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Abstract. A secret-sharing scheme realizes the forbidden graph access
structure determined by a graph G = (V,E) if a pair of vertices can
reconstruct the secret if and only if it is an edge in G. Secret-sharing
schemes for forbidden graph access structures of bipartite graphs are
equivalent to conditional disclosure of secrets protocols, a primitive that
is used to construct attributed-based encryption schemes.
We study the complexity of realizing a forbidden graph access struc-
ture by linear secret-sharing schemes. A secret-sharing scheme is linear
if the reconstruction of the secret from the shares is a linear mapping. In
many applications of secret-sharing, it is required that the scheme will
be linear. We provide efficient constructions and lower bounds on the
share size of linear secret-sharing schemes for sparse and dense graphs,
closing the gap between upper and lower bounds: Given a sparse graph
with n vertices and at most n1+β edges, for some 0 ≤ β < 1, we con-
struct a linear secret-sharing scheme realizing its forbidden graph access
structure in which the total size of the shares is Õ(n1+β/2). We pro-
vide an additional construction showing that every dense graph with n
vertices and at least

(
n
2

)
− n1+β edges can be realized by a linear secret-

sharing scheme with the same total share size. Furthermore, for the above
graphs we construct a linear secret-sharing scheme realizing their forbid-
den graph access structure in which the size of the share of each party is
Õ(n1/4+β/4).
We prove matching lower bounds on the share size of linear secret-sharing
schemes realizing forbidden graph access structures. We prove that for
most forbidden graph access structures, the total share size of every linear
secret-sharing scheme realizing these access structures is Ω(n3/2); this
shows that the construction of Gay, Kerenidis, and Wee [CRYPTO 2015]
is optimal. Furthermore, we show that for every 0 ≤ β < 1 there exist
a graph with at most n1+β edges and a graph with at least

(
n
2

)
− n1+β

edges, such that the total share size in any linear secret-sharing scheme
realizing these forbidden graph access structures is Ω(n1+β/2). Finally,
we show that for every 0 ≤ β < 1 there exist a graph with at most n1+β
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edges and a graph with at least
(
n
2

)
−n1+β edges, such that the size of the

share of at least one party in any linear secret-sharing scheme realizing
these forbidden graph access structures is Ω(n1/4+β/4). This shows that
our constructions are optimal (up to poly-logarithmic factors).

Key words. Secret-sharing, share size, monotone span program, conditional dis-
closure of secrets.

1 Introduction

A secret-sharing scheme, introduced by [14, 43, 35], is a method in which a dealer,
which holds a secret, can distribute shares to a set of parties, enabling only prede-
fined subsets of parties to reconstruct the secret from their shares. These subsets
are called authorized, and the family of authorized subsets is called the access
structure of the scheme. The original motivation for defining secret-sharing was
robust key management schemes for cryptographic systems. Nowadays, they are
used in many secure protocols and applications, such as multiparty computa-
tion [11, 21, 23], threshold cryptography [27], access control [41], attribute-based
encryption [34, 48], and oblivious transfer [44, 47].

In this paper we study secret-sharing schemes for forbidden graph access
structures, first introduced by Sun and Shieh [46]. The forbidden graph access
structure determined by a graph G = (V,E) is the collection of all pairs of
vertices in E and all subsets of vertices of size greater than two. Secret-sharing
schemes for forbidden graph access structure determined by bipartite graphs are
equivalent to conditional disclosure of secrets protocols. Following [7, 8], we study
the complexity of realizing a forbidden graph, and provide efficient constructions
for sparse and dense graphs.

A secret-sharing scheme is linear if the shares are a linear function of the
secret and random strings that are taken from some finite field. Equivalently, a
scheme is linear if the reconstruction of the secret from the shares is a linear map-
ping. A linear secret-sharing can be constructed from a monotone span program,
a computational model which introduced by Karchmer and Wigderson [37], and
every linear secret-sharing scheme implies a monotone span program. See [4] for
discussion on equivalent definitions of linear secret-sharing schemes. In many of
the applications of secret-sharing mentioned above, it is required that the scheme
will be linear. For example, Cramer, Damg̊ard, and Maurer [23] construct gen-
eral secure multiparty computation protocols, i.e., protocols which are secure
against an arbitrary adversarial structure, from any linear secret-sharing scheme
realizing the access structure in which a set is authorized if and only if it is
not in the adversarial structure. Furthermore, it was shown by Attrapadung [3]
and Wee [49] that linear secret-sharing schemes realizing forbidden graphs ac-
cess structures are a central ingredient for constructing public-key (multi-user)
attribute-based encryption. These applications motivate the study in this paper
of linear secret-sharing schemes for forbidden graph access structures.
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1.1 Related Work

Secret-Sharing Schemes for Arbitrary Access Structures. Secret-sharing
schemes were introduced by Shamir [43] and Blakley [14] for the threshold case,
and by Ito, Saito, and Nishizeki [35] for the general case. Threshold access struc-
tures, in which the authorized sets are all the sets containing at least t parties
(for some threshold t), can be realized by secret-sharing schemes in which the
size of each share is the size of the secret [14, 43]. There are other access struc-
tures that have secret-sharing schemes in which the size of the shares is small,
i.e., polynomial (in the number of parties) share size [12, 13, 17, 37]. In particular,
Benaloh and Leichter [12] proved that if an access structure can be described
by a small monotone formula, then it has an efficient secret-sharing scheme. Im-
proving on this result, Karchmer and Wigderson [37] showed that if an access
structure can be described by a small monotone span program, then it has an
efficient secret-sharing scheme.

The best known schemes for general access structures (e.g., [35, 13, 17, 37]) are
highly inefficient, i.e., they have total share size of 2O(n) (where n is the number
of parties). The best known lower bound on the total share size of secret-sharing
schemes realizing an access structure is Ω(n2/ log n) [25, 24]; this lower bound is
very far from the upper bound.

Graph Access Structures. A secret-sharing scheme realizes the graph access
structure determined by a given graph if every two vertices connected by an
edge can reconstruct the secret and every independent set in the graph does not
get any information on the secret. The trivial secret-sharing scheme for realizing
a graph access structure is sharing the secret independently for each edge; this
results in a scheme whose total share size is O(n2) (times the length of the
secret, which will be ignored in the introduction). This can be improved – every
graph access structure can be realized by a linear secret-sharing scheme in which
the total size of the shares is O(n2/ log n) [29, 19]. Graph access structures have
been studied in many works, such as [20, 18, 45, 16, 15, 9, 26, 7, 8]. In particular,
Beimel, Farràs, and Mintz [7] showed that a graph with n vertices that contains(
n
2

)
− n1+β edges for some constant 0 ≤ β < 1 can be realized by a scheme in

which the total share size is Õ(n5/4+3β/4).

Forbidden Graph Access Structures. Gay, Kerenidis, and Wee [32] have
proved that every forbidden graph access structure can be realized by a lin-
ear secret-sharing scheme in which the total size of the shares is O(n3/2). Liu,
Vaikuntanathan, and Wee [38] have recently shown that every forbidden graph
access structure can be realized by a non-linear secret-sharing scheme in which
the total size of the shares is n1+o(1).

Beimel, Farràs, and Peter [8] showed that any graph with n vertices and with
at least

(
n
2

)
− n1+β edges (for some constant 0 ≤ β < 1

2 ) can be realized by a

linear secret-sharing scheme in which the total share size is O(n7/6+2β/3). They
also showed that if less than n1+β edges are removed from an arbitrary graph
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that can be realized by a secret-sharing scheme with total share size m, then
the resulting graph can be realized by a secret-sharing scheme in which the total
share size is O(m+ n7/6+2β/3). These results are improved in this paper.

Secret-sharing schemes for graph access structures and forbidden graph ac-
cess structures have similar requirements, however, the requirements for graph
access structures are stronger, since in graph access structures independent sets
of vertices should not get any information on the secret. Given a secret-sharing
scheme for a graph access structure, we can construct a secret-sharing scheme
for the forbidden graph access structure: We can independently share the se-
cret using the scheme for the graph access structure and the 3-out-of-n scheme
of Shamir [43]. The total share size of the new scheme is slightly greater than
the former. Therefore, upper bounds on the share size for graph access struc-
tures imply the same upper bounds on the share size for forbidden graph access
structures.

Conditional Disclosure of Secrets. Gertner et al. [33] defined conditional
disclosure of secrets (CDS). In this problem, two parties Alice and Bob want
to disclose a secret to a referee if and only if their inputs (strings of N bits)
satisfy some predicate (e.g., if their inputs are equal). To achieve this goal,
each party computes one message based on its input, the secret, and a common
random string, and sends the message to the referee. If the predicate holds,
then the referee, which knows the two inputs, can reconstruct the secret from
the messages it received. In [33], CDS is used to efficiently realize symmetrically-
private information retrieval protocols. In [32], it is shown that CDS can be used
to construct attribute-based encryption, a cryptographic primitive introduced in
[34, 42].

We can represent the CDS for some predicate as the problem of realizing a
secret-sharing scheme for a forbidden graph access structure of a bipartite graph
and vice-versa: Every possible input for Alice is a vertex in the first part of the
graph and every possible input for Bob is a vertex in the second part of the
graph, and there is an edge between two vertices from different parts if and only
if the two corresponding inputs satisfy the predicate. Given a CDS protocol for
a predicate, we construct a secret-sharing scheme realizing the bipartite graph
defined by the predicate in which the share of party z is the message sent in
the CDS protocol to the referee by Alice or Bob (depending on z’s part of the
graph) when they hold the input z. Thus, given a predicate P , we get a bipartite
graph with n = 2N vertices in each part (where N is the size of the input of
the parties) such that the length of the messages required in a CDS for P is the
length of the shares required by a secret-sharing realizing the forbidden graph
access structure.

Gertner et al. [33] have proved that if a predicate P has a (possibly non-
monotone) formula of size S, then there is a CDS protocol for P in which the
length of the messages is S. A similar result holds if the predicate has a (possi-
bly non-monotone) span program, or even a non-monotone secret-sharing scheme
(this is a secret-sharing scheme realizing an access structure defined in [33] in
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which for every bit in the input there are two parties, one for every value of the
bit). This result provides a rich class of predicates for which there are efficient
CDS protocols. Thus, there is a rich class of forbidden graph access structures
that can be realized by efficient secret-sharing schemes (by the equivalence be-
tween CDS and secret-sharing schemes for forbidden graph access structures).

It was shown in [32] that for every predicate there exists a linear CDS such
that the size of each of the messages sent by the two parties to the referee is
2N/2.3 This implies that for every bipartite graph there exists a linear secret-
sharing scheme realizing the forbidden graph access structure in which the size
of each share is O(n1/2) (where n is the number of the parties); in particular,
the total share size of this scheme is O(n3/2).

Liu et al. [38] have recently shown that every predicate has a non-linear
CDS scheme in which the size of the messages the parties send to the referee is
2O(
√
N logN). As a corollary, we get a non-linear secret-sharing scheme realizing

the forbidden graph access structure for every bipartite graph with n vertices, in

which the size of each share is nO(
√

log logn/ logn) = no(1); in particular, the total

share size of this scheme is n1+O(
√

log logn/ logn) = n1+o(1). By a transformation
of [10, 8], the above two results hold for every graph (not necessarily bipartite).

Applebaum et al. [2] and Ambrona et al. [1] have shown that if we have
a linear CDS for some predicate P with message length c and shared random
string length r, then we can construct a linear CDS for the complement predicate
P in which the message length and the shared random string length is linear
in c and r. Translated to secret-sharing, we conclude that if we have a linear
secret-sharing scheme that uses r random field elements in the generation of the
shares and realizes the forbidden graph access structure of a bipartite graph G,
then we can realize its complement bipartite graph G with a linear scheme in
which the size of each share is O(r).

Another result shown in [2] is that for every predicate there exists a linear
CDS for secrets of k bits, where k is double-exponential in N , such that the size
of each of the messages sent by the two parties to the referee is O(k ·N). This
gives us an amortized size of O(N) bits per each bit of the secret, much better
than the size of 2N/2 for one-bit secret that was shown in [32]. When considering
forbidden graph access structures, we get that for every forbidden bipartite graph
access structure with n vertices there exists a linear secret-sharing scheme with
secrets of length k and total share size of O(kn log n), provided that the size of
the secret k is exponential in n.

1.2 Our Results

The main result we show in this paper is the construction of linear secret-sharing
schemes realizing forbidden graph access structures for sparse graphs and dense
graphs. We also prove tight lower bounds on the share size of linear secret-sharing
schemes realizing forbidden graph access structures.

3 A linear CDS is a CDS in which if the predicate holds, then the reconstruction
function of the referee is linear.
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Constructions. Our main constructions of linear secret-sharing schemes are
the following ones:

– Given a sparse graph with n vertices and at most n1+β edges, for some 0 ≤
β < 1, we construct a linear secret-sharing scheme that realizes its forbidden
graph access structure with the total size of the shares is Õ(n1+β/2). The
best previously known linear secret-sharing scheme for such graphs is the
trivial scheme that independently shares the secret for each edge; the total
share size of this scheme is O(n1+β).

– Given a dense graph with n vertices and at least
(
n
2

)
−n1+β edges, for some

0 ≤ β < 1, we construct a linear secret-sharing scheme that realizes its
forbidden graph access structure with total share size Õ(n1+β/2). The best
previously known linear secret-sharing scheme for such graphs is the scheme
of [8], which has total share size O(n7/6+2β/3).

– Given a sparse graph with n vertices and at most n1+β edges, for some
0 ≤ β < 1, we construct a linear secret-sharing scheme that realizes its
forbidden graph access structure such that the size of the share of each party
is Õ(n1/4+β/4). The same results holds for forbidden graph access structures
of dense graphs with at least

(
n
2

)
− n1+β edges. The best previously known

linear secret-sharing scheme for such graphs is the scheme of [32], which has
no restrictions on the number of edges; the share size of each party in this
scheme is O(n1/2).

– As a corollary, we construct a secret-sharing scheme for forbidden graph
access structures of graphs obtained by changing (adding or removing) few
edges from an arbitrary graph G. If the forbidden graph access structure
determined by a graph G can be realized by a secret-sharing scheme with
total share size m and G′ is obtained from G by changing at most n1+β edges,
for some 0 ≤ β < 1, then we construct a secret-sharing scheme realizing the
forbidden graph access structure of G′ with total share size m+ Õ(n1+β/2).
If the secret-sharing scheme realizing the forbidden graph access structure
determined by G is linear, then the resulting scheme realizing the forbidden
graph access structure determined by G′ is also linear.

Taking into account the connection described above between CDS protocols
and secret-sharing schemes for forbidden graph access structures, our construc-
tions imply linear CDS protocols with message size 2N(1/4+β/4) for two families
of predicates f : {0, 1}N × {0, 1}N → {0, 1}, predicates f with few zeros, i.e.
| {(x, y) : f(x, y) = 0} | ≤ 2N(1+β) (for some 0 ≤ β < 1) and predicates f with
few ones, i.e. | {(x, y) : f(x, y) = 1} | ≤ 2N(1+β).

Overview of Our Constructions. We construct the secret-sharing scheme
realizing forbidden graph access structures determined by sparse graphs in few
stages, where in each stage we restrict the forbidden graph access structures
that we can realize. We start by realizing fairly simple bipartite graphs, and in
each stage we realize a wider class of graphs using the schemes constructed in
previous stages.



Linear Secret-Sharing Schemes for Forbidden Graph Access Structures 7

Our basic construction, described in Lemma 3.2, is a linear secret-sharing
scheme realizing a forbidden graph access structure for a bipartite graph G =
(A,B,E), where A is small and the degree of each vertex in B is at most d,
for some d < n. To construct this scheme, we construct a linear subspace Va
for each vertex a ∈ A, and a vector zb for every vertex b ∈ B, such that
zb ∈ Va if and only if (a, b) ∈ E. The total size of the shares in the scheme
we construct is O(d|A| + |B|). A naive scheme for this graph, which shares the
secret independently for each edge, has total share size O(d|B|). Our scheme is
much more efficient than the naive scheme when A is small and B is big. This
is the scheme that enables us to construct efficient schemes for sparse forbidden
graph access structures.

In the second stage, we construct, in Lemma 4.1, a secret-sharing scheme for
a forbidden graph access structure for a bipartite graph G = (A,B,E), where
the degree of every vertex in B is at most d (and there is no restriction that
A is small). Then, we construct in Theorem 4.2 a secret-sharing scheme with
total share size O(n

√
d log n) for bipartite graphs with |A| = |B| = n, where the

vertices in B have degree at most d. The idea of this construction is to randomly
partition the set A to ` = O(

√
d lnn) = Õ(

√
d) “small” sets A1, . . . , A`. We prove

that with high probability, for every 1 ≤ i ≤ `, the degree of every vertex b ∈ B
in the bipartite graph Gi = (Ai, B,E ∩ (Ai × B)) is at most O(

√
d) (compared

to its degree in G, which can be at most d). We now realize each sparse graph
Gi using the basic scheme.

In the third stage, we construct, in Theorem 4.3, a secret-sharing scheme
for a bipartite graph G = (A,B,E), where the number of edges in G is at
most n1+β for some 0 ≤ β < 1 (where |A| = |B| = n). That is, we realize
forbidden graph access structures for bipartite graphs where the average degree
of each vertex in B is at most nβ . To this purpose, we use an idea from [7]
(also used in [8]). Fix some degree d, and let Bbig be the vertices in B whose
degree is at least d. Furthermore, let Bsmall = B \ Bbig. Since the number of
edges in G is at most n1+β , the size of Bbig is at most n1+β/d. Using the fact
that Bbig is small (however, the degree of each vertex in Bbig can be n), the
secret-sharing scheme of [32] (alternatively, the scheme of Lemma 4.1) realizes
the graph Gbig = (A,Bbig, E ∩ (A×Bbig)) with “quite small” shares. Using the
fact that the degree of each vertex in Bsmall is small, the secret-sharing scheme
of Lemma 4.1 realizes Gsmall = (A,Bsmall, E ∩ (A × Bsmall)) with total share
size O(n

√
d log n). By taking the appropriate value for d, we get a secret-sharing

scheme realizing G in which (for small enough values of β) the total share size
is o(n1+β), but still larger than the promised total share size. To get a secret-
sharing scheme realizing G with total share size Õ(n1+β/2), we group the vertices
in B into O(log n) sets according to their degree, where the ith set Bi contains
the vertices whose degree is between n/2i+1 and n/2i. We realize each graph
Gi = (A,Bi, E ∩ (A × Bi)) independently using the secret-sharing scheme of
Lemma 4.1.

In the last stage, we construct, in Theorem 4.4, a secret-sharing scheme for
any forbidden graph access structure with the promised total share size. That is,
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if the number of edges in G is at most n1+β for some 0 ≤ β < 1 (where |V | = n),
then the total share size is Õ(n1+β/2). The last stage is done using a generic
transformation of [10, 8], which constructs a secret-sharing scheme for any graph
from secret-sharing schemes for bipartite graphs.

To summarize, there are 4 stages in our construction for sparse graphs. The
first two stages are the major new steps in our construction. The third stage uses
ideas from [7], however, it requires designing appropriate secret-sharing schemes
in the first two stages. In the last stage, we use a transformation of [10, 8] as a
black-box. The construction for forbidden graph access structures determine by
dense graphs is similar, however, we construct a different scheme for the first
stage.

The construction of a scheme realizing a forbidden graph access structure
determined by a graph G′ obtained by adding or removing few edges from a
graph G is done using ideas from [8] as follows: First, we share the secret s using
the secret-sharing scheme realizing the sparse graph containing all edges added
to G (we add at most n1+β to G). In addition, we share the secret s using a
2-out-of-2 secret-sharing scheme. That is, we choose two random elements s1
and s2 such that s = s1 ⊕ s2. We share s1 using the scheme of the graph G and
share s2 using the secret-sharing scheme realizing the dense graph containing all
possible edges except for the edges removed from G (this graph is a dense graph
with at least

(
n
2

)
− n1+β edges, since we remove at most n1+β from G).

Next, we construct a linear secret-sharing scheme realizing bipartite graphs
G = (A,B,E), where |A| = |B| = n and the number of edges in G is at
most n1+β , for some 0 ≤ β < 1, in which the share size of each vertex is
O(n1/4+β/4 log n). The construction of this scheme is similar to the construction
of our previous scheme that presented in the third stage. Let d = n1/2+β/2,
and let Abig (respectively, Bbig) be the vertices in A (respectively, B) whose
degree is at least d. Furthermore, let Asmall = A \ Abig (respectively, Bsmall =
B \ Bbig). Since the number of edges in G is at most n1+β , the size of Abig

(respectively, Bbig) is at most n1+β/d = n1/2+β/2. Thus, we can realize the
graph (Abig, Bbig, E ∩ (Abig ×Bbig)) using the scheme of [32] in which the share
size of each vertex is O((n1/2+β/2)1/2) = O(n1/4+β/4). Next, since the degree of
each vertex in Asmall (respectively, Bsmall) is at most d, we can realize each of
the graphs (A,Bsmall, E ∩ (A×Bsmall)), (Asmall, B,E ∩ (Asmall ×B)) using our
scheme of the second stage in which the share size of each vertex is O(

√
d log n) =

O(n1/4+β/4 log n), and get the desired share size.

Lower Bounds. We prove that for most forbidden graph access structures,
the total share size of every linear secret-sharing scheme realizing these access
structures, with a one-bit secret, is Ω(n3/2), which shows that the construction
of Gay et al. [32] is optimal. This also shows a separation between the total
share size in non-linear secret-sharing schemes realizing forbidden graph access
structures, which is n1+o(1) by [38], and the total share size required in linear
secret-sharing schemes realizing forbidden graph access structures. This lower
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bound implies that, for most predicates P : {0, 1}N ×{0, 1}N → {0, 1}, in every
linear CDS protocol for P the length of the messages is Ω(2N/2).

Furthermore, we show that for every 0 ≤ β < 1 there exist a graph with at
most n1+β edges and a graph with at least

(
n
2

)
−n1+β edges, such that the total

share size in any linear secret-sharing scheme realizing their forbidden graph
access structures is Ω(n1+β/2). Finally, we show for every 0 ≤ β < 1 there exist
a graph with at most n1+β edges and a graph with at least

(
n
2

)
− n1+β edges,

such that the size of the share of at least one party in any linear secret-sharing
scheme realizing their forbidden graph access structures is Ω(n1/4+β/4). These
lower bounds show that our constructions are optimal (up to poly-logarithmic
factors). Our lower bounds are existential and use counting arguments. They
previously appeared (in a somewhat less general form) in the master thesis of
the third author of this paper [39].

2 Preliminaries

We denote the logarithmic function with base 2 and base e by log and ln, re-
spectively. We denote vectors by bold letters, e.g., v.

2.1 Secret-Sharing

We present the definition of secret-sharing scheme as given in [22, 6]. For more
information about this definition and secret-sharing in general, see [5].

Definition 2.1 (Secret-Sharing Schemes). Let P = {p1, . . . , pn} be a set of
parties. A collection Γ ⊆ 2P is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ .
An access structure is a monotone collection Γ ⊆ 2P of non-empty subsets of
P . Sets in Γ are called authorized, and sets not in Γ are called unauthorized.
The family of minimal authorized subsets is denoted by minΓ .

A distribution scheme Σ = 〈Π,µ〉 with domain of secrets K is a pair, where
µ is a probability distribution on some finite set R called the set of random strings
and Π is a mapping from K×R to a set of n-tuples K1×K2×· · ·×Kn, where Kj

is called the domain of shares of pj. A dealer distributes a secret k ∈ K according
to Σ by first sampling a random string r ∈ R according to µ, computing a vector
of shares Π(k, r) = (s1, . . . , sn), and privately communicating each share sj to
party pj. For a set A ⊆ P , we denote ΠA(k, r) as the restriction of Π(k, r) to
its A-entries (i.e., the shares of the parties in A).

Given a distribution scheme, define the size of the secret as log |K|, the (nor-
malized) share size of party pj as log |Kj |/ log |K|, the (normalized) max share
size as max1≤j≤n log |Kj |/ log |K|, and the (normalized) total share size of the
distribution scheme as

∑
1≤j≤n log |Kj |/ log |K|.

Let K be a finite set of secrets, where |K| ≥ 2. A distribution scheme 〈Π,µ〉
with domain of secrets K is a secret-sharing scheme realizing an access structure
Γ if the following two requirements hold:

Correctness. The secret k can be reconstructed by any authorized set of par-
ties. That is, for any set B = {pi1 , . . . , pi|B|} ∈ Γ , there exists a reconstruction
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function ReconB : Ki1 × . . .×Ki|B| → K such that for every secret k ∈ K and
every random string r ∈ R,

ReconB

(
ΠB(k, r)

)
= k.

Privacy. Every unauthorized set cannot learn anything about the secret (in the
information theoretic sense) from their shares. Formally, for any set T /∈ Γ ,
every two secrets a, b ∈ K, and every possible vector of shares 〈sj〉pj∈T ,

Pr[ΠT (a, r) = 〈sj〉pj∈T ] = Pr[ΠT (b, r) = 〈sj〉pj∈T ],

when the probability is over the choice of r from R at random according to µ.

Definition 2.2 (Linear Secret-Sharing Scheme). Let Σ = 〈Π,µ〉 be a
secret-sharing scheme with domain of secrets K, where µ is a probability dis-
tribution on a set R and Π is a mapping from K × R to K1 ×K2 × · · · ×Kn.
We say that Σ is a linear secret-sharing scheme over a finite field F if K = F,
the sets R,K1, . . . ,Kn are vector spaces over F, Π is a F-linear mapping, and
µ is the uniform probability distribution over R.

2.2 Monotone Span Programs

Monotone span programs (abbreviated MSPs) are a linear-algebraic model of
computation introduced by Karchmer and Wigderson [37]. As explained below in
Claim 2.4, MSPs over finite fields are equivalent to linear secret-sharing schemes.

Definition 2.3 (Monotone Span Programs [37]). A monotone span pro-

gram is a quadruple M̂ = 〈F,M, δ,v〉, where F is a field, M is an a× b matrix
over F, δ : {1, . . . , a} → P (where P is a set of parties) is a mapping labeling
each row of M by a party,4 and v is a non-zero vector in Fb, called the target
vector. The size of M̂ is the number of rows of M (i.e., a). For any set A ⊆ P ,
let MA denote the sub-matrix obtained by restricting M to the rows labeled by
parties in A. We say that M̂ accepts a set B ⊆ P if the rows of MB span the
vector v. We say that M̂ accepts an access structure Γ where M̂ accepts a set
B if and only if B ∈ Γ .

By applying a linear transformation to the rows of M , the target vector can
be changed to any non-zero vector without changing the size of the MSP. The
default value for the target vector is e1 = (1, 0, . . . , 0), but in this work we also
use other vectors, e.g., 1 (the all one’s vector).

Claim 2.4 ([37, 4]). Let F be a finite field. There exists a linear secret-sharing
scheme over F realizing Γ with total share size a if and only if there exists an
MSP over F of size a accepting Γ .

4 We label a row by a party rather than by a variable xj as done in [37].



Linear Secret-Sharing Schemes for Forbidden Graph Access Structures 11

For the sake of completeness, we explain how to construct a linear secret-
sharing scheme from an MSP. Given an MSP M̂ = 〈F,M, δ, e1〉 accepting Γ ,
where M is an a × b matrix over F, define a linear secret-sharing scheme as
follows:

– Input: a secret k ∈ F.
– Choose b− 1 random elements r2, . . . , rb independently with uniform distri-

bution from F and define r = (k, r2, . . . , rb).
– Evaluate (s1, . . . , sa) = MrT , and distribute to each party p ∈ P the entries

corresponding to rows labeled by p.

In this linear secret-sharing scheme, every set in Γ can reconstruct the secret:
Let B ∈ Γ and N = MB , thus, the rows of N span e1, and there exists some
vector v such that e1 = vN . Notice that the shares of the parties in B are NrT .
The parties in B can reconstruct the secret by computing v(NrT ), since

v(NrT ) = (vN)rT = e1 · rT = k.

The proof of the privacy of this scheme can be found in [37, 5].

2.3 Graphs and Forbidden Graph Access Structures

Recall that a bipartite graph G = (A,B,E) is a graph where the vertices are
A ∪ B (A and B are called the parts of G) and E ⊆ A × B. A bipartite graph
is complete if E = A×B.

Definition 2.5 (The Bipartite Complement). Let G = (A,B,E) be a bipar-
tite graph. The bipartite complement of G is the bipartite graph G = (A,B,E),
where every a ∈ A and b ∈ B satisfy (a, b) ∈ E if and only if (a, b) /∈ E.

Definition 2.6 (Forbidden Graph Access Structures). Let G = (V,E) be
a graph. The forbidden graph access structure defined by G is the collection of
all pairs of vertices in E and all subsets of vertices of size greater than two. 5

Remark 2.7. When we say that a secret-sharing scheme realizes a graph G,
we mean that the scheme realizes the forbidden graph access structure of the
graph G.

Remark 2.8. In applications of secret-sharing schemes for forbidden graph access
structures (e.g., conditional disclosure of secrets), the only requirement is that
pairs of vertices can reconstruct the secret if and only if they are connected by an
edge. To fully specify the access structure of a forbidden graph, we also require
that all sets of 3 or more vertices are authorized. This additional requirement
only slightly increases the total share size required to realize forbidden graph
access structures, since we can independently share the secret using the 3-out-
of-n scheme of Shamir [43], in which the size of the share of every party is the
size of the secret (when the size of the secret is at least log n). To simplify the
description of our schemes, in all our construction in Sections 3 to 5 we implicitly
assume that we share the secret using Shamir’s 3-out-of-n secret-sharing scheme.

5 In [46], the access structure is specified by the complement graph, i.e., by the edges
that are forbidden from learning information on the secret.
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2.4 Conditional Disclosure of Secrets

For completeness, we present the definition of conditional disclosure of secrets,
originaly defined in [33].

Definition 2.9 (Conditional Disclosure of Secrets). Let f : {0, 1}N ×
{0, 1}N → {0, 1} be some function, and let EncA : {0, 1}N × S × R → MA,

EncB : {0, 1}N × S × R → MB be deterministic functions (also called pred-
icate), where S is the domain of secrets and R is the domain of the common

random strings, and Dec : {0, 1}N ×{0, 1}N ×MA×MB → S be a deterministic
function. Then, (EncA,EncB ,Dec) is a conditional disclosure of secrets (CDS)
protocol for the function f if the following two requirements hold:

Correctness. For every x, y ∈ {0, 1}N with f(x, y) = 1, every secret s ∈ S,
and every common random string r ∈ R,

Dec(x, y,EncA(x, s, r),EncB(y, s, r)) = s.

Privacy. For every x, y ∈ {0, 1}N with f(x, y) = 0, every two secrets s1, s2 ∈ S,
and every messages mA ∈MA,mB ∈MB:

Pr[EncA(x, s1, r) = mA and EncB(y, s1, r) = mB ]

= Pr[EncA(x, s2, r) = mA and EncB(y, s2, r) = mB ],

when the probability is over the choice of r from R at random with uniform
distribution.

3 The Basic Construction for Graphs of Low Degree

Our basic construction requires the following construction of linear spaces, which
will be used both for sparse graphs and for dense graphs.

Claim 3.1. Let G = (A,B,E) be a bipartite graph with A = {a1, . . . , am}, B =
{b1, . . . , bn} such that the degree of every vertex in B is at most d and let F be a
finite field with |F| ≥ m. Then, there are m linear subspaces V1, . . . , Vm ⊆ Fd+1

of dimension d and n+ 1 vectors z1, . . . , zn,w ∈ Fd+1 such that

zj ∈ Vi if and only if (ai, bj) ∈ E,

and w /∈ Vi for every 1 ≤ i ≤ m.

Proof. We identify vectors in Fd+1 with polynomials of degree at most d in
the indeterminate X. That is, for a vector v ∈ Fd+1 we consider a polynomial
v(X) ∈ F[X] of degree d in which the coefficient of degree i is the (i + 1)-th
coordinate of v.

For each vertex ai ∈ A, we associate a distinct element αi ∈ F. We define
the subspace Vi ⊆ Fd+1 of dimension d as the one associated to the space of
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polynomials P (X) of degree at most d such that P (αi) = 0, i.e., the space of
polynomials spanned by

{
(X − αi), (X2 − αi ·X), . . . , (Xd − αi ·Xd−1)

}
. Since

these d polynomials are independent, the dimension of each Vi is d. Furthermore,
for a vertex bj ∈ B, whose neighbors are ai1 , ai2 , . . . , aid′ (for some d′ ≤ d), we
define

zj(X) = (X − αi1) · (X − αi2) · . . . · (X − αid′ ).

Note that zj ∈ Vi if and only if zj(αi) = 0 if and only if αi ∈
{
αi1 , αi2 , . . . , αid′

}
if and only if (ai, bj) ∈ E.

Finally, define w(X) = 1. For every 1 ≤ i ≤ m, since w(αi) = 1 and v(αi) = 0
for every v ∈ Vi, the vector w is not in Vi. ut

Lemma 3.2. Let G = (A,B,E) be a bipartite graph with |A| = m, |B| = n,
such that the degree of every vertex in B is at most d. Then, there is a linear
secret-sharing scheme realizing G with total share size n+ (d+ 1)m.

Proof. Denote A = {a1, . . . , am}, B = {b1, . . . , bn}, and let V1, . . . , Vm and
z1, . . . , zn be the linear subspaces and vectors guaranteed by Claim 3.1. We
construct a monotone span program accepting G, where there are d + 1 rows
labeled by ai for every 1 ≤ i ≤ m and one row labeled by bj for every 1 ≤ j ≤ n.
By Claim 2.4, this implies the desired linear secret-sharing scheme.

Let {vi,1, . . . ,vi,d} be a basis of Vi, and for 1 ≤ ` ≤ d, define v′i,` = (0, 0,vi,`)

(that is, v′i,` is a vector in Fd+3 whose first two coordinates are 0 followed by
the vector vi,`). The rows labeled by ai are v′i,1, . . . ,v

′
i,d and (0, 1, 0, . . . , 0).

The row labeled by bj is z′j = (1, 0, zj). The target vector is (1, 1, 0, . . . , 0).
The monotone span program accepts (ai, bj) if and only if (1, 1, 0, . . . , 0) ∈
span

{
z′j,v

′
i,1, . . . ,v

′
i,d, (0, 1, 0, . . . , 0)

}
if and only if zj ∈ span {vi,1, . . . ,vi,d}

if and only if zj ∈ Vi if and only if (ai, bj) ∈ E.
Furthermore, two vertices from the same part do not span (1, 1, 0, . . . , 0): For

two vertices in A, this follows since the first coordinate in all vectors they label
is 0. For two vertices in B, this follows since the second coordinate in the vectors
they label is 0. Therefore, the monotone span program accepts G. ut

We next show that Lemma 3.2 can be used to realize every bipartite graph
by a linear secret-sharing scheme with total share size O(n3/2). This scheme
has the same total share size as the linear secret-sharing scheme of [32]. This
construction is presented as a warmup for our construction for bipartite graphs
with bounded degree.

Lemma 3.3. Let G = (A,B,E) be a bipartite graph such that |A| = |B| = n.
Then, there is a linear secret-sharing scheme realizing G with total share size
O(n3/2).

Proof. We arbitrarily partition A into
√
n sets, A1, . . . , A√n, each set of size at

most
√
n. By Lemma 3.2, the bipartite graph (Ai, B,E ∩ (Ai × B)) (in which

every vertex in B has at most |Ai| =
√
n neighbors) can be realized by a linear

secret-sharing scheme with total share size O(n+ (
√
n+ 1)

√
n) = O(n). We use
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this construction for each of the
√
n sets A1, . . . , A√n. Hence, the total share

size of the resulting scheme is O(n3/2). ut
It can be verified that in the secret-sharing scheme of Lemma 3.3, the size of

the share of each vertex is O(n1/2).

4 Secret-Sharing Schemes for Sparse Graphs

In this section we present efficient secret-sharing schemes for forbidden graph
access structures of sparse graphs, that is, graphs with at most n1+β edges for
some 0 ≤ β < 1. The main result is Theorem 4.4, where we show that these
graphs admit secret-sharing schemes with total share size O(n1+β/2 log3 n). Its
proof is involved, and we use several intermediate results. First, we construct an
efficient secret-sharing schemes for sparse bipartite graphs. In the construction
for a sparse bipartite graph G = (A,B,E) in Theorem 4.3 we partition the
vertices in B into O(log n) sets according to their degree, that is, the vertices in
the ith set Bi are the vertices whose degrees are between n/2i+1 and n/2i. We
realize each graph Gi = (A,Bi, E ∩ (A × Bi)) independently using the secret-
sharing scheme of Lemma 4.1. This methodology is the same as in [7, 8]. The
main new technical result in this section is Lemma 4.1, and it is the basis of
this construction. Finally, using a transformation that appeared in [10], we use
the schemes for sparse bipartite graphs to construct a scheme for general sparse
graphs.

Lemma 4.1. Let G = (A,B,E) be a bipartite graph with |A| = n, |B| ≤ n such
that the degree of each vertex in B is at most d for some d ≤ n. If d|B| ≥ n log2 n,
then there is a linear secret-sharing scheme realizing G with total share size
O(
√
n|B|d log n).

Proof. Let δ = logn d (that is, d = nδ), γ = logn |B| (i.e., |B| = nγ), and

α =
1

2
+
γ

2
− δ

2
, (1)

and denote ` = 2n1−α lnn. We first prove that there are sets A1, . . . , A` ⊂ A of
size nα that satisfy the following properties:

(I)
⋃`
i=1Ai = A, and

(II) for every 1 ≤ i ≤ `, the degree of the vertices in B in the graph Gi =
(Ai, B,E ∩ (Ai ×B)) is at most 12nα+δ−1.

For each 1 ≤ i ≤ `, we independently choose Ai with uniform distribution
among the subsets of A of size nα. We show that, with positive probability,
A1, . . . , A` satisfy properties (I) and (II).

First, we analyze the probability that (I) does not hold.

Pr [A 6= ∪Ai] ≤
∑
a∈A

Pr [a /∈ ∪Ai] =
∑
a∈A

∏̀
i=1

Pr [a /∈ Ai] =
∑
a∈A

(
1− nα

n

)`
≤
∑
a∈A

e−`/n
1−α

= n
1

n2
=

1

n
.
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Now we show that the probability that the sets A1, . . . , A` do not satisfy
Property (II) is less than 1/4. Fix an index 1 ≤ i ≤ ` and a vertex b ∈ B. We
analyze the probability that the degree of b in Gi is larger than 12nα+δ−1. We
view the choice of the random set Ai as a process of nα steps, where in the jth
step we uniformly choose a vertex aj ∈ A amongst the vertices that have not
been chosen in the first j − 1 steps. Using this view of choosing Ai, we define
the following binary random variables Z1, . . . , Znα , where Zj = 1 if (aj , b) is an

edge of Gi, and 0 otherwise. Then, we consider Z =
∑nα

j=1 Zj , that is, Z is the
degree of b in Gi.

We would like to apply a Chernoff bound to these variables, however, they are
not independent. We use Z1, . . . , Znα to define new random variables Z ′1, . . . , Z

′
nα

that are independent. For every vector z = (zt)t 6=j , let

pz = Pr[Zj = 1|Zt = zt for all t 6= j].

By convention, if Pr[Zt = zt for all t 6= j] = 0, then pz = 0. Note that

pz ≤
nδ

n− nα
≤ 2

n1−δ
,

where d = nδ is the upper bound on the degree of b given in the lemma. Observe
that the last inequality follows because n1/2 ≤ nδ/2+γ/2/ log n, and so

nα = n1/2+γ/2−δ/2 ≤ n(δ/2+γ/2)+γ/2−δ/2/ log n ≤ n/2,

obtaining that n− nα ≥ n/2.
The random variables Z ′1, . . . , Z

′
nα are defined as follows: Let z1, . . . , znα be

the values given to Z1, . . . , Znα . If zj = 1, then Z ′j = 1 and if zj = 0, then

Z ′j = 1 with probability (2/n1−δ − pz)/(1 − pz) and Z ′j = 0 otherwise. Thus,

Pr[Z ′j = 1|Zt = zt for all t 6= j] = 2/n1−δ. Therefore, Z ′j is independent of
(Zt)t 6=j , and, hence, independent of (Z ′t)t 6=j .

Let Z ′ =
∑nα

j=1 Z
′
j . The expected value of Z ′ is nα ·2/n1−δ = 2nα+δ−1. Using

a Chernoff bound [40, Theorem 4.4, (4.3)], we obtain

Pr
[
Z > 12nα+δ−1

]
≤ Pr

[
Z ′ > 12nα+δ−1

]
≤ 2−12n

α+δ−1

.

By (1) and since nγ+δ ≥ n log2 n, we obtain nα+δ−1 = nγ/2+δ/2−1/2 ≥ log n.
Thus,

Pr
[
Z > 12nα+δ−1

]
≤ 1/n12 ≤ 1/(4n`).

Property (II) holds if for every b ∈ B and every 1 ≤ i ≤ `, the degree of b
in Gi is at most 12nα+δ−1. By the union bound, the probability that (II) does
not hold is at most 1/4. Thus, again by the union bound, the probability that
random sets A1, . . . , A` satisfy properties (I) and (II) is greater than 1/2, and,
in particular, such sets exist.

Given valid sets A1, . . . , A`, we construct a secret-sharing scheme for each
bipartite graph Gi = (Ai, B,E ∩ (Ai × B)) using Lemma 3.2. In each one of
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these subgraphs, the degree of each vertex in B is at most 12nα+δ−1. Hence, the
total share size of the resulting scheme will be

∑̀
i=1

(
|B|+ |Ai| · (12nα+δ−1 + 1)

)
= O

(
`(nγ + nαnα+δ−1)

)
= O

(
n1−α lnn(nγ + n2α+δ−1)

)
= O

(
log n(n1+γ−α + nα+δ)

)
.

This value is minimized when 1 + γ − α = α + δ, that is, when α = 1
2 + γ

2 −
δ
2

(this explains our choice of α). Using this value of α, we obtain total share size
of O(n1/2+γ/2+δ/2 log n). ut

The following theorem is a special case of the above lemma, when |A| = |B|.
In the proof of Theorem 4.3 below, we also use Lemma 4.1.

Theorem 4.2. Let G = (A,B,E) be a bipartite graph such that |A| = |B| = n
and the degree of every vertex in B is at most d for some d ≤ n. Then, there is
a linear secret-sharing scheme realizing G in which the share size of each vertex
is O(

√
d log n). The total share size of this scheme is O(n

√
d log n).

Proof. If d < log2 n, we use the secret-sharing scheme of Lemma 3.2; in this
scheme the share size of each vertex is O(d) = O(

√
d log n), and the total share

size is O(n
√
d log n).

Otherwise, d ≥ log2 n, and let δ = logn d, ` = 2nδ/2 lnn, and A1, . . . , A` ⊂ A
be the sets of size n1−δ/2 guarantied from Lemma 4.1 (taking γ = 1). We can
assume that each vertex in A is a member of exactly one set (by removing the
vertex from every set except from one). Note that the sets still satisfy the two
desired properties.

Next, as in Lemma 4.1, we construct a secret-sharing scheme for each bi-
partite graph Gi = (Ai, B,E ∩ (Ai × B)) (for 1 ≤ i ≤ `) using the scheme
of Lemma 3.2. The degree of each vertex in B in the graph Gi is at most
12nδ/2 = O(

√
d). Every vertex in B participates in ` schemes, and gets a share

of size one in each of these schemes. Hence, the share size of every vertex in
B is ` = O(

√
d log n). Every vertex in A participates in one scheme, and gets

a share of size 12nδ/2 + 1 = O(
√
d) in this scheme. Overall, the share size of

each vertex in the resulting scheme is O(
√
d log n), and the total share size is

O(n
√
d log n). ut

Theorem 4.3. Let G = (A,B,E) be a bipartite graph with |A| = |B| = n and
with at most n1+β edges, for some constant 0 ≤ β < 1. Then, there is a linear
secret-sharing scheme realizing G with total share size O(n1+β/2 log2 n).

Proof. If nβ ≤ log2 n, we use the trivial secret-sharing scheme, where we share
the secret independently for each edge; in this scheme the total share size is
O(n1+β) = O(n1+β/2 log n).
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We next deal with the interesting case where nβ > log2 n. In this case, we
partition the vertices in B according to their degree, that is, for i = 0, . . . , (1−
β) log n− 1, define

Bi =
{
b ∈ B :

n

2i+1
< deg(b) ≤ n

2i

}
and Bsmall =

{
b ∈ B : deg(b) ≤ nβ

}
, and Gi = (A,Bi, E ∩ (A×Bi)).

We realize each graph Gi, for i = 0, . . . , (1− β) log n− 1, using Lemma 4.1.
Since the number of edges in G is at most n1+β and the degree of every vertex

in Bi is at least n/2i+1, the number of vertices in Bi is at most n1+β

n/2i+1 = 2i+1nβ .

By adding dummy vertices to Bi with degree 0, we can assume that |Bi| =
2i+1nβ . By Lemma 4.1, there is a secret-sharing scheme realizing the forbidden
graph access structure of Gi with total share size O(

√
n · 2i+1nβ · n/2i · log n) =

O(n1+β/2 log n). Note that, as required in Lemma 4.1, d|Bi| = n/2i · 2i+1nβ ≥
n log2 n.

Finally, we realize (A,Bsmall, E∩(A×Bsmall)) using the secret-sharing scheme
of Theorem 4.2; the total share size of this scheme is O(n1+β/2 log n) as well.
Since we use 1+(1−β) log n schemes, the total share size of the resulting scheme
is O(n1+β/2 log2 n). ut

Theorem 4.4. Let G = (V,E) be a graph with n vertices and with at most n1+β

edges for some constant 0 ≤ β < 1. Then, there is a linear secret-sharing scheme
realizing G with total share size O(n1+β/2 log3 n).

Proof. To simplify notation, assume that n is a power of 2. As in [10], we cover
G by log n bipartite graphs, each graph having at most n1+β edges. We assume
that V = {v1, . . . , vn}, and for a vertex vi we consider i as a binary log n string
i = (i1, . . . , ilogn). For every 1 ≤ t ≤ log n, we define the bipartite graph Ht =
(At, Bt, Ft) as the subgraph of G in which At is the set of vertices whose t-th
bit is 0, Bt is the set of vertices whose t-th bit is 1, and Ft = E ∩ (At×Bt), i.e.,
Ft is the set of edges in E between the vertices of At and Bt.

To share a secret s, for every 1 ≤ t ≤ log n, we share s independently using
the secret-sharing scheme of Theorem 4.3 realizing the bipartite graph Ht with
total share size O(n1+β/2 log2 n). Since we use log n schemes, the total share size
in the scheme realizing G is O(n1+β/2 log3 n).

For an edge (vi, vj) ∈ E, where i = (i1, . . . , ilogn) and j = (j1, . . . , jlogn),
there is at least one 1 ≤ t ≤ log n such that it 6= jt, thus, (vi, vj) ∈ Ft and
{vi, vj} can reconstruct the secret using the shares of the scheme realizing Ht. If
(vi, vj) /∈ E, then (vi, vj) /∈ Ft for every 1 ≤ t ≤ log n, and, hence, {vi, vj} have
no information on the secret. ut

5 Secret-Sharing Schemes for Dense Graphs

In this section we study forbidden graph access structures of dense graphs. The
main result of this section is Theorem 5.5, where for every dense graph we present
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a linear secret-sharing scheme realizing its forbidden graph access structure.
For sparse graphs, we designed a general construction starting from a basic
secret-sharing scheme, described in Lemma 3.2. For dense graphs, we follow the
same strategy, replacing the basic construction with a different scheme, given in
Lemma 5.1.

Lemma 5.1. Let G = (A,B,E) be a bipartite graph with |A| = m, |B| = n,
such that the degree of every vertex in B is at least m−d. Then, there is a linear
secret-sharing scheme realizing G with total share size 2n+ (d+ 1)m.

Proof. Denote A = {a1, . . . , am}, B = {b1, . . . , bn}. Let G = (A,B,E) be the
bipartite complement of G, and let V1, . . . , Vm ⊆ Fd+1 be the linear subspaces
of dimension d and z1, . . . , zn,w ∈ Fd+1 be the vectors guaranteed by Claim 3.1
for the graph G. As proved in Claim 3.1, zj ∈ Vi if and only if (ai, bj) /∈ E and
w /∈ Vi for every 1 ≤ i ≤ m.

Next, we construct a monotone span program where there are d + 1 rows
labeled by ai for every 1 ≤ i ≤ m and two rows labeled by bj for every
1 ≤ j ≤ n. Let {vi,1, . . . ,vi,d} be a basis of Vi. The rows labeled by ai are
(0, 0,vi,1), . . . , (0, 0,vi,d), (0, 1, 0, . . . , 0) and the rows labeled by bj are (0, 0, zj)
and (1, 0, . . . , 0). We take (1, 1,w) as the target vector.

We first prove that the span program accepts an edge (ai, bj) ∈ E. Since
(ai, bj) ∈ E, it holds that zj /∈ Vi and so the dimension of span {zj,vi,1, . . . ,vi,d}
is 1 plus the dimension of Vi, i.e., span {zj,vi,1, . . . ,vi,d} = Fd+1, and in partic-
ular,

w ∈ span {zj,vi,1, . . . ,vi,d} .

Thus, (1, 1,w) is in the span of the vectors labeled by ai and bj .
We next prove that this monotone span program does not accept any pair

(ai, bj) /∈ E where ai ∈ A and bj ∈ B. By Claim 3.1, w /∈ Vi. Since (ai, bj) /∈ E,
it holds that zj ∈ Vi and so w /∈ span {zj,vi,1, . . . ,vi,d} = Vi. Thus, (1, 1,w) is
not in the span of the vectors labeled by ai and bj

Furthermore, two vertices from the same part do not span (1, 1,w): For two
vertices in A, this follows since the first coordinate in all vectors they label is
0. For two vertices in B, this follows since the second coordinate in the vectors
they label is 0. Therefore, the monotone span program accepts G. ut

Lemma 5.2. Let G = (A,B,E) be a bipartite graph with |A| = n, |B| ≤ n, and
let G = (A,B,E) be the bipartite complement of G. If the degree of B in G is at
most d, for some d satisfying d ≤ n and d|B| ≥ n log2 n, then there is a linear
secret-sharing scheme realizing G with total share size O(

√
n|B|d log n).

Proof. We use the techniques presented in the proof of Lemma 4.1. We take
δ = logn d, γ = logn |B|, α = 1

2 + γ
2 −

δ
2 , and ` = 2n1−α lnn. By the proof of

Lemma 4.1, there exist sets A1, . . . , A` ⊂ A of size nα that satisfy:

(I)
⋃`
i=1Ai = A, and

(II) for every 1 ≤ i ≤ `, the degree of the vertices in B in the graph Gi =
(Ai, B,E ∩ (Ai ×B)) is at most 12nα+δ−1.
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Then, we construct a secret-sharing scheme for each bipartite graph Gi =
(Ai, B,E ∩ (Ai × B)) using Lemma 5.1. The degree of each vertex in B in the
graph Gi is at least |Ai| − 12nα+δ−1, so the total share size will be

O

(∑̀
i=1

|B|+ |Ai| · 12nα+δ−1

)
=

= O
(
lnn(n1+γ−α + nα+δ)

)
= O(n1/2+γ/2+δ/2 log n).

ut

Theorem 5.3. Let G = (A,B,E) be a bipartite graph such that |A| = |B| = n
and the degree of every vertex in B is at least n−d for some d ≤ n. Then, there is
a linear secret-sharing scheme realizing G in which the share size of each vertex
is O(

√
d log n). The total share size of this scheme is O(n

√
d log n).

Proof. If d < log2 n, we use the construction in [8, Lemma 3.8]; in this scheme
the share size of each vertex is O(d) = O(

√
d log n), and the total share size is

O(n
√
d log n).6

Otherwise, d ≥ log2 n, and let δ = logn d, ` = 2nδ/2 lnn, and A1, . . . , A` ⊂ A
be the sets of size n1−δ/2 guarantied from Lemma 5.2 (taking γ = 1). As in
Theorem 4.2, we can assume that each vertex in A is a member of exactly one
set, and the sets still satisfy the two desired properties.

Next, as in Lemma 5.2, we construct a secret-sharing scheme for each bi-
partite graph Gi = (Ai, B,E ∩ (Ai × B)) (for 1 ≤ i ≤ `) using the scheme of
Lemma 5.1. The degree of each vertex in B in the bipartite complement of Gi
is at most 12nδ/2 = O(

√
d). Every vertex in B participates in ` schemes, and

gets a share of size two in each of these schemes. Hence, the share size of every
vertex in B is 2` = O(

√
d log n). Every vertex in A participates in one scheme,

and gets a share of size 12nδ/2 + 1 = O(
√
d) in this scheme. Overall, the share

size of each vertex in the resulting scheme is O(
√
d log n), and the total share

size is O(n
√
d log n). ut

Theorem 5.4. Let G = (A,B,E) be a bipartite graph with |A| = |B| = n such
that its bipartite complement G = (A,B,E) has at most n1+β edges, for some
constant 0 ≤ β < 1. Then, there is a linear secret-sharing scheme realizing G
with total share size O(n1+β/2 log2 n).

Proof. As in the proof of Theorem 4.3, for i = 0, . . . , (1 − β) log n − 1, define
Bi =

{
b ∈ B : n

2i+1 < degG(b) ≤ n
2i

}
and Bsmall =

{
b ∈ B : degG(b) ≤ nβ

}
.

For every 0 ≤ i ≤ (1− β) log n− 1, we use Lemma 5.2 to construct a secret-
sharing scheme realizing the graph (A,Bi, E ∩ (A×Bi)); the total share size of
this scheme is O(

√
n · 2i+1nβ · n/2i · log n) = O(n1+β/2 log n). Finally, we realize

(A,Bsmall, E∩ (A×Bsmall)) using the secret-sharing scheme of Theorem 5.3; the
total share size of this scheme is O(n1+β/2 log n) as well. Since we use 1 + (1 −
6 in [8, Lemma 3.8], it is only stated that the total share size in the scheme is O(nd),

however, in their scheme the size of the share of each vertex is O(d).
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β) log n schemes, the total share size of the resulting scheme is O(n1+β/2 log2 n).
ut

Theorem 5.5. Let G = (V,E) be a graph with n vertices and with at least(
n
2

)
− n1+β edges, for some constant 0 ≤ β < 1. Then, there is a linear secret-

sharing scheme realizing G with total share size O(n1+β/2 log3 n).

Proof. For every 1 ≤ t ≤ log n, we define the bipartite graph Ht = (At, Bt, Ft)
as in Theorem 4.4. The bipartite complements of these bipartite graphs have at
most n1+β edges. By Theorem 5.4, each such bipartite graph admits a secret-
sharing scheme with total share size O(n1+β/2 log2 n). The total share size of the
resulting scheme is O(n1+β/2 log3 n). ut

We use Theorem 4.4 and Theorem 5.5 to show that the total share sizes
required to realize two graphs that differ in a few edges is close.

Corollary 5.6. Let G = (V,E) be a graph with n vertices that can be realized
by a secret-sharing scheme in which the total share size is m, and let G′ be a
graph obtained from G by adding and removing n1+β edges, for some constant
0 ≤ β < 1. Then, there is a secret-sharing scheme realizing G′ with total share
size O(m+ n1+β/2 log3 n).

Proof. Let s be the secret, E′ ⊂ E be the set of edges removed from G, and E′′

(where E′′ ∩ E = ∅) be the set of edges added to G. Note that G′ = (V, (E \
E′) ∪ E′′) and |E′|, |E′′| ≤ n1+β . First, we share the secret s using the secret-
sharing scheme of Theorem 4.4 realizing the sparse graph (V,E′′) with total
share size O(n1+β/2 log3 n). Next, we independently share the secret s using a
2-out-of-2 secret-sharing scheme. I.e., let s1, s2 be two random elements such
that s = s1⊕s2 (i.e., s1 is chosen at random and s2 = s1⊕s). We independently
share s1 using the scheme realizing G with total share size m, and share s2 using
the secret-sharing scheme of Theorem 5.5 realizing the dense graph (V,E′) (note
that |E′| ≥

(
n
2

)
− n1+β) with total share size O(n1+β/2 log3 n). The total share

size of the resulting scheme is O(m+ n1+β/2 log3 n).
For an edge e in the graph G′, if e ∈ E′′, then it can reconstruct the secret

using the scheme of Theorem 4.4 realizing (V,E′′), and if e ∈ E \ E′ = E ∩ E′,
then it can reconstruct s1 using the scheme realizing G and can reconstruct s2
using the scheme of Theorem 5.5 realizing (V,E′), and, hence, can reconstruct
the secret s.

For an edge e not in the graph G′, if e ∈ E′, then it cannot get information
on the secret s from the scheme realizing (V,E′′) (since E′′ ∩ E′ = ∅, which
implies that e /∈ E′′), and it cannot learn information on s2 from the scheme
realizing (V,E′), and, hence, it cannot get information on the secret s from the
2-out-of-2 scheme. Otherwise, if e ∈ E ∪ E′′, then it cannot get information on
the secret s from the scheme realizing (V,E′′) (since e /∈ E′′), and it cannot
learn information on s1 from the scheme realizing G (since e /∈ E), and, hence,
it cannot get information on the secret s from the 2-out-of-2 scheme. ut



Linear Secret-Sharing Schemes for Forbidden Graph Access Structures 21

6 Lower Bounds for Linear Secret-Sharing Schemes

In this section, we prove that for most forbidden graph access structures with n
parties, the total share size required by any linear secret-sharing scheme realizing
these access structures, with a one-bit secret, is Ω(n3/2). We then use this result
to prove that for most forbidden graph access structures with n parties and at
most n1+β edges, the total share size required by any linear secret-sharing scheme
realizing these access structures, with a one-bit secret, is Ω(n1+β/2). As we show
in this paper, this bound is tight up to a poly-logarithmic factor. Furthermore,
we bound the share size of families of access structures whose size of minimal
authorized sets is small. Since linear secret-sharing schemes are equivalent to
monotone span programs (see Claim 2.4), we prove the lower bounds using MSP
terminology.

The section is organized as follows: We start with some definitions, then in
Section 6.1 we discuss dual access structures and the dual of MSPs. In Sec-
tion 6.2, we prove lower bounds for MSPs in which each party labels a bounded
number of rows; this implies lower bounds for the max share size in linear secret-
sharing schemes. In Section 6.3, we prove a stronger result – the same lower
bounds hold for the size of MSPs; this implies lower bounds for the total share
size in linear secret-sharing schemes (this result uses the results of Section 6.2).

Definition 6.1. Let M̂ = 〈F,M, δ,1〉 be an MSP accepting an access structure

Γ . Define ρi(M̂) as the number of rows labeled by i, and define ρ(M̂) as the

maximal number of rows labeled by a single label: ρ(M̂)
def
= maxi∈P ρi(M̂). Define

ρq(Γ ) as the minimum ρ(M̂) over all MSPs accepting the access structure Γ
over Fq.

Define size(M̂) as the number of rows in the matrix M and sizeq(Γ ) as the

minimum size(M̂) over all MSPs accepting the access structure Γ over Fq.

Notice that ρq(Γ ) is the minimal max share size of all linear secret-sharing
schemes accepting Γ over Fq, and sizeq(Γ ) is the minimal total share size of all
linear secret-sharing schemes accepting Γ over Fq.

Definition 6.2. We say that an access structure Γ has rank r if the size of
every minimal authorized set in Γ is at most r.

By counting arguments it is possible to prove lower bounds on the monotone
span program size for most access structures: Assume that every access structure
can be accepted by an MSP of size S. The number of MSPs with n parties over
Fq whose size is at most S is at most nSqS

2

(as proved in Proposition 6.6 below,
we can consider MSPs in which the number of columns in the matrix of the
MSP is at most S, thus, there are qS

2

possible matrices and nS possible ways to
label the rows, where n is the number of parties). Since the number of monotone
access structures is at least 22

n/
√
n and every MSP accepts one monotone access

structure, it must be that nSqS
2 ≥ 22

n/
√
n, i.e., S log n + S2 log q ≥ 2n/

√
n,

which implies that S log q > S
√

log q = Ω(2n/2/n1/4) (where S log q is the non-
normalized total share size of the scheme).



22 A. Beimel, O. Farràs, Y. Mintz and N. Peter

It is not clear how to use direct counting arguments to prove lower bounds
on the size of MSPs accepting forbidden graph access structures: the number of
graphs is 2O(n2), thus, we get that nSqS

2 ≥ 2O(n2), which only implies the trivial
lower bound S log q > S

√
log q = Ω(n).

6.1 Dual of Monotone Span Programs

We use the notion of dual access structures and dual MSPs, since their properties
would enable us to use a counting argument that will yield tight lower bounds
on the size of MSPs accepting forbidden graph access structures. Such dual’s
were studied in many papers, e.g., [36, 31, 28, 30].

Definition 6.3 (Dual Access Structure). Given an access structure Γ ⊆ 2P ,
its dual access structure Γ⊥ is defined as

Γ⊥
def
= {B ⊆ P : P \B /∈ Γ}.

For example, for the t-out-of-n access structure Γt = {B ⊆ P : |B| ≥ t} (where
|P | = n),

Γ⊥t =
{
B ⊆ P :

∣∣P \B∣∣ < t
}

= {B ⊆ P : |B| > n− t} .

Given an MSP, we can define its dual MSP. For this construction, recall that
given an MSP 〈F,M, δ,1〉 accepting Γ , for every authorized set A ∈ Γ there
exists a reconstruction vector rA such that rAM = 1, and (rA)T is non-zero
only in rows labeled by A.

Construction 6.4 (Dual MSP). Given an MSP M̂ = 〈F,M, δ,1〉 accepting

Γ over F, construct an MSP M̂⊥ = 〈F,M⊥, δ,1〉 in which for every minimal
authorized set A ∈ minΓ there exists a column (rA)T in M⊥, where rA is a

reconstruction vector for A in M . The MSP M̂⊥ = 〈F,M⊥, δ,1〉 is called the
dual MSP.

The following claim can be found in [31]. For completeness, we include its proof.

Claim 6.5. Let M̂ = 〈F,M, δ,1〉 be an MSP accepting an access structure Γ ⊆
2P . The dual MSP M̂⊥ = 〈F,M⊥, δ,1〉, as defined in Construction 6.4, is an

MSP accepting the dual access structure Γ⊥. The sizes of M̂ = 〈F,M, δ,1〉 and

M̂⊥ = 〈F,M⊥, δ,1〉 are the same.

Proof. We begin by proving that for every authorized set A ∈ Γ , the set B =

P \ A is rejected by M̂⊥. It suffices to consider only minimal authorized sets
A ∈ minΓ . The reconstruction vector rA of A is a column of M⊥, and has non-
zero entries only in rows labeled by A. The rows labeled by B = P \ A cannot
span 1, since in the column (rA)T all entries labeled by B are zero.

Now, assume that A /∈ Γ . In this case, the rows of M labeled by elements
from A do not linearly span 1. By orthogonality arguments, there is a column
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vector v such that 1 ·v = 1 and MAv = 0, where MA are the rows of M labeled
by elements from A. Denote w = (Mv)

T
. We prove that wM⊥ = 1, i.e., w is

a reconstruction vector of B = P \ A in M̂⊥. For every column rC of M⊥ the
following is true:

w · (rC)
T

= (Mv)
T · (rC)

T
= vTMT (rC)

T
= vT (rCM)

T
= vT · 1T = 1.

This implies that w ·M⊥ = 1. Furthermore, the vector wT is non-zero only in
rows labeled by B = P \A (since MAv = 0). Thus, the set B has a reconstruction

vector for the MSP M̂⊥, and, therefore, is accepted by M̂⊥.
Since the MSP and its dual MSP have the same labeling, the size of the MSP

and the dual MSP are the same. ut

Claim 6.5 implies that lower bounds on the size of the dual MSPs over F for
forbidden graph access structures yield lower bounds on the total share size of
linear secret-sharing schemes over F for forbidden graph access structures. The
following simple proposition bounds the number of columns of an MSP.

Proposition 6.6. For every non-empty access structure Γ and every prime-
power q, there is an MSP M̂ = 〈Fq,M, δ,1〉 accepting Γ such that size(M̂) =

sizeq(Γ ) and the number of columns in M is at most size(M̂).

Proof. Let M̂ ′ = 〈Fq,M ′, δ,1〉 be an MSP accepting Γ such that size(M̂ ′) =

sizeq(Γ ). We remove all dependent columns from the MSP M̂ ′; this does not

change the sets accepted by the MSP. We obtain an MSP M̂ = 〈Fq,M, δ,1〉
accepting Γ such that all columns of M are linearly independent. Since column
rank equals row rank, the number of columns in M is at most the number of
rows in M , which is the number of rows in M ′.7 ut

Given an access structure Γ of rank r and an MSP M̂ = 〈F,M, δ,1〉 accepting

Γ , we consider its dual M̂⊥ = 〈F,M⊥, δ,1〉 which accepts Γ⊥. We can assume
that M⊥ has at most S independent columns that form a basis spanning all
reconstruction vectors {rA}A∈minΓ (where S is the size of the MSPs M̂ and

M̂⊥). In particular, for every column in M⊥ there is a set of parties A of size at
most r such that the non-zero elements in the column are only in rows labeled
by A.

6.2 Counting Monotone Span Programs with Small Max Share Size

We next compute the number of access structures of rank r that have an MSP
such that each party labels at most s rows and prove that there are at most
2O(rns2 log q) such access structures.

7 Notice that the rows are not necessarily linearly independent (since rows labeled by
different parties can be dependent). Therefore, the number of columns can actually
be smaller than the number of rows.
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Theorem 6.7. Let q be a prime power and s, r, n be integers such that s > log n.
The number of access structures Γ with n parties, rank r, and ρq(Γ ) ≤ s is at

most 22rns
2 log q.

Proof. If ρq(Γ ) ≤ s, then, as explained above, there is an MSP M̂⊥ = 〈F,M⊥, δ,1〉
accepting Γ⊥ of the following form:

– M⊥ is an ns×ns matrix (this can be achieved without changing the validity
of the MSP by adding zero rows or duplicating columns).

– δ is fixed and δ(i) = d ise, i.e., the first s rows are labeled by the first party,
the next s rows are labeled by the second party, and so on.

– Every column of M⊥ is a reconstruction vector of some minimal authorized
set A ∈ minΓ (by Claim 6.5).

Every dual of a rank r access structure has an MSP of this form, and the number
of these MSPs is bounded by the number of possible matrices. Every matrix has
ns columns, each is a reconstruction vector of some A ∈ minΓ . By the definition
of reconstruction vectors, the columns can have non-zero values only in entries
labeled by some i ∈ A, that is, at most rs entries can be non-zero. Therefore, the
number of possible column vectors for a given minimal authorized set A ∈ minΓ
is at most |Fq|rs = qrs. Since we allow the entries in rows labeled by A to be
zero, we can assume that the size of A is exactly r. The number of sets of size
r that can label a column is

(
n
r

)
< nr < 2rs (since s > log n). Thus, since the

number of columns is ns, the number of such matrices is at most

(2rsqrs)ns < 22rns
2 log q.

ut

Theorem 6.7 bounds the number of MSPs over a given finite field. We use
this result to give a lower bound on the share size in sharing a one-bit secret
for forbidden graph access structures by a linear secret-sharing schemes over all
finite fields.

Theorem 6.8. For most forbidden graph access structures, the max share size
for sharing a one-bit secret in a linear secret-sharing scheme is Ω(

√
n).

Proof. If we share a one-bit secret using an MSP M̂ over Fq with ρ(M̂) = s,
then the size of the share of at least one party is s log q. For the max share size
to be less than

√
n, it must be that q ≤ 2

√
n (otherwise, every share contains at

least
√
n bits), and, furthermore, s log q ≤

√
n.

We next bound the number of forbidden graph access structures that can be
realized by a secret-sharing scheme with max share size at most θ. Recall that
in forbidden graph access structures all sets of size 3 are authorized. On one
hand, by Theorem 6.7, the number of forbidden graph access structures Γ , each
one of them has rank at most 3, with n parties and ρq(Γ ) ≤ θ/ log q, is at most

26n(θ/ log q)
2 log q < 26nθ

2

. Since we are counting linear schemes, we need to sum
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the number of the MSPs for every possible finite field (there are at most 2
√
n

such fields, because q ≤ 2
√
n). Consider the MSPs for which the max share size in

the secret-sharing schemes defined by the MSPs is at most θ <
√
n. The number

of such MSPs is at most 2
√
n · 26nθ2 � 27nθ

2

. On the other hand, the number

of graphs is 2(n2) ≈ 2n
2/2. Thus, if half of the forbidden graph access structures

have a linear secret-sharing scheme with max share size θ, then 27nθ
2

> 1
2 ·2

n2/2,
i.e., θ = Ω(

√
n). ut

Since CDS protocols are equivalent to secret-sharing schemes for forbidden
graph access structures, we get the following corollary.

Corollary 6.9. For most functions f : {0, 1}N ×{0, 1}N → {0, 1}, the commu-
nication complexity of every linear conditional disclosure of secrets protocol for
f is Ω(2N/2).

The same lower bound holds for graph access structures. Furthermore, if
we take sparse forbidden graphs with at most n1+β edges for some constant
0 ≤ β < 1, then the number of such graphs is at least(

n2/2

n1+β

)
≥
(
n2/2

n1+β

)n1+β

= 2Ω(n1+β logn).

Thus, the max share size θ for such forbidden graph access structures has to
satisfy nθ2 > Ω(n1+β log n), i.e., θ = Ω(nβ/2

√
log n).

6.3 Counting Monotone Span Programs with Small Total Share
Size

Theorem 6.7 counts the number of rank r access structures with ρq(Γ ) ≤ s. The
total share size of access structures with max share size s can still be small,
i.e., n+ s. Next, we count the number of forbidden graph access structures with
MSPs of size at most S.

Theorem 6.10. Let q be a prime power and S, n be integers such that S >
n log n. The number of forbidden graph access structures Γ with n parties and
sizeq(Γ ) ≤ S is at most 2n

2/3+(72S2 log q)/n.

Proof. Let M̂ = 〈F,M, δ,1〉 be a monotone span program accepting a forbidden
graph access structure Γ of a graph G = (V,E) with n parties V = {v1, . . . , vn}
such that size(M̂) ≤ S. Let B ⊆ V be the set of parties such that each one of the

parties in B labels more than 4S/n rows in M̂ . The size of B must be at most

n/4. Let M̂ ′ = 〈F,M ′, δ′,1〉 be the monotone span program obtained from M̂

by removing the rows of M labeled by parties in B. Notice that ρ(M̂ ′) ≤ 4S/n.

Furthermore, M̂ ′ accepts the forbidden graph access structure Γ ′ obtained from
Γ by removing all the authorized sets containing parties from B. That is, Γ ′ is
the forbidden graph access structure of the graph G′ obtained by removing B
from G (i.e., G′ = (V \B,E ∩ (V \B)× (V \B))).
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We say that a forbidden graph access structure Γ is efficient if sizeq(Γ ) ≤ S.
For every efficient forbidden graph access structure Γ of a graphG with n parties,
arbitrarily choose an MSP M̂G accepting it whose size is exactly S,8 choose a
set BG of size exactly n/4 such that each party in V \ BG labels at most 4S/n

rows in M̂G, and let HG be the graph obtained by removing BG from G. As
explained above, if Γ is efficient then ρ(M̂ ′) ≤ 4S/n.

Fix a set B ⊂ V of size n/4 and a graph H = (VH , EH) such that VH ⊂
{v1, . . . , vn} and |VH | = 3n/4. We next give an upper-bound on the number of
efficient forbidden graph access structures Γ such that BG = B and HG = H.
The number of graphs G = (V,E) such that H is obtained by removing B from

G is at most 2(n/42 ) · 2n4 · 3n4 ≤ 2n
2/4 (where the first term corresponds to possible

edges between vertices in B and the second term corresponds to possible edges
between a vertex in B and a vertex in V \B).

To conclude, the number of efficient forbidden graph access structures over
Fq is at most(

n

n/4

)
· 2n

2/4 · 26(3n/4)(4S/n)
2 log q ≤ 2n

2/3+72(S2/n) log q,

where the first term is the number of possible choices of B, the second term is an
upper bound on the number of graphs such that the graph obtained by removing
B from these graph is the same, and the third term is an upper bound on the
number of forbidden graph access structures Γ ′ whose set of parties is V \B and
ρq(Γ

′) ≤ 4S/n. ut

Corollary 6.11. For most forbidden graph access structures, the total share size
for sharing a one-bit secret in a linear secret-sharing scheme is Ω(n3/2).

Proof. If we share a one-bit secret using an MSP M̂ over Fq with sizeq(M̂) = S,
then the total share size is S log q. For the total share size to be less than n3/2, it
must be that q ≤ 2

√
n (otherwise, each share contains more than

√
n bits, and,

in total, the share size is more than n3/2), and, furthermore, S log q ≤ n3/2.
On one hand, by Theorem 6.10, the number of forbidden graph access struc-

tures Γ with n parties and sizeq(Γ ) ≤ Θ/ log q is at most

2n
2/3+(72(Θ/ log q)2 log q)/n < 2n

2/3+72Θ2/n.

Since we are counting linear schemes, we need to sum the number of the MSPs
for every possible finite field (there are at most 2

√
n such fields, because q ≤ 2

√
n).

Consider the MSPs for which the total share size in the secret-sharing schemes
defined by the MSPs is at most Θ < n3/2. The number of such MSPs is at most

2
√
n · 2n

2/3+72Θ2/n.

On the other hand, the number of graphs is 2(n2) ≈ 2n
2/2. Thus, if half of the

forbidden graph access structures have a linear secret-sharing scheme with total
share size Θ, then

√
n+ n2/3 + 72Θ2/n > n2/2− 1, i.e., Θ = Ω(n3/2). ut

8 By adding all-zero rows we can assume that the size is exactly S.
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We cannot apply Theorem 6.10 directly to prove lower bounds on the total
share size of linear schemes for sparse or dense forbidden graph access structures,
since the term of 2n

2/3 in Theorem 6.10 dominates the number of sparse graphs.
To prove lower bounds for sparse forbidden graph access structures, we use an
idea from [7].

Corollary 6.12. Let 0 ≤ β < 1 be a constant. There exists a forbidden graph
access structure with at most n1+β edges such that the total share size for sharing
a one-bit secret in a linear secret-sharing scheme is Ω(n1+β/2). Furthermore,
there exists a forbidden graph access structure with at least

(
n
2

)
− n1+β edges

such that the total share size for sharing a one-bit secret in a linear secret-sharing
scheme is Ω(n1+β/2).

Proof. By Corollary 6.11, for every n there exists a graph with n vertices such
that the total share size in any linear secret-sharing scheme realizing its forbidden
graph access structure is Ω(n3/2). We use such a graph (with fewer vertices) to
construct a sparse graph G = (V,E) with n vertices. We partition the vertices
of G into n1−β disjoint sets of vertices V1, . . . , Vn1−β , where |Vi| = nβ for 1 ≤
i ≤ n1−β . We construct the edges as follows: For every i (where 1 ≤ i ≤ n1−β),
we construct a copy of a graph from Corollary 6.11 with nβ vertices among the
vertices of Vi. We denote this graph by Gi. There are no edges between vertices
in different sets.

Since all edges in the above construction are between vertices in the same

set, the number of edges is at most
(
nβ

2

)
n1−β < n1+β . The total share size of

any linear secret-sharing scheme realizing Gi (for 1 ≤ i ≤ n1−β) is Ω((nβ)3/2) =
Ω(n3β/2). Thus, the total share size of any linear secret-sharing scheme realizing
G is Ω(n1−βn3β/2) = Ω(n1+β/2).

To construct a dense graph with at least
(
n
2

)
−n1+β edges that requires large

shares in every linear scheme realizing its forbidden graph access structure, we
use a similar construction, however, we add all edges between different sets.
Similar analysis implies that the resulting graph has at least

(
n
2

)
− n1+β edges

and the total share size of any linear secret-sharing scheme realizing the graph
is Ω(n1+β/2). ut

Theorem 6.13. Let q be a prime power and S, n, r be integers such that S >
n log n. The number of rank r access structures with n parties and sizeq(Γ ) ≤ S
is at most

exp

(
O
(

(1− (3/4)r)

(
n

r

)
+
rS2 log q

n

))
.

Proof. The proof is similar to the proof of Theorem 6.10, i.e., given an MSP of
size S, we find a set B of size at most n/4 containing all parties such that each one
of these parties labels more than 4S/n rows. Let Γ ′ be an access structure over
3n/4 parties such that each one of them label at most 4S/n rows. To complete
the proof, we need to upper bound the number of rank r access structures with
n parties whose restriction to 3n/4 parties is Γ ′. The number of sets of size r
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that intersect B is the number of sets of size r minus the number of sets of size
r contained in P \B i.e.,(

n

r

)
−
(

3n/4

r

)
> (1− (3/4)r)

(
n

r

)
.

Thus, the number of rank r access structures with an MSP over Fq of size at
most S is at most(

n

n/4

)
· 2(1−(3/4)

r)(nr) · 22r(3n/4)(4S/n)
2 log q =

= exp

(
O
(

(1− (3/4)r)

(
n

r

)
+
rS2 log q

n

))
.

ut

We conclude that for most rank r access structures with n parties, the size
of the shares in every linear secret-sharing scheme realizing the access structure
with a one-bit secret is Ω(n(r+1)/2).

7 Bounds on the Max Share Size for Linear Schemes

In this section, we show a lower bound of Ω(n1/4+β/4) and an upper bound
of O(n1/4+β/4 log2 n) on the max share size of linear secret-sharing schemes
realizing forbidden graph access structures, for sparse graphs with at most n1+β

edges and for dense graphs with at least
(
n
2

)
− n1+β edges, for some 0 ≤ β < 1.

These bounds are tight up to a poly-logarithmic factor.
CDS protocols are equivalent to secret-sharing schemes for forbidden graph

access structures for bipartite graphs, and the max share size of such schemes
equals to the size of the messages sent by the parties in the corresponding CDS
protocols. Thus, these results imply lower and upper bounds on the messages
length in CDS protocols for functions that either have few zeros or few ones.

7.1 Lower Bounds on the Max Share Size for Linear Secret-Sharing
Schemes

We show a lower bound on the max share size in sharing a one-bit secret for
forbidden graph access structures by a linear secret-sharing schemes, for sparse
graphs and dense graphs.

Proposition 7.1. Let 0 ≤ β < 1 be a constant. There exists a forbidden graph
access structure with at most n1+β edges such that the max share size for sharing
a one-bit secret in a linear secret-sharing scheme is Ω(n1/4+β/4). Furthermore,
there exists a forbidden graph access structure with at least

(
n
2

)
−n1+β edges such

that the max share size for sharing a one-bit secret in a linear secret-sharing
scheme is Ω(n1/4+β/4).
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Proof. By Theorem 6.8, for every n there exists a graph Gn with n vertices such
that the max share size in any linear secret-sharing scheme realizing its forbidden
graph access structure is Ω(

√
n). We use this graph (with fewer vertices) to

construct a sparse graph G = (V,E) with n vertices. We fix an arbitrary set of
vertices V ′ ⊂ V of size n′ = n1/2+β/2, and consider the graph Gn′ = (V ′, E′)
with the set of vertices V ′. Let G = (V,E′), that is, the vertices in V ′ are
connected according to E′ and the vertices in V \ V ′ are isolated.

Since all edges in G are between vertices in V ′, the number of edges is at

most
(
n1/2+β/2

2

)
< n1+β . By Theorem 6.8, the max share size of any linear secret-

sharing scheme realizing G is Ω(
√
n′) = Ω((n1/2+β/2)1/2) = Ω(n1/4+β/4). Thus,

the max share size of any linear secret-sharing scheme realizing G is Ω(n1/4+β/4).

To construct a dense graph with at least
(
n
2

)
− n1+β edges that requires

large max share size in every linear scheme realizing its forbidden graph access
structure, we use a similar construction, however, we add all edges incident to
vertices in V \ V ′. Similar analysis implies that the resulting graph has at least(
n
2

)
− n1+β edges and the max share size of any linear secret-sharing scheme

realizing the graph is Ω(n1/4+β/4). ut

7.2 Upper Bounds on the Max Share Size for Linear Secret-Sharing
Schemes

We start by showing linear secret-sharing schemes realizing sparse graphs, with
small max share size.

Theorem 7.2. Let G = (A,B,E) be a bipartite graph with |A| = |B| = n
and with at most n1+β edges, for some constant 0 ≤ β < 1. Then, there is a
linear secret-sharing scheme realizing G in which the share size of each vertex is
O(n1/4+β/4 log n). The total share size of this scheme is O(n5/4+β/4 log n).

Proof. Define Asmall =
{
a ∈ A : deg(a) ≤ n1/2+β/2

}
, Abig = A\Asmall, Bsmall ={

b ∈ B : deg(b) ≤ n1/2+β/2
}

, and Bbig = B \Bsmall.

Since the number of edges in G is at most n1+β and the degree of every
vertex in Abig and Bbig is at least n1/2+β/2, the number of vertices in Abig and

the number of vertices in Bbig is at most n1+β

n1/2+β/2 = n1/2+β/2. By Lemma 3.3,
there is a secret-sharing scheme realizing the forbidden graph access structure
of the graph (Abig, Bbig, E∩ (Abig×Bbig)) in which the share size of each vertex
is O((n1/2+β/2)1/2) = O(n1/4+β/4).

Next, since the degree of every vertex in Asmall and Bsmall is at most n1/2+β/2,
we realize the graphs (A,Bsmall, E ∩ (A×Bsmall)), (Asmall, B,E ∩ (Asmall ×B))
using the secret-sharing scheme of Theorem 4.2 (by adding dummy vertices to
Asmall and to Bsmall with degree 0, we can assume that |Asmall| = |Bsmall| =
n); the share size of each vertex in these schemes is O((n1/2+β/2)1/2 log n) =
O(n1/4+β/4 log n). Hence, the share size of each vertex in the resulting scheme
is O(n1/4+β/4 log n), and the total share size is O(n5/4+β/4 log n). ut
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The proof of the following theorem is similar to the proof of Theorem 4.4,
except that we use the scheme of Theorem 7.2 to realize each of the log n bipartite
graphs instead of the scheme of Theorem 4.3.

Theorem 7.3. Let G = (V,E) be a graph with n vertices and with at most
n1+β edges, for some constant 0 ≤ β < 1. Then, there is a linear secret-sharing
scheme realizing G in which the share size of each vertex is O(n1/4+β/4 log2 n).
The total share size of this scheme is O(n5/4+β/4 log2 n).

The same results, with minor changes in their proofs, hold also for dense
graphs.

Theorem 7.4. Let G = (A,B,E) be a bipartite graph with |A| = |B| = n such
that its bipartite complement G = (A,B,E) has at most n1+β edges, for some
constant 0 ≤ β < 1. Then, there is a linear secret-sharing scheme realizing G in
which the share size of each vertex is O(n1/4+β/4 log n). The total share size of
this scheme is O(n5/4+β/4 log n).

Theorem 7.5. Let G = (V,E) be a graph with n vertices and with at least
(
n
2

)
−

n1+β edges, for some constant 0 ≤ β < 1. Then, there is a linear secret-sharing
scheme realizing G in which the share size of each vertex is O(n1/4+β/4 log2 n).
The total share size of this scheme is O(n5/4+β/4 log2 n).

7.3 Implications to CDS Protocols

Recall that CDS protocols are equivalent to secret-sharing schemes for forbidden
graph access structures for bipartite graphs. Specifically, the size of the message
that a party sends to the referee while holding an input z in the (linear) CDS pro-
tocol is the size of the share of the vertex z in the (linear) secret-sharing scheme
realizing the corresponding forbidden graph access structure. Thus, Theorem 7.2
and Theorem 7.4 implies efficient CDS protocols for functions with few zeros or
few ones.

Corollary 7.6. Let f : {0, 1}N × {0, 1}N → {0, 1} be a function such that
|{(x, y) : f(x, y) = 0}| ≤ 2N(1+β) or |{(x, y) : f(x, y) = 1}| ≤ 2N(1+β) for some
constant 0 ≤ β < 1. Then, there is a linear CDS protocol for f with messages
size O(2N(1/4+β/4) ·N).
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