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Abstract—As data sharing has become one of the most popular features o�ered by cloud storage services, designing public auditing mechanisms
for integrity of shared data stored at the cloud becomes much more important. Two unique problems which arise in shared data auditing
mechanisms include preserving signer identity privacy and collusion resistant revocation of cloud users. When the data stored at the cloud is
shared among a group of users, di�erent users may modify di�erent data blocks; therefore, data blocks are signed by di�erent users which
accordingly leak signer identities to the public verifier. Also, when a user is revoked from the group, the signatures generated by this user become
invalid to the group and should be re-signed by the cloud server using re-signature keys. In addition, the collusion of cloud server who possess
re-signature keys and the revoked user should leak no information about the private key of other users. In this paper, by employing a collusion
resistant proxy re-signature scheme, we propose a public auditing mechanism for integrity of shared data that provides identity privacy and
collusion resistant user revocation, simultaneously. We also formally prove the mentioned properties based on exact security definition and
well-known hard problems in the random oracle model. To our best knowledge, this paper presents the first public auditing mechanism based on
collusion resistant proxy re-signatures. Moreover, our protocol supports large dynamic group of users, batch verification of multiple auditing
tasks and fully dynamic data operations, e�iciently. Overhead analysis and experimental results demonstrate the excellent e�iciency of our
scheme in comparison to the state of the art.
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1 Introduction

C
loud storage, as one of the most important services pro-

vided by cloud computing, has caused a great migration of

data from local storage systems to the cloud as it o�ers e�cient

and scalable services with a lower cost. Since the data owner,

has no physical control over the data a�er outsourcing, the data

integrity is subject to some risks such as being lost or corrupted

[1]. To audit the integrity of the outsourced data, Ateniese et

al. proposed the notion of provable data possession (PDP) [2].

In PDP, for auditing data integrity, the data is divided into

some blocks, a signature is a�ached to each data block and the

blocks together with their signatures are outsourced to the cloud

server. �e public veri�er then can e�ciently check data integrity

without the need to download the entire data, by challenging a

small set of randomly chosen data blocks and verifying the proof

that the server returns. �is public veri�er can be a client as the

data user, or a third party auditor (TPA) who has the resources to

provide data veri�cation services to users. Due to its necessity,

PDP has a�racted extensive research interest (e.g. [2]–[7]) in

recent years.

Beside storage, data owners o�en use the cloud storage

applications, like Dropbox and Google Drive, to share their data

with other cloud users. Wang et al. proposed a protocol called

Oruta for auditing the data shared by a group of users [8]. A

problem which arises during shared data auditing in the cloud,

is how to preserve identity of the signers from the TPA. Because
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using the signer identities, the TPA can discover which user in

the group or block in shared data has more importance than

others. For example, when a user in the group signs more blocks,

then probably that user has more important role in the group;

also, when a block in shared data is frequently updated by

di�erent users, this block probably contains high value data.

�erefore, identity privacy is an important issue in shared data

auditing which keeps such sensitive information private from the

TPA. To provide the identity privacy, Wang et al. [8] employed

ring signatures [9] to generate metadata on each block. But due

to the use of ring signatures, Oruta only supports static groups

and membership of users cannot change during data sharing.

Since the signature length on each block is equal to the number

of group users, to add a new user into the group or revoke

an existing user, the group manager should download all the

outsourced data blocks, re-compute signatures based on the new

group size and upload the new signatures to the server. Also, the

large signature size and auditing cost in this mechanism, makes

it ine�cient for practical scenarios.

Later, Wang et al. proposed Panda [10], which is a protocol

for shared data auditing that enjoys e�cient user revocation.

When the data is shared among a group of users, each user is

able to modify some data blocks and send each modi�ed block

together with its signature to the cloud. When a user leaves

the group or misbehaves, he should be revoked from the group

and the signatures generated by this user become invalid to the

group. �erefore, these signatures should be re-signed so that

the data integrity auditing can be performed with the public

keys of existing users only. Wang et al. in [10] employed proxy

re-signatures [11] which enables the cloud server to e�ciently re-

sign the blocks signed by the revoked user via re-signature keys.

�e re-signature key rkA→B in [10], which converts a signature

from user A to a signature from user B is generated in a four-

step procedure as follows: (1) �e server generates a random
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number r ∈ Zq and sends it to user A; (2) User A sends r/a to

user B, where a is the private key of A; (3) User B sends rb/a to

the server, where b is the private key ofB; (4) �e server recovers

rkA→B = b/a. However, it is assumed that private channels

exist between each pair of entities in each step of the above

procedure and also there is no collusion between the server and

any user. If the cloud server (who possess rkA→B = b/a) and

a revoked user (e.g. user B with private key b) collude, they can

easily recover the private key of user A. Also, Panda does not

provide data and identity privacy which was a distinctive feature

of Oruta. Furthermore, the auditing cost of the scheme is linear to

the number of users which makes it ine�cient for large groups.

Yuan and Yu proposed another shared data auditing scheme with

user revocation utilizing polynomial-based authentication tags

[12]. To revoke a user, the group manager generates two group

elements as randomized pieces of the re-signature key and sends

one element to the cloud and the other to the TPA. Using these

two randomized pieces of the re-signature key, the cloud and the

TPA together are able to correctly re-sign the blocks signed by

the revoked user [12]. Since the server does not possess the exact

re-signature keys, the scheme is collusion-resistant. However, Yu

et al. in [13] showed that the scheme in [12] is vulnerable to

the collusion of the server and revoked user. Speci�cally, if the

server collude with a revoked user, they can deceive the TPA

and pass the veri�cation although the data has been corrupted.

Furthermore, since the TPA is involved in the user revocation,

the scheme in [12] has more communication and computation

costs during user revocation in comparison to Panda. Also, the

same as Panda, it does not provide identity privacy. Jiang et

al. [14] also considered the problem of secure user revocation

where by employing the group signatures [15], they prevent the

collusion of cloud and revoked users. However, the expensive

computation cost of generating group signatures and also costly

auditing operations, make the scheme ine�cient. Furthermore,

no formal proof is provided in the paper to show that the scheme

is collusion resistant [14].

In this paper, we propose a Collusion Resistant Public

Auditing (CoRPA) protocol, for integrity of shared data that

simultaneously provides identity privacy and collusion resistant

user revocation, as the most signi�cant features of shared data

auditing. To this end, we �rst propose a collusion resistant

homomorphic authenticable proxy re-signature scheme based on

the scheme in [16] and prove its unforgeability and collusion

resistancy. Next, we employ the proposed proxy re-signature

scheme for constructing homomorphic tags in CoRPA. In our

mechanism, tag (signature) on each data block is generated

in two phase: �rst, the user generates a �rst-level signature

on the data block and sends the (block,signature) pair to the

cloud server. Second, the server, using the re-signature keys,

translates the received signature from the user to a second-

level signature from the system on the same block and saves

(block,translated-signature) pair in his storage. �is signature

translation done by server has three advantages. First, the user

only computes a linear combination as the �rst-level signature

and o�oads the exponentiation part of tag generation to the

server which improves the e�ciency of tag generation at the

user side. Second, it preserves identity privacy of the group

users: since the translated-signature is a system signature, no

one can distinguish who the signer of a special block is. �ird, it

enables e�cient user revocation: when a user is revoked from the

group, since all signatures are previously translated to the system

signature, the re-signing of the blocks signed by the revoked user

is not needed. Furthermore, during the generation of re-signature

keys in CoRPA, no private channel between entities is assumed

as oppose to Panda [10]. Meanwhile, the server who possess the

re-signature keys, is not able to independently generate a valid

signature on an arbitrary block on behalf of users or system even

if he collude with one of the group users (e.g. a revoked user),

which will be formally proved in the paper.

Moreover, we mention that the proposed scheme is scalable.

First, in CoRPA, signature generation cost at the user side and

also computation and communication costs at the server and

veri�er sides are constant and do not change with the number of

group users, no ma�er how many users access the data blocks.

Accordingly, our mechanism supports data sharing among a

large dynamic group of users e�ciently. Second, our scheme

enables the TPA to handle multiple auditing tasks simultaneously

and e�ciently via batch auditing. Furthermore, by utilizing index

hash tables [17], all users who access the shared data, can

e�ciently modify data blocks including insert a new block, and

delete or update an existing block at any time. Table 1, includes

a high-level comparison between CoRPA and selected previous

protocols.

Our Contributions. Our contribution can be summarized as

follows:

1) We design a public auditing protocol for integrity of

shared data which is based on a new collusion resistant

proxy re-signature scheme proposed in this paper. To

our best knowledge, this paper presents the �rst public

auditing mechanism based on collusion resistant proxy

re-signatures.

2) Our public auditing protocol is fully privacy-preserving.

�at is, no information of the data content or signer

identities is leaked to the TPA during the auditing

protocol. At the same time, our mechanism provides

collusion resistant revocation of cloud users, as the

most signi�cant feature of shared data auditing. We

also formally prove the privacy-preserving and collusion

resistancy properties of our protocol in the random

oracle model.

3) In our protocol, as oppose to [8] and [10], signature

generation and server and veri�er computation and

communication costs are not dependent on the number

of group users; so, it supports large dynamic group of

users e�ciently. Batch veri�cation of multiple auditing

tasks and fully dynamic data operations are also pro-

vided in our scheme. Moreover, overhead analysis and

experimental results demonstrate the excellent e�ciency

of our scheme in comparison to the state of the art.

�e paper is organized as follows. In Section 2, we present the

system model, security model and design goals. Section 3, gives

background on some cryptographic primitives used in CoRPA.

In Section 4, we propose a collusion resistant homomorphic

authenticable proxy re-signature scheme which is used as a

building block in CoRPA. Detailed design and security analysis

of our mechanism are proposed in Section 5. Section 6 gives the

performance evaluation, Section 7 brie�y discusses the related

work and �nally Section 8 concludes the paper.
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TABLE 1
Feature list and comparison between CoRPA and some existing well-known schemes

`````````̀Metric
Scheme

Oruta [8] Panda [10] CoRPA

Data Dynamics Yes Yes Yes

Identity and Data Privacy Yes No Yes

E�cient User Revocation No Yes Yes

Collusion Resistancy – No Yes

2 Problem Statement

2.1 System and Security Model

As described in Fig. 1., the system model in this paper includes

four entities: key generation center (KGC), the cloud server, a

group of users U , and the third party auditor (TPA). �e trusted

KGC, generates a system public/private key pair (pkS , skS) and

re-signature key rki→S for all i ∈ U which converts a signature

from user i to a signature from the system. All the re-signature

keys are published publicly. Also, the system private key is only

held by the KGC.

A user who is the data owner, originally creates the data

which is divided into a number of blocks and shares it with a

group of users through the cloud. �is group can dynamically

change during data sharing: adding new members to the group

or revoking the existing ones can be easily done with a minimum

overhead. All the group members (including the data owner)

are able to access the shared data and modify it. Modi�cation

includes insert, delete or update operations on the blocks.

When the data is created for the �rst time, and also each

time a data block is modi�ed, the respective user signs the

new/modi�ed block and sends the (block,signature) pair to the

cloud server. �e server, using the re-signature keys gained

from the KGC, translates the received signature from the user

to a signature from the system on the same block. �en the

server saves (block,translated-signature) pair in his storage. �is

signature translation by server has three advantages. First, the

user only computes a linear combination as the �rst-level sig-

nature and o�oads the exponentiation part of tag generation

to the server which improves the e�ciency of tag generation.

Second, it preserves identity privacy of the group users: since the

translated-signature is a system signature, no one can distinguish

who the signer of a special block is. �ird, it enables e�cient user

revocation: when a user is revoked from the group, all the blocks

signed by the revoked user should be re-signed, but here since

all signatures are previously translated to the system signature,

this re-signing operation is not needed. So, to revoke a user id,

the data owner as the group manager just sends the revoked id
to the server to update his revocation list (RL).

To audit the integrity of shared data, the TPA sends an

auditing challenge to the cloud server. Based on the challenged

blocks and their signatures, the cloud server generates a proof

and sends it as a response to the TPA. Finally, the TPA veri�es

the received proof which demonstrates the data correctness.

�ere are two security issues which should be considered in a

public auditing mechanism:

Security Against Server. In public auditing mechanisms, the cloud

server is not fully trusted in the sense that it may hide data

loss/corruption from veri�ers in order to save its reputation.

Also, the server who possess the re-signature keys, should not be

Fig. 1. The system model in this paper

able to independently generate a valid signature on an arbitrary

block on behalf of users or system even if he collude with one of

the group users (e.g. a revoked user).

Privacy Against TPA. �e TPA who provides data integrity

veri�cation services to users, is not allowed to learn anything

about both the data content and signer identities which are

con�dential to the group users. During the auditing protocol,

some information is given to the TPA so that it is able to verify

the data integrity. �e TPA, using the gained information, may

try to reveal the data content or signer identities and violate the

users’ privacy.

2.2 Design Goals

Our design goals can be listed as follows:

1) Public Auditing: To allow anyone (not just the data

users) to audit shared data integrity without the need

to download the data from the cloud.

2) Unforgeability and Collusion Resistancy: Only a user in

the group with a proper private key can generate a valid

tag (signature) on the shared data blocks. Also, collusion

of the server who possess re-signature keys and one of

the delegation partners, reveals no information about the

private key of another partner.

3) Correctness: A public veri�er is able to correctly audit

the integrity of shared data.
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4) Soundness: �e untrusted cloud server cannot forge a

valid proof in the auditing process.

5) Zero-knowledge Identity and Data Privacy: To ensure that

the identity of the signer on each block in shared data

and also the data content is not revealed to the public

veri�er during the auditing process.

6) E�cient and Secure User Revocation: To enable e�cient

revoking of group users. Also, to ensure that the revoked

users can no longer generate valid signatures on shared

data.

7) Scalability: To enable e�cient data sharing among a

large dynamic group of users. Also, to allow the public

veri�er to handle multiple auditing tasks simultaneously

and e�ciently.

8) Dynamic Data Operations: To allow all users who access

the shared data to e�ciently modify data blocks at any

time.

9) Lightweight: To enable low overhead tag generation

for the users and low computation and communication

overhead for the public veri�er.

3 Preliminaries

In this section we review bilinear maps, homomorphic authen-

ticators, and proxy re-signatures as the preliminaries used in

our design. We also introduce security assumptions which are

employed to prove our protocol’s security.

3.1 Bilinear Maps

Let G1 and G2 be two multiplicative cyclic groups of prime

order q, g be a generator of G1 and e be a bilinear map where

e : G1 × G1 → G2. �e bilinear map e is a function with the

following properties:

1) Bilinearity: For all u, v ∈ G1 and a, b ∈ Zq , e(ua, vb) =
e(u, v)ab.

2) Non-degeneracy: e(g, g) 6= 1, where 1 denotes the

identity element of G2.

3) Computability: �ere is an e�cient algorithm to com-

pute e(u, v) for u, v ∈ G1.

3.2 Homomorphic Authenticators

Homomorphic authenticators or homomorphic veri�able tags are

veri�cation metadata generated for individual data blocks which

are used as a building block in the public auditing schemes [2],

[3], [18]. Consider a signer with public/private key pair (pk, sk)
and two data blocks m1,m2 ∈ Zq with signatures σ1, σ2,

respectively. Homomorphic authenticators have three following

properties:

1) Unforgeability: A valid signature can only be generated

by a user who possess a private key.

2) Non-malleabilty: Given m1 and m2, and their signatures

σ1 and σ2, a user who does not have the private key

sk, is not able to generate a valid signature on a block

m′ = α1m1 + α2m2 ∈ Zq by combining σ1 and σ2,

where α1 and α2 are random values in Zq .

3) Blockless veri�ability: Given a block m′ = α1m1 +
α2m2 ∈ Zq , where α1 and α2 are random values in Zq ,

and given σ1 and σ2, a veri�er can check the correctness

of m′ without knowing m1 and m2.

�e �rst two properties (unforgeability and non-malleabilty)

guarantees tag security. �at is, no one can generate a valid

signature on a new block unless he has a proper private key.

Blockless veri�ability allows a public veri�er to audit the cloud

data integrity with only having a linear combination of the

challenged blocks and without the need to download the entire

data which is not e�cient and secure. �e integrity of the linear

combination is veri�ed i� all the individual data blocks are intact.

3.3 Proxy Re-Signatures

In a proxy re-signature scheme, the proxy is given a re-signature

key rkA→B , to translate a valid signature from user A on

message m, σA(m), into a valid signature from user B on the

same message, σB(m). In other words, B delegates to A, via a

proxy, the ability to change A’s signatures into B’s. So, three

parties are involved in the scheme: B as the delegator, A as the

delegatee and proxy as the translator. �is primitive was �rst

proposed by Blaze et al. [11] and later followed up by Ateniese et

al. in [16] who proposed an exact security model by considering

two types of adversaries: outside adversary (external security)

and inside adversary (internal security) which are de�ned in the

following:

External Security. �is notion considers security against adver-

saries outside the system which is equivalent to strong existential

unforgeability under adaptive chosen-message a�ack (the adver-

sary cannot create a new signature even for a previously signed

message).

Internal Security. Internal adversaries include the proxy, the

delegator and the delegatee who are inside the system. Here,

three types of security can be considered:

1. Security Against the Proxy: If the delegator and the

delegatee are both honest, the proxy cannot generate a valid

signature on arbitrary message on behalf of the delegator or the

delegatee. �e only operation the proxy can do is to translate a

signature generated by one of the delegatees to a signature from

the delegator.

2. Delegator Security: �e honest delegator is secure

against a colluding delegatee and proxy. In other words, the

delegatee and the proxy cannot produce any �rst-level signatures

on the delegator’s behalf, even if they collude. Note that a

second-level signature can be easily generated by the colluding

delegatee and proxy using the re-signature key. �e concept of

�rst and second level signatures will be introduced in Section 4.

3. Delegatee Security: �e honest delegatee is secure

against a colluding delegator and proxy. In other words, the

delegator and the proxy cannot produce any signatures on the

delegatee’s behalf, even if they collude.

3.4 Security Assumptions

�e security of the proposed mechanism in this paper is based

on Square Di�e-Helman, Discrete Logarithm and 2-Discrete

Logarithm assumptions which are described in the following:

De�nition 1: Square Di�e-Helman (sq-DH) Assumption.
For each PPT adversary A which is given (g, ga), A’s advantage

to compute ga
2

is negligible, where g ∈ G1 and a ∈ Zq are

randomly chosen from the corresponding groups. In other words,

for any PPT algorithm A, we have:

Pr[Asq−DH(g, ga) = (ga
2

) : a
R← Zq] ≤ ε (1)
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where ε is a negligible function. It can be easily shown that the

sq-DH problem is equivalent to the computational Di�e-Helman

(CDH) problem [16].

De�nition 2: Discrete Logarithm (DL) Assumption. For

each PPT adversary A which is given (g, ga), A’s advantage to

compute a is negligible, where g ∈ G1 and a ∈ Zq are randomly

chosen from the corresponding groups. In other words, for any

PPT algorithm A, we have:

Pr[ADL(g, ga) = (a) : a
R← Zq] ≤ ε (2)

where ε is a negligible function.

De�nition 3: 2-Discrete Logarithm (2-DL) Assumption. For

each PPT adversaryAwhich is given (g, ga, ga
2

),A’s advantage

to compute a is negligible, where g ∈ G1 and a ∈ Zq are

randomly chosen from the corresponding groups. In other words,

for any PPT algorithm A, we have:

Pr[A2−DL(g, g
a, ga

2

) = (a) : a
R← Zq] ≤ ε (3)

where ε is a negligible function.

4 ANewHomomorphicAuthenticable ProxyRe-

Signature Scheme

In this section, we propose a new collusion resistant homomor-

phic authenticable proxy re-signature scheme named asHASuni
which is based on the Suni signature proposed by Ateniese et al.

in [16]. Next, in Section 5, we employ HASuni to build our

collusion resistant public auditing protocol.

4.1 Construction ofHASuni

�e scheme consists of six algorithms Setup, KeyGen, ReKey,

Sign, ReSign, Verify which are described in Fig. 2. Correctness

of the veri�cation equation in Verify can be easily shown as:

e(g, s) = e(g, ha(m+e+H(id‖r))) = e(pk(1), rhm+H(id‖r)). �e

properties of HASuni can be listed as below:

• Homomorphic Authenticable: Suni proposed in [16]

is not blockless veri�able, which means that in the public

auditing protocol, the public veri�er should download

the entire data to check data integrity which is not e�-

cient and secure. HASuni (Homomorphic Authenticable

Suni), can be e�ciently used in the auditing protocol

without the need to download the data.

• Collusion Resistant: As far as we know, HASuni is

the �rst collusion resistant homomorphic authenticable

proxy re-signature scheme. Previous homomorphic au-

thenticable proxy re-signature schemes such as the one

in [10], assume a private channel between each pair of

entities in ReKey and also assume no collusion happens

between them. If the proxy who has rkA→B and user A
orB collude, they can obtain the other user’s private key.

But in HASuni, collusion of the proxy and any of users

reveals no information which will be shown in the next

subsection.

• Single-Use Unidirectional: Single-use means that the

re-sign function converts a �rst-level signature to a

second-level one, but no other conversion is possible on

a second-level signature. Unidirectional means that in

HASuni, as in Suni, the re-signature key rkA→B can

only be used to convert A’s signature to B’s, but not

vice versa.

4.2 Security Analysis ofHASuni

�eorem 1. HASuni is secure (unforgeable and collusion
resistant) under sq-DH and 2-DL assumptions in the random oracle
model.

Proof. As was noted in Subsection 3.3, in a proxy re-signature

scheme two types of adversaries are considered: internal

adversaries and external ones. Since in our scheme, the re-

signature keys are public, all a�ackers can act as the proxy and

therefore, all are internal. So, it su�ce to prove security against

inside a�ackers which include the proxy, the delegator and the

delegatee. In our scheme, the server acts as the proxy, the key

generation center (KGC) as the delegator and the group users

who share a data �le as the delegatees. Since the KGC is a fully

trusted entity, the third item in the internal security de�nition

in Subsection 3.3 holds trivially. �erefore, only the proxy and

delegatees are considered as the internal adversaries and the

scheme is proven to be secure against them.

–Security Against the Proxy: A rogue proxy cannot forge a

signature on behalf of honest delegator and delegatees using

the re-signature keys. To show this, we prove that if a proxy

A can forge a signature with probability ε, then there exists

an algorithm B that solves the sq-DH problem in G1 with

probability ε2. In the following game, the adversary A is given

the users’ public keys, also is given access to the hash oracle H ,

the signature oracle Osign and the re-signature key generation

oracleOrekey .A wins the game if it outputs a valid second-level

signature from user t on a pair of block/identi�er (m, id) which

the tuple (t,m, id) has not never been queried before from the

signature oracle.

Setup. Given a sq-DH challenge (g, ga), B gives to A the system

parameters as g and h = ga.

Public Keys. To generate the public key of user

i, B chooses a random value yi ∈ Zq and sets

pki = ((ga)yi , g1/yi) = (gayi , h1/ayi), where the virtual

private key is equal to ayi. �en B sends pki to A and saves the

pair (i, yi) in a table.

Hash �ery. To answer H query on input ai, B �rst checks

previously queried values in table TH . If there is the same

entry in TH , he outputs the corresponding value. Otherwise, he

outputs a random value ci ∈ Zq and saves (ai, ci) in TH .

Signing �ery. A sends a query to Osign on input (j,mi, idi)
which means a signature on block/identi�er (mi, idi) from

user j. To answer this query, since B does not possess skj , he

generates s = skj(mi + e+H(idi ‖ r))(modq) by controlling

the output of H as follows. He selects random s ∈ Zq as the

queried signature. Also, selects random c ∈ Zq as the output of

H(idi ‖ r) and computes r = (pk
(2)
j )s/hmi+c where pk

(2)
j is

the second term in user j’s public key pkj = (pk
(1)
j , pk

(2)
j ).

Finally, B checks if (idi ‖ r, .) is an entry in table TH ; if it is

so, the random c assigned to H(idi ‖ r) is not accurate and the

game aborts. Otherwise, B saves (idi ‖ r, c) in table TH and

outputs the queried �rst-level signature as σ = (s, r).

Re-key �ery. A query to Orekey on input (i, j)
means the re-signature key rki→j . B generates rki→j
without the need to any private keys by using the

values ga, yi and yj due to the following equalities:
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Setup. Consider the map e : G1 × G1 → G2 with G1 and

G2 as groups of prime order q, and g,h as generators of G1.

�e public parameters are (e, q,G1, G2, g, h,H), where H is a

hash function from arbitrary string to elements in Zq .

KeyGen. User A, on input the global parameters

(e, q,G1, G2, g, h,H), selects a random a ∈r Zq and generates

the public key as pkA = (ga, h1/a) and private key as

skA = (a, ha).
ReKey. User B, on input user A’s public key pkA and his

private key skB , generates the re-signature key rkA→B as

rkA→B = (pkA)
skB = (h1/a)b = hb/a. �en B publishes

rkA→B publicly.

Sign. To sign a block m with block identi�er id, user A with

skA = a, selects e ∈r Zq and outputs σ = (s, r) as follows:

r = he and s = a(m+e+H(id ‖ r))(modq). Here s is called

a �rst-level signature.

ReSign. Given the re-signature key rkA→B , the public key

pkA, a �rst-level signature σ on a block m with block identi�er

id, the proxy �rst checks that Verify(pkA, m, id, σ)= 1. If

the veri�cation does not hold, output ⊥; otherwise output

σ′ = (s′, r′), where r′ = r and s′ = (rkA→B)
s =

(hb/a)a(m+e+H(id‖r)) = hb(m+e+H(id‖r))(modq). Here s′,
which has an exponential form, is called a second-level signa-

ture.

verify. On input a public key pk = (pk(1), pk(2)), a signature

σ = (s, r), a block m with block identi�er id, check the

equation e(g, s)
?
= e(pk(1), rhm+H(id‖r)) (If σ is a �rst-level

signature, put s = hs). Output 1 if the equation holds and 0
otherwise.

Fig. 2. Details of HASuni

rki→j = h(skj)/(ski) = h(ayj)/(ayi) = (ga)yj/yi .

Forgery. A�er query phase, A outputs a second-level signature

from user t on a pair of block/identi�er (m, id). A will win the

game if the signature is valid and the tuple (t,m, id) has not

never been queried before from the signature oracle.

�e probability of aborting in the above game, is equal to the

probability of collision in H which is at most qH/2
k

where qH
is the total number of queries to H . So, the probability that A
wins the game is ε(1 − qH/2k). Due to the Reset Lemma [19],

A can generate two valid signatures (r, c1, s1) and (r, c2, s2)
on the same pair of block/identi�er (m, id) for user t, where

(c1, c2) are two di�erent responses from H on input (id ‖ r)
in two di�erent execution of the above game. Using this, B can

solve sq-DH problem by computing:

(
s1
s2

)1/(yt(c1−c2)) = (
hayt(m+e+c1)

hayt(m+e+c2)
)1/(yt(c1−c2)) (4)

= h
ayt(m+e+c1−m−e−c2)

yt(c1−c2) = ha = ga
2

.

–Delegator Security: �e honest delegator is secure against a

colluding delegatee and proxy. In other words, the delegatee and

the proxy cannot produce any �rst-level signatures on behalf of

the delegator, even if they collude (a second-level signature can

be easily generated by the colluding delegatee and proxy using

the re-signature keys). To show this, we prove that if adversary

A (colluding delegatee and proxy) can forge a signature on the

delegator’s behalf (here we show the delegator with S) , then

there exists an algorithm B that solves the 2-DL problem in

G1. In the following game, the adversary A is given all the

delegatee’s public/private key pairs, the delegator’s public key

(pkS ), also is given access to the hash oracle H , the signature

oracle Osign and the re-signature key generation oracle Orekey .

A will win the game if it outputs a valid �rst-level signature

from delegator S on a pair of block/identi�er (m, id) which has

not never been queried before from the signature oracle.

Setup. Given a 2-DL challenge (g, ga, ga
2

), B gives to A the

system parameters as g and h = (ga)
x

, where x ∈r Zq .

Public and Private Keys. B sets the delegator public key as

pkS = (ga, h1/a = gx). Also, the public/private key pair of user

i (delegatee) is set as pki = (gyi , h1/yi = gax/yi) and ski = yi,

where yi ∈r Zq .

Hash �ery. To answer H query on input ai, B �rst checks

previously queried values in table TH . If there is the same

entry in TH , he outputs the corresponding value. Otherwise, he

outputs a random value ci ∈ Zq and saves (ai, ci) in TH .

Signing �ery. A sends a query to Osign on input (S,mi, idi)
which means a signature on block/identi�er (mi, idi) from

delegator S. To answer this query, since B does not possess

skS , he generates s = skS(mi + e+H(idi ‖ r))(modq) by

controlling the output ofH as follows. He selects random s ∈ Zq
as the queried signature. Also, selects random c ∈ Zq as the

output of H(idi ‖ r) and computes r = (pk
(2)
S )s/hmi+c where

pk
(2)
S is the second term in S’s public key pkS = (pk

(1)
S , pk

(2)
S ).

Finally, B checks if (idi ‖ r, .) is an entry in table TH ; if it is

so, the random c assigned to H(idi ‖ r) is not accurate and the

game aborts. Otherwise, B saves (idi ‖ r, c) in table TH and

outputs the queried �rst-level signature as σ = (s, r).

Re-key �ery. A query to Orekey on input (i, S) means

the re-signature key rki→S . B generates rki→S as

rki→S = (h1/yi)a = (ga
2

)x/yi .

Forgery. A�er query phase, A outputs a �rst-level signature

from delegator S on a pair of block/identi�er (m, id). A will

win the game if the signature is valid and the pair (m, id) has

not never been queried before from the signature oracle.

As before, the probability that A wins the game is

ε(1 − qH/2k) and by applying the Reset Lemma, B can solve

2-DL problem from the two �rst-level signatures (r, c1, s1) and

(r, c2, s2) as below:

s1 − s2
c1 − c2

=
a(m+ e+ c1)− a(m+ e+ c2)

c1 − c2
= a. (5)

In this theorem, we proved that the rogue entities (the proxy

and the delegatees), cannot forge a valid signature on behalf

of the delegator or other delegatees even if they collude and

therefore HASuni is secure. �

�eorem 2. HASuni is a homomorphic authenticable (blockless
veri�able and non-malleable) proxy re-signature scheme.
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Proof. �ese two properties of HASuni are proved in the

following paragraphs:

–blockless veri�ability. �e TPA can check the correctness

of the block m′ = α1m1 + α2m2 without knowing m1 and

m2, if he is given α1, α2 ∈r Zq , and given σ1 = (s1, r1) and

σ2 = (s2, r2) signed by user t with public key pkt and also

given block identi�ers id1, id2. More precisely, auditing of block

m′ is done using equation below:

e(g, sα1
1 sα2

2 )
?
= e(pk

(1)
t , rα1

1 rα2
2 hm

′+α1H(id1‖r1)+α2H(id2‖r2)).

�e correctness of equation above can be simply shown as below:

e(g, sα1
1 sα2

2 ) =

e(g, hα1skt(m1+e1+H(id1‖r1))hα2skt(m2+e2+H(id2‖r2))) =

e(gskt , rα1
1 rα2

2 hα1(m1+H(id1‖r1))+α2(m2+H(id2‖r2))) =

e(pk
(1)
t , rα1

1 rα2
2 hm

′+α1H(id1‖r1)+α2H(id2‖r2)).

–non-malleability. Given m1 and m2 with identi�ers id1 and

id2, and their signatures σ1 = (s1, r1) and σ2 = (s2, r2)
generated by user t, an adversary who does not possess the

private key skt, should not be able to generate a valid signature

on a block m′ = α1m1+α2m2 by combining σ1 and σ2, where

α1 and α2 are random values in Zq . To prove this, we assume

that the adversary generates σ′ = (s′, r′) on block m′ with

identi�er id′ by combining σ1 = (s1, r1) and σ2 = (s2, r2) as

s′ = sα1
1 sα2

2 and r′ = rα1
1 rα2

2 . So, we can write the following

equalities:

r′ = rα1
1 rα2

2 = he1α1he2α2 = he1α1+e2α2 ⇒ e′ = e1α1 + e2α2.

s′ = sα1
1 sα2

2

= hα1skt(m1+e1+H(id1‖r1))hα2skt(m2+e2+H(id2‖r2))

= hskt
(
α1m1+α2m2+α1e1+α2e2+α1H(id1‖r1)+α2H(id2‖r2)

)
= hskt

(
m′+e′+α1H(id1‖r1)+α2H(id2‖r2)

)
.

⇒ H(id′ ‖ r′) = α1H(id1 ‖ r1) + α2H(id2 ‖ r2) (6)

�us, the adversary should �nd id′ in a way that it satis�es

Equation 6 which contradicts the one-way property of hash

function H .

Here, we have proved the blockless veri�ability and non-

malleability properties for a second-level signature. Proving these

properties for a �rst-level signature is trivially the same as

the arguments above and therefore HASuni is a homomorphic

authenticable proxy re-signature scheme. �

5 CoRPA

5.1 Construction

In this section we employ HASuni, the new homomorphic

authenticable proxy re-signature scheme proposed in previous

section, to build a Collusion Resistant Public Auditing scheme

(CoRPA). CoRPA includes eight algorithms which are described

in Fig. 3: Setup, KeyGen, ReKey, Sign, ReSign, Challenge,

ProofGen, ProofVerify.

In KeyGen, each user in the group U , generates his pub-

lic/private key pair. Also, the system public/private key is gener-

ated by the key generation center where the system private key

is only held by the KGC.

In ReKey, the KGC, based on the system private key and

users’ public keys, generates d re-signature keys for d members

in U and publishes them publicly. �e re-signature key for user

i ∈ U , rki→S , converts a signature from user i to a system

signature. Since for generating rki→S , the KGC only needs the

public key of user i, no private channel between entities is

assumed as oppose to [10]. Also, collusion of the server and any

of users reveals no information about the system private key or

the private key of other users as proved in �eorem 1.

In Sign, user i using his private key, signs the block he

has created/modi�ed and sends the vector {mj , idj , σij} to the

server, where σij is the �rst-level signature from user i on

(mj , idj). Also, in order to prevent the server from applying

replace/replay a�acks as in [20] or the a�ack in [13], the group

manager signs and sends the pair (idj , rij) to the TPA for each

vector {mj , idj , σij} outsourced to the server, where rij is a

part of σij . We should mention that Sign algorithm in CoRPA

can be performed in two online/o�line phases as the schemes

in [5], [6]. Since the term rij = heij in signature generation does

not depend on the message, it can be calculated o�ine, for exam-

ple when the resource constrained user is connected to power.

Hence, the online phase of Sign algorithm is just calculating the

linear combination sij = ki(mj + eij +H1(idj ‖ rij))(modq)
which has low overhead and can be executed very fast.

In ReSign, the server translates the received signature to a

second-level one and saves (mj , idj , σj) in his storage. Since

all the translated-signatures are system signatures, the TPA

cannot distinguish the identity of users who signed shared data

blocks and the scheme preserves identity privacy. �is signature

translation done by server also enables e�cient user revocation

which will be discussed in Subsection 5.1.1.

In order to audit the data integrity, a challenge-response pro-

tocol is executed between the server and the TPA. �e TPA �rst

chooses random block indices and sends ({(j, yj)}j∈J , c1, c2)
to the server in Challenge (see Fig. 3). �en the server runs

ProofGen to compute the proof as P = e(c1, s).c2
−µ

where µ
and s, as described in Fig. 3, are aggregated challenged blocks

and their signatures, respectively. Finally the proof correctness

is checked by the TPA via ProofVerify. We note that the proof

P sent to the TPA is a combination of µ and s. As the only

information the TPA gains within this protocol is P , the data

privacy is preserved in addition to the signer identity privacy

which will be formally proved in Subsection 5.2. Furthermore, if

necessary, the TPA can prove to the server that c1 and c2 have

equal discrete logarithms by Chaum-Pederson protocol [21] and

send this proof of equality along with the challenge to the server,

as done in [7].

5.1.1 User Revocation

In CoRPA, when a user leaves the group or misbehaves, he can

be revoked from the group e�ciently and securely which are

discussed in the following paragraphs:

E�ciency. When a user is revoked, the signatures generated by

this user become invalid to the group and should be re-signed.

But since in CoRPA all signatures are previously translated to

the system signature, this re-signing operation is not needed.

So, to revoke a user, the data owner (group manager) just sends

the revoked user’s id to the server and the server updates his

revocation list (RL). �erefore, user revocation in our mechanism

is ultra-e�cient.
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Setup. Consider the map e : G1 × G1 → G2 with G1

and G2 as cyclic groups of prime order q, and g,h as genera-

tors of G1. �e public parameters are (e, q,G1, G2, g, h,H1),
where H1 : {0, 1}∗ → Zq . Shared data is described as

M = (m1, ...,mn) where mi ∈ Zq are the blocks that M
is divided to. Also, the group of d users who share the data M
in denoted by U .

KeyGen. User i ∈ U , on input the global parameters

(e, q,G1, G2, g, h,H1), selects a random ki ∈ Zq and gen-

erates the public key as pki = (gki , h1/ki) and private key

as ski = (ki, h
ki). �e group manager also creates and signs

the group users list, UL, which is public to all entities. �e

system public/private key pair (pkS = gk, skS = k) is also

generated by the Key Generation Center (KGC) where k is

randomly chosen from Zq .

ReKey. In our protocol, the re-signature key for user i ∈ U ,

rki→S , converts a signature from user i to a system signature.

�e trusted KGC, on input pki and skS , generates the re-

signature key for user i as rki→S = (pki)
skS = (h1/ki)k =

hk/ki . �e d re-signature keys for d users generated by the

KGC in this step are published publicly.

Sign. To sign a block mj with block identi�er idj , user

i with ski = ki, selects eij ∈r Zq and outputs �rst-

level signature σij = (sij , rij) as follows: rij = heij and

sij = ki(mj + eij + H1(idj ‖ rij))(modq). User i, a�er

signing the new/modi�ed block mj , sends (mj , idj , σij) to

be re-signed and stored at the server. Furthermore, the group

manager signs and sends the pair (idj , rij) to the TPA for each

vector {mj , idj , σij} outsourced to the server.

ReSign. �e server, given re-signature key rki→S , public

key pki, �rst-level signature σij , and block mj with block

identi�er idj , �rst checks that Verify(pki,mj ,idj ,σij )= 1. If

the veri�cation does not hold, output ⊥; otherwise computes

the second-level signature σj = (sj , rj), where rj = rij
and sj = (rki→S)

sij = (hk/ki)ki(mj+ej+H1(idj‖rj)) =
hk(mj+ej+H1(idj‖rj))(modq) and stores (mj , idj , σj) in his

storage.

Challenge. To challenge shared data integrity, the TPA does

the following:

1) Chooses a random c-element subset J ⊂ [1, n] as the

block indices to be challenged in the auditing process

and for each j ∈ J chooses a random value yj ∈ Zq′ .
2) Picks random ρ ∈ Zq and computes c1 = gρ and

c2 = Zρ, where Z = e(pkS , h).
3) Sends the auditing message ({(j, yj)}j∈J , c1, c2) to

the server.

ProofGen. �e server, based on the received challenge

({(j, yj)}j∈J , c1, c2), generates an auditing proof through the

following procedure:

1) Computes µ =
∑
j∈J yjmj , as the combination of the

challenged blocks.

2) Aggregates the signatures as s =
∏
j∈J s

yj
j .

3) Computes P = e(c1, s).c2
−µ

and sends back P as the

auditing proof to the TPA.

ProofVerify. �e TPA veri�es the server’s proof P through

Equation 7. �e veri�cation passes if the equation holds and

fails otherwise. �e values {(idj , rj)}j∈J are known by the

TPA since the group manager sends the latest version of these

values to the TPA.

P
?
= e

(
pkS ,

∏
j∈J

(
rjh

H1(idj‖rj))yj)ρ
(7)

Fig. 3. Details of CoRPA

Security. User revocation in our mechanism is secure due to the

following statements:

• �e revoked user can no longer access and modify shared

data, because the server by checking the RL prevents the

revoked user from accessing or uploading the data.

• If the server and the revoked user collude, they cannot

learn any information about the system private key or

the private key of other users as proved in �eorem 1.

However, because the server still possess the re-signature

key related to the revoked user, the server and the re-

voked user together are able to arbitrarily modify shared

data blocks and generate valid signatures on them; but

we claim that the modi�ed blocks will not be veri�ed by

the TPA. Because the values {(idj , rj)}j∈J used by the

TPA in veri�cation, are sent by the group manager each

time a data block is modi�ed. When the server and the

revoked user collude and modify a data block, since the

revoked user is not in the authorized users list, the group

manager does not send updated (idj , rj) to the TPA and

the collusion fails.

5.1.2 Dynamic Data Operation

All users in group U can modify the shared data blocks including

insert a new block, and delete or update an existing block. To

support dynamic data operations e�ciently, there are some con-

siderations about the block identi�ers which are discussed here.

As the block signatures depend on the block identi�ers, using the

index of a block as its identi�er is not e�cient. More precisely,

because by inserting or deleting a special block, the indices of

all the blocks a�er this block change, the signature on all these

blocks needs to be re-computed. In order to solve this issue, the

concept of virtual index was introduced [8], [17]. Speci�cally, the

identi�er of block mj is de�ned as idj = {vj , hj}, where vj and

hj are de�ned as follows:

• vj is the virtual index of the block which determines

the blocks orders. �e �rst time the data is created by

the data owner, the value vj = j.δ is assigned to block

mj , where δ is a system parameter determined by the

data owner. But what makes the virtual index di�erent

with the normal one, is that when a user performs insert

or delete operations, the index of the blocks a�er the

modi�ed block does not change which will be explained

in the Modify algorithm below.

• hj = H2(mj ‖ vj), where H2 : {0, 1}∗ → Zq′ is a

collision-resistant hash function and q′ is much smaller

prime than q.

In the following, we describe the details of Modify algorithm in

CoRPA.
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Modify. Here Ins, Del and Up denote insert, delete and update

operations, respectively.

• Insert. To insert a new block m′j into the shared data,

user i �rst computes id′j = {v′j , h′j}, where v′j =
(vj−1 + vj)/2, and h′j = H2(m

′
j ‖ v′j). Next, he gen-

erates the signature σ′ij of m′j and sends {m′j , id′j , σ′ij}
to the server. Also, the group manager signs and sends

{Ins, j, (id′j , r′ij)} to the TPA (r′ij is a part of σ′ij ). �e

TPA inserts (id′j , r
′
ij) in the jth position of his list L.

Obviously, the identi�ers of other blocks are not changed

and so there is no need to update signatures on other

blocks.

• Delete. �e user sends a request to delete a blockmj , idj
and its signature σj from the data stored at the server.

Also, the group manager signs and sends {Del, j} to the

TPA. �e TPA deletes (idj , rij) from the jth position

of L. Again, the identi�ers of other blocks and their

signatures remain unchanged.

• Update. To update the j-th block with a new value m′j ,
user i �rst computes id′j = {vj , h′j}, where the virtual

index vj remains the same and h′j is computed as h′j =
H2(m

′
j ‖ vj). Next, he generates the signature σ′ij of m′j

and sends {m′j , id′j , σ′ij} to the server. Also, the group

manager signs and sends {Up, j, (id′j , r′ij)} to the TPA.

�e TPA updates the jth position of L with (id′j , r
′
ij).

Again, the identi�ers of other blocks and their signatures

remain unchanged.

5.1.3 Batch Auditing

We argue that in CoRPA, the TPA can handle multiple auditing

tasks simultaneously. Suppose that the TPA has received T
auditing requests from T di�erent groups of users in a short

time period. Obviously, performing these requests one by one is

ine�cient and the TPA should be able to perform all auditing

tasks via a single equation which is named batch auditing.

More precisely, consider T auditing tasks received by the

TPA from T groups of users U1, ..., UT who share the data

M1, ...,MT , respectively. �e TPA, for each auditing task

t ∈ [1, T ], picks random ρt ∈ Zq and generates a chal-

lenge ({(j, yj|t)}j∈Jt , c1|t, c2|t). �e server, upon receiving the

challenge for t ∈ [1, T ], generates an auditing proof Pt =
e(c1|t, st).c2|t

−µt
and sends it back to the TPA. �e TPA,

aggregates T received proofs and veri�es them via one equation

as below:∏
t∈T

Pt
?
= e(pkS ,

∏
t∈T

( ∏
j∈Jt

(
rj|th

H1(idj|t‖rj|t)
)yj|t)ρt) (8)

�e above equation holds i� all the auditing proofs P1, ..., PT
are correct, which can be shown using bilinear maps properties

as below:∏
t∈T

Pt =
∏
t∈T

e(pkS ,
( ∏
j∈Jt

(
rj|th

H1(idj|t‖rj|t)
)yj|t)ρt)

= e(pkS ,
∏
t∈T

( ∏
j∈Jt

(
rj|th

H1(idj|t‖rj|t)
)yj|t)ρt). (9)

According to Equation 8, for verifying T auditing tasks, instead

of T pairing operations, the TPA only computes one pairing via

batch auditing. �erefore, batch auditing brings a great e�ciency

enhancement for multiple data veri�cation requests.

5.2 Security Analysis of CoRPA

In this section we �rst prove the protocol correctness. Next, we

investigate two security properties of CoRPA: security against

server (soundness) and privacy against TPA which are proved

via �eorems 3 and 4, respectively.

Correctness. If both the cloud server and the public verifer are

honest, the cloud server can pass the auditing in ProofVerify
which is shown as below:

P = e(c1, s).c2
−µ =

e(c1, s)

e(pkS , h)
ρ
∑
j∈J yjmj

=
e(gρ,

∏
j∈J s

yj
j )

e(gk, h)ρ
∑
j∈J yjmj

=
e(gρ,

∏
j∈J s

yj
j )

e(gρ, hk)
∑
j∈J yjmj

=
e(gρ,

∏
j∈J s

yj
j )

e(gρ,
∏
j∈J (h

kmj )
yj )

= e(gρ,
∏
j∈J

s
yj
j

(hkmj )yj
)

= e(gρ,
∏
j∈J

hk(mj+ej+H1(idj‖rj))yj

(hkmj )yj
)

= e

(
gρ,

∏
j∈J

(hk(ej+H1(idj‖rj)))yj
)

= e

(
gk,

∏
j∈J

(rjh
H1(idj‖rj))yj

)ρ
= e

(
pkS ,

∏
j∈J

(
rjh

H1(idj‖rj))yj)ρ.(10)

�eorem 3. Security against Server (Soundness): CoRPA is
secure against an untrusted server under the DL assumption. In
other words, the server can pass the veri�cation i� the stored shared
data has been preserved intact.

Proof. A valid response to challenge ({(j, yj)}j∈J , c1, c2)
from the TPA is in the form of P = e(c1, s).c2

−µ
, where

s =
∏
j∈J s

yj
j , µ =

∑
j∈J yjmj and {mj}j∈J are the correct

data blocks outsourced by users. But here we assume that the

server cheats and sends the proof as P ′ = e(c1, s).c2
−µ′

, where

µ′ =
∑
j∈J yjm

′
j and at least one data block m′j is manipulated.

Now we show that if the server can fool the TPA and invalid

proof passes the veri�cation, it will be easy to solve the discrete

logarithm problem. As both P and P ′ pass the veri�cation, we

have:

P = e

(
pkS ,

∏
j∈J

(
rjh

H1(idj‖rj))yj)ρ
(11)

P ′ = e

(
pkS ,

∏
j∈J

(
rjh

H1(idj‖rj))yj)ρ
(12)

Since the values {(idj , rj)}j∈J are replaced by the TPA in the

veri�cation equation, the RHS of both equations are equal, so we

have P = P ′ which can be wri�en as:

e(c1, s).c2
−µ = e(c1, s).c2

−µ′ , c2 = e(pkS , h)
ρ

⇒e(c1, s).e(pkS , h−µρ) = e(c1, s).e(pkS , h
−µ′ρ) (13)
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From the above equality we can learn that h−µρ = h−µ
′ρ ⇒

(hρ)Mµ = 1, where M µ = µ − µ′ 6= 0. Also, as was de�ned

in Fig. 3, g,h are generators of cyclic group G1. So, there exists

x ∈ Zq such that h = gx. Having g, h ∈ G1, hρ can be wri�en

as hρ = gςhτ , where ς and τ are random values in Zq . �erefore,

we can compute x as follows:

1 = (hρ)Mµ = (gςhτ )Mµ = gςMµhτMµ ⇒ h = g−
ςMµ
τMµ

⇒ x = − ςM µ
τM µ

. (14)

where the dominator τM µ is not zero with probability (1−1/q)
(τ ∈ Zq is zero with probability 1/q). �erefore, if the invalid

proof generated by the cheating server passes the veri�cation,

we can solve the discrete logarithm problem with probability

1−1/q, which contradicts the hardness assumption of DL in G1

and completes the proof. �

�eorem 4. Privacy against TPA: During the protocol execution,
no information of the data content or the signer identities is leaked
to the TPA.

Proof. For data privacy proof, we show that a simulator S with

blackbox access to the TPA can simulate the ProofGen algo-

rithm without the need to know data blocks or their signatures

as follows:

In response to challenge ({(j, yj)}j∈J , c1, c2) received

from the TPA, S extracts ρ, {(idj , rj)}j∈J from the public

veri�er and outputs P=e

(
pkS ,

∏
j∈J

(
rjh

H1(idj‖rj)
)yj)ρ

,

where pkS is the system public key. It can be seen that the

proof generated by simulator S is valid and also it contains no

information of the data blocks. So, CoRPA preserves data privacy.

For identity privacy, as all signatures stored at the cloud

server are in the form of system signature, the TPA only needs

public key of the system pkS in the auditing process and no

information of the signer identities is leaked to the public veri�er.

�

6 Performance

In this section, we �rst analyze the computation, communication

and storage overheads of CoRPA and make a comparison with

the state of the art. Next, we provide the experimental evalua-

tions of the protocol.

6.1 Overhead Analysis

Here we denote modular multiplications, exponentiations and

pairings by Mul, Exp, and Pair, respectively. Also, the index

of the operation denotes the group that the operation is de�ned

in, for example MulG1 means multiplication over G1. Further-

more, as additions have negligible cost in comparison to other

operations, they are omi�ed from overhead analysis.

Computation Overhead. We present the computation overhead for

the KGC, the users, the cloud server and the TPA. �e dominated

computation of the KGC, is generating the re-signature keys for

d users of the group U . So, the main computation cost of the

KGC is d.ExpG1
.

To compute a signature on a block of shared data, a user in

the group U has the cost 1H + 1MulZq + 1ExpG1
. Here we

mention that the term rij = heij in signature generation does

not depend on the message and can be calculated o�ine. Hence,

the online phase of Sign algorithm is just calculating the linear

combination sij = ki(mj + eij +H1(idj ‖ rij))(modq) which

has the cost 1H + 1MulZq .

�e main computation cost of the TPA is generating a chal-

lenge to audit the data integrity and verifying the proof returned

by the server. �e pairing Z = e(pkS , h) is only computed once

and is not re-computed in each challenge, thus the TPA’s cost

for each challenge is 1ExpG1
+ 1ExpG2

, for computing c1 and

c2, respectively. Also, due to Equation 7, the term rjh
H1(idj‖rj)

is not dependent to the challenge and can be computed o�ine

for the entire �le in advance. �erefore, the online cost of proof

veri�cation is 1ExpG2
+ 1Pair + cExpG1

+ (c− 1)MulG1
.

�e functions done by the cloud server include translation of

the signatures and generating a proof in response to the TPA.

For signature translation, the server �rst veri�es the original

signature and then re-signs it using the related re-signature

key. So, the overhead of signature translation for the server

is 2ExpG1 + 1H + 1MulG1 + 2Pair. �is overhead can be

further reduced to only one ExpG1 by omi�ing the veri�cation

and only re-signing the original signature, because the auditing

done by the TPA ensures the signature’s correctness. Also, the

proof generation cost for the server is equal to (c− 1)MulZq +
cExpG1 + (c− 1)MulG1 + 1ExpG2 + 1MulG2 + 1Pair.

Communication Overhead. Since in CoRPA there is no need to

re-sign the blocks signed by the revoked user, user revocation

has no communication overhead on users. �e communication

cost of the TPA and the server is introduced by challenge and

proof in the auditing protocol, respectively. For each challenge

({(j, yj)}j∈J , c1, c2), where yj , c1, and c2 are elements of

Zq′ , G1, and G2, the communication cost is c(|n|+ |q′|) + 2|q|
bits, in which |q| and |q′| are the element lengths of Zq and Zq′ ,
and |n| is the length of an index. Also, the communication cost

for each auditing proof P = e(c1, s).c2
−µ

is equal to |q| bits.

Storage Overhead. In CoRPA, the data users store nothing since

the data blocks and their signatures are stored at the cloud server.

For each block of shared data, the server stores (mj , idj , σj) in

his storage, where the lengths of mj ,idj and σj are |q|, |q′| and

2|q|, respectively (in σj = (sj , rj), sj and rj are elements of

G1). So, the storage cost of the cloud server is n(3|q| + |q′|)
where n is the total number of shared data blocks. Also, in

CoRPA the TPA saves a term rjh
H1(idj‖rj)

for each data block

outsourced to the server which has a total storage cost of n.|q|
for n data blocks. We note that this list stored by the TPA,

was used in the veri�cation to make the protocol secure against

a�acks proposed in [13], [20].

Table 2 presents a summary of the total overheads in CoRPA

discussed above and makes a comparison with the state of the

art.

6.2 Experimental Results

In this part, we evaluate the e�ciency of our mechanism and

make a comparison with Oruta [8] and Panda [10]. We imple-

mented the three schemes on a personal computer (Intel I5-3470

3.20 GHz processor, 4 GB memory and the Windows 7 operating

system) using the MIRACL library [22]. We assume |q| = 160
bits, |q′| = 80 bits, n = 1, 000, 000 and |n| = 20 bits, where

n is the number of blocks that shared data M is divided to.

Also, the size of M is assumed to be 2 GB. Furthermore, due to
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TABLE 2
Performance comparison

`````````̀Metric
Scheme

Oruta [8] Panda [10] CoRPA

Sign. Gen. Complexity 1H+(d+k)MulG1
+ (2d+ k)ExpG1

1H + 1MulG1
+ 2ExpG1

Online: 1H+1MulZq O�ine: 1ExpG1

Server Comp. Complexity kH + (ck)MulZq + (k + dc)ExpG1
+

(dc)MulG1

cMulZq + cExpG1
+ cMulG1

cMulZq + cExpG1
+ cMulG1

+
1ExpG2

+ 1MulG2
+ 1Pair

Veri�er Comp. Complexity cH + dMulG2
+ (d+ 2)Pair + (2k+

c)ExpG1
+ (2k + c)MulG1

cH + dMulG2
+ (d + 1)Pair + (c +

d)ExpG1
+ (c+ 2d)MulG1

2ExpG2
+1Pair+cExpG1

+cMulG1

Comm. Complexity (2k + d)|q|+ c(2|q′|+ |n|) 2d|q|+ c(2|q′|+ |n|) 3|q|+ c(|q′|+ |n|)

Parameters d, k and c denote size of the group U , number of elements per block and number of challenged blocks in an auditing task, respectively.

[2], to have detection probability greater than 99%, we choose

c = 460. As can be seen in Figs. 4, 5 and 6, by increasing

the value of d, the distance between CoRPA and the other two

schemes increases and the e�ciency of our mechanism becomes

more clear. Also, because in CoRPA, as oppose to the other

two schemes, signature generation and the server and veri�er

computation and communication costs are not dependent on the

number of group users d, our mechanism supports large dynamic

groups e�ciently.

6.2.1 Performance of Signature Generation
Fig. 4 illustrates the time needed for generating signature on a

block in CoRPA versus the number of users in group U which

is assumed to change in the interval d ∈ [1, 10] for be�er

visibility. Speci�cally, when d = 10, a user in CoRPA needs 3.815

milliseconds to generate a signature on a block of shared data,

while the relevant times for Oruta and Panda are 78.835 and

7.555, respectively. We also note that in Oruta [8], the authors

have used block sectoring technique to reduce the storage space

of ring signature on a block. Here we put k = 1 (no sectoring),

to fairly compare the signature generation time of the schemes

in Fig. 4. Also for CoRPA, we have considered the total cost of

signature generation (Online+O�ine) in the plot.

6.2.2 Performance of Auditing
As shown in Fig. 5 and 6, the communication cost and auditing

time of Oruta and Panda linearly increases with the number of

users in the group. While in CoRPA these parameters remain

�xed as the number of group users increases. Speci�cally, when

d = 20, our mechanism can end an auditing task with only 5.79

KB and 1743 milliseconds when c = 460. But under our testbed,

the relevant values for Oruta are 10.79 KB and 2015 milliseconds

and for Panda are 11.15 KB and 2072 milliseconds when d = 20
and c = 460.

Batch Auditing. As discussed in Section 5, when the TPA receives

multiple auditing tasks in a short time period, it can perform

all tasks simultaneously via batch auditing which signi�cantly

decreases the number of pairing operations from T pairing to

only one. Fig. 7 demonstrates the performance of batch auditing

in comparison to independent auditing when c = 460 and

for any arbitrary value of d. As can be seen in this �gure,

with batch auditing, the average time required for each auditing

task is e�ciently reduced. For example, when the number of

simultaneous tasks is T = 20, the average time per auditing task

in batch auditing is about 1732 milliseconds, while with indepen-

dent auditing this average is about 1743 milliseconds. �erefore,

for T = 20, the TPA can save totally around 20 × 11 = 220
milliseconds via batch auditing .

7 Related Work

Remote data integrity checking which includes the concepts

of Provable Data Possession (PDP) and Proof of Retrievability

(POR), has been one of the ho�est research interests in the

�eld of cloud computing in recent years. PDP, allows a third

party to verify integrity of the data stored at an untrusted

server on behalf of data owners without the need to retrieve

data from the cloud server. POR techniques, in addition to data

integrity auditing, prevents data corruption by using forward

error-correcting codes, remotely. Ateniese et al. [2] and Jules et

al. [23], proposed the �rst PDP and POR schemes using RSA-

based homomorphic tags, respectively. However, the use of RSA

numbering in RSA-based homomorphic tags, results in expensive

communication and computation costs and make the schemes

ine�cient. Moving a step forward, Shacham and waters [3],

proposed BLS-based homomorphic tags [24] and designed an

e�cient POR scheme based on it.

To support dynamic data operations e�ciently, Ateniese et

al. [25] proposed a symmetric-key PDP scheme which is not

publicly veri�able and also only supports limi�ed number of

veri�cation requests. Wang et al. [26] utilized Merkle Hash Tree

to introduce a public auditing mechanism with fully dynamic

operations. Erway et al. [27] also proposed another dynamic PDP

scheme based on the rank information. Later, Zhu et al. [17],

exploited index hash tables to support dynamic data operations.

�ey also employed the block sectoring technique to reduce the

storage overhead of signatures. Also, [28] and [29] are other very

recent dynamic PDP proposals. However, most POR schemes fail

to support e�cient dynamic data operations. Recently, Cash et

al. [30] proposed the �rst dynamic POR scheme by utilizing

oblivious RAM which is private and do not support public

veri�cation.

To audit the integrity of the data which is shared among a

group of users, Wang el al. [8] proposed a scheme which exploits

ring signatures to protect the user’s identity privacy against the

public veri�er. However, their scheme does not support dynamic

groups and e�cient user revocation. Also, the large signature

size and auditing cost in this mechanism, makes it ine�cient

for practical scenarios. Later, Wang et al. [10] enhanced their

previous public auditing scheme using proxy re-signatures to

support e�cient user revocation. However, it is assumed that

there is no collusion between the cloud server and any user. If

the server and a revoked user collude, they can easily recover the

private key of other users. Also, their scheme does not provide

data and identity privacy which is an essential feature in shared

data auditing mechanisms. Furthermore, the auditing cost of the

scheme is linear to the number of users which makes it ine�cient
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for large groups. Recently, Yuan and Yu proposed a shared

data auditing scheme with collusion-resistant user revocation

utilizing polynomial-based authentication tags [12]. However,

since the TPA is involved in the user revocation, communication

and computation costs of revocation are increased in comparison

to [10]. Also, the scheme does not provide identity privacy. Jiang

et al. [14] also considered the problem of secure user revocation

where by employing the group signatures [15], they prevent the

collusion of cloud and revoked users. However, the expensive

computation cost of generating group signatures and also costly

auditing operations, make the scheme ine�cient. Furthermore,

no formal proof is provided in the paper to show that the scheme

is collusion resistant [14].

8 Conclusion and Future Work

In this paper, we proposed a new public shared data auditing

scheme that provides identity privacy and collusion resistant user

revocation, simultaneously. By employing a collusion resistant

proxy re-signature scheme, the cloud server translates all the

received signatures and saves (block,translated-signature) pair

in his storage. Since all the signatures stored at the server are

translated to system signatures, no one can distinguish who the

signer of a special block is, and the scheme preserves identity

privacy. It also enables e�cient user revocation, because re-

signing of the blocks signed by the revoked user is not needed.

Meanwhile, the server who possess the re-signature keys, is not

able to independently generate a valid signature on an arbitrary

block on behalf of users or system even if he collude with one

of the group users (e.g. a revoked user), which was formally

proved in the paper. Moreover, our protocol supports large

dynamic group of users, batch veri�cation of multiple auditing

tasks and fully dynamic data operations, e�ciently. Overhead

analysis and experimental results showed that computation and

communication overheads of our protocol are constant and do

not change with the number of group users; accordingly, our

public auditing scheme can achieve �ne e�ciency.
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[27] C. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic

provable data possession,” ACM Transactions on Information and System
Security (TISSEC), vol. 17, no. 4, p. 15, 2015.

[28] J. Shen, J. Shen, X. Chen, X. Huang, and W. Susilo, “An e�cient public

auditing protocol with novel dynamic structure for cloud data,” IEEE
Transactions on Information Forensics and Security, 2017.

[29] H. Yan, J. Li, J. Han, and Y. Zhang, “A novel e�cient remote data

possession checking protocol in cloud storage,” IEEE Transactions on
Information Forensics and Security, vol. 12, no. 1, pp. 78–88, 2017.
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