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Abstract. We revisit the exact round complexity of secure two-party
computation. While four rounds are known to be sufficient for securely
computing general functions that provide output to one party [Katz-
Ostrovsky, CRYPTO’04], Goldreich-Krawczyk [SIAM J. Computing’96]
proved that three rounds are insufficient for this task w.r.t. black-box
simulation.
In this work, we study the feasibility of secure computation in three
rounds using non-black-box simulation. Our main result is a three-round
two-party computation protocol for general functions against adversaries
with auxiliary inputs of a priori bounded size. This result relies on a
new two round input-extraction protocol based on succinct randomized
encodings.
We also provide a partial answer to the question of achieving security
against non-uniform adversaries. Assuming sub-exponentially secure iO
and one-way functions, we rule out three-round protocols that achieve
polynomial simulation-based security against the output party and ex-
ponential indistinguishability-based security against the other party.

1 Introduction

The notion of secure computation [39,24] is fundamental in cryptography. Infor-
mally speaking, secure two-party computation allows two mutually distrusting
parties to jointly compute a function over their private inputs in a manner such
that no one learns anything beyond the function output.

An important measure of efficiency of secure computation protocols is round
complexity. Clearly, the smaller the number of rounds, the lesser the impact of
network latency on the communication between the parties. Indeed, ever since
the introduction of secure computation, its round complexity has been the sub-
ject of intensive study, both in the two-party and multiparty setting.

In this work, we study the exact round complexity of secure two-party com-
putation against malicious adversaries in the plain model (i.e., without any
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trusted setup assumptions). We focus on the classical unidirectional message
model where a round of communication consists of a single message sent by one
party to the other.

In this setting, constant round protocols can be readily obtained by compiling
a two-round semi-honest protocol (e.g., using garbled circuits [39] and oblivious
transfer [37,15]) with constant-round zero-knowledge proofs [26,16,21] following
the GMW paradigm [24]. Katz and Ostrovsky [30] established an upper bound
on the exact round complexity of secure two-party computation by showing that
four rounds are sufficient for computing general functions that provide output
to one party. On the negative side, Goldreich and Krawczyk [22] proved that
two-party computation with black-box simulation cannot be realized in three
rounds.

Ever since the introduction of non-black-box techniques in cryptography
nearly two decades ago [3], the following important question has remained open:

Can secure two-party computation be realized in three rounds using
non-black-box simulation?

In this work, we address this question and provide both positive and negative
results.

1.1 Our Results

We investigate the feasibility of three-round secure two-party computation against
malicious adversaries in the plain model. We consider functions where only one
party (a.k.a receiver) learns the output. The other party is referred to as the
sender.

I. Positive Result. Our main result is a three-round two-party computation
protocol for general functions that achieves security against adversarial senders
with auxiliary inputs of arbitrary polynomial size and adversarial receivers with
auxiliary inputs of a priori bounded size.

In order to obtain our result, we devise a new non-black-box technique for
extracting adversary’s input in only two rounds based on succinct randomized en-
codings [9,12,32] and two-round oblivious transfer (OT) with indistinguishability-
based security [36]. To prove security of our three-round protocol, we addition-
ally require two-message witness indistinguishable proofs (a.k.a. Zaps) [14] and
Learning with Errors (LWE) assumption.

Theorem 1. Assuming the existence of succinct randomized encodings, two-
round OT, Zaps and LWE, there exists a three-round two-party computation
protocol (P1, P2) for computing general functions that achieves security against
adversarial P1 with auxiliary inputs of arbitrary polynomial size and adversarial
P2 with auxiliary inputs of bounded size.

On Succinct Randomized Encodings. A succinct randomized encoding (SRE)
scheme allows one to encode the computation of a Turing machine M on an



input x such that the encoding time is independent of the time it takes to
compute M(x). The security of SRE is defined in a similar manner as standard
(non-succinct) randomized encodings [28]. Presently, all known constructions of
SRE are based on indistinguishability obfuscation (iO) [4,17]. We note, however,
that SRE is not known to imply iO and may likely be a weaker assumption.3

On Bounded Auxiliary Inputs. Our positive result is motivated by the recent
beautiful works of [8] and [7] on three-round zero-knowledge proofs that achieve
security against adversaries with auxiliary inputs of a priori bounded size. Specif-
ically, [8] considers malicious verifiers with bounded-size auxiliary inputs while
[7] consider malicious provers with bounded-size auxiliary inputs.

Our positive result can be viewed as a generalization of [8] to general-purpose
secure computation.

Outputs for Both Parties. Theorem 1 only considers functions that provide out-
put to one party. As observed in [30], a protocol for this setting can be easily
transformed into one where both parties receive the output by computing a
modified functionality that outputs signed values. Now the output recipient can
forward the output to the other party who accepts it only if the signature verifies.

II. Negative Result. We also explore the possibility of achieving security in
the case where each adversarial party may receive auxiliary inputs of arbitrary
polynomial size.

We provide a partial answer to this question. We show that three-round
secure two-party computation for general functions is impossible if we require
simulation-based security against PPT adversarial receivers and exponential in-
distinguishability security against adversarial senders. Our result relies on the
existence of sub-exponentially secure iO and one-way functions.

Theorem 2. Suppose that sub-exponentially secure iO and one-way functions
exist. Then there exists a two-party functionality f such that no three-round
protocol Π for computing f can achieve the following two properties:

– Simulation-based security against PPT adversarial receivers.
– 2O(L)-indistinguishability security against adversarial senders, where L de-

notes the length of the first message in Π.

Here, 2k-indistinguishability security means that for any pair of inputs (y, y′)
for the receiver, an adversarial sender can distinguish which input was used in a
protocol execution with probability at most 1

2k
.

We stress that Theorem 2 even rules out non-black-box simulation techniques.

Discussion. Our negative result can be viewed as a first step towards disproving
the existence of three-round two-party computation against non-uniform adver-
saries. We remark that ruling out non-black-box techniques in three-rounds is
3 If SRE satisfies an additional “output compactness” property where the size of an
encoding of (M,x) is also independent of the size of the machine’s output, i.e.,
|M(x)|, then sub-exponentially secure SRE is known to imply iO [2]. We do not
require such output compactness property for our result.



highly non-trivial even when we require exponential (indistinguishability) secu-
rity for one party. Indeed, a somewhat analogous question regarding the existence
of three-round zero-knowledge proofs was recently addressed by Kalai et al. in
[29]. Specifically, [29] prove the impossibility of three-round (public-coin) zero-
knowledge proofs with non-black-box simulators assuming sub-exponentially se-
cure iO and one-way functions and exponentially secure input-hiding obfuscation
for multi-bit point functions.4

A proof system achieves statistical security against adversarial provers. In a
similar vein, Theorem 2 requires exponential indistinguishability-security against
adversarial senders. As such, Theorem 2 can be viewed as providing a comple-
mentary result to [29].

Needless to say, it remains an intriguing open question to extend our lower
bound to rule out protocols that achieve polynomial-security against adversarial
senders.

1.2 Our Techniques

In this section, we describe the main ideas used in our positive and negative
results.

I. Positive Result.We start by describing the main ideas in our positive result.
We first describe the setting: we consider two parties P1 and P2 holding private
inputs x1 and x2, respectively, for computing a function f . At the the end of
the protocol, P2 gets f(x1, x2) while P1 gets no output. We want to achieve
security against adversarial P1 who may receive auxiliary inputs of unbounded
(polynomial) size and adversarial P2 who may receive auxiliary inputs of an a
priori bounded size.

Recently, Bitansky et. al. [8] constructed a three-round zero-knowledge argu-
ment of knowledge (ZKAOK) that achieves standard soundness guarantee and
zero-knowledge guarantee against adversarial verifiers with bounded auxiliary
inputs. Given their protocol, a natural starting idea to achieve our goal is to
“compile” a two-round semi-honest two-party computation protocol into a ma-
liciously secure one (a la [24]) with their ZKAOK system. Note, however, that
while we have enough rounds in the protocol to enforce semi-honest behavior
on P1 using ZKAOK, we cannot use the same approach for P2. Nevertheless,
as a first step, let us fix a three-round protocol that guarantees security against
adversarial P1. For concreteness, we instantiate the semi-honest two-party com-
putation using garbled circuits and two-round oblivious transfer. We also use a
delayed-input ZKAOK [33] where the instance is only used in the last round.
This property is satisfied by argument system of [8].

– In the first round, P1 sends the first message of a delayed-input ZKAOK.
– In the second round, P2 sends the second message of ZKAOK together with

the receiver message of a two-round oblivious transfer (OT) computed using
its input for f .

4 Their result, in fact, extends to constant-round protocols.



– In the third round, P1 sends garbled circuit for f with its input hardwired,
together with the OT sender message (computed using the inputs labels for
the garbled circuit) and the third message of ZKAOK to prove that the
garbled circuit and the OT sender message are computed “honestly”.

Main Challenge #1. Note that in the above protocol, it is already guaranteed
that P2’s input is independent of P1’s input. Nevertheless, this is not enough
and in order to achieve security against malicious P2, we need to construct a
polynomial-time simulator that can extract P2’s input by the end of the second
round, and then simulate the third round of the protocol to “force” the correct
output on P2. In light of our lower bound, we need to devise a two-round input
extraction procedure that works against adversaries with bounded auxiliary in-
puts. At first, it is not at all clear how such an input-extraction protocol can be
constructed. In particular, black-box techniques do not suffice for this purpose
[22]. Instead, we must use non-black-box techniques.

The problem of extraction in two-rounds or less was recently considered by
Bitansky et al. [8]. They study extractable one-way functions and then use them
to construct three-round ZKAOK against verifiers with bounded non-uniformity.
We note, however, that their notion of extractable one-way functions is unsuit-
able for our goal of extracting adversary’s input. In particular, in their notion,
the extracted value can be from a completely different distribution than the
actual value x used to compute the one-way function. In contrast, we want to
extract a “committed” input of the adversary.

Main Challenge #2. To make matters worse, we cannot hope to extract the input
of a malicious adversary in two rounds with guarantee of correct extraction.
Indeed, two-round zero-knowledge proofs (with polynomial-time simulation) are
known to be impossible against non-uniform verifiers even w.r.t. non-black-box
simulation [25].5

In light of the above, we settle on a “weak extraction” guarantee, namely,
where correctness of extraction is only guaranteed if the adversary behaves hon-
estly. Note that this means that our simulator may fail to extract the input
of P2 if it behaves maliciously. In this case, it may not be able to produce an
indistinguishable third message of the protocol.

For now, we ignore this important issue and proceed to describe a two-round
protocol that enables weak input-extraction. Later, we describe how we construct
our scheme using only this weak extraction property.

(Weak) Input-Extraction in Two Rounds. We want to construct a two-round pro-
tocol that allows a simulator (that has access to the Turing machine description
and bounded auxiliary input of adversarial P2) to extract P2’s input for f as

5 Bitansky et al. [8] construct a two-round zero-knowledge argument against verifiers
with bounded non-uniformity. Using their system, however, would necessarily require
even P1 (who will play the role of the verifier) to have bounded non-uniformity. Our
goal instead is to limit the bounded non-uniformity assumption to P2 and allow P1

to be fully non-uniform.



long as P2 behaves semi-honestly in this protocol. However, an adversarial P1

should not be able to learn any information about an honest P2’s input. For
simplicity of exposition, below, we restrict ourselves to the case where P2 is a
uniform Turing machine. It is easy to verify that our protocol also works when
P2 has an auxiliary input of bounded length.

We first note that the problem of constructing an input-extraction protocol
can be reduced to the problem of constructing a “trapdoor” extraction protocol
where the trapdoor is a random string. This is because the trapdoor can be
set to the randomness r used by P2 for computing its OT receiver message in
our three-round protocol described earlier. If we use an OT protocol where the
receiver’s message is perfectly binding (e.g., [36]), then once the simulator has
extracted P2’s randomness in OT, it can also recover its input.

In order to construct a trapdoor extraction protocol, we build on ideas from
Barak’s non-black-box technique [3]. Consider the following two-party function-
ality g: it takes as input a string TM from P1 and a tuple (β, trap,m) from P2.
It treats TM as a valid Turing machine and computes β′ = TM(m). If β′ = β, it
outputs trap, else it outputs ⊥.6 Let Π be a two-round two-party computation
protocol for computing g.

Now, consider the following candidate two-round protocol for extracting a
trapdoor from P2: P1 sends the first message ofΠ computed using input TM = 0.
Let msg1 denote this message. Upon receiving msg1, P2 first prepares an input
tuple (β, trap,m) for g as follows: it samples a random string β of length ` s.t.
` >> |msg1| and sets trap to be a random string and m = msg1. Finally, P2

sends the second message of Π computed using (β, trap,m) together with β.
A non-black-box simulator that knows the Turing machine description TM2

of adversarial P2 can set its input TM = TM2 in the above protocol. If P2 behaves
semi-honestly, then at the end of the protocol, the simulator should obtain trap.
Security against a malicious P1 can be argued using the fact that β >> |msg1|
in the same manner as the proof of soundness in Barak’s protocol.

A reader familiar with [3] may notice a major problem with the above extrac-
tion protocol. Note that since Π is a secure computation protocol, its running
time must be strictly greater than the size of the circuit representation of g.
Now, since the functionality g internally computes the next-step function of P2,
the running time of Π is strictly greater than the running time of P2!

Our key idea to solve this problem is to delegate the “expensive” computation
inside g to P1 (or more accurately, the simulator when P2 is corrupted).7 Let M
be an “input-less” Turing machine that has hardwired in its description a tuple
(TM, β, trap,m). Upon execution, it performs the same computation as g. Now,
instead of using the two-party computation protocol to compute the function g,
we use it to compute a “secure encoding” of M . We want the encoding scheme

6 Note that g internally transforms TM into a circuit and uses it to perform the rest
of the computation.

7 Indeed, an honest P1 is never required the functionality g. However, when P2 is
corrupted, then the simulator acting on behalf of P1 does compute g to learn the
trapdoor.



to be such that the time to encode M is independent of the running time of M .
Note that in this case, the running time of the protocol is also independent of
the running time of M . The honest P1 ignores the encoding it obtains at the
end of the two-party computation protocol. However, the simulator can simply
“decode” the secure encoding to learn its output.

An encoding scheme with the above efficiency property is referred to as a
succinct randomized encoding (SRE) [9,12,32]. By using an SRE scheme, we are
able to resolve the running-time problem.

Using Weak Extraction Guarantee. Finally, we explain how we obtain our con-
struction by only relying on the weak extraction property of our input extraction
protocol. Note that if an adversarial P2 cheats in the input extraction protocol,
then due to the weak extraction guarantee, the simulator may extract an in-
correct input (or no input at all). In this case, the simulated garbled circuit
computed by the simulator would be easily distinguishable from the garbled cir-
cuit in the real execution. Therefore, we need a mechanism that “hides” P1’s
third round message from P2 if P2 cheated in the input-extraction protocol. On
the other hand, if P2 did behave honestly, then the mechanism should “reveal”
the third round message to P2.

We solve this problem by using conditional disclosure of secrets [19,1]. Recall
that a CDS scheme consists of two players: a sender S and a receiver R. The
parties share a common instance x of an NP language. Using this instance, the
sender S can “encrypt” a secret message m s.t. a receiver R can only “decrypt”
it using a witness w for x.

Using a CDS scheme for NP, we modify our protocol as follows. Now, P1 will
send a CDS encryption of the garbled circuit for f and its OT sender message.
The instance for this encryption is simply the transcript of the input extraction
protocol. In order to decrypt, P2 must use a witness that establishes honest
behavior during the input extraction protocol. The input and randomness of P2

in the input-extraction protocol constitutes such a witness. In other words, if P2

cheated in the input-extraction protocol, then it cannot recover the third round
message of P1.

A subtle point here is that a CDS scheme only promises security against
adversarial receivers when the instance used for encryption is false. Therefore,
in order to use the security of CDS, we must ensure that there does not exist
a valid witness if P2 cheats in the input extraction protocol. We achieve this
property by ensuring that the input-extraction protocol is perfectly binding for
P2.

We implement a CDS scheme using a two-round two-party computation pro-
tocol that achieves indistinguishability security against malicious receivers and
semi-honest senders. Such a scheme can be implemented using garbled circuits
and two-round oblivious transfer of [36]. Finally, to prevent an adversarial P1

from created “malformed” CDS encryptions, we require P1 to prove its well-
formedness using delayed-input ZKAOK.



II. Negative Result. We now provide an overview of our lower bound. Due to
space constraints, we describe the lower bound in the full version.

Recall that simulation-based security for any two-party computation protocol
is argued by constructing a polynomial-time simulator who can simulate the view
of the adversary in an indistinguishable manner without any knowledge of the
honest party input. One of the main tasks of such a simulator is to extract
the input of the adversary. We establish our negative result by ruling out the
possibility of extracting the input of adversarial receiver in a three-round secure
computation protocol.

More concretely, we consider three round protocols (P1, P2) where P2 receives
the output. We describe a two-party functionality f and an adversary P2 such
that no polynomial-time simulator can extract P2’s input from any three-round
protocol Π for computing f , if Π achieves 2O(L)-indistinguishability security
against P1. Here, L is the length of the first message of Π.

Note that in a three-round protocol, P2 only sends a single message. Clearly,
black-box techniques are insufficient for extracting P2’s input in this setting. The
main challenge here is to rule out extraction via non-black-box techniques.

In order to “hide” the input of an adversarial P2 from a non-black-box sim-
ulator who has access to P2’s code, we make use of program obfuscation [4].
Namely, we construct a “dummy” adversary P2, who receives as auxiliary input,
an obfuscated program that has an input hardwired in its description and uses it
to compute the adversary’s message in the two-party computation protocol. Dur-
ing the protocol execution, the adversary simply uses the obfuscated program to
compute its protocol message. Our goal is to then argue that having access to
the code of this dummy adversary as well as his obfuscated auxiliary input gives
no advantage to a polynomial-time simulator. We note that a similar strategy
was recently used by Bitansky et al. [8] in order to prove the impossibility of
extractable one-way functions.

Below, we first describe our proof strategy using the strong notion of virtual
black-box obfuscation [4]. Most of the main challenges that we address already
arise in this case. Later, we explain how we can derive our negative result using
the weaker notion of indistinguishability obfuscation.

Function f . Recall that the main reason why the simulator needs to extract the
adversary’s input is to learn the function output from the ideal functionality. In
order to ensure that the simulator cannot “bypass” input extraction, we choose a
function with unpredictable outputs. Furthermore, we also want that the input
of the honest party cannot be trivially determined from the function.

We choose f to be a pseudorandom function PRF that takes as input a PRF
key x1 from P1 and an input x2 from P2 and outputs the evaluation of the PRF
on x2 using key x1. It is easy to see that f satisfies the above desired properties.

Adversary P2 and Auxiliary Input Z. Towards a contradiction, let Π be any
three-round two-party protocol for securely computing f with the security prop-
erties stated in Theorem 2.

The auxiliary input Z consists of an obfuscated program that has an input
x2 and a key K hardwired in its description:



1. Upon receiving a message msg1 from P1 as input, the program honestly
computes the protocol message msg2 of P2 (as per protocol Π) using input
x2 and randomness r = F (K,msg), where F is another PRF.

2. Upon receiving a protocol transcript (msg1,msg2,msg3), it re-computes the
randomness r used to compute msg2. Using the transcript, randomness r
and input x2, it computes the output honestly.

The adversary P2 does not perform any computation on its own. Upon re-
ceiving a message msg1 from P1, it runs the obfuscated program on msg1 to
obtain msg2 and then forwards it to P1. Finally, upon receiving msg3 from P1,
it submits the protocol transcript (msg1,msg2,msg3) to the obfuscated program
to obtain an output y.

Proof Strategy: Attempt #1. For any simulator S for Π, let Q denote the possible
set of queries made by S to the ideal function. The core argument in our proof is
that the query set Q cannot contain P2’s input x2. At a high-level, our strategy
for proving this is as follows: first, we want to switch the auxiliary input Z to
a different auxiliary input Z ′ that has some other input x′2 hardwired inside it.
We want to rely upon the security of Π against adversarial P1 in order to make
this switch. Once we have made this switch, then we can easily argue that the
Q cannot contain x2 since the view of S is independent of x2.

Problem: Rewinding Attacks. The above proof strategy runs into the following
issue: since the adversary P2 includes the protocol output in its view, a simulator
S may fix the first two messages of the protocol and then try to observe the
output of P2 on many different third messages. Indeed, a simulator may be
able to learn non-trivial information by simply observing whether the adversary
accepts or aborts on different trials.

A naive approach to try to address this problem is to simply remove the out-
put from adversary’s view. That is, we simply delete the second instruction in
the obfuscated program Z. Now, P2 never processes the messages received from
P1. This approach, however, immediately fails because now a simulator can sim-
ply simulate a “rejecting” transcript. Since there is no way for the distinguisher
to check the validity of the transcript (since P2’s output is not part of its view),
the simulator can easily fool the distinguisher.

Non-uniform Distinguishers. We address this problem by using non-uniform dis-
tinguishers, in a manner similar to [25]. Specifically, we modify P2 to be such
that it simply outputs the protocol transcript at the end of the protocol. The
PRF key K hardwired inside Z (and used to compute P2’s protocol message) is
given as non-uniform advice to the distinguisher. Note that this information is
not available to the simulator.

Now, given K and the protocol transcript, the distinguisher can easily com-
pute P2’s output. Therefore, a simulator can no longer fool the distinguisher via
a rejecting transcrupt. Furthermore, now, the protocol output is not part of P2’s
view, and therefore, rewinding attacks are also ruled out.

Revised Proof Strategy. Let us now return to our proof strategy. Recall that we
want to switch the auxiliary input Z to a different auxiliary input Z ′ that has



some other input x′2 hardwired inside it. Once we have made this switch, then we
can easily argue that the Q cannot contain x2 since the view of S is independent
of x2.

We make the switch from auxiliary input Z to Z ′ via a sequence of hybrids.
In particular, we go through 2L number of hybrids, one for every possible first
message msg1 of P1. In the ith hybrid, we use an auxiliary input Zi that has
both x2 and x′2 hardwired inside it. On input first messages msg1 < i, it uses
x2 to compute the second message, and otherwise, it uses x′2. In order to argue
indistinguishability of hybrids i and i + 1, we use the security of protocol Π
against malicious P1. Indeed, this is why we require 2O(L)-indistinguishability
security against adversarial P1.

In order to perform the above proof strategy using indistinguishability obfus-
cation (as opposed to virtual black-box obfuscation), we make use of puncturable
PRFs and use the “punctured programming” techniques [38] that have been used
in a large body of works over the last few years. We refer the reader to the tech-
nical sections for further details.

1.3 Related Works

Katz and Ostrovsky [30] constructed a four-round two-party computation proto-
col for general functions where one of the parties receives the output. Recently,
Garg et al. [18] extended their work to the simultaneous-message model.

Three round zero-knowledge proofs were first constructed in [27,6] using
“knowledge assumptions.” More recently, [8,7] construct three-round zero-knowledge
proofs adversaries that receive auxiliary inputs of a priori bounded size. Our pos-
itive result is directly inspired by these works.

A recent work of Döttling et al. [13] constructs a two-round two-party compu-
tation protocol for oblivious computation of cryptographic functionalities. They
consider semi-honest senders and malicious receivers, and prove game-based se-
curity against the latter. In contrast, in this work, we consider polynomial-time
simulation-based security.

2 Preliminaries

We denote the security parameter by λ. We assume familiarity with standard
cryptographic primitives.

General Notation. If A is a probabilistic polynomial time algorithm, then we
write y ← A(x) to denote that one execution of A on x yields y. Furthermore,
we denote y ← A(x; r) to denote that A on input x and randomness r, outputs
y. If D is a distribution, we mean x $←− D to mean that x is sampled from D.

Two distributions D1 and D2, defined on the same sample space, are said
to be computationally distinguishable, denoted by D1

∼=c,ε D2 if the following



holds: for any PPT adversary A and sufficiently large security parameter λ ∈ N
it holds that,

|Pr[1← A(1λ, s1) : s1
$←− D1(1

λ)]− Pr[1← A(1λ, s2) : s2
$←− D2(1

λ)]| ≤ ε,

If ε is some negligible function then we denote this by D1
∼=c D2.

Languages and Relations. A language L is a subset of {0, 1}∗. A relation R is a
subset of {0, 1}∗ × {0, 1}∗. We use the following notation:

– Suppose R is a relation. We define R to be efficiently decidable if there exists
an algorithm A and fixed polynomial p such that (x,w) ∈ R if and only if
A(x,w) = 1 and the running time of A is upper bounded by p(|x|, |w|).

– Suppose R is an efficiently decidable relation. We say that R is a NP relation
if L(R) is a NP language, where L(R) is defined as follows: x ∈ L(R) if and
only if there exists w such that (x,w) ∈ R and |w| ≤ p(|x|) for some fixed
polynomial p.

Modeling Real World Adversaries: Uniform versus Non Uniform. One way to
model real world adversaries A is by representing them as a class of non uni-
form circuits C, one circuit per input length. This is the standard definition of
adversaries considered in the literature. We call such adversaries non uniform
adversaries.

Yet another type of adversaries are µ-bounded uniform adversaries: in this
case, the real world A is represented by a probabilistic Turing machine M and
can additionally receive as input auxiliary information of length at most µ(λ).
The description size of A is the sum total of the description size of M and
µ(λ). We say that A is uniform if it does not receive any additional auxiliary
information. In this case, the description size of A is nothing but the description
size of the Turing machine representing A.

Notation for Protocols. Consider a two party protocol Π between parties P1

and P2. We define the notation P1.MsgGen[Π] (resp., P2.MsgGen[Π]) to denote
the algorithm that generates the next message of P1 (resp., P2). The notation
β ← P1.MsgGen[Π](α, st; r) indicates that the output of next message algorithm
of party P1 on input α, current state st and randomness r is the string β. Initially,
st is set to ⊥. For convenience of notation, we assume that the MsgGen[·] is a
stateful algorithm and hence, we avoid describing the parameter st explicitly.

We denote the view of a party in a secure protocol to consist of its input,
randomness and the transcript of messages exchanged by the party. For a party
P with input y (that includes randomness), we denote its view by ViewP,y.

2.1 Secure Two-Party Computation

A secure two-party computation protocol is carried out between two parties
P1 and P2 (modeled as interactive Turing machines) and is associated with a
deterministic functionality f . Party P1 has input x1 and P2 has input x2. At the
end of the protocol, P2 gets the output.



Simulation-based Security. We follow the real/ideal world paradigm to formalize
the security of a two party computation protocol Π2PC secure against malicious
adversaries.8 We follow the description presented in Lindell-Pinkas [34]. First,
we begin with the ideal process.

Ideal Process: The ideal world is associated with a trusted party and parties
P1, P2. At most one of P1, P2 is controlled by an adversary9. The process proceeds
in the following steps:

1. Input Distribution: The environment distributes the inputs x1 and x2 to
parties P1 and P2 respectively.

2. Inputs to Trusted Party: The parties now send their inputs to the trusted
party. The honest party sends the same input it received from the environ-
ment to the trusted party. The adversary, however, can send a different input
to the trusted party.

3. Aborting Adversaries: An adversarial party can then send a message to
the trusted party to abort the execution. Upon receiving this, the trusted
party terminates the ideal world execution. Otherwise, the following steps
are executed.

4. Trusted party answers party P2: Suppose the trusted party receives
inputs x′1 and x′2 from P1 and P2 respectively. It sends the output out =
f(x′1, x

′
2) to P2.

5. Output: If the party P2 is honest, then it outputs out. The adversarial party
(P1 or P2) outputs its entire view.

We denote the adversary participating in the above protocol to be B and the
auxiliary input to B is denoted by z. We define IdealΠ2PC

f,B (x1, x2, z) to be the joint
distribution over the outputs of the adversary and the honest party10.

Real Process: In the real process, both the parties execute the protocol Π2PC.
At most one of P1, P2 is controlled by an adversary. We denote the adversarial
party to be A. As in the ideal process, they receive inputs from the environ-
ment. We define RealΠ2PC

f,
−→
P
(x1, x2, z) to be the joint distribution over the outputs

of the adversary and the honest party, where z denotes the auxiliary information.

We define the security of two party computation as follows:

Definition 1 (Security). Consider a two party functionality f as defined above.
Let Π2PC be a two party protocol implementing f . We say that Π2PC securely
8 Malicious adversaries can arbitrarily deviate from the protocol. The other type of
adversaries commonly considered are semi-honest adversaries, where the adversaries
follow the protocol but try to gain information by observing the conversation with
the honest party. Both type of adversaries are allowed to substitute the inputs they
receive from the external environment with inputs of their choice.

9 This means that at most one of the parties could deviate from the rules prescribed
by the ideal process.

10 If P1 is honest, it does not have any output.



computes f if for every PPT malicious adversary A in the real world, there
exists a PPT adversary B in the ideal world such that: for every auxiliary infor-
mation z ∈ {0, 1}poly(λ),

IdealΠ2PC

f,B (x1, x2, z) ∼=c RealΠ2PC

f,A (x1, x2, z)

In this work, we are interested in the setting when the adversary corrupting
P2 (who receives the output) in the above protocol is µ-uniform. We allow for
adversarial P1 to be non-uniform. We formally define this below.

Definition 2 (Security Against µ-Bounded Uniform P2). Consider a two
party functionality f as defined above. Let Π2PC be a two party protocol computing
f . We say that Π2PC securely computes f if the following holds:

– For every µ-bounded uniform malicious adversary A in the real world cor-
rupting party P2, there exists a PPT adversary B in the ideal world such
that: for every auxiliary information z ∈ {0, 1}µ(λ),

IdealΠ2PC

f,B (x1, x2, z) ∼=c RealΠ2PC

f,A (x1, x2, z)

– For every PPT non-uniform malicious adversary A in the real world cor-
rupting P1, there exists a PPT adversary B in the ideal world such that: for
every auxiliary information z ∈ {0, 1}poly(λ),

IdealΠ2PC

f,B (x1, x2, z) ∼=c RealΠ2PC

f,A (x1, x2, z)

3 Building Blocks

We describe the building blocks used in our results.

3.1 Garbling Schemes

We recall the definition of garbling schemes [39,5].

Definition 3 (Garbling Schemes). A garbling scheme GC = (Gen,GrbC,GrbI,
EvalGC) defined for a class of circuits C consists of the following polynomial time
algorithms:

– Setup, Gen(1λ): On input security parameter λ, it generates the secret pa-
rameters gcsk.

– Garbled Circuit Generation, GrbC(gcsk, C): On input secret parameters
gcsk and circuit C ∈ C, it generates the garbled circuit Ĉ.

– Generation of Garbling Keys, GrbI(gcsk): On input secret parameters
gcsk, it generates the wire keys 〈k〉 = (k1, . . . ,k`), where ki = (k0i , k

1
i ).

– Evaluation, EvalGC(Ĉ, (kx1
1 , . . . , kx`` )): On input garbled circuit Ĉ, wire

keys (kx1
1 , . . . , kx`` ), it generates the output out.

It satisfies the following properties:



– Correctness: For every circuit C ∈ C of input length `, x ∈ {0, 1}`, for every
security parameter λ ∈ N, it should hold that:

Pr

C(x)← EvalGC(Ĉ, (kx1
1 , . . . , kx`` )) :

gcsk← Gen(1λ),

Ĉ ← GrbC(gcsk, C),
((k01, k

1
1), . . . , (k

0
` , k

1
` ))← GrbI(gcsk)

 = 1

– Security: There exists a PPT simulator Sim such that the following holds for
every circuit C ∈ C of input length `, x ∈ {0, 1}`,{(

Ĉ, kx1
1 , . . . , kx``

)}
∼=c
{

Sim(1λ, φ(C), C(x))
}
,

where:
• gcsk← Gen(1λ)

• Ĉ ← GrbC(gcsk, C)
• ((k01, k

1
1), . . . , (k

0
` , k

1
` ))← GrbI(gcsk)

• φ(C) is the topology of C.

Theorem 3 ([39]). Assuming one-way functions, there exists a secure garbling
scheme.

Deterministic Garbling. For our results, we need a garbling scheme where the
circuit garbling algorithms and the garbling key generation algorithms are de-
terministic. Any garbling scheme can be transformed into one satisfying these
properties by generating a PRF key as part of the setup algorithm. The ran-
domness in the circuit garbling and the garbling key generation algorithms can
be derived from the PRF key.

3.2 Oblivious Transfer

We recall the notion of oblivious transfer [37,15] below. We adopt the indis-
tinguishability security notion. Against malicious senders, indistinguishability
security says that a malicious sender should not be able to distinguish the re-
ceiver’s input. Defining security against malicious receivers is more tricky, we
require that if c is the choice bit committed to by the receiver then the receiver
should get no information about the bit bc in the pair (b0, b1), where (b0, b1) is
the pair of bits used by the honest sender. This is formalized by using unbounded
extraction.

Definition 4 (Oblivious Transfer). A 1-out-2 oblivious transfer (OT) pro-
tocol OT is a two party protocol between a sender and a receiver. A sender
has two input bits (b0, b1) and the receiver has a choice bit c. At the end of
the protocol, the receiver receives an output bit b′. We denote this process by
b′ ← 〈Sen(b0, b1), Rec(c)〉.

We require that an OT protocol satisfies the following properties:



– Correctness: For every b0, b1, c ∈ {0, 1}, we have:

Pr[bc ← 〈Sen(b0, b1), Rec(c)〉] = 1

– Indistinguishability security against malicious senders: For all PPT
senders Sen∗, for all auxiliary information z ∈ {0, 1}∗ we have,

|Pr[1← 〈Sen∗(z), Rec(0)〉]− Pr[1← 〈Sen∗(z), Rec(1)〉]| ≤ 1

2
+ negl(λ).

– Indistinguishability Security against malicious receivers: For all PPT
receivers Rec∗, we require that the following holds. There exists an extractor
Ext (not necessarily efficient) that extracts a bit from the view of Rec∗ such
that the following holds: For any auxiliary information z ∈ {0, 1}∗,

|Pr[1← 〈Sen({bc, bc}c∈{0,1}), Rec∗(z)〉 | c← Ext(ViewRec∗,z)]

− Pr[1← 〈Sen({bc, bc}c∈{0,1}, Rec∗(z)〉 | c← Ext(ViewRec∗,z)]| ≤
1

2
+negl(λ).

We define `-parallel 1-out-2 OT to be a protocol that is composed of ` parallel
executions of 1-ou-2 OT protocol.

For our main result, we require an oblivious transfer protocol that satisfies the
following additional property.

Definition 5 (Uniqueness of Transcript). Consider an 1-out-2 oblivious
transfer protocol OT between two parties P1 (sender) and P2 (receiver). We say
that OT satisfies uniqueness of transcript property if the following holds:
Consider an execution of P1(b0, b1; r1) and P2(c; r2) and let the transcript of
the execution be denoted by Transcript = (OT1, . . . , OTk). Suppose there exists
c′ ∈ {0, 1} and string r′2 such that the execution of P1(b0, b1; r1) and P2(c

′; r′2)
leads to the same transcript Transcript then it should hold that c′ = c and r2 = r′2.
Also it follows that, given r2, we can recover c in polynomial time.

Remark 1. The above property can also be defined for the n-parallel 1-out-2
oblivious transfer protocol. If a n-parallel 1-out-2 oblivious transfer protocol,
denoted by OTn, is composed of n parallel copies of OT and if OT satisfies
uniqueness of transcript property then so does OTn. In particular, given the
randomness of the receiver of OTn, it is possible to recover the n bit length
string of the receiver efficiently.

Instantiation: Naor-Pinkas Protocol [35]. Naor-Pinkas proposed a two message
oblivious transfer protocol whose security is based on the Decisional Diffie-
Hellman (DDH) assumption.

We claim that their protocol satisfies uniqueness of transcript property. In
order to do that, we recall the first message (sent by receiver to sender) in their
protocol: Let bit be the input of receiver. Consider a group G where DDH is
hard. Let g be a generator of G. The receiver generates ga, gb and cbit = ab. It



generates c1−bit at random such that cbit 6= c1−bit. It sends v1 = ga, v2 = gb, v3 =
gc0 , v4 = gc1 to the sender.

The elements v1 and v2 uniquely determine a and b. Furthermore, exactly one
of v3 or v4 corresponds to gab and this uniquely determines the bit. Furthermore,
note that this also uniquely determines the randomness used.

While we only deal with 1-out-2 OT protocol above, we can generalize the
above proof to also work for n-parallel 1-out-2 OT protocol.

Theorem 4 ([35]). Assuming DDH, there exists an oblivious transfer protocol
satisfying Definition 5 as well as the uniqueness of transcript property.

3.3 Two Message Secure Function Evaluation

As a building block in our construction, we consider a two message secure func-
tion evaluation protocol. Since we are restricted to just two messages, we can
only expect one of the parties to get the output.

We designate P1 to be the party receiving the output and the other party to
be P2. That is, the protocol proceeds by P1 sending the first message to P2 and
the second message is the response by P2.

Indistinguishability Security. We require malicious (indistinguishability) security
against P1 and malicious (indistinguishability) security against P2. We define
both of them below.

First, we define an indistinguishability security notion against malicious P1.
To do that, we employ an extraction mechanism to extract P1’s input x∗1. We
then argue that P1 should not be able to distinguish whether P2 uses x02 or x12 in
the protocol as long as f(x∗1, x02) = f(x∗1, x

1
2). We don’t place any requirements

on the computational complexity of the extraction mechanism.

Definition 6 (Indistinguishability Security: Malicious P1). Consider a
two message secure function evaluation protocol for a functionality f between
parties P1 and P2 such that P1 is getting the output. We say that the two party
secure computation protocol satisfies indistinguishability security against
malicious P1 if for every adversarial P ∗1 , there is an extractor Ext (not neces-
sarily efficient) such the following holds. Consider the following experiment:
Expt(1λ, b):

– P ∗1 outputs the first message msg1.
– Extractor Ext on input msg1 outputs x∗1.
– Let x02, x12 be two inputs such that f(x∗1, x02) = f(x∗1, x

1
2). Party P2 on input

msg1 and xb2, outputs the second message msg2.
– P ∗1 upon receiving the second message outputs a bit out.
– Output out.

We require that,∣∣Pr[1← Expt(1λ, 0)]− Pr[1← Expt(1λ, 1)]
∣∣ ≤ negl(λ),

for some negligible function negl.



We now define security against malicious P2. We insist that P2 should not be
able to distinguish which input P1 used to compute its messages.

Definition 7 (Indistinguishability Security: Malicious P2). Consider a
two message secure function evaluation protocol for a functionality f between
parties P1 and P2 where P1 gets the output. We say that the two party secure
computation protocol satisfies indistinguishability security against mali-
cious P2 if for every adversarial P ∗2 , the following holds: Consider two strings
x01 and x12. Denote by Db the distribution of the first message (sent to P2) gen-
erated using xb1 as P1’s input. The distributions D0 and D1 are computationally
indistinguishable.

Instantiation. We can instantiate such a two message secure evaluation proto-
col using garbled circuits and `1-parallel 1-out-2 two message oblivious transfer
protocol OT by Naor-Pinkas [35]. Recall that this protocol satisfies uniqueness
of transcript property (Definition 5). We denote the garbling schemes by GC.

We describe this protocol below. The input of P1 is x1 and the input of P2

is x2. Recall that P1 is designated to receive the output.

– P1 → P2: P1 computes the first message of OT as a function of its input x1
of input length `1. Denote this message by OT1. It sends OT1 to P2.

– P2 → P1: P2 computes the following:
• It generates Gen(1λ) to get gcsk.
• It then computes GrbC(gcsk, C) to obtain Ĉ. C is a circuit with x2 hard-

wired in it; it takes as input x1 and computes f(x1, x2).
• It computes GrbI(gcsk) to obtain the wire keys (k1, . . . ,k`1), where every
ki is composed of two keys (k0i , k1i ).

• It computes the second message of OT, denoted by OT2, as a function
of (k1, . . . ,k`1).

It sends (Ĉ, OT2) to P1.
– P1: Upon receiving (Ĉ, OT2), it recovers the wire keys (k1, . . . , k`1). It then

executes EvalGC(Ĉ, (k1, . . . , k`1)) to obtain out. It outputs out.

The correctness of the above protocol immediately follows from the correctness
of garbling schemes and oblivious transfer protocol. We now focus on security.

Theorem 5. Assuming the security of GC and OT and assuming that OT satis-
fies uniqueness of transcript property (Definition 5), the above protocol is secure
against malicious P1 (Definition 6).

Proof. We first describe the inefficient extractor Ext that extracts P1’s input from
its first message. From the uniqueness of transcript property of OT, it follows
that given P1’s first message OT1, there exists a unique input x∗1 and randomness
r that was used to compute the message of P1. Thus, Ext can find this input x∗1
by performing a brute force search on all possible inputs and randomness.

We prove the theorem with respect to the extractor described above. In the
first hybrid described below, challenge bit b is used to determine which of the



two inputs of P2 needs to be picked. In the final hybrid, P2 always picks the first
of the two inputs.

Hyb1.b for b
$←− {0, 1}: Let x∗1 be the input extracted by the extractor. Let x02 and

x12 be two inputs such that f(x∗1, x02) = f(x∗1, x
1
2). Party P2 uses xb2 to compute

the second message.

Hyb2.b for b $←− {0, 1}: Let x∗1 be the input extracted by the extractor. We de-
note the ith bit of x∗1 to be x∗1,i. As part of the second message, the wire keys
(k1, . . . ,k`1), where every ki is composed of two keys (k0i , k

1
i ). Instead of gen-

erating OT2 as a function of (k1, . . . ,k`1), it generates OT2 as a function of
(k′1, . . . ,k

′
`1
). k′i contains

(
0, k

x∗1,i
i

)
if x∗1,i = 1, otherwise it contains

(
k
x∗1,i
i , 0

)
.

Hybrids Hyb1.b and Hyb2.b are computationally distinguishable from the in-
distinguishability security against malicious receivers property of the oblivious
transfer protocol.

Hyb3.0: Let x∗1 be the input extracted by the extractor. Let x02 and x12 be two
inputs such that f(x∗1, x02) = f(x∗1, x

1
2). P2 computes the second message as in the

previous hybrid. Instead of using xb2 in the computation of the garbled circuit,
it instead uses the input x02.

Hybrids Hyb2.b and Hyb3.0 are computationally indistinguishable from the
security of the garbling schemes11.

The final hybrid does not contain any information about the challenge bit. This
completes the proof.

Theorem 6. Assuming the security of OT, the above protocol is secure against
malicious P2 (Definition 7).

Proof. The proof of this theorem directly follows from the security against ma-
licious senders property of the oblivious transfer protocol.

3.4 Conditional Disclosure of Secrets (CDS) Protocols

We require another key primitive, conditional disclosure of secrets (CDS) [19,1]
protocol. A CDS protocol consists of two parties P1 and P2. Both these parties
share a common instance X belonging to a NP language. Further, P2 has a secret
s and P1 additionally has a private input w. If w is a valid witness for X then we
require that P1 should be able to recover the secret s at the end of the protocol.
However, if X does not belong to the language then we require that P1 does not
get any information about the secret.

We give the formal definition below.

11 Formally this is argued by first simulating the garbled circuit and then switching
the input.



Definition 8 (CDS Protocols). Conditional Disclosure of Secret protocol, as-
sociated with a NP relation R, is an interactive protocol between two parties P1

(receiver) and P2 (sender). Both P1 and P2 hold the same instance X. Party P2

holds the secret s ∈ {0, 1}λ and P1 holds a string w ∈ {0, 1}∗. At the end of the
protocol P1 outputs s′. We denote this by s′ ← 〈P1(X, w), P2(X, s)〉.

We require that the CDS protocol satisfies the following properties:

– Correctness: If (X, w) ∈ R then it holds with probability 1 that s ←
〈P1(X, w), P2(X, s)〉.

– Soundness: If X /∈ L(R) then, for any boolean distinguisher P ∗1 , for any
s0, s1 ∈ {0, 1}λ and for any auxiliary information z ∈ {0, 1}∗, it holds that,

|Pr[1← 〈P ∗1 (X, s0, s1, z), P2(X, s0)〉]− Pr[1← 〈P ∗1 (X, s0, s1, z), P ∗2 (X, s1)〉] |

≤ negl(λ)

for some negligible function negl.

Construction of Two Message CDS protocol. Since a CDS protocol is a special
case of two party secure computation, we show how a two message secure function
evaluation protocol (Section 3.3) implies a two message CDS protocol.

Theorem 7. Consider a NP relation R. Consider the following two party func-
tionality f that takes as input ((X′, w); (X, s)) and outputs s if and only if
((X, w) ∈ R) ∧ X = X′, otherwise it outputs 0. A two message secure func-
tion evaluation protocol for f is a CDS protocol associated with the relation R.

Proof. The correctness of the CDS protocol immediately follows from the cor-
rectness of the two message secure function evaluation protocol. We now argue
soundness.

Consider an instance X /∈ L(R). We now invoke the security of two message
SFE (specifically, Definition 6). There exists an extractor Ext that extracts x∗1
from P ∗1 ’s first message. We claim that for every x2 of the form (X, s′), it holds
that f(x∗1, x2) outputs 0. This follows from the fact that X /∈ L(R). Using this
fact, it follows that P ∗1 cannot distinguish whether P2 used the input (X, s0) or
(X, s1) to compute its message. The theorem thus follows.

3.5 Zero Knowledge Proof Systems

We now recall the notion of zero knowledge [23]. In the definition below, we
consider computationally bounded provers.

Definition 9 (Zero Knowledge Argument of Knowledge). A Zero Knowl-
edge Argument of Knowledge (ZKAoK) system (Prover,Verifier) for a relation R,
associated with a NP language L(R), is an interactive protocol between Prover
and Verifier. Prover takes as input (y,w) and verifier Verifier takes as input y.
At the end of the protocol, verifier outputs accept/reject. This process is denoted
by 〈Prover(y,w), Verifier(y)〉. It consists of the following properties:



– Completeness: For every (y,w) ∈ R, we have:

Pr [accept← 〈Prover(y,w), Verifier(y)〉] = 1

– Extractability: For every PPT Prover∗, there exists an extractor Ext (that
could use the code of Prover∗ in a non black box manner) such that the
following holds: for every auxiliary information z ∈ {0, 1}∗,∣∣Pr[accept← 〈Prover∗(y, z), Verifier(y)〉]− Pr[w∗ ← Ext(1λ, z) : (y,w∗) ∈ R]

∣∣
≤ negl(λ)

– Zero Knowledge: For every (y,w) ∈ R, for every PPT Verifier∗, there
exists a PPT simulator Sim (that could use the code of Verifier∗ in a non
black box manner) such that the following holds:

{〈Prover(y,w), Verifier∗(y)〉} ≈c
{

Sim(1λ,y)
}

We define a ZKAoK system to be k-message if the number of messages between
Prover and Verifier is k.

We require zero knowledge systems satisfying additional properties. We consider
them one by one.

Bounded Uniform Zero Knowledge. In the zero knowledge property considered
in the definition above, we require that the malicious verifier is uniform.

Definition 10 (µ-Bounded Uniform Zero Knowledge). A proof system
(Prover,Verifier) for a relation R is said to be µ-bounded uniform ZKAoK
if the following holds:

– It satisfies correctness and extractability properties as in Definition 9.
– µ-Bounded Uniform Zero Knowledge: For every (y,w) ∈ R, for every

PPT Verifier∗ (represented as a Turing machine), there exists a PPT sim-
ulator Sim (that could use the code of Verifier∗ in a non black box manner)
such that the following holds: for any auxiliary information z ∈ {0, 1}µ(|y|).

{〈Prover(y,w), Verifier∗(y, z)〉} ≈c
{

Sim(1λ,y, z)
}

Remark 2. The special case of 0-bounded uniform zero knowledge (interpreted
as a constant function that always outputs 0) reduces to having the malicious
verifiers as uniform algorithms (in particular, they receive no external advice).

Delayed Statement-Witness. Another useful property we require is to be able to
choose the statement and the witness in the last message of the protocol. We
call this, delayed statement-witness property.

Definition 11 (Delayed Statement-Witness). A Zero Knowledge (proof or
argument) system is said to satisfy delayed statement-witness property if both
the statement and the witness are fixed only in the last message of the protocol.
In particular, all the messages except the last message depend only on the length
of the instance and the witness.



Instantiation. In this work, we require a ZKAoK system that is both bounded
uniform zero knowledge and satisfies delayed statement-witness property. The
protocol of Bitansky et al. [8] satisfies both these properties. Their protocol
can be instantiated from Zaps [14], DDH and the Learning with Errors (LWE)
assumption.

Theorem 8 ([8]). Assuming Zaps, DDH and LWE, there exists a ZKAoK sys-
tem that satisfies both µ-bounded uniform zero knowledge for some function µ,
and delayed statement-witness property.

3.6 Succinct Randomized Encodings

We recall the notion of succinct randomized encodings [9,12,32] next.

Definition 12. A succinct randomized encodings scheme SRE = (E,D) for a
class of Turing machines M consists of the following probabilistic polynomial
time algorithms:

– Encoding, E(1λ,M, x): On input security parameter λ, Turing machine
M ∈M and input x, it outputs the randomized encoding 〈M,x〉.

– Decoding, D(〈M,x〉): On input randomized encoding ofM and x, it outputs
out.

We require that the above algorithms satisfies the following properties:

– Correctness: We require that the following holds for every M ∈ M, x ∈
{0, 1}∗,

Pr
[
D(〈M,x〉) =M(x) : 〈M,x〉 ← E(1λ,M, x)

]
= 1

– Security: For every PPT adversary A, there exists a PPT simulator Sim
such that the following holds:

{〈M,x〉} ≈c
{

Sim(1λ, 1|M |, 1|x|,M(x))
}
,

where:
• 〈M,x〉 ← E(1λ,M, x)

Input-less Turing machines. In this work, we consider input-less Turing ma-
chines. These are Turing machines which on input ⊥, executes some computa-
tion and outputs out. We denote the randomized encoding of an input-less TM
to be 〈M〉 ← E(1λ,M,⊥).

3.7 Indistinguishability Obfuscation for Circuits

We define the notion of indistinguishability obfuscation (iO) for circuits [4,17]
below.



Definition 13 (Indistinguishability Obfuscator (iO) for Circuits). A
uniform PPT algorithm iO is called an ε-secure indistinguishability obfusca-
tor for a circuit family {Cλ}λ∈N, where Cλ consists of circuits C of the form
C : {0, 1}` → {0, 1}, if the following holds:

– Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}`,
where ` = `(λ) is the input length of C, we have that

Pr [C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

– ε-Indistinguishability: For any PPT distinguisher D, there exists a neg-
ligible function negl(·) such that the following holds: for all sufficiently large
λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ such that C0(x) = C1(x) for all
inputs x ∈ {0, 1}`, where ` = `(λ) is the input length of C0, C1, we have:∣∣∣Pr [D(λ, iO(λ,C0)) = 1]− Pr[D(λ, iO(λ,C1)) = 1]

∣∣∣ ≤ ε
If ε is negligible in λ then we refer to iO as a secure indistinguishability obfus-
cator.

Remark 3. In our work, we require indistinguishability obfuscators where the in-
distinguishability property holds against adversaries running in sub-exponential
time (rather than polynomial time). We refer to such indistinguishability obfus-
cators as sub-exponentially secure indistinguishability obfuscators. Currently,
the existence of several cryptographic primitives are based only on the assump-
tion of sub-exponential iO.

3.8 Puncturable Pseudorandom Functions

We define the notion of puncturable pseudorandom functions below.

Definition 14. A pseudorandom function of the form PRFpunc(K, ·) is said to
be a µ-secure puncturable PRF if there exists a PPT algorithm Puncture that
satisfies the following properties:

– Functionality preserved under puncturing. Puncture takes as input a
PRF key K and an input x and outputs K\{x} such that for all x′ 6= x,
PRFpunc(K\{x}, x′) = PRFpunc(K,x

′).
– Pseudorandom at punctured points. For every PPT adversary (A1,A2)

such that A1(1
λ) outputs an input x, consider an experiment where K $←−

{0, 1}λ and K\{x} ← Puncture(K,x). Then for all sufficiently large λ ∈ N,∣∣Pr[A2(K\{x}, x,PRFpunc(K,x)) = 1]− Pr[A2(K\{x}, x, Uχ(λ)) = 1]
∣∣ ≤ µ(λ)

where Uχ(λ) is a string drawn uniformly at random from {0, 1}χ(λ).

If µ is negligible, we refer to PRFpunc as a secure puncturable PRF.



As observed by [10,11,31], the GGM construction [20] of PRFs from one-way
functions yields puncturable PRFs.

Theorem 9 ([20,10,11,31]). If µ
poly -secure one-way functions exist, for some

fixed polynomial poly, then there exists µ-secure puncturable pseudorandom func-
tions.

4 Generation Protocols

A crucial ingredient in our two party secure computation protocol is a protocol
that enables extraction of the input of P2 during the simulation phase. To achieve
this, we introduce the notion of generation protocols12 below.

This is a two party protocol between a sender and a receiver. The sender
has a trapdoor and in the end of the protocol, the receiver outputs a string. It
consists of two properties: (i) soundness: any adversarial receiver having black-
box access to the code of the sender will not be able to recover the trapdoor of
the sender, (ii) extractability: an extractor can successfully recover the trapdoor
of the sender. In the extractability property, we only consider the case when
the sender is semi-honest (i.e., it behaves according to the description of the
protocol).

To make sure that both soundness and extractability don’t contradict each
other, we make sure that the extractor has more capabilities than an adversarial
receiver – for instance, an extractor could rewind the receiver or it could have
non black box access to the code of the receiver.

The formal definition of generation protocols is provided below.

Definition 15 (Generation Protocols). A generation protocol is an interac-
tive protocol between two parties P1(also termed receiver) and P2 (also termed
sender). The input to both parties is auxiliary information z. Party P2, in ad-
dition, gets as input trapdoor K ∈ {0, 1}poly(λ). At the end of the protocol, P1

outputs K ′. We denote this process by K ′ = 〈P1(z), P2(z,K)〉.
The following properties are associated with a generation protocol:

– Soundness: For any PPT non-uniform boolean distinguisher P ∗1 , for any
large enough security parameter λ ∈ N: for every two strings K0,K1 ∈
{0, 1}poly(λ) and auxiliary information z ∈ {0, 1}poly′(λ),

|Pr [1← 〈P ∗1 (z,K0,K1), P2(z,K0)〉]− Pr [1← 〈P ∗1 (z,K0,K1), P2(z,K1)〉]|

≤ 1

2
+ negl(λ)

for some negligible function negl. That is, any distinguisher P ∗1 having black
box access to P2 cannot distinguish whether which of K0 and K1 was used
in the protocol.

12 The name “generation protocol" is taken from the work of [3]. The definition in their
work is slightly different, however they too use the notion of generation protocols to
achieve trapdoor extraction.



– Extractability: For every semi-honest PPT P ∗2 , there exists a PPT extrac-
tor ExtGP (that could possibly use code of P ∗2 in a non black box manner)
such that the following holds: for any auxiliary information z ∈ {0, 1}poly′(λ),
• The view of P ∗2 (z,K) when it is interacting with P1(z,K) is computa-
tionally indistinguishable from the view of P ∗2 (z,K) when it is interacting
with ExtGP(1λ, z).

• Pr
[
K ′ ← 〈ExtGP(1λ, z), P ∗2 (z,K)〉 and K ′ = K

]
≥ 1− negl(λ)

Extractability Against µ-Bounded Uniform Senders. We consider generation pro-
tocols where the extractability property needs to hold against senders modeled
as µ-bounded uniform algorithms. We formally define this below.

Definition 16. A protocol GenProt between sender P1 and receiver P2 is said
to be µ-bounded uniform generation protocol if the following holds:

– It satisfies the soundness property in Definition 16.
– Extractability against µ-bounded uniform senders: For every semi-

honest PPT P2 (modeled as a Turing machine), there exists a PPT extractor
ExtGP (that could possibly use code of P2 in a non black box manner) such
that the following holds: for any bounded auxiliary information z ∈ {0, 1}µ(λ),

Pr
[
K ′ ← 〈ExtGP(1λ, z), P2(z,K)〉 and K ′ = K

]
≥ 1− negl(λ)

Remark 4. If µ in the above definition is a constant function that always outputs
0 then this boils down to the case when the sender is a uniform algorithm (hence,
no external advice). In this case, we refer to the above generation protocol as
uniform generation protocol.

4.1 Two-Message GP from Succinct RE

We present a two-message generation protocol starting from a succinct random-
ized encoding scheme and a two party secure function evaluation protocol. The
security of this scheme will be against µ-bounded uniform senders.

Tools. The first tool we use is succinct randomized encodings for Turing ma-
chines, denoted by SRE = (E,D). Another tool we use is a two message secure
function evaluation protocol Π2PC. In particular, we use the two message secure
function evaluation protocol defined in Section 3.3. We denote P1 and P2 to
be the parties involved in this protocol. Only P1 outputs in the protocol. Re-
call that this protocol satisfies indistinguishability security (Definitions 6 and 7).

Functionality of Π2PC: The functionality f associated with Π2PC is the fol-
lowing: f on input x2 = (β,K,m,R2,md, θ) from P2 and x1 = (M,R1) (here,
|M | ≤ O(µ(λ) + λ)) from P1, it computes the following:

– If md = 1 then compute the succinct randomized encoding 〈N〉 ← E(1λ, N [β,
K,m,M ],⊥;R) (i.e., R is the randomness used in E), where R is set to R1⊕
R2. The Turing machineN is an input-less Turing machine (refer Section 3.6)
that does the following: hardwired inside it are the values (β,K,m,M).



1. It first computes M(m) to get as output out.
2. It interprets the first |β| number of bits of out to be the string β′.
3. It checks if β′ = β. If so, it outputs K. Otherwise, it outputs ⊥.
It outputs 〈N〉.

– If md = 2 then:

1. It outputs θ.

Construction. We describe the protocol below. Denote the receiver to be P1 and
the sender to be P2. Call this protocol GenProt.

– Upon input z, P1 (receiver) prepares an input x1 for Π2PC as a µ(λ)-length
string of all zeroes. It takes the role of the party P1 in the protocol Π2PC.
It computes the first message msg1 of Π2PC using the input x1. That is,
msg1 ← P1.MsgGen[Π2PC](1

λ, x1). It sends msg1 to P2 (sender).
– Upon input z and trapdoorK, P2 (sender) first picks a string β of length `β =

poly(λ) such that `β >> |msg1|. In particular, we require that 2−(`β−µ(λ)−λ)
to be negligible. It sets m = msg1. It samples a string R uniformly at
random.
It takes the role of P2 in the protocol Π2PC. It then sets its input to Π2PC

to be x2 = (β,K,msg1, R,md, θ), where md = 1 and θ = 0. Using x2 and
msg1, it computes the second message msg2 of Π2PC using the input x2.
That is, msg2 ← P2.MsgGen[Π2PC](1

λ, x2,msg1). It sends (β,msg2) to P1.

Finally, P1 computes the output of Π2PC and recovers the randomized encoding
〈N〉. It then evaluates the decoding algorithm D(〈N〉) to get the output K ′. It
outputs K ′.

This concludes the construction. We argue that the above protocol satisfies the
properties of the generation protocol.

Theorem 10. Assuming the security of Π2PC (Definition 7) and SRE, GenProt
satisfies soundness.

Proof. Suppose P ∗1 receives as input two trapdoors K0 and K1. In this case we
need to argue that a malicious P ∗1 having just black box access to (honest) P2

will be unable to distinguish whether P2 is using K0 or K1. In fact, we argue
a stronger property: we argue that the behavior of P ∗1 can be simulated by a
PPT simulator even without the knowledge of K. That is, for every adversarial
receiver P ∗1 , there exists a PPT simulator Sim, for every K ∈ {0, 1}poly(λ) and
auxiliary information z ∈ {0, 1}poly′(λ),

|Pr[1← 〈P ∗1 (z), P2(z,K)〉]− Pr[1← 〈P ∗1 (z), Sim(z)〉]| ≤ 1

2
+ negl(λ)

Note that the above property implies soundness property.



Description of Sim(z). It receives as input msg1 from P1. It generates msg2 as
follows:

– Let SimSRE be the simulator of the succinct randomized encodings scheme.
It then executes SimSRE(1

λ, 1`1 , 1`2 , v), where `1 is the size of M , `2 is the
size of m as defined in the description of functionality for Π2PC and v is set
to be ⊥. The output of SimSRE(1

λ, 1`1 , 1`2 , v) is denoted by 〈N〉.
– It sets x2 = (0, 0, 0, 0, 2, 〈N〉). It then computes msg2 as a function of x2

and msg1. The generation of msg2 is performed by running the algorithm of
(honest) P2 in Π2PC. That is, msg2 ← P2.MsgGen[Π2PC](1

λ, x2,msg1).
– Finally, it samples a string β of length `β .

Sim then sends (β,msg2) to P2. This ends the description of Sim.

We focus on proving the above stronger property. In the following hybrids, we
use extractor Ext associated with Π2PC (see Definition 6). Recall that Ext need
not necessarily be efficient.

Hyb1: This corresponds to the real experiment where P ∗1 (z) is interacting with
P2(z,K). The output of this hybrid is the output of P ∗1 .

Hyb2: In this hybrid, party P2 deviates from the description of the protocol. It
uses the extractor Ext to extract x∗1 = (M,R1). It then sets x′2 = (0, 0, 0, 0, 2, θ)
and uses this input to generate the second message of the protocol Π2PC. That is,
msg2 ← P2.MsgGen[Π2PC](1

λ, x′2,msg1), where msg1 is the message sent by P ∗1 .
Here, θ is set to be the output f(x∗1, (β,K,msg1, R2, 1, 0)), where R2 is sampled
uniformly at random. P2 sends (β,msg2) to P ∗1 , where β is a string of length `β
sampled uniformly at random. The output of this hybrid is the output of P ∗1 .

Since Ext need not be efficient, P2 is not necessarily efficient.

Claim. Assuming the security of Π2PC, hybrids Hyb1 and Hyb2 are computation-
ally indistinguishable.

Proof. Suppose x∗1 = (M,R1), interpreted as the description of a Turing machine
M (with the bounded auxiliary information part of this) along with randomness
R1, is the input extracted by the extractor Ext from the first message of the
generation protocol. Let x′2 be the input used by P2 in Hyb1 and let x′′2 be the
input used by P2 in Hyb2. We have that f(x1, x′2) = f(x1, x

′′
2). And thus, from

the security of Π2PC (Definition 6), we have that P ∗1 cannot distinguish whether
P2 used x′2 or x′′2 . The claim thus follows.

Hyb3: In this hybrid, P2 essentially executes the simulator Sim described above.

Claim. Assuming the security of SRE, hybrids Hyb2 and Hyb3 are computation-
ally indistinguishable.

Proof. Suppose x∗1 = (M,R1), interpreted as a Turing machine M (with the
auxiliary information hardcoded in it) along with randomness R1, is the input



extracted by the extractor Ext from the first message msg1 ofΠ2PC. Sample string
β of length `β uniformly at random. We first make the following observation.
The probability that for any γ, M(γ) outputs the random string β is at most
2−O(`β−µ(λ)−λ), which is negligible. Thus with overwhelming probability we have
that N [β,K,msg1,M ] outputs ⊥.

The only difference between Hyb2 and Hyb3 is that in Hyb2, θ is set to 〈N〉
whereas in Hyb3, θ is set to be the simulated randomized encoding correspond-
ing to the output ⊥. As observed above, N outputs ⊥ except with negligible
probability. Thus, we can invoke the security of randomized encodings to argue
that Hyb2 and Hyb3 are computationally indistinguishable.

From the indistinguishability of Hyb1 and Hyb3, we have that P ∗1 cannot distin-
guish whether it is interacting with P2 versus interacting with Sim. This com-
pletes the proof.

Theorem 11. Assuming the correctness, security properties of Π2PC (Defini-
tion 6) and SRE, GenProt satisfies extractability against µ-uniform senders.

Proof. We design an extractor ExtGP that extracts the trapdoor from the semi-
honest sender P ∗2 . The extractor has the knowledge of the code used by P ∗2 . Call
the Turing machine executed by P ∗2 to be M (which has auxiliary information
hardcoded in it). Since we are assuming that P ∗2 is µ-bounded uniform, we have
|M | ≤ O(µ(λ)+λ): this is to account for the auxiliary information whose length
is at most µ(λ) and representing the Turing machine requires size at most λ.

Now, the extractor proceeds as follows: it sets the input to Π2PC to be M .
It then computes the first message msg1 of Π2PC and sends it to P ∗2 . Then, P ∗2
computes (β,msg2) and sends it to the extractor.

– From the security of Π2PC (Definition 6), the view of P ∗2 when interacting
with P1 is computationally indistinguishable from the view of P2 when in-
teracting with ExtGP. Recall that P1 uses the input 0 in the first message
and ExtGP uses the input M in the first message.

– Since P ∗2 is semi-honest, it computes the second message of Π2PC honestly.
From the correctness of Π2PC, it follows that the extractor can recover the
randomized encoding 〈N〉 from Π2PC. From the correctness of SRE, it further
follows that the decoding of 〈N〉 yields K if and only if the first `β bits of
M(msg1) yields β. Since M was chosen to be the code of P ∗2 , it follows that
the decoding of 〈N〉 does yield K.

From the above two bullets, we have that GenProt satisfies extractability prop-
erty.

5 Three-Round Secure Computation

Consider any boolean functionality f : {0, 1}`1 × {0, 1}`2 → {0, 1}, where the
output is delivered to the second party. We construct a three-round secure two-
party computation protocol Π2PC that securely computes f against bounded
non-uniform adversaries. We denote the two parties involved in the protocol as
P1 and P2.



Building Blocks. We describe the building blocks used in our protocol.

1. Garbling scheme for circuits (Definition 3), denoted by GC = (Gen,
GrbC,GrbI,EvalGC). Without loss of generality we can assume that GrbC and
GrbI are deterministic algorithms.

2. Two message `2-parallel 1-out-2 oblivious transfer protocol (Def-
inition 4), denoted by OT. We require security against malicious receivers. We
additionally require that the OT protocol satisfies uniqueness of transcript prop-
erty (Definition 5).
3. Three message Zero Knowledge Argument of Knowledge (ZKAoK)
System (Definition 9) for NP. We require that the 3-message ZKAoK system
ZK = (Prover,Verifier) satisfies the delayed statement-witness property (Defini-
tion 11).

We denote the relation associated with the above system to be Rzk. And let
L(Rzk) be the associated language. The relation Rzk is described in Figure 2.

4. Two Message Generation Protocol (Definition 16) denoted by GenProt.
In particular, we are interested in generation protocols satisfying special extrac-
tion property. We consider a two message generation protocol. The role of the
sender of GenProt is played by P2 and the role of the receiver of GenProt is played
by P1.

5. Two Message Conditional Disclose of Secret (CDS) Protocol
(Definition 8), denoted by CDSProt. The associated relation Rcds is described in
Figure 1.

6. Other tools. We additionally use pseudorandom functions, denoted by
PRF, in this construction.

Protocol Π2PC. We now proceed to describe protocol Π2PC.

1. P1 → P2: On input x1 of length `1, party P1 does the following:
– Compute the prover’s message of ZK, denoted by ZK1.

– It computes the first message of the generation protocol using random-
ness Rrecgp . That is, GP1 ← Rec.MsgGen[GenProt](Rrecgp ).

It sends (ZK1, GP1) to P2.

2. P2 → P1: Party P2 computes the third message as follows:
– Compute the verifier’s message of ZK. Denote this by ZK2.

– It computes Rrecot = PRF(K, 1), randomness used in OT.

– It computes the first message of OT, denoted by OT1, as a function of its
input x2 and randomnessRrecot . That is,OT1 ← Rec.MsgGen[OT](x2;R

rec
ot ),

where Rec is the receiver algorithm of OT. Here, x2 is interpreted as a
vector with the ith entry being the ith bit of x2.



Relation Rcds for CDS Protocol

Input: y = (OT1, s, GP1, GP2)
Witness: w = (x2, R

rec
ot ,K,Rsengp )

(y, w) is in relation Rcds if and only if the following conditions are satisfied:

1. OT1 is generated as a function of x2 and Rrecot . That is, OT1 ←
Rec.MsgGen[OT](x2;R

rec
ot ).

2. The trapdoor K was used honestly to generate the message GP1 using GenProt.
The randomness used by the sender in this protocol is Rsengp . That is, GP1 ←
Sen.MsgGen[GenProt](K;Rsengp ).

3. Rrecot ← PRF(K, 1).

4. s← PRF(K, 2)⊕ x2.

Fig. 1. Relation Rcds associated with CDS

Relation Rzk for ZKAoK Protocol

Input : y = (CDS1, CDS2, OT1, OT2)

Witness : w = (Rgc, R
sen
ot , Rsencds , Ĉ)

(y, w) is in relation Rzk if and only if the following conditions are satisfied:

1. Garbling key is generated as follows; gcsk ← Gen(1λ;Rgc). Garbled circuit Ĉ is
generated as Ĉ ← GrbC(gcsk, C). Wire keys are generated as 〈k〉 ← GrbI(gcsk).

2. The second message of OT is generated as OT2 ←
Sen.MsgGen[OT](〈k〉, OT1;R

sen
ot ).

3. CDS2 is computed as a function of CDS1 and randomness Rsencds . That is,
CDS2 ← Sen.MsgGen[CDSProt](CDS1;R

sen
cds ).

Fig. 2. Relation Rzk associated with ZKAoK

– Generate the second message of GenProt, i.e., GP2, as a function of GP1,
and freshly sampled randomnessRsengp . That is,GP2 ← Sen.MsgGen[GenProt](
K,GP1;R

sen
gp ).

– Compute s = PRF(K, 2)⊕ x2.



– Generate the first message of CDS protocol, denoted by CDS1, as a
function of instance y = (OT1, s,GP1, GP2), witness w = (x2, Rot) and
randomness Rreccds. That is, CDS1 ← Rec.MsgGen(y, w;Rreccds).

It sends (ZK2, OT1, GP2, CDS1, s) to P1.

3. P1 → P2: P1 computes the final message as follows:
– Execute gcsk ← GC.Gen(1λ;Rgc), where Rgc is the randomness used in

the algorithm. Execute 〈k〉 = (k1, . . . ,k`2)← GC.GrbI(gcsk), where `2 is
the input length of party P2. For every i ∈ [`2], we have ki = (k0i , k

1
i ).

– It computes the garbled circuit Ĉ ← GrbC(gcsk, C), where C is a boolean
circuit defined as C(y) = f(x1, y), where y is of length `2.

– It computes the second message of OT as a function of first message and
randomness Rsenot . That is, OT2 ← Sen.MsgGen[OT](〈k〉, OT1;Rsenot ).

– It computes the second message of CDSProt as a function of first message
CDS1, instance y (its computed the same way as P2 does), secret s = Ĉ
and randomnessRsencds . That is, CDS2 ← Sen.MsgGen[CDSProt](CDS1,y,
s;Rsencds ).

– It computes the final message of ZK, namely ZK3. This is computed as a
function of instance (CDS1, CDS2, OT1, OT2) and witness (Rgc, Rsenot , Rsencds ,
Ĉ).

Finally, P2 recovers out from its view using the algorithm in Figure 3.

Output Computation:

P2 computes the following:

– Checks if the verifier of ZK accepts on input the transcript of ZK. If the check
fails, abort.

– From the transcript of OT protocol, recover the value 〈k〉x2 = (kb11 , . . . , k
b`2
`2

).
– Recover the garbled circuit Ĉ from the transcript of the CDS protocol.
– Finally, execute the evaluation algorithm EvalGC(Ĉ, 〈k〉x2) to obtain the value

out.

Output out.

Fig. 3. Computation of Output

Theorem 12. Assuming the security of the following primitives: garbling scheme
GC, oblivious transfer protocol OT, ZKAoK system ZK, generation protocol GenProt,
conditional disclosure of secrets protocol CDSProt and pseudorandom functions
PRF, we have that Π2PC is secure against malicious adversaries (Definition 1).



The proof of the above theorem can be found in the full version.

Instantiating the building blocks (see Section 3), we obtain the following corol-
lary.

Corollary 1. Assuming DDH, LWE, Zaps and succinct randomized encodings,
protocol Π2PC is a secure µ-bounded uniform two party computation protocol
satisfying Definition 2.
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