

• Key generation: Run the TDF generator to obtain (f, f−1)← F , where f, f−1 : [N ]→ [N ].
Set the public key pk := f and the secret key sk := f−1.

• Encapsulation: To encapsulate a key with public key pk = f , choose x ∈ [N ], query
k ← O(x), compute y ← f(x), and output (c, k)← (y, k).

• Decapsulation: To decapsulate a ciphertext c = y with secret key sk = f−1, output k ←
O(f−1(y)).

Theorem 16 deals with the security of TDF key encapsulation in the AI-ROM. Once again, for
attackers A = (A1,A2), the running time t and space complexity s of A2 is made explicit.
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Theorem 16. Let Π be TDF encapsulation. If GTDF,F is ((S′, ∗, t′, s′), ε′)-secure, then, for any
T ∈ N, GKEM-CPA,Π is ((S, T, t, s), ε)-secure in the AI-RO(N,N)-model, where

ε = Õ

(
ε′ +

√
ST

N

)

and S = S′ − Õ (ST ), t = t′ − Õ (ttdf · T ), and s = s′ − Õ (ST ), where ttdf is the time required to
evaluate the TDF.

Moreover, GKEM-CCA,Π is ((S, T, t, s), ε)-secure with the same parameters, except that t = t′ −
Õ (ttdf · ST ).

Observe that the above security bound corresponds simply to the sum of the security of the TDF
and the security of O as a PRG (cf. Section 3); in the standard random-oracle model, the security
of TDF encryption is simply upper bounded by O (ε′) (cf. Section B.2).

An important point about the proof of Theorem 16 is that it does not follow the usual paradigm
of deriving the security of TDF encryption in the BF-ROM and thereafter applying Theorem 5
(for CPA/CCA security is an indistinguishability application). Doing so—as Unruh does for RSA-
OAEP [52] (but in an “asymptotic sense,” as explained in Footnote 5)—would immediately incur an
additive error of ST/P ≤ ST/t′, since the size of the list P is upper bounded by the TDF attacker
size t′. So the naive application Theorem 5 would result in poor exact security.

Instead, our tighter proof of Theorem 16 considers two hybrid experiments (one of which is the
original CPA/CCA security game in the AI-ROM). The power of the BF-ROM is used twice—with
different list sizes: (1) to argue the indistinguishability of the two experiments and (2) to upper
bound the advantage of the attacker in the second hybrid. Crucially, a reduction to TDF security is
only required for (1), which has an unpredictability flavor and can therefore get by with a list size
of roughly P ≈ ST ; observe that this is polynomial for efficient (S, T )-attackers. The list size for
(2) is obtained via the usual balancing between ST/P and the security bound in the BF-ROM.10

Proof. Let A = (A1,A2) be an (S, T, t, s)-attacker against GKEM-CPA,Π. Denote by H0 the ex-
periment in which A interacts with the challenger CKEM-CPA,Π (and oracle AI-RO). Consider the
following hybrid H1: It behaves as H0, but when A2 queries x to O, the oracle answers by ⊥. (The
challenge ciphertext is still created as c∗ ← (f(x),O(x) ⊕mb).) Observe that H0 and H1 behave
identically unless A2 queries x; denote this event by E .

Towards bounding P[E ], consider the following distinguisher D = (D1,D2) with oracle access to
an (N,N)-source:

• D1 works exactly as A1.

• D2, on input z, simulates the interaction between A2(z) and CKEM-CPA,Π, answering oracle
queries by either of them using its own oracle. If A2 queries x at some point, D2 outputs 1;
if A2 terminates without querying x, D2 outputs 0.

Let X be a uniform (N,N)-source. Observe that

P[E ] = P[DX2 (D1(X)) = 1]

and that D2 makes at most T + 1 queries to its oracle.

10A similar approach also works to improve the security bounds of [52] for RSA-OAEP in the AI-ROM.
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Let P := d(S+logN)(T+1)e. By the second part of Lemma 1, there exists a family {Yz}z∈{0,1}S
of convex combinations Yz of P -bit-fixing (N,N)-sources such that

P
[
DX2 (D1(X)) = 1

]
≤ 2 · P

[
DYD2(X)

1 (D2(X)) = 1
]

+N−1 .

Consider the following attacker against the TDF security of F :

• B1 internally runs z ← A1(X) on a uniform (N,N)-source X. Thereafter, it samples a P -
bit-fixing source Y ′ from the convex combination Yz corresponding to z and outputs (z,L),
where L is the list of the at most P input/output paris at which Y ′ is fixed.

• B2, on input (z,L), obtains a pair (f, y) from its challenger and internally runs A2(z). It
passes the public key pk := f to A2 and the challenge ciphertext (y, r) to A2, where r ∈ [N ]
is chosen uniformly at random.

When A2 makes an oracle query x, B2 answers it using lazy sampling but consistent with the
list L. Each time, B2 computes f(x) and if the result equals y, B2 outputs x to its challenger.

Note that unless x is in the pre-fixed list L, B perfectly simulates the experiment DYD2(X)

1 (D2(X))
to A. Hence,

P
[
DYD2(X)

1 (D2(X)) = 1
]
≤ SuccB(GTDF,F ) +

P

N
≤ ε′ +

P

N
.

Summarizing,

P[E ] ≤ 2

(
ε′ +

(S + logN)(T + 2)

N

)
. (4)

It remains to analyze the advantage of A in the hybrid experiment H1. To that end, consider
the following distinguisher D = (D1,D2) with oracle access to an (N,N)-source:

• D1 works exactly as A1.

• D2, on input z, simulates the interaction between A2(z) and CKEM-CPA,Π, answering oracle
queries by either of them using its own oracle, except that whenever A2 queries x, D2 provides
⊥ as the answer. At the end, D2 outputs whatever bit the challenger outputs.

Let P ∈ N be an arbitrary integer. By the first part of Lemma 1, there exists a family {Yz}z∈{0,1}S
of convex combinations Yz of P ′-bit-fixing (N,N)-sources such that∣∣∣P[DX2 (D1(X)) = 1

]
− P

[
DYD2(X)

1 (D2(X)) = 1
]∣∣∣ ≤ (S + logN) · T

P
+N−1 .

Consider now the experiment DYD2(X)

1 (D2(X)). Unless x is among the at most P positions at which
YD2(X) is fixed, the view of A2 is independent of the challenge bit b, and, hence,

P
[
DYD2(X)

1 (D2(X)) = 1
]
≤ 1

2
+
P

N
.

Choosing a list size P = Θ
(√

STN
)

allows to bound the advantage of A in H1 by

Õ

(√
ST

N

)
,

which dominates the second term in (4). The theorem follows.

The proof for CCA security is similar, except that the second stage B2 of the attacker against
the TDF security of F proceeds as follows:
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• B1 internally runs z ← A1(X) on a uniform (N,N)-source X. Thereafter, it samples a P -
bit-fixing source Y ′ from the convex combination Yz corresponding to z and outputs (z,L),
where L is the list of the at most P input/output paris at which Y ′ is fixed.

• B2, on input (z,L), obtains a pair (f, y) from its challenger. For every pair (x,O(x)) appearing
in list L, B2 computes y ← f(x) and records the pair (y,O(x)).

B2 then internally runs A2(z). It passes the public key pk := f to A2 and the challenge
ciphertext (y, r) to A2, where r ∈ [N ] is chosen uniformly at random.

Decryption queries y′ by A2 are answered as follows: If (y′, r′) has been recorded for some r′,
the answer is r′; otherwise, B2 chooses a random value r′, records (y′, r′), and returns r′.

When A2 makes an oracle query x, B2 answers it using lazy sampling but consistent with the
list L. Each time, B2 computes f(x) and if the result equals y, B2 outputs x to its challenger.

6 Salting Defeats Auxiliary Information

There exist schemes that are secure in the standard ROM but not so in the AI-ROM. A simple
example is if the random oracle itself is directly used as a collision-resistant hash function O : [N ]→
[M ] for some N and M : in the ROM, O is easily seen to be collision-resistant, while in the AI-ROM,
the first phase A1 of an attacker A = (A1,A2) (cf. Section 2.2) can simply leak a collision to A2,
which then outputs it, thereby breaking the collision-resistance property.

Section C.1 in the appendix briefly highlights two schemes with computational security where
the above phenomenon can be observed as well. The first one is a generic transformation of an
identification scheme into a signature scheme using the so-called Fiat-Shamir transform, and the
second one is the well-known full-domain hash.11

To remedy the situation with schemes such as those mentioned above, in this section we prove
that the security of any standard ROM scheme can be carried over to the BF-ROM by sacrificing
part of the domain of the BF-RO for salting. First, in Section 6.1, we analyze the standard way of
salting a random oracle by prefixing a randomly chosen (public) value to every oracle query. Second,
in Section 6.2, we also show how to adapt a technique by Maurer [42], originally used in the context
of key-agreement with randomizers, to obtain a more domain-efficient salting technique, albeit with
a longer salt value; the salt length can be reduced by standard derandomization techniques based
on random walks on expander graphs.

The salting method has the advantage of being applicable to every possible application that can
be proven secure in the standard ROM. Moreover, for most of the applications presented in the
preceding sections, salting with values from a sufficiently large space allows to recover the bounds
proved by analyzing the security of the (unsalted) applications in the ROM directly. Thus, in this
sense, salting provably defeats preprocessing. However, this comes at the price of assuming a much
larger domain of the random oracle (so that S is now a much tinier fraction of the random oracle
domain). Moreover, in many concrete cases we observe that by analyzing the salted scheme in the
BF-ROM directly and using Theorems 5 or 6, we might get considerably better security bounds for

11By virtue of Theorem 6, the existence of attacks in the AI-ROM against the above schemes obviously implies that
these schemes cannot be secure in the BF-ROM either. It is also relatively straight-forward to devise direct attacks
in the BF-ROM.
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salted applications than by using our general theorems.12 Nevertheless, for settings where obtaining
the smallest possible salt value is not critical, the simplicity and generality of our compilers offer a
convenient and seamless way to argue security in AI-ROM.

6.1 Standard Salting

The standard way of salting a scheme is to simply prepend a public salt value to every oracle query:
Consider an arbitrary application G with the corresponding challenger C. Let Csalt be the challenger
that is identical to C except that it initially chooses a uniformly random value a ∈ [K], outputs a to
A2, and prepends a to every oracle query. Denote the corresponding application by Gsalt. Observe
that the salt value a is chosen after the first stage A1 of the attack, and, hence, as long as the first
stage A1 of the attacker in the BF-ROM does not prefix a position starting with a, it is as if the
scheme were executed in the standard ROM. Moreover, note that the time and space complexities
s and t, respectively, of A2 increase roughly by P due to the security reduction used in the proof.

Theorem 17. For any P ∈ N, if an application G is ((S′, T ′, t′, s′), ε′)-secure in the RO(N,M)-
model, then Gsalt is ((S, T, t, s), ε)-secure in the BF-RO(P,NK,M)-model for

ε = ε′ +
P

K
,

S = S′ − Õ (P ), T = T ′, t = t′ − Õ (P ), and s = s′ − Õ (P ).

Proof. Fix N , M , K, as well as P . Set BF-RO := BF-RO(P,N,M) and RO := RO(N,M), and let
G be an arbitrary application and C be the corresponding challenger.

Fix an (S, T, t, s)-attacker A = (A1,A2) against Gsalt, and consider the following (S′, T ′, t′, s′)-
attacker A′ = (A′1,A′2) against G (expecting to interact with RO):

• A′1 internally runs A1 to obtain the list L of preset values and auxiliary information z and
outputs (z,L).

• A′2, on input (z,L), chooses a uniformly random value a ∈ [K]. If there exists a query
((a, x), y) ∈ L for some x ∈ [N ] and y ∈ [M ], A′2 halts. Otherwise, it internally simulates A2

on z as follows: A′2 forwards all messages between A2 and the challenger; oracle queries (a′, x)
by A2 are answered as follows: if a′ = a, query x is asked to RO and the answer is passed to
A2; else if (a′, x, y) ∈ L for some y ∈ [M ], y is passed to A2; otherwise, the query is answered
from a function table chosen uniformly at random.

It is easily seen that the view of A2 is the same in both the experiment where it interacts
directly as well as via Csalt with BF-RO and the experiment where it interacts via A′2 as well as via
C with RO, unless the salt chosen by A′2 happens to fall into the preset list L, which happens with
probability at most P/K.

Combining Theorem 17 with Theorems 5 and 6 from Section 2.2 yields the following corollaries:

Corollary 18. For any P ∈ N and every γ > 0, if an arbitrary application G is ((S′, T ′, t′, s′), ε′)-
secure in the RO(N,M)-model, then Gsalt is ((S, T, t, s), ε)-secure in the AI-RO(NK,M)-model for

ε = ε′ +
P

K
+

(S + log γ−1) · T comb
Gsalt

P
+ γ

12This, of course, is not surprising, since our general analysis anyway goes through the BF-ROM model, so one
would expect that direct analysis might be even better.

30



and any S = S′ − Õ (P ), T = T ′, t = t′ − Õ (P ), and s = s′ − Õ (P ), where T comb
Gsalt

is the combined
query complexity corresponding to Gsalt.

Corollary 19. For every γ > 0, if an unpredictability application G is ((S′, T ′, t′, s′), ε′)-secure in
the RO(N,M)-model, then Gsalt is ((S, T, t, s), ε)-secure in the AI-RO(NK,M)-model for

ε = 2ε+
2(S + log γ−1) · T comb

Gsalt

K
+ γ

and any S = S′/Õ(T comb
Gsalt

), T = T ′, t′ = t−Õ (P ), and s′ = s−Õ (P ), where P = (S+log γ−1)T comb
Gsalt

and where T comb
Gsalt

is the combined query complexity corresponding to Gsalt.

The following paragraphs briefly discuss (in asymptotic terms and omitting logarithmic factors)
how salting affects the security of the applications presented in the preceding sections. We also
provide examples to illustrate that directly analyzing a salted scheme in the BF-ROM can lead
to much better bounds than combining a standard-ROM security bound with one of the above
corollaries.

• For most of the basic applications from Section 3, large enough salt would yield AI-ROM
bounds comparable to those derived by the direct AI-ROM analysis of the corresponding
unsalted applications, and using even larger salt allows to match the much better bounds
derived in the standard ROM, justifying our claim that salt defeats preprocessing. As an
example, consider the one-way function application. It is easily seen that in the standard
ROM, the security of the application is T/min(N,M). Combined with Corollary 19, one
obtains a final security bound of

O

(
ST

K
+

T

min(N,M)

)
.

Setting K := min(N,M), we recover the AI-ROM bound in Theorem 7, while setting K =
Smin(N,M), we even get the same security as in the ROM (of course, on a much larger
domain). However, by inspecting the proof of Theorem 7, one can easily see that for the
salted OWF application (i.e., given a randomly chosen a, finding a preimage under O(a, ·) of
y = O(a, x) for a randomly chosen x), one can easily prove a considerably better bound of

O

(
ST

KN
+

T

min(N,M)

)
via a direct analysis in the BF-ROM and then applying Theorem 6.13 Hence, it now suffices
to set K = S in order to get the same bound as in the traditional ROM. Similar phenomena
can be observed for PRGs, PRFs, wPRFs, and MACs.

For Merkle-Damgard hash functions (MDHFs), using salting, one gets a final bound in the

order of T 2

M + ST
K . Setting K = M to match the salt length already used in this application,

we get a final bound on the order of
T 2

M
+
ST

M
.

This seems to improve the bound T 2/M + ST 2/M resulting from the direct analysis in the
BF-ROM (see Theorem 12). Note, however, that with this value of K we now use a ran-
dom oracle from M3 to M instead of M2 to M , while still using B evaluations of this more

13Indeed, this bound for salted OWFs was already obtained Dodis et al. [19] using the compression technique.
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compressing oracle to process a B-block message (as the salt is now appended to each eval-
uation, instead of used as initialization vector at the beginning). In particular, for such a
more compressing oracle from M3 to M , the traditional MDHF chaining would only use B/2
evaluations, increasing the speed by a factor of 2. Thus, it is not immediately clear if tighter
(provable) exact security is worth this efficiency slowdown.

• For the computationally secure applications from Section 5, the situation is as follows:

(1) For Schnorr signatures, combining the standard ROM bound (cf. Theorem 27 in Section B.1
of the appendix) with Corollary 19 and using K := N yields a final security bound of

√
Tε′ +

(qsig + S)(qsig + T )

N
,

which actually improves over the bound obtained by the direct analysis (cf. Theorem 15),
again, however, at the cost of requiring a larger random-oracle domain. As with the basic
applications, using even larger salt K := SN , one can recover the standard-ROM bound. By
analyzing salted Schnorr signatures in the BF-ROM directly, one can prove a bound of

T + q2
sig

N
+
√
Tε′ +

qsigS(qsig + T )

KN
,

and, therefore, setting K := S is sufficient to match the bound in the standard ROM.

(2) For TDF encryption, the indirect approach using the standard ROM bound (cf. Theorem 28
in Section B.2 of the appendix), Corollary 18, and, once again, K := N results in the same
bounds as the direct analysis. Choosing the salt value from a larger domain or analyzing the
salted application in the BF-ROM directly will not yield further improvements, as the error
term ST/P dominates the security bound.

• The applications mentioned in Section C.1, i.e., applications insecure in the AI-ROM, can be
endowed with salt to obtain security bounds:

(1) For collision-resistant hashing, by combining the standard-ROM bound of T 2/M with
Corollary 19 and setting K := M , one obtains a final security bound of

T 2

M
+
ST

M

in the AI-ROM. Increasing the size of the salt space to K := SM results in the standard ROM
bound. A direct analysis will not yield improved bounds since A1 can always leak collisions
for Ω (P ) salt values, and, hence the above bound is optimal.

(2) Combining the standard-ROM bound for signature schemes based on ID schemes [1] of
(roughly)

Tε′ +
qsig(qsig + T )

N
,

where ε′ refers to the security of the underlying ID scheme, with Corollary 19, one obtains
final security

Tε′ +
(qsig + S)(qsig + T )

N
,

using salt space [N ]. As with Schnorr signatures, by setting K := SN , one recovers the
standard-ROM bound. Unlike Schnorr signatures, however, for the general transform there
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is no security improvement to be achieved by directly analyzing the salted application in the
BF-ROM since A1 can launch the attack described in Section C.1 for Ω (P ) salt values.

(3) Combining the standard-ROM bound for full-domain hash signatures [16] of (roughly)

qsig · ε′,

where ε′ refers to the TDF-security of RSA (cf. Section B.2 of the appendix), with Corollary 19,
one obtains final security

qsig · ε′ +
S(qsig + T )

N

using salt space [N ]. For similar reasons as above, a direct analysis of the salted scheme in
the BF-ROM will not yield improved security bounds.

6.2 Improved Salting

One way to think of salting is to view the function table of BF-RO(KN,M) as a (K ×N)-matrix
and let the challenger in the salted application randomly pick and announce the row to be used
for oracle queries. However, K has to be around the same size as N to obtain meaningful bounds.
In this section, based on a technique by Maurer [42], we provide a more domain-efficient means
of salting, where the security will decay exponentially (as opposed to inverse linearly) with the
domain expansion factor K, at the cost that each evaluation of the derived random oracle will cost
K evaluations (as opposed to 1 evaluation) of the original random oracle.

Consider an arbitrary application G with corresponding challenger C. Let Csalt′ be the challenger
works as follows: It initially chooses a uniformly random value a = (a1, . . . , aK) ∈ [N ]K and outputs
a to A2. Then, it internally runs C, forwards all messages between the attacker and C, but answers
the queries x ∈ [N ] that C makes to the oracle by

K∑
i=1

BF-RO.main(i, x+ ai) ,

where addition is in ZN and ZM , respectively. In other words, the function table of BF-RO is
arranged as a K ×N matrix, the ith row is shifted by ai, and queries x are answered by computing
the sum modulo M of all the values in the xth column of the shifted matrix, denoted Fa. Denote
the corresponding application by Gsalt′ .

Theorem 20. For any P ∈ N, if an application G is ((S′, T ′, t′, s′), ε′)-secure in the RO(N,M)-
model, then Gsalt′ is ((S, T, t, s), ε)-secure in the BF-RO(P,NK,M)-model for

ε′ = ε+N ·
(

P

KN

)K
,

S = S′ − Õ (P ), T = T ′, t = t′ − Õ (P ), and s = s′ − Õ (P ).

In particular, assuming P ≤ KN/2, settingK = O(logN) will result in additive errorN(P/NK)K =
o( 1
N ) and domain size O(N logN). But if P ≤ N1−Ω(1), setting K = O(1) will result in the same

additive error o( 1
N ) in the original domain of near-optimal size O(N). Hence, for most practical pur-

poses, the efficiency slowdown K (in both the domain size and the complexity of oracle evaluation)
is at most O(logN) and possibly constant.
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Proof. Fix N , M , K, as well as P . Set BF-RO := BF-RO(P,NK,M) and RO := (N,M), and let G
be an arbitrary application and C be the corresponding challenger.

Fix an (S, T, t, s)-attackerA = (A1,A2) against Gsalt′ . Consider the following (S, T, t, s)-attacker
A′ = (A′1,A′2) against G (expecting to interact with RO):

• A′1 internally runs A1 to obtain the list L of preset values and auxiliary information z, and
outputs (z,L).

• A′2, on input (z,L), chooses a uniformly random value a ∈ [N ]K . If (1, x + a1), (2, x +
a2), . . . , (K,x + aK) are all prefixed coordinates in L for some x, then A′2 halts. Otherwise,
A′2 simulates A2 on z as follows: A′2 forwards all messages between A2 and the challenger.
Moreover, it maintains a partial shifted function table Fa, that initially contains the points in
L.

Whenever A2 makes a query (i, x− ai), A′2 proceeds as follows:

– If i is the only row j for which coordinate (j, x) is undefined in Fa, A′2 queries y ←
RO.main(x) and sets Fa[(i, x)]← y −

∑
j 6=i Fa[(j, x)].

– Otherwise, Fa[(i, x)] is set to a uniformly random value.

In either case, A′2 answers the query by Fa[(i, x)].

The view of A2 is the same in both the experiment where it interacts directly as well as via
Csalt′ with BF-RO and the experiment where it interacts via A′2 as well as via C with RO, unless the
salt vector chosen by A2 happens to lead to a column whose entries are all covered in L. Using a
simple union bound over all columns, this happens with probability at most

N

(
P1 · · ·PK
NK

)
≤ N

(
P

KN

)K
,

where the inequality follows from the relationship between the geometric and arithmetic means, and
Pi is the number of prefixed positions in the ith row of BF-RO’s function table, and, in particular,∑K

i=1 Pi = P .

Combining the above results with those in Section 2.2 yields the following corollaries:

Corollary 21. For any P ∈ N and every γ > 0, if an application G is ((S′, T ′, t′, s′), ε′)-secure in
the RO(N,M)-model, then Gsalt′ is ((S, T, t, s), ε)-secure in the AI-RO(NK,M)-model for

ε = ε′ +N ·
(

P

KN

)K
+

(S + log γ−1) · T comb
Gsalt′

P
+ γ

and any S = S′ − Õ (P ), T = T ′, t = t′ − Õ (P ), and s = s′ − Õ (P ), where T comb
Gsalt′

is the combined
query complexity corresponding to Gsalt′.

Corollary 22. For every γ > 0, if an application G is ((S′, T ′, t′, s′), ε′)-secure in the RO(N,M)-
model, then Gsalt′ is ((S, T, t, s), ε)-secure in the AI-RO(NK,M)-model for

ε = 2ε+ 2N ·

(
(S + log γ−1)T comb

Gsalt′

KN

)K
and any S = S′/Õ(T comb

Gsalt′
), T = T ′, t′ = t−Õ (P ), and s′ = s−Õ (P ), where P = (S+log γ−1)T comb

Gsalt′

and where T comb
Gsalt′

is the combined query complexity corresponding to Gsalt′.
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Applications. Concerning the applications from Sections 3 to 5, using the improved corollaries
above, one can prove bounds similar to those obtained at the end of Section 6.1. The advantage of
the domain-efficient salting is that one can get by with a smaller domain. However, the number of
queries any application makes increases by a factor of K. As an example, consider MDHFs: The
domain requirements are now lower as with standard salting, while the number of evaluations of
the underlying random oracles increases significantly, which is undesirable in practical applications
of the Merkle-Damg̊ard construction.

More randomness-efficient salting. Note that Csalt′ requires O(K logN) random bits to gen-
erate a. Although we never envision the value to K to be super-logarithmic, when K = logN , it
would take O(log2N) random bits to generate a. We observe that the number of required random
bits can be reduced to logN + O(K) via standard derandomization techniques, which brings the
total randomness complexity to O(logN) even when K = logN . Specifically, instead of drawing
a1, . . . , aK uniformly and randomly, we generate them via a random walk over an expander graph.
We provide the details below.

Let A be the adjacency matrix of a d-regular graph over [N ] vertices where d is a constant. Let
d = λ1 ≥ · · · ≥ λN be the eigenvalues of A and suppose |λi| ≤ d · c for 2 ≤ i ≤ N , where c < 1 is a
constant. Given A, the modified Csalt′ is the same as before except instead of choosing a uniformly
over [N ]K , we pick a1 uniformly over [N ] then perform a K − 1-step random walk over A and let
ai be the i-th node on this walk.

Theorem 23. For any P ∈ N, if an application G is ((S′, T ′, t′, s′), ε′)-secure in the RO(N,M)-
model, then G′salt′ is ((S, T, t, s), ε)-secure in the BF-RO(P,NK,M)-model for

ε = ε′ +N ·

(√
P

KN
+ c

)K
,

S = S′ − Õ (P ), T = T ′, t = t′ − Õ (P ), and s = s′ − Õ (P ).

For P ≤ KN/2, K = O(logN) and sufficiently small c, the additive error term N ·(
√
P/(KN)+

c)K = o( 1
N ), and the public seed required by the challenger is now only O(logN).

Proof. The proof is similar as Theorem 20. In particular, the view of A2 is the same in both the
experiment where it interacts directly with BF-RO and the experiment where it interacts via A′2
with RO, unless the salt chosen by A2 happens to lead to a column whose entries are all covered
in L. For an arbitrary fixed column, let BADi be the set of shifts such that its i-th entry will be
covered by L under those shifts. Note that

∑K
i=1 |BADi| ≤ P . We claim:

Claim 24. P[∀i ∈ [K], ai ∈ BADi] ≤ (
√
P/(KN) + c)K .

In other words, for any fixed column, the probability that all of its entries are all covered in
L is at most (

√
P/(KN) + c)K . By a union bound, we can conclude A2 halts with probability at

most N(
√
P/(KN) + c)K and obtain the desired conclusion. The proof of Claim 24 is standard

and included in Appendix C.2 for completeness.

Note that by combining Theorem 23 with Theorems 5 or 6, one can obtain corollaries similar
to Corollaries 21 and 22, but with improved randomness complexity for generating salt.
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A Decomposing High-Entropy Sources

Let X be distributed uniformly over [M ]N and Z := f(X), where f : [M ]N → {0, 1}S is an arbitrary
function. Fix an arbitrary z ∈ {0, 1}S and let Xz be the distribution of X conditioned on f(X) = z.
Let Sz = N logM −H∞(Xz) be the min-entropy deficiency of Xz. Let γ > 0 be arbitrary.

Claim 2. For every δ > 0, Xz is γ-close to a convex combination of finitely many (P ′, 1− δ)-dense
sources for

P ′ =
Sz + log 1/γ

δ · logM
.

Proof. For ease of notation, let S := Sz and X := Xz. Suppose X is not (1− δ)-dense, as otherwise
there is nothing to show. Let Y := X and I be the largest subset such that there exists a yI ,

P[YI = yI ] > 2−(1−δ)·|I|·logM . (5)

Let Y ′ be the distribution of Y conditioned on YI = yI .

Claim 25. Y ′
I

is (1− δ)-dense.

Proof. Suppose Y ′
I

is not (1− δ)-dense. Then, there exists a non-empty set J ⊆ I and yJ such that

P[Y ′J = yJ ] = P[YJ = yJ | YI = yI ] > 2−(1−δ)·|J |·logM .

The set I ∪ J now forms a subset for which

P[YI∪J = yI∪J ] = P[YI = yI ∧ YJ = yJ ]

= P[YI = yI ] · P[YJ = yJ | YI = yI ]

> 2−(1−δ)|I|·logM · 2−(1−δ)|J |·logM

= 2−(1−δ)|I∪J |·logM ,

since I and J are disjoint. This, however, contradicts the maximality of I.

Claim 26. |I| ≤ S/(δ · logM).
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Proof. On the one hand, H∞(Y ) ≥ N logM − S implies that for any yI ,

P[YI = yI ] =
∑

yĪ∈[M ]N−|I|

P[YI = yI ∧ YĪ = yĪ ]

≤ 2(N−|I|)·logM · 2−(N logM−S)

= 2−(|I|·logM−S),

and, hence, H∞(YI) ≥ |I| · logM − S. On the other hand, because YI is not (1 − δ)-dense,
H∞(YI) < (1 − δ) · |I| · logM . Combining the above two inequalities, one obtains the desired
conclusion.

Hence, Y ′ is an (S/(δ logM), 1 − δ)-dense source. Set Y now to be Y conditioned on YI 6= yI
and recursively decompose Y as long as

P[X ∈ supp(Y )] > γ . (6)

Observe that H∞(Y ) ≥ N logM − (S + log 1/γ) at any point in this decomposition process since

P[Y = y] = P[X = y | X ∈ supp(Y )]

≤ P[X = y]

P[X ∈ supp(Y )]

≤ 2−(N logM−S)

γ
= 2−(N logM−(S+log 1/γ)) .

Note that |supp(Y )| decreases in every step, and since supp(X) is finite, after finitely many steps,
this process ends with a Yfinal with P[X ∈ supp(Yfinal)] ≤ γ. Hence, X is a convex combination of
finitely many ((S + log 1/γ)/(δ logM), 1 − δ)-dense sources and Yfinal.

14 This implies that X is
γ-close to a convex combination of ((S + log 1/γ)/(δ logM), 1 − δ)-dense sources (e.g., the convex
combination obtained by replacing Yfinal by the uniform distribution).

B Standard-ROM Definitions and Security

B.1 Fiat-Shamir with Schnorr

Digital signature schemes. A digital signature scheme is a triple of algorithms Σ = (Gen,Sig,Vfy),
where Gen generates a signing key sk and a verification key vk, Sig takes a signing key sk and a
message m and outputs a signature σ, and Vfy takes a verification key vk, a message m, and a
signature σ and outputs a single bit, indicating whether σ is valid. In the O-oracle model, all three
algorithms may make calls to O.main.

The application of digital signatures GDS,Σ is defined via the following challenger CDS,Σ, which
captures the (standard) EUF-CMA security of a digital signature scheme: Initially, CDS,Σ generates
a key pair (sk, vk) ← Gen and passes vk to the attacker. Then, the attacker may repeatedly
submit signature queries m to the challenger, who answers them by the corresponding signature
σ ← Sigσ(m). In the end, the challenger outputs 1 if and only if the attacker submits a pair (m∗, σ∗)
with Vfyvk(m∗, σ∗) = 1 and such that no signature query was asked for m∗.

14The bound on |I| is easily adapted to account for entropy deficiency S + log 1/γ instead of S.
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The discrete-logarithm problem. The discrete-logarithm problem in a group G = 〈g〉 can be
phrased as an application GDL,G, defined via the challenger CDL,G that picks a uniformly random
x ∈ Z|G|, passes y := gx to the attacker, and outputs 1 if and only if the attacker finds x. Observe

that GDL,G is a standard-model application.

Schnorr signatures in the standard ROM. In the standard ROM, using the forking lemma as
stated by Bellare and Neven [7], one can show the following security bound for Schnorr signatures.

Theorem 27. Assume GDL,G for |G| = N is ((S, ∗, t′, s′), ε′)-secure, and let Σ = (Gen, Sig,Vfy) be
the Schnorr scheme. Then, GDS,Σ is ((S, T, t, s, qsig), ε)-secure in the RO(N2, N)-model for

ε = O

(√
Tε′ +

qsig(qsig + T )

N

)
,

where t = Ω(t′) and s = Ω(s′).

B.2 TDF Encryption

Key-encapsulation mechanisms. A key-encapsulation mechanism (KEM) is a triple of algo-
rithms Π = (K,E,D), where K generates a public key pk and a secret key sk, E takes a public
key pk and outputs a ciphertext c and a key k, and D takes a secret key sk and a ciphertext c and
outputs a key k. In the O-oracle model, all three algorithms may make calls to O.main.

The application corresponding to CPA security for KEMs GKEM-CPA,Π is defined via the following
challenger CKEM-CPA,Π, which captures the (standard) CCA security of a KEM scheme: Initially,
CKEM-CPA,Π generates a key pair (pk, sk) ← K and passes pk to the attacker. Then, the challenger
chooses a random bit b as well as a random key k1, computes (c, k0)← Epk, and returns the challenge
(c, kb). In the end, the challenger outputs 1 if and only if the attacker submits a bit b′ with b′ = b.

To capture CCA security, one consideres the application CKEM-CCA,Π defined by the challenger
CKEM-CCA,Π that proceeds as CKEM-CPA,Π, except that the attacker gets to ask decryption queries c′,
which the challenger answers with k′ ← Dsk(c′), provided c′ 6= c.

Trapdoor functions. The inversion problem for a trapdoor function generator F can be phrased
as an application GTDF,F , defined via the challenger CTDF,F that generates (f, f−1) ← F , picks
a random x, passes y := f(x) to the attacker, and outputs 1 if and only if the attacker finds x.
Observe that GTDF,F is a standard-model application.

The security of TDF key encapsulation in the standard ROM. In the standard ROM,
one can show the following security bound for TDF encryption.

Theorem 28. Let Π be TDF key encapsulation. If GTDF,F is ((S′, ∗, t′, s′), ε′)-secure, then GKEM-CPA,Π

is ((S, T, t, s), ε)-secure in the RO(N,N), where

ε = O
(
ε′
)

and S = S′, t = Ω(t′), and s = Ω(s′).
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C Salting: Deferred Material

C.1 Schemes Insecure in the AI-ROM

Fiat-Shamir from identification schemes. Abdalla et al. [1] showed how to—using the Fiat-
Shamir paradigm—generically build signature schemes in the ROM from identification schemes (ID
schemes). In a nutshell, ID schemes set up public and private keys, and the party holding the
private key, the prover, identifies themselves to the party holding the public key, the verifier, by
executing a commit-challenge-response protocol, where first the prover sends a “commitment” a and
then answers a subsequent challenge c form the verifier by a response z, which the verifier either
accepts or rejects. The main idea behind Fiat-Shamir signatures is the following: The singing and
verification keys of the signature scheme are the private and public keys, respectively, of the ID
scheme. To sign a message m, generate a according to the ID scheme, query the random oracle O
to generate the challenge c ← O(a,m), and compute the corresponding response z. The signature
for m will be σ = (a, z). Verification works in the obvious way.

A simple attack against the generic transformation is the following: An ID scheme can be
modified to always accept (a, c, z) = (a∗, 0N , z∗) for some (arbitrary) a∗ and z∗ while remaining
secure, since it is unlikely that the verifier asks challenge 0N . However, the signature scheme
resulting from applying the above transformation to the modified ID scheme is insecure in the
AI-ROM since A1 can (with high probability) find a message m∗ such that O(a∗,m∗) = 0N and
therefore forge a signature σ = (a∗, z∗) for m∗. The attack trivially extends to P -BF-ROM (for
P = 1) by simply setting O(a∗,m∗) = 0N .

Full-domain hash. The full-domain hash is essentially the concatenation of the random oracle
O with a trapdoor permutation (f, f−1): Sig(m) = f−1(O(m)). That is, in order to sign a message
m, the signer first computes d ← O(m) and then inverts d with a trapdoor permutation using hte
secret key f−1 (verification is obvious using public key f). Similarly to the application of collision-
resistant hashing, full-domain hash is insecure in the AI-ROM (for any f) because one can leak two
messages m and m′ with O(m) = O(m′) to the attacker, who then gets a signature for one of them,
which is obviously also a signature for the other. The attack trivially extends to P -BF-ROM (for
P = 2) by simply making setting O(m) = O(m′).

C.2 More Randomness-Efficient Salting

Claim 24. P[∀i ∈ [K], ai ∈ BADi] ≤ (
√
P/(KN) + c)K .

Proof. Let W = 1
d ·A be the transition matrix. Let p1 = 1/N ∈ RN denote our initial distribution

of our random walk. For BADi, we define diagnole matrix Bi whose (j, j)-entry (j ∈ [N ]) is 1 if
j ∈ BADi, otherwise 0. Note that,

P[∀i ∈ [K], ai ∈ BADi] = 1TBKWBK−1W . . .B1p1 .

For a matrix M , let ||M ||2 = maxv 6=0
||Mv||2
||v||2 denote the matrix norm of M . We claim that for

i ∈ [K],

||BiW ||2 ≤
√
|BADi|
N

+ c . (7)
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Given (7), we can finish the proof. As p1 = Wp1 and ||M1M2||2 ≤ ||M1||2||M2||2, we have that

1TBKWBK−1W . . .B1p1 = 1T (BKW )(BK−1W ) . . . (B1W )p1

≤ ||1T ||2 ·Πi∈[K]||BiW ||2 · ||p1||

≤ Πi∈[K]

(√
|BADi|
N

+ c

)

≤

(√
P

KN
+ c

)K
,

where the last inequality is because f(y) = ln(
√
y/N + c) is concave for y ≥ 0.

Now we prove (7). Given any non-zero vecotr v = c′1 + v′ where 1T v′ = 0. As W1 = 1,

||BiWv||2 = ||c′BiW1 +BiWy|| = ||c′Bi1 +BiWy||2 ≤ ||c′Bi1||2 + ||BiWy||2 .

Note that ||v||2 =
√

(c′
√
N)2 + ||v′||22. Let ψ1 = 1, ψ2, . . . , ψN be W ’s eigenvectors and w1, . . . , wN

be correspdoning eigenvalues. Note that wi = λi/d ≤ c for 2 ≤ i ≤ N .

||Wy||2 =

√ ∑
2≤i≤N

(ψTi y)2w2
i ≤ c ·

√∑
i≥2

(ψTi y)2 = c · ||y||2 .

Therefore ||BiWy||2 ≤ ||Bi||2||Wy||2 ≤ c||y||2 ≤ c||v||2. Moreover, ||c′Bi1||2 = c′
√
|BADi| ≤√

BADi
N ||v||2. We conclude

||BiWv||2 ≤

(√
|BADi|
N

+ c

)
||v||2 ,

and the matrix norm of BiWv is at most

√
|BADi|
N + c.
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