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Abstract. We devise the first weak multilinear map model for CLT13 multilinear maps (Coron et al.,
CRYPTO 2013) that captures all known classical polynomial-time attacks on the maps. We then show
important applications of our model. First, we show that in our model, several existing obfuscation and
order-revealing encryption schemes, when instantiated with CLT13 maps, are secure against known
attacks under a mild algebraic complexity assumption used in prior work. These are schemes that
are actually being implemented for experimentation. However, until our work, they had no rigorous
justification for security.

Next, we turn to building constant degree multilinear maps on top of CLT13 for which there are no
known attacks. Precisely, we prove that our scheme achieves the ideal security notion for multilinear
maps in our weak CLT13 model, under a much stronger variant of the algebraic complexity assumption
used above. Our multilinear maps do not achieve the full functionality of multilinear maps as envisioned
by Boneh and Silverberg (Contemporary Mathematics, 2003), but do allow for re-randomization and
for encoding arbitrary plaintext elements.

1 Introduction

Cryptographic multilinear maps have proven to be a revolutionary tool. Very roughly, a multilinear map is
an encoding scheme where one can blindly compute polynomials over encoded elements, without any knowl-
edge of the underlying elements. They have been used for numerous cutting-edge cryptographic applications,
such as multiparty non-interactive key agreement [BS03], attribute-based encryption for circuits [GGH+13c],
asymptotically optimal broadcast encryption [BWZ14a], witness encryption [GGSW13], functional encryp-
tion [GGH+13b, GGHZ16], and most notably mathematical program obfuscation [GGH+13b]. In turn,
obfuscation has been used to construct even more amazing applications [SW14, HSW14, BZ14, PPS15,
CLP15, HW15, AS16, BPW16] as well as establish interesting connections to other areas of computer sci-
ence [BZ16, BPR15].

Unfortunately, all known multilinear maps for degree d > 2 [GGH13a, CLT13, GGH15] have suffered
from devastating attacks known as “zeroizing” attacks [GGH13a, CHL+15, HJ16, CLLT16a]. These attacks
have rendered most of the applications above insecure. In response, many authors introduced “fixes” for
the multilinear maps. These fixes came in many forms, from tweaking how information is extracted from
the map [CLT15] to compiling the existing weak multilinear maps into new ones that were presumably
stronger [GGHZ16, BWZ14b, Hal15]. However, these fixes were largely ad hoc, and indeed it was quickly
shown how to generalize the attacks to the fixes [BWZ14b, CGH+15, BGH+15, Hal15, CFL+16].

Given these many attacks and the speed at which fixes were subsequently broken, researchers have begun
attempting to build applications in a sound way using weak maps. The initial observation by Badrinarayanan
et al. [BMSZ16] is that all (classical polynomial-time1) attacks require the ability to obtain an encoding
of zero. Miles, Sahai, and Zhandry [MSZ16] observed moreover that all attacks on the original GGH13
multilinear map have a very similar structure. They define an abstract attack model, called “annihilating
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1 Sub-exponential and quantum attacks have been discovered on the multilinear maps [CDPR16, ABD16, CJL16].

In this work we will focus on classical adversaries, and will not consider quantum attacks. We will also not consider
sub-exponential attacks as a break, since they can be defeated by increasing the security parameter



attacks”, that encompasses and generalize all existing attacks on these specific maps. Remarkably, since
their initial publication, all subsequent attacks found on GGH13 have fit within the annihilating model.
Therefore, this annihilating model appears to be a fully general abstraction of known attack techniques for
GGH13 multilinear maps.

Badrinarayanan et al. [BMSZ16] and Garg et al. [GMM+16] then show how to construct witness encryp-
tion, obfuscation, and order-revealing encryption that is provably secure in this weak multilinear map model,
and hence secure against all known attacks on GGH13. To date, these are the only direct applications of
multilinear maps that have been proved secure in the weak multilinear map model for GGH132. Moreover,
GGH13 is the only multilinear map for which an accurate weak model has been devised. This leads to the
following goals:

Devise weak multilinear map models for other multilinear maps — such as
CLT13 or GGH15 — that capture all known attack strategies on the maps

Show more direct applications of multilinear maps that can be
constructed and proved secure in weak multilinear map models

A weak multilinear map model for CLT13 is especially important, as it is currently the most efficient
multilinear map known [LMA+16], and therefore most likely to eventually become usable in practice.

In addition to developing techniques for using existing weak multilinear maps for applications, researchers
are also trying to solve the following:

Construct multilinear maps that are not vulnerable to zeroizing attacks

There has been some initial progress toward this goal. Several authors [PS15, AFH+16] have shown how to
construct some version of multilinear maps from obfuscation, which can in turn be built from weak multilinear
maps using the constructions above. This gives a compelling proof of concept that multilinear maps immune
to zeroizing attacks should be possible. However, as obfuscation is currently incredibly inefficient, such
multilinear map constructions are entirely impractical today. Moreover, obfuscation can be used to directly
achieve most applications of multilinear maps, so adding a layer of multilinear maps between obfuscation
and application will likely compound the efficiency limitations. Therefore, it is important to build multilinear
maps without obfuscation.

1.1 Our work: New Multilinear Maps

In this paper, we make additional progress on all three goals above. We revisit the idea of “fixing” multilinear
maps through using weak multilinear maps to build strong maps. Unlike the obfuscation-based constructions
above, we do not use obfuscation, though our construction is based on obfuscation techniques. Unlike the
fixes discussed above that were quickly broken, we develop our fix in a methodical way that allows us to
formally argue our fix is immune to generalizations of zeroizing attacks. Specifically, our results are the
following:

– First, we need a framework in which to argue security against zeroizing attacks. Our first result is a new
weak multilinear map model for CLT13 maps. We demonstrate that this model naturally captures all
known attack strategies on CLT13. The model is somewhat different than the model for GGH13 maps,
owing to the somewhat different technical details of the attacks.

– To aid the analysis of schemes in our model, we prove that an attack in the weak CLT13 model requires
the existence of a certain type of “annihilating polynomial,” analogous to the annihilating polynomials
in the weak GGH13 model, but simpler. As an immediate consequence, we can prove the security of
an existing class of obfuscation constructions [BGK+14, BMSZ16] in the weak CLT13 model, under the
same algebraic complexity assumption as in [GMM+16]. As these obfuscation constructions are currently
being implemented [LMA+16], it is important to justify the security of these constructions over CLT13.
Note that [BGK+14, BMSZ16] are not secure in the weak GGH13 model, indicating that the weak CLT13
model may be somewhat more useful.

2 Most other applications are possible by using obfuscation as a building block



– Armed with a weak model for CLT13, we devise a new constant-degree multilinear map scheme built
on top of CLT13. We then prove that within our weak CLT13 model, there are no attacks on our
new scheme. That is, any attack at all on our scheme will yield an attack that does not fit in our
CLT13 model, and hence gives a brand-new attack technique on CLT13 maps. Our scheme is based on
obfuscation techniques, but avoids building a full obfuscation scheme, making our scheme more efficient
than obfuscation-based multilinear maps, at least for simple settings.

Concretely, for a trilinear map with 128 bits of security, one of our elements will consist of about 2× 105

CLT13 group elements using a degree-57 CLT13 map. Addition and multiplication will involve about
2 × 105 and 3 × 107 CLT13 operations, respectively. For a more aggressive 80 bits of security, one of
our elements will consist of about 7× 104 group elements using a degree-37 CLT13 map. Addition and
multiplication will involve about 7×104 and 5×106 CLT13 operations, respectively. We did not calculate
the size public parameters of our scheme, but they will be a couple orders of magnitude larger than each
of our encodings. Our encoding size will likely be larger than what is possible with obfuscation, and our
scheme is certainly not practical. However, the running times for group operations will be far, far better
than what is possible with current obfuscation constructions.

The lack of a zeroizing attack means we can be more liberal in the types of encodings that are made
public. This allows for greatly enhanced functionality compared to existing multilinear map schemes: for
example, we can encode arbitrary ring elements and give out encodings of zero.

There are some notable limitations of our construction and analysis, however. First, for maximum func-
tionality and for our analysis to apply, we must restrict the degree of our multilinear maps to be constant.
Note that if one is willing to sacrifice some functionality and have a more heuristic argument for secu-
rity, then our maps naturally extend to arbitrary polynomial degree. The other main limitation is that
our security proof relies on a new algebraic complexity assumption about annihilating polynomials. The
assumption is similar to the one used in [GMM+16], though our new assumption is somewhat stronger
and less justified than theirs.

While our scheme is far from practical, we believe this result is a proof of concept that multilinear maps
without zeroizing attacks are possible without first building obfuscation. Hopefully, future work will be
able to streamline our construction to obtain much more efficient multilinear maps.

– Despite some functionality limitations, our multilinear maps can still be used to solve problems that
were not previously possible without first building obfuscation. For example, we show how to use it for
multiparty non-interactive key exchange (NIKE) for a constant number of users. This is the most efficient
scheme for n > 3 users that is immune to known attacks. Hopefully, our maps can be user to make other
applications much more efficient as well.

– We note that our techniques for constructing multilinear maps from CLT13 can be combined with the
techniques of Garg et al. [GMM+16] to give new multilinear maps in the weak model for GGH13.

1.2 Techniques

Weak CLT13 Model In CLT13, there is a composite modulus N =
∏
i pi

3. An encoding s is an integer
mod N . Let si = s mod pi be the vector of Chinese Remaindered components. Each component si encodes
a component mi of the plaintext element. The plaintext space can therefore be interpreted as a vector of
integers. Each encoding is associated to a level, which is a subset of {1, . . . , d}, where d is the multilinearity
of the map. Encodings can be added and multiplied, following certain level-restrictions, until a “top-level”
encoding is obtained, which is an encoding relative to the set {1, . . . , d}. For singleton sets, we will drop the
set notation, and let level {i} be denoted as level i.

In CLT13, if s is a top-level encoding of zero — meaning all components of the plaintext are 0 — then
one can obtain from it t =

∑
i γisi, where γi is a rational number, and equality holds over the rationals.

γi are unknown, but global constants determined by the parameters of the scheme. That is, for each s, the
derived t will use the same γi.

3 In [CLT13], this modulus is referred to as x0



Attacks on CLT13 multilinear maps all follow a particular form. First, public encodings are combined
to give top-level encodings, using operations explicitly allowed by the maps. If these top-level encodings are
zero, then one obtains a t term. The next step in the attack is to solve a polynomial equation Q where the
coefficients are obtained from the t terms. In current attacks, the polynomial equation is the characteristic
polynomial of a matrix whose entries are rational functions of the zeros.

The next step is to show that the solutions to Q isolate the various si components of the initial encodings.
Then by performing some GCD computations, one is then able to extract the prime factors pi, which leads
to a complete break of the CLT13 scheme. We show how to capture this attack strategy, and in fact much
more general potential strategies, in a new abstract attack model for CLT13. Our model is defined as follows:

– Denote the set of encodings provided to the adversary as 〈s〉, where each s encodes some plaintext
element.

– The adversary is allowed to combine the encodings as explicitly allowed by the multilinear map. Opera-
tions are performed component-wise on the underlying plaintext elements.

– If the adversary ever gets a top-level encoding of zero — meaning that the plaintext element is zero in
all coordinates — this zero is some polynomial p in the underlying plaintext elements. The adversary
obtains a handle to the corresponding element t =

∑
i γip(〈s〉i). Here, 〈s〉i represents the collection of

ith Chinese Remaindering components of the various encodings provided.
– The adversary then tries to construct a polynomial Qi that isolates the ith component for some i. The

way we model a successful isolation is that Qi is a polynomial in two sets of variables: T variables —
which correspond to the t terms obtained above — and S variables — which correspond to the ith
components of the s encodings. The adversary’s goal is to devise a polynomial Qi such that Q evaluates
to 0 when S is substituted for 〈s〉i and T is substituted for the set of t obtained above. We say the
adversary wins if it finds such a Q.

In a real attack, roughly, the adversary takes Q, plugs in the values of t, and then solves over the
rationals for 〈s〉i. Then by taking GCD(N, s − si) for some encoding s, she obtains the prime factor pi.
The real adversary does this for every i until it completely factors N . In general, solving Q for 〈s〉i is a
computationally intractable task and may not yield unique solutions. The attacks in the literature build a
specific Q that allows them to solve efficiently. In our model, we conservatively model any Q the adversary
can find, even ones that are intractable to solve, as a successful attack.

We note that the attacks described in the literature actually build a Q that is a rational function. However,
such rational functions can readily be converted into polynomial functions. We indeed demonstrate that such
a polynomial Q is implicit in all known attack strategies.

Next, we prove that an attack in our CLT13 model actually yields an attack in a much simpler model that
we call the “plain annihilating model.” Here, the adversary still constructs polynomials p of the underlying
encodings, trying to find a top-level zero. However now, instead of trying to find a Qi as above, the adversary
simply tries to find a polynomial R that annihilates the p polynomials. That is, R({p(〈S〉)}p) is identically
zero, where 〈S〉 are now treated as formal variables.

With this simpler model in hand and using analysis from prior work [BMSZ16], we immediately obtain
the VBB-security of existing obfuscation constructions [BGK+14, BMSZ16] based on branching programs.
Those works show that the only top-level zeros that can be obtained correspond to the evaluations of
branching programs. Therefore, relying on the Branching Program Unannihilatability Assumption (BPUA)
of [GMM+16], we find that it is impossible to find an annihilating polynomial R, and hence a polynomial
Qi. This gives security in our CLT13 model.

New Multilinear Maps We now turn to developing a new multilinear map scheme that we can prove
secure in our weak model for CLT13. In this work, we focus on building an asymmetric scheme, where levels
are subsets of {1, . . . , d}, and elements can only be multiplied if they belong to disjoint levels. At this time
we do not know how to extend our results to construct symmetric multilinear maps, though we believe our
techniques will be useful in that setting. The scheme will be based heavily on obfuscation techniques, plus



some new techniques that we develop, but will not build a full obfuscation scheme. Therefore, we expect
that our multilinear maps will be much more efficient than those that can be built using obfuscation.

Our starting point is Garg et al. [GGHZ16]4, which offered a potential fix to block zeroizing attacks,
which we will call the GGH16 fix. The fix was quickly broken, but we show how to further develop the
idea into a complete fix. Garg et al. define a level-i “meta-encoding” of x to be a matrix of level-i CLT13
encodings, obtained by encoding component-wise matrices of the form:

R ·


x 0 . . . 0
0 $ · · · $
...

...
. . .

...
0 $ · · · $

 ·R−1

where $ represent plaintexts drawn independently at random5, and R is a random matrix of plaintext
elements.

Such meta-encodings can be added and multiplied just like CLT13 encodings, since the matrices R cancel
out. However, due to the R matrices, it is no longer possible to isolate the upper-left corner to perform a
zero-test on x. Instead, also handed out are “bookend” vectors s, t which encode the plaintext vectors(

1 0 · · · 0
)
·R−1 and R ·

(
1 0 · · · 0

)T
,

respectively. Now by multiplying a meta-encoding by the bookend vectors on the left and right, one obtains
a CLT13 encoding of the plaintext x, which can then be zero-tested.

Next, Garg et al. include with the public parameters meta-encodings of various powers of 2, as well as
many meta-encodings of 0. Powers of 2 allow for anyone to encode arbitrary elements, and the encodings
of 0 allow for re-randomizing encodings. Unfortunately, as shown in [CGH+15], this fix does not actually
protect against zeroizing attacks: with a bit more work, the meta-encodings of 0 can be used just like regular
encodings of zero in the attacks to break the scheme.

To help motivate our new scheme, think of the GGH16 fix as follows: arrange the matrices in a grid:
the columns of the grid correspond to the levels, and the matrices for level i are listed out in column i in
an arbitrary order. We will call a “monomial” the product of one meta-encoding from each level, in level
order (e.g. the level-1 encoding comes first, then level-2, etc). Such monomials correspond to an iterated
matrix product that selects one matrix from each column. We re-interpret these monomials as evaluations
of a certain branching program. In this branching program, there are t inputs, and each input is not a bit,
but a digit from 0 to k − 1 where k is the number of matrices in each column. Each input digit selects the
matrix from the corresponding column, and the result of the computation is the result of the corresponding
iterated matrix product.

Note that this branching program is read-once, and this is fundamentally why the fix does not succeed.
Intuitively, this is because a read-once branching program can be annihilated, in the sense that it is possible
to construct a set of inputs and an annihilating polynomial Q such that Q always evaluates to zero on the
set of branching program outputs. For example, one can partition the input bits into two sets, and select
subsets S at T of partial inputs from each half of the input partition. Evaluate the branching program on
all points in the combinatorial rectangle defined by S, T , and arrange as a matrix. The rank of this matrix
is at most the width of the branching program. Therefore, as long as the number of partial inputs is larger
than the width, this branching program will be annihilated by the determinant. This is true for arbitrary
branching programs, not just the branching programs derived above.

One possible way to block the attack above is to make the branching program so wide that even if the
adversary queries on the entire domain, the matrix obtained above is still full rank. While it is possible to

4 We actually need the version of [GGHZ16] dated November 12, 2014 from https://eprint.iacr.org/eprint-
bin/versions.pl?entry=2014/666. More recent versions and the proceedings version removed the CLT13 fix that we
start from

5 Actually, in [GGHZ16], some of the zeros are also set to be random elements, but the above form suffices for our
discussion and more naturally leads to our construction



do this to build a constant degree multilinear map over CLT13, the map will be of little use. Roughly, the
reason is that the branching program is now so wide that adding a random subset-sum of zero encodings is
insufficient to fully re-randomize.

Instead, we turn to Garg et al. [GMM+16]’s obfuscator, which blocks this annihilating attack for obfus-
cation by explicitly requiring the branching program being obfuscated to read each input many times. By
reading each input multiple times, the rank of the matrix above grows exponentially, blocking determinant-
style attacks. Moreover, under the assumption that there are PRFs that can be computed by branching
programs, such read-many programs cannot be annihilated in general. Garg et al. therefore conjecture a
branching program un-annihilatability assumption, which says that read-many branching programs cannot
be annihilated. Under this assumption, Garg et al. prove security in the weak GGH13 model.

Inspired by this interpretation and by techniques used to prove security of obfuscation, we modify the
GGH16 fix to correspond to a read-many branching program. This will allow us to block determinant-style
attacks without increasing the width, allowing for re-randomization. Toward that end, we associate each
meta-level i with ` different CLT13 levels, interleaving the levels for different i. This means that for an
d-level meta-multilinear map, we will need d` + 2 CLT13 levels (the extra 2 levels for the bookends). A
meta-encoding at level i will be a sequence of ` different matrices of encodings, where the ` matrices are
encoded at the ` corresponding CLT13 levels. The matrices have the form:

Ri−1 ·


x 0 . . . 0
0 $ · · · $
...

...
. . .

...
0 $ · · · $

 ·R−1
i , Rd+i−1 ·


0 0 . . . 0
0 $ · · · $
...

...
. . .

...
0 $ · · · $

 ·R−1
d+i, · · · , R(`−1)d+i−i ·


0 0 . . . 0
0 $ · · · $
...

...
. . .

...
0 $ · · · $

 ·R−1
(`−1)d+i

Essentially, each of our meta-encodings is a list of GGH16 meta-encodings, where the first meta-encoding

encodes x, and the rest encode 0. Our bookend vectors have the form
(

1 $ · · · $
)
·R−1

0 and Rd` ·
(

1 $ · · · $
)T

and are encoded, respectively, in the two remaining CLT13 levels. Unlike GGHZ16, we will not have the $
terms be random, but instead chosen more carefully (details below). Note that we chose different randomizing
matrices R in each position; this corresponds to the randomizing matrices used for Kilian [Kil88] random-
ization of branching programs in obfuscation. Such randomization forces matrices to be multiplied in order
as in a branching program.

Addition is component-wise. For this discussion, we will only allow a pairing operation that goes directly
to the top level; this is the kind of multilinear map envisioned by [BS03]. We explain how to give intermediate
levels below.

The pairing operation takes one meta-encoding for each meta-level, and arranges the all the matrices in
branching-program order. Then, roughly, it multiplies the matrices together, along with the bookends. The
result is a single top-level CLT13 encoding, which can be zero-tested as in CLT13. We have to slightly tweak
the procedure scheme for this to work, as multiplying all the matrices of a top-level encoding will always
give an encoding of zero (since the upper left corner of most of the matrices is 0). Instead, we add an offset
vector mid way through the pairing operation to make the CLT13 encoding an encoding of the correct value;
see Section 5 for details. For the purposes of this discussion, however, this tweak can be ignored.

The good news is that if one restricts to adding and pairing encodings as described, this blocks the zeroiz-
ing attack on GGH16 meta-encodings, assuming ` is large enough. We would now like to prove our scheme
is actually secure, using the branching program un-annihilatability assumption as was done in obfuscation.
Unfortunately, there as several difficulties here:

– First, we need to force the adversary to follow the prescribed pairing procedure. While the pairing
operation is basically just a branching program evaluation, this ends up being quite different than in the
setting of obfuscation. For example, in obfuscation, forcing input consistency can be done with the level
structure of the underlying multilinear map. In our case, this appears impossible. The reason is that we
want to be able to add two encodings at the same meta-level before pairing, meaning the underlying
encodings must be at the same CLT13 level. In obfuscation, the different encodings for a particular input



are encoded at different levels. There are other ways to force input consistency [GGH+13b, BR14], but
they appear to run into similar problems.

– Second, the ability to add encodings means we cannot quite interpret allowed operations as just evalu-
ations of a branching program. For example, if one adds two meta-encodings, and then multiplies them
by a third, the result is a linear combination of iterated matrix products containing cross terms of the
branching program that mix inputs. This is a result of the degree of zero-testing being non-linear. Certain
cross terms do not correspond to any branching program evaluation. Therefore, prior means of forcing
input consistency will be too restrictive for our needs.

We overcome these issues by developing several new techniques:

– First, we prove a generalization of a lemma by Badrinarayanan et al. [BMSZ16] which tightly characterize
the types of iterated matrix products that an adversary is allowed to create. Our lemma works in far
more general settings so as to be applicable to our scheme.

– Second, we re-interpret the allowed operations not as branching program evaluations, but as vector-input
branching program evaluations, a new notion we define. In a vector-input branching program, inputs are
no longer digits, but a list of vectors. The vectors specify a linear combination. To evaluate, for each
column apply the corresponding linear combination to the matrices in that column, and then multiply
all the results together. By being able to take linear combinations of the input matrices, we now capture
the ability of an adversary to add encodings.

– Finally, we introduce new “enforcing” matrices that we place in the $ entries. The goal of our enforc-
ing matrices is to force the adversary’s operations to correspond to vector-input branching program
evaluations.

Using our enforcing matrices and our new analysis techniques, we show that the adversary is limited to
producing linear combinations of vector-input branching program evaluations. Therefore, if the adversary
can attack in our weak CLT13 model, it can find an annihilating polynomial for vector-input branching
programs. We therefore conjecture that, like regular branching programs, vector-input branching programs
cannot be annihilated. Under this assumption, no zeroizing attacks exist on our scheme.

Discussion. We now discuss some limitations of our construction above.

– We do not know how to justify our vector-input branching program assumption based on PRFs, unlike
the corresponding assumption for standard branching programs. The reasons are twofold:
• Most importantly, we do not know of any PRFs that can be evaluated by vector-input branching

programs.
• In our analysis, the adversary may produce a linear combination of exponentially many vector-input

branching program evaluations. Therefore, an annihilating polynomial annihilates exponentially-
many inputs, and therefore would not correspond to a polynomial-time attack on a PRF, even if one
were computable by vector-input branching programs. It may be possible that this second limitation
can be overcome using a sub-exponentially secure PRF, provided that the PRF is computable by
a vector-input branching program. Furthermore, we hope that this second limitation is a limitation
of our analysis and not a fundamental problem, giving hope that subsequent work can remove this
limitation.

Nonetheless, the only annihilating polynomials we could find for vector-input branching programs are
determinant polynomials as described above, which are also the only annihilating polynomials we know of
for plain branching programs. Therefore, it seems reasonable at this time to conjecture that determinants
are the only annihilating polynomials. If this conjecture holds, then any annihilating polynomial will
require circuits of size roughly w`, where w is the width of matrices in the branching program. By
setting 2` to be 2λ for desired security parameter λ, this will block known attacks.

– Our discussion above showed immunity to zeroizing attacks. However, we still need to show immunity
to direct attacks that just work by combining components as allowed in the plain generic multilinear
map model. Basically, we need to be able to simulate any query in the generic multilinear map model for



CLT13, by making only generic multilinear map queries for our meta-scheme. This is unfortunately prob-
lematic, due again to the fact that our analysis allows the adversary to come up with exponential-sized
linear combinations. We are able to show, in the case of constant-degree multilinear maps, that such a
simulator can be built. Intuitively, this is because any constant-degree polynomial has only polynomially-
many monomials, and can therefore be represented efficiently. While our simulator is query efficient, it
unfortunately is computationally inefficient. This means that any derived adversary for CLT13 will be
query efficient in our CLT13 model, but computationally inefficient. This still allows us to justify most
assumptions, such as multilinear DDH. However, it may present an issue if our scheme will be combined
with other cryptographic primitives.

– Our discussion above only allows for directly pairing to the top level. However, it is easy to define pairing
operations for intermediate levels. Adjacent levels (say 1,2) can easily be paired by simply constructing
` matrices that are the pairwise products of the ` matrices in the two levels. Due to using different
Kilian randomization between each matrix, we cannot directly pair non-adjacent levels, say 1 and 3. For
non-adjacent levels, instead of matrix multiplications, we tensor the encodings, generating all degree
2 monomials. This tensoring can also be extended to higher levels. This greatly expands the size of
encodings; for constant-degree encodings, however, the size of encodings remains polynomial.

– The main limitation of our new multilinear map construction is that it is not possible to multiply an
encoding by scalar. One could try repeated doubling, but our scheme inherits the noisiness of CLT13,
and this repeated doubling will cause the noise to increase too much. One potential solution is that
an encoding of x actually consists of encodings of x, 2x, 4x, 8x, etc. Now instead of repeated doubling,
multiplying by a scalar is just a subset sum. Of course, this operation “eats up” the powers of 2, so it
can only be done a few times before one runs out of encodings.
Another potential option, depending on application, is to introduce additional “dummy” levels. To mul-
tiply by a scalar, first encode it in the “dummy” level, and then pair with the element. This of course
changes the level at which the element is encoded, but for some applications this is sufficient. Below, we
show how to use this idea to give a multiparty NIKE protocol for a constant number of users.

Multiparty Non-Interactive Key Exchange (NIKE) Here, we very briefly describe how to use our new
multilinear maps to construct multiparty NIKE. The basic scheme shown by Boneh and Silverberg [BS03]
will not work because (1) they need a symmetric multilinear map, and (2) they need to be able to multiply
encodings by ring elements. We show how to tweak the scheme to work with an asymmetric map that does
not allow multiplying encodings by ring elements. For d users, instantiate our scheme with d levels, one more
than is needed by [BS03].

User i chooses a random ring element ai, and then computes encodings [ai]u of ai at every singleton level
u. User i publishes all the encodings (after re-randomizaiton), except the encoding at level 1.

Upon receiving the encodings from all other users, user i arbitrarily assigns each of the other d− 1 users
to the levels 2, . . . , d. Let uj be the level assigned to user j. Then it pairs its private elements [ai]1 together
with [aj ]uj for each j 6= i. The result is an encoding of

∏
j aj at the top level. Everyone computes the same

encoding, which can be extracted to get the shared secret key.
Meanwhile, an adversary, who never sees an encoding of ai at level 1, cannot possibly construct an

encoding of
∏
j aj without using the same level twice. Using a variant of the multilinear Diffie-Hellman

assumption, this scheme can be proved secure. This assumption can be justified in the generic multilinear
map model, and hence our scheme can be proven secure in the weak CLT13 model.

Enforcing Matrices We believe our new enforcing matrices may be of interest beyond the immediate
scope of this work, and we therefore briefly describe them. Consider a single-input vector-input branching
program which reads the single input. Suppose the adversary is restricted to constructing linear combinations
of iterated matrix products. We want to set up the matrices in a way so that the only linear combinations
that give 0 correspond to sums of vector-input branching program evaluations.

We show that an equivalent condition is that the linear combinations are permutation invariant. This
means the following. Let βx1,...,x` be the coefficient of the linear combination corresponding to the iterated



matrix product that selects the xith matrix from the ith column. Then for any permutation σ on [`], it must
be that βx1,...,x` = βxσ(1),...,xσ(`) .

First, we consider enforcing just a single permutation σ. In this case, our enforcing matrices have a very
simple form. For each row, choose random α1, . . . , α`. The enforcing matrices for that row will have the form:

α1

ασ(1)

ασ2(1)

. . .

 ,


α2

ασ(2)

ασ2(2)

. . .

 ,


α3

ασ(3)

ασ2(3)

. . .

 , · · ·

Notice that adding the matrices from two different rows will still maintain a sequence of matrices with the
above form. However, mixing and matching different subset-sums in each column will give matrices with a
different structure. We therefore design bookend matrices to force the iterated matrix product of any row to
be zero, while improper combinations will give non-zero. Next, we build full enforcing matrices by stitching
together σ-enforcing matrices, where σ ranges over any set that generates the symmetric group Sn. For
example, take σ to range over the transpositions (1 2), (2 3), . . . , (`− 1 `). Notice that for transpositions,
the enforcing matrices above repeat after the second diagonal entry. Therefore, it suffices to truncate the
matrices to 2× 2 matrices.

To create enforcing matrices for several-input vector-input branching programs, we build a set of enforcing
matrices for each input. Then, we stitch these together as block-diagonal matrices. Roughly, each block
corresponds to an input vector; in columns that read that input, we place the enforcing matrices, and in
columns that do not, we place identity matrices.

Putting it all together, our multilinear maps are block diagonal, where the upper block is just a scalar
representing the encoding, and the second block consists of enforcing matrices. Finally, we add a small 2× 2
block to help with the analysis. The overall width of our matrices is therefore 2(`− 1)d+ 3, where d is the
desired multilinearity and ` is the number of matrices per encoding.

2 Preliminaries

2.1 Multilinear Maps and the Generic Model

A multilinear map (also known as a graded encoding scheme) with universe set U and ring R supports
encodings of plaintext elements in R at levels corresponding to subsets of U. A plaintext element a encoded
at S ⊆ U is denoted as [a]S . Multilinear maps support some subset of the following operations on these
encodings:

– (Encoding) Given an element a ∈ R and level set S ∈ U, output an encoding [a]S .
– (Addition) Two encodings at the same level S ⊆ U can be added / subtracted. Informally,

[a1]S ± [a2]S = [a1 ± a2]S .

– (Multiplication) An encoding at level S1 ⊆ U can be multiplied with an encoding at level S2 ⊆ U,
provided S1 ∩ S2 = ∅. Their product is an encoding at level S1 ∪ S2. Informally:

[a1]S1
· [a2]S2

= [a1 · a2]S1∪S2
.

– (Re-randomization) We will allow for schemes with non-unique encodings. In this case, we may want a
re-randomization procedure, which takes as input an encoding [a]S of a potentially unknown element a,
and outputs a “fresh” encoding of [a], distributed statistically close to a directly encoding a.

– (Zero-Testing) An encoding [a]U at level U can be tested for whether a = 0.
– (Extraction) An encoding [a]U at level U can be extracted, obtaining a string r. Different encodings of

the same a must yield the same r.



Most multilinear map schemes, due to security vulnerabilities, only support addition, multiplication, and
zero-testing/extraction, but do not support public re-randomization or encoding. Instead, encoding must be
performed by a secret key holder.

In the generic multilinear map model (also known as the standard ideal graded encoding model), a stateful
oracle maintains a private table of plaintext elements along with their encoding levels. For each plaintext
element, the oracle releases a corresponding public handle independent of the element’s value. Any party can
perform add/subtract/multiply operations on the public handles, as long as they respect the level structure
specified above. The oracle performs the computation on the actual plaintexts, stores the result, and outputs
a newly generated handle to this plaintext. Additionally, any party can request a zero-test on a public handle,
in which case the oracle returns a bit indicating if the corresponding element is an encoding of zero at level
U or not. We give a more precise description of the generic model in Section 4.

2.2 Overview of the CLT13 Multilinear Maps

We give a brief overview of the CLT13 multilinear maps, adapted from text in [CLLT16b]. For a full de-
scription of the scheme, see [CLT13]. The CLT13 scheme relies on the Chinese Remainder Theorem (CRT)
representation. For large secret primes pk, let N =

∏n
k=1 pk. Let CRT(s1, s2, . . . , sn) or CRT(sk)k denote

the number s ∈ ZN such that s ≡ sk (mod pk) for all k ∈ [n]. The plaintext space of the CLT13 scheme is
Zg1 × Zg2 × · · · × Zgn for small secret integers gk. An encoding of a vector m = (m1, . . . ,mn) at level set
S = {i0} is an integer α ∈ ZN such that α = CRT(m1 + g1r1, . . . ,mn+ gnrn)/zi0 (mod N) for small integers
rk, and where zi0 is a secret mask in ZN uniformly chosen during the parameters generation procedure of
the multilinear map. To support κ-level multilinearity, κ distinct zi’s are used.

Additions between encodings in the same level set can be done by modular additions in ZN . Multi-
plication between encodings can be done by modular multiplication in ZN , only when those encodings
are in disjoint level sets, and the resulting encoding level set is the union of the input level sets. At
the top level set [κ], an encoding can be tested for zero by multiplying it by the zero-test parameter
pzt =

∏κ
i=1 zi · CRT(p∗khkg

−1
k )k (mod N) in ZN where p∗k = N/pk, and comparing the result to N . If α

encodes zero in each position, then it can be shown that

pztα(modN) =

n∑
k=1

γksk

where γk are “smallish” global secret parameters that depend on the other CLT13 parameters, and sk are
the numerators of the CRT components of α: α = 1∏κ

i=1 zi
CRT(sk)k. These sk are “small”, so for encodings of

zero, pztα( modN) is small relative to N . If α does not encode 0, then one heuristically expects pztα( modN)
to be large relative to N6. Thus, we can zero test by determining if this quantity is small. We can also extract
a unique representation of any encoded element by computing pztα(modN), and rounding appropriately.

2.3 Schwartz-Zippel Variant

The standard Schwartz-Zippel Lemma applies to uniformly and independently sampled random variables.
However, we will need to consider polynomials over CLT13 encodings as well as terms that appear in the zero-
testing parameter. These can be seen as random variables, but they are neither independent nor uniformly
sampled. Fortunately, Garg et al. give a variant of Schwartz-Zippel in [GMM+16] that applies to arbitrarily
correlated random variables, as long as each variable has sufficient min-entropy conditioned on the other
variables. We state the lemma here with minor modifications.

Let P ∈ Q[x1, . . . , xn] be an arbitrary polynomial of degree at most d. Let X1, . . . , Xn be potentially
correlated random variables over Q. For each Xi, let S(Xi) be the set of values xi ∈ Q such that Pr[Xi =

6 In the full CLT13, there is a vector of zero-testing elements created in a way to prove that the result is large for
non-zero encodings. However, in practice this is much less efficient, so most implementations only use a single zero
test vector as describe here.



xi] > 0. We assume that for each Xi, S(Xi) is finite. Let pi(x1, . . . , xi−1) be the guessing probability of Xi

conditioned on Xj = xj for each j < i. So

pi(x1, . . . , xi−1) = max
xi∈S(Xi)

Pr[Xi = xi|Xj = xj∀j < i]

Let pi be the expectation of pi(x1, . . . , xi−1) when xj are drawn from Xj : pi = E[pi(X1, . . . , Xi−1)]. Let
pmax = maxi pi be the maximum of the pi.

Lemma 1. Let d, n, P,X1, . . . , Xn, pmax be as above. Then

Pr
X1,...,Xn

[P (X1, . . . , Xn) = 0] ≤ d · pmax.

For the proof of this lemma, see [GMM+16]. We note that the original statement of this lemma in
[GMM+16] uses a finite field instead of Q, but the proof easily extends to the infinite case.

2.4 Matrix Branching Programs

Intuitively, a single-input matrix branching program consists of a sequence of pairs of matrices, a pair of
fixed bookend vectors, and an input selection function. To evaluate the program on an input bit-string, one
matrix is chosen from each pair by reading a single bit of the input, as determined by the input selection
function. The matrices are multiplied together in order, and the resulting product matrix is left and right
multiplied by the bookend vectors, resulting in a scalar value. We will sometimes use this scalar as the output
of the branching program, and other times use the result of testing whether this scalar is zero. This notion
can be extended to the dual-input setting, where two input bits are read at each time, and thus one of four
matrices is chosen at each step of the sequence.

We roughly follow the generalized matrix branching program definition of Badrinarayanan et al. [BMSZ16],
which allows for matrices of arbitrary dimensions, so long as the resulting product is always a scalar. However,
we deviate from their definition slightly by using fixed left and right bookend vectors.

Definition 1. A single-input branching program of length ` and shape (d0, d1, . . . , d`) ∈ (Z+)`+1 for n-bit
inputs is given by

BP =
(
inp, s, t, {Bi,0,Bi,1}i∈[`]

)
where Bi,b ∈ Zdi−1×di are di−1×di matrices, s is a d0-dimensional row vector, t is a d`-dimensional column
vector, and inp : [`]→ [n] is the evaluation function of BP . BP : {0, 1}n → Z is computed as

BP (x) = s ·

(
n∏
i=1

Bi,xinp(i)

)
· t

2.5 Vector-Input Branching Programs

We generalize matrix branching programs to vector-input branching programs, a new notion we define. With
single-input branching programs, each set in the sequence of matrices contains two matrices, and an input
bit selects one of them. Our vector input generalization allows for selecting a linear combination of the
matrices in any set. Each set now contains k matrices, and thus program inputs consist of n non-zero vectors
of dimension k.

For this paper, we will only need to consider a restricted class of such programs. Specifically, we use read-t
programs, meaning that each vector in the input is read exactly t times. These programs are single-input, so
there are nt sets of matrices. Furthermore, the input selection is fixed so that the ith input vector is read for
matrix sets i, n+ i, . . . , (t−1)n+ i. In other words, the input selection function is simply inp(j) = j (mod n).
Each of the n input vectors is restricted to have non-negative integer components that sum to t. Let H`,k

denote the set of all such k-dimensional vectors.



Definition 2. A read-t vector-input branching program with input length n, vector dimension k, and shape
(d0, d1, . . . , dn`) ∈ (Z+)n`+1 is given by a sequence

V BP =
(
s, t, {Bi,j}i∈[n`],j∈[k]

)
where Bi,j ∈ Zdi−1×di are di−1 × di matrices, s is a d0-dimensional row vector, and t is a dn`-dimensional
column vector. V BP : Hn

k,` → Z is computed as

V BP (x) = s ·

 n∏̀
i=1

 k∑
j=1

x(imod n),jBi,j

  · t
2.6 Kilian Randomization of Matrix Sequences

Consider a collection of n columns of matrices, where each column may contain an arbitrary polynomial
number of matrices. Denote the jth matrix in column i as Ai,j . Suppose the matrices within each column
have the same dimensions, and across columns have compatible dimensions so that matrices in adjacent
columns can be multiplied together, and multiplying one matrix from each column results in a scalar.
Kilian [Kil88] describes a method to partially randomize such branching programs. Random square matrices
Ri are chosen at random. Then matrix Ai,j is left-multiplied by R−1

i and right-multiplied by Ri+1. When
performing an iterated matrix product selecting one matrix from each column, the Ri and R−1

i cancel out,
so the product is unchanged by this randomization.

3 A New Lemma

In this section, we state a generalization of a lemma by Badrinarayanan et al. [BMSZ16]. Consider the same
collection of matrices as in the preceding section. We have a set S (possibly of exponential size) of n-tuples
of indices that define a set of allowable iterated matrix products. For example, if n = 3 and S contains
the tuple (7, 4, 8), this allows for multiplying matrix 7 in column 1 by matrix 4 in column 2 by matrix 8 in
column 3. We enforce that all matrices in the same column share the same dimensions.

We let X = {X1, . . . , Xm} denote a set of variables, and we enforce that every matrix element is a
polynomial over these variables. For a set of vectors V = {v1, . . . , v`} whose entries are polynomials over
X, we say that V is linearly independent if there is no sequence of constants a1, . . . , a`, not all of which
are 0, such that

∑
i aivi is the identically 0 vector. Note that this notion of linear independence allows for

arbitrarily-many linearly independent vectors in a finite-dimensional space. For example, 1, X,X2, · · · are
all linearly independent according to this notion.

Definition 3. An allowable polynomial over S is a (possibly exponentially sized) polynomial where each
monomial is a product of exactly one matrix entry from each column of matrices, subject to the condition
that the matrices the entries are drawn from are an explicitly allowed product in S.

One example of an allowable polynomial is an allowable matrix product, which picks one tuple from S,
and multiplies all the matrices corresponding to that tuple:

Definition 4. An allowable matrix product over S is the iterated matrix product corresponding to some tuple
t ∈ S.

We can apply Kilian randomization to these matrices. We treat each entry of the Kilian randomization
matrices as distinct formal variables, and denote this set of variables by R. Let Âi,j denote the matrix over
variables in X and R corresponding to Ai,j after randomization.

Lemma 2. Suppose a collection of matrices {Ai,j} of polynomials over the variables X along with a set S
of valid products satisfy the following conditions:



– (Left non-shortcutting) For each member of S, multiply every corresponding matrix except for the right-
most matrix. Interpret the resulting matrices as vectors of polynomials over the variables X. These vectors
must be linearly independent.

– (Right non-shortcutting) Defined analogously to left non-shortcutting, except products do not include the
leftmost matrix. These vectors must be linearly independent in the sense above.

Any allowable polynomial over the Âi,j matrices that is identically zero over the formal variables in X and
R can be written as a linear combination of allowable matrix products over S. Additionally, this polynomial
evaluated over the non-randomized Ai,j matrices, is identically zero over the formal variables X.

The proof of this lemma is given in A.

4 The Model

In this section, we define two models. The first is the weak CLT13 model (Section 4.1), intended to capture all
known classical attacks on the CLT13 multilinear maps. The second is the CLT13 plain annihilation model, a
modification of the weak CLT13 model that changes the winning conditions (Section 4.2). We justify our first
model by proving that it captures known attacks from the literature. While the weak CLT13 model captures
all known attacks, it can be a bit cumbersome to use. Our second “plain annihilation model” is designed to
be a much simplified attack model to make it easier to prove security. The main theorem of this section is
that an adversary in the weak CLT13 model implies the existence of an adversary in the CLT13 annihilation
model. To demonstrate the ease of proving security in the simplified model, we show that combining this
theorem with the Branching Program Un-Annihilatability Assumption of [GMM+16] immediately shows the
virtual black box (VBB) security of the obfuscator of Badrinarayanan et al. [BMSZ16]. Additionally, this
shows that the order-revealing encryption scheme of Boneh et al. [BLR+15] is secure in our model.

4.1 CLT13 Weak Multilinear Map Model

Notation. We will let uppercase letters such as M,S, Γ denote formal variables, and lower case letters such
as m, s, γ denote actual values. Let mji be a set of elements indexed by j and i. We introduce 〈m〉i as
shorthand for the set {mji}j of all elements with index i, and 〈m〉 to denote the set {〈m〉i}i. For a set Mj,i

of formal variables indexed by j and i, define 〈M〉i and 〈M〉 analogously.
With this notation, we now define our weak CLT13 model. The model consists of the following interfaces:

Initialize parameters. At the beginning of the interaction with the model M, M is initialized with the se-
curity parameter λ and the multilinearity parameter κ ≤ poly(λ). We generate the necessary parameters
of the CLT13 scheme (including the vector dimension n, the primes gi, pi for i ∈ [n]) according to the
distributions suggested by Coron et al. [CLT13]. Let Rptxt = Z∏

i gi
= ⊗iZgi be the plaintext ring. Let

Rctxt = Z∏
i pi

= ⊗iZpi . We will usually interpret elements in Rptxt and Rctxt as vectors of their Chinese
Remaindering components.

Initialize elements. Next, M is given a number of plaintext vectors mj ∈ R as well as an encoding level Sj
for each plaintext.M generates the CLT13 numerators sj where sji = mji + girji as in the CLT13 encoding
procedure. For each j, M stores the tuple (mj , sj , Sj) in the a pre-zero test table.

Zero-testing. The adversary submits a polynomial pu toM, represented as a polynomial-sized level-respecting
algebraic circuit. Here, level-respecting means that all wires are associated with a level S, input wires are
associated to the sets Sj , add gates must add wires with the same level and output a wire with the same
level, multiply gates must multiply wires with sets S0 ∩S1 = ∅ and output a wire with the level S0 ∪S1, and
the final output wire must have set {1, . . . , κ}.

Next, M checks whether pu(〈m〉i) = 0 for all i, or equivalently whether pu evaluates to 0 over R when
applied to the plaintext elements. If the check fails, M returns 1. If this check passes, then M returns 1.



We assume without loss of generality that the set {pu} of successful zero tests are linearly independent as
polynomials (since otherwise a zero-test on one pu can be derived from the result of a zero-test on several
other pu).

If we stop here, we recover the plain generic multilinear map model [BR14]. However, in our model,
a successful zero test does more. If zero testing is successful, pu corresponds to a valid construction of a
top-level zero encoding.M then additionally returns a handle Tu to the value tu =

∑
i γ
′
ipu(〈s〉i), the result

of the zero-test computation. Each handle Tu as well as the zero-test result is stored in a zero-test table.

Post-zero-test. Finally, the adversary submits a polynomial Q on the handles {Tu}u and the formal variables
〈S〉i for some i ∈ [n] (that A picks). The model looks up each handle Tu in the zero-test table and plugs in
the corresponding values tu. The model outputs “WIN” if the following two conditions are satisfied.

1. Q({tu}u, 〈S〉i) 6≡ 0 as a polynomial over the formal variables 〈S〉i.
2. Q({tu(〈γ′〉, 〈s〉)}u, 〈s〉i) = 0 mod pi.

These two conditions imply that Q is a polynomial with non-zero degree over the 〈S〉i formal variables that
can be solved for the values 〈s〉i.

4.2 CLT13 Plain Annihilation Model

We define a simplification of the above CLT13 weak multilinear map model, which is identical except for
post-zero-test queries:

Post-zero-test. A submits a polynomial Q′ on a set of formal variables {Pu}u, where Pu represents the
successful zero test polynomials pu. The model outputs “WIN” if the following conditions are satisfied.

1. Q({Pu}u) is not identically zero over its formal variables
2. Q({pu(〈S〉i}u) is identically zero over the 〈S〉i formal variables.

In other words, A wins if it submits an annihilating polynomial for the set of {Pu}u polynomials.

4.3 Classical Attacks in the Weak CLT13 Model

In this section, we show that the original attack on the CLT13 multilinear maps by Cheon et al. fits into
our framework [CHL+15]. Then, we show that the more general attack strategy of Coron et al. can also be
expressed in our model [CGH+15].

Cheon et al. Attack. Mounting this attack requires that the set of plaintext vectors {mj} given to M
can be divided into three distinct sets of vectors,A,B,C that satisfy certain properties. We can discard/ignore
any other plaintext vectors. For ease of exposition, we relabel the vectors in these sets as:

A = {mA
1 , . . . ,m

A
n } B = {mB

1 ,m
B
2 } C = {mC

1 , . . . ,m
C
n }

These vectors can be encoded at arbitrary levels, as long as for any j, σ, k, mA
j ·mB

σ ·mC
k is a plaintext

of zeros at the top level. Accordingly, A submits polynomials pj,σ,k for all j, k ∈ [n], σ ∈ [2] for zero-testing
where

pj,σ,k(mA
1 , . . . ,m

A
n ,m

B
1 ,m

B
2 ,m

C
1 , . . . ,m

C
n ) = mA

j ·mB
σ ·mC

k

Each of these polynomials clearly gives a successful zero-test. In response to each query, M returns a
handle Tj,σ,k to the value

tj,σ,k =

n∑
i=1

γis
A
j,i · sBσ,i · sCk,i.

For σ ∈ {1, 2}, define Wσ to be the n × n matrix whose (j, k)th entry is Tj,σ,k. In the real attack,

the adversary computes the matrix W1W
−1
2 , which Cheon et al. [CHL+15] show has eigenvalues

sB1,i
sB2,i

. The



adversary solves the characteristic polynomial of W1W
−1
2 for these eigenvalues. In our model A cannot

immediately submit this characteristic polynomial, as it involves rational functions of the handles T , and
can only be solved for ratios of the sji values. However, we observe that the characteristic polynomial

det
(
W1W

−1
2 − λI

)
= det

(
W1W

−1
2 −

(
SB1,i
SB2,i

)
I

)
= 0

can be re-written by substituting W−1
2 =

Wadj
2

det(W2) . (where W adj
2 denotes the adjoint matrix of W2). Applying

properties of the determinant then gives

det(W1W
adj
2 SB2,i − SB1,i det(W2)I) = 0

A submits the left-hand side expression above as its polynomial Q in a post-zero-test query. Since the
Cheon et al. attack is successful, we know Q is nonzero over the formal variables 〈S〉i after the values
associated with the handles T are plugged in. Additionally, plugging in the appropriate solutions 〈s〉i satisfies
the above expression, so both win conditions are satisfied. Thus, A wins in our model.

Coron et al. General Attack. We consider the general attack strategy of [CGH+15] on CLT13-based
schemes, and show that these attacks fit within our model. Note that these attacks are on matrices of CLT13
encodings, and it is cumbersome to express these attacks in terms of the notation we use for our weak CLT13
model. For this section, we largely adopt the notation of [CLLT17], but explain how each step of their attack
works in our model.

Coron et al. [CGH+15] define an attack set of dimension d as consisting of three sets of matrices A,B,C ⊂
Zd×dN of size |A| = |C| = nd (where n is the number of CLT13 secret primes and N =

∏n
i=1 pi) and |B| = 2

and two vectors s ∈ Z1×d
N and t ∈ Zd×1

N . These sets are such that

Wσ[j, k] := s×Aj ×Bσ × Ck × t ∈ ZN

is a zero-tested top level encoding of 0 for each choice of j, k ∈ [n]× [n] and σ ∈ {0, 1}. Here [z]p will denote
the unique integer in [−p/2, p/2) congruent to z mod p, and this notation extends entry-wise to vectors and
matrices. Naturally, this gives rise to two matrices Wσ for σ ∈ {0, 1}, where the (j, k) entry is given by
Wσ[j, k].

In [CGH+15], an attack set is called “good” if it can be used to mount their attack on CLT13-based
schemes. One property of a good attack set is that

char(W0 ×W−1
1 ) =

∏
j≤n

char([B0]pj × [B1]−1
pj ),

where char(W ) denotes the characteristic polynomial of matrix W .
Given an attack set {Aj}j , {Bσ}σ, {Ck}k, s, t, the adversary first computes the matrices W0,W1 where

Wσ[j, k] := [s×Aj ×Bσ × Ck × t]N .
The (j, k) entry of the Wσ matrix is the result of a zero test on the polynomial∑

`′,k′,j′,i′

si′ ·Aj [i′, j′] ·Bσ[j′, k′] · Ck[k′, `′] · t`′ .

Thus, an adversary A in our model can obtain handles to all elements of the matrices Wσ.
Let Bj be the matrix [B0]pj · [B1]−1

pj . Note that char(Bj) divides char(W ) since A,B,C, s, t is a good
attack set. Furthermore, Bj satisfies its own characteristic equation, so we conclude that it satisfies the
characteristic equation of W . This fact can be expressed as

det(W0 ×W−1
1 − [B0]pj × [B1]−1

pj ) = 0,

which we can rewrite as

det( det([B1]pj ) ·W0 ×W adj
1 − det(W1) · [B0]pj × [B1]adjpj ) = 0



An adversary A in our model can express the above polynomial as a post-zero-test query polynomial. Simply
view the matrices W0,W1 as matrices of handles T given in response to zero tests, while treating the entries
of B0, B1 as a subset of the formal variables 〈S〉i.

4.4 Model Conversion Theorem

Theorem 1. If there exists an adversary A that wins with non-negligible probability in the weak CLT13
multilinear map model, there exists an adversary A′ that wins with non-negligible probability in the CLT13
annihilation model. A′ is the same as A up to and including the zero-test queries, and only differs on the
post-zero test queries.

Proof. Suppose A produces a post-zero-test Q such that Q({tu}u, 〈S〉i) 6= 0 and Q({tu}u, 〈s〉i) = 0. Recall
that tu is a polynomial over 〈s〉: tu(〈γ〉, 〈s〉) =

∑
i γipu(〈s〉i). Note that the first condition above implies that

Q({tu(〈γ〉, 〈s〉)}u, 〈S〉i) is not identically zero as a polynomial in the formal variables Γ , 〈S〉, where we have
hard-coded the actual values of tu into the first set of inputs to Q. We claim that Q({tu(〈Γ 〉, 〈S〉)}u, 〈S〉i)
must be identically 0, where we have substituted the definition of tu, but left 〈S〉 and Γ in the definition of
tu as formal variables.

Suppose Q was not identically zero over Γ , 〈S〉. Then with overwhelming probability Q would not have
evaluated to zero, and hence would not have given a CLT13 break. This follows from applying a variant of
the Schwartz-Zippel lemma due to Garg et al. [GMM+16] (stated in Section 2.3 as Lemma 1), treating the
sji and γi as the random variables, and showing that pmax is negligible. Since sji = aji+girji and each rji is
sampled independently from a high entropy distribution, the sji’s have significant min-entropy conditioned
on the other sji and γi variables. The γi variables have significant min-entropy since γi = hi

x0
pigi, and the

hi’s are random β-bit integers.
Next, consider expanding out the polynomial Q({Tu}u, 〈S〉i) in terms of its formal variables. We can

group together all the Tu terms of each degree. When substituting Tu = tu(〈Γ 〉, 〈S〉), all the Tu terms of the
same degree will have the same degree for the Γi′ variables, and thus these terms can only be canceled out
by other Tu terms of that degree. So we will restrict our attention to the case where all the tu terms have
some fixed degree dt, since we can just derive such a polynomial from the given Q. Thus, the polynomial
Q({tu(〈Γ 〉, 〈S〉)}u, 〈S〉i) can be written in the form

∑
|S|=dt aStS1tS2 · · · tSdtRS(〈S〉i), where S runs over

all multi-sets of size dt of elements from [U ] (where [U ] is the set of indices {1, . . . , U} of polynomials Pu
submitted by the adversary), and we denote the elements of S as S1, S2, . . . , Sdt . This can be expanded as∑

|S|=dt

aS
∑
i′

Γi′pS1
(〈S〉i′))(

∑
i′

Γi′pS2
(〈S〉i′)) · · · (

∑
i′

Γi′pSdt (〈S〉i′))RS(〈S〉i),

and in particular if we look at the coefficient of Γ dtk for any k 6= i, it is∑
|S|=dt

aSpS1
(〈S〉k)pS2

(〈S〉k) · · · pSdt (〈S〉k)RS(〈S〉i),

which we notice is equivalent to Q({pu(〈S〉k)}u, 〈S〉i). Since Q({tu(〈Γ 〉, 〈S〉)}u, 〈S〉i) ≡ 0, in particular the
coefficient of Γ dtk should be 0 (since there is nothing else for the Γ dtk term to cancel out with), so we have
Q({pu(〈S〉k)}u, 〈S〉i) ≡ 0.

If we think of the Sji terms as the variables of this polynomial and everything else as comprising the
coefficients, we note that all the coefficients must be identically zero, since the Sjk formal variables are disjoint
from the Sji formal variables. Write this polynomial as

∑
V cV ({pu(〈S〉k)}u)

∏
j∈V Sji where V scrolls over

multisets of indices j, meaning cV ({pu(〈S〉k)}u) ≡ 0 for all V .
Recall that Q({tu(〈γ〉, 〈s〉)}u, 〈S〉i) 6≡ 0, which implies that Q(〈T〉, 〈S〉i) 6≡ 0, where 〈T〉 denotes the set

{Tu}u of formal variables corresponding to the original {tu}u polynomials. We can write this polynomial
as Q(〈T〉, 〈S〉i) =

∑
V cV (〈T〉)

∏
j∈V Sji where V scrolls over multisets of indices j. The fact that this

polynomial is not identically zero implies that there exists a V such that cV (〈T〉) is not identically zero.



Renaming the 〈T〉 variables as 〈P〉 variables, we therefore have that for some V , cV (〈P〉) is a non-
identically zero polynomial such that cV ({pu(〈S〉k)}u) ≡ 0, but this means it is an annihilating polynomial
for the {pu({Sji})}u polynomials.

4.5 Secure Obfuscation and Order-Revealing Encryption in the Weak CLT13 Model

Security in our weak CLT13 model means security in the plain generic multilinear map model, plus the
inability to construct an annihilating polynomial. We observe that Badrinarayanan et al. [BMSZ16] show
for their obfuscator (which is a tweak of the obfuscator of Barak et al. [BGK+14]), the only successful zero
tests an adversary can perform are linear combinations of honest obfuscation evaluations on some inputs.
Moreover, the linear combinations can only have polynomial support. Recall that in [BMSZ16], evaluation
is just a branching program evaluation over the encoded values. Therefore, any annihilating polynomial in
the plain annihilation model is actually an annihilating polynomial for branching programs. Therefore, using
the branching program un-annihilatability assumption of Garg et al. [GMM+16], we immediately conclude
that no such annihilating polynomial is possible. Thus, there is no weak CLT13 attack on this obfuscator.

We similarly observe that in the order-revealing encryption (ORE) scheme of Boneh et al. [BLR+15], any
successful zero is also a linear combination of polynomially-many branching program evaluations. Therefore,
by a similar argument, we immediately obtain that Boneh et al.’s scheme is secure in our weak CLT13 model.

5 Our Multilinear Map Candidate

In this section, we give a candidate constant-degree multilinear map scheme. We show, given an assumption
about annihilating vector-input branching programs, that this multilinear map is secure in the weak CLT13
model.

5.1 Construction Overview

The levels will be non-empty subsets of [d] for some constant d. For simplicity, here we describe how to build
a multilinear map that only allows a pairing operation that takes d elements, one from each singleton set, di-
rectly to a top-level encoding. This is the style of multilinear map envisioned by Boneh and Silverberg [BS03].
In Section 5.4, we explain how to extend our multilinear map to allow intermediate levels.

Our construction is logically organized into d` columns, numbered from 1 to d`. The columns are further
partitioned into d groups numbered 1 through d of ` columns, where the columns in each group are interleaved:
group u consists of columns u, u+ `, u+ 2`, etc. Each column will correspond to one level of the underlying
CLT13 maps, and each group of columns will correspond to one meta-level of our scheme.

We first describe the format of a meta-encoding in our scheme. An encoding at singleton level u will
consist of ` matrices of CLT13 encodings, one in each of the columns corresponding to column group u. We
will denote by Ai the ith matrix in the encoding. Ai is constructed by first defining the diagonal matrix Ãi,
of the form

diag(mi, vi, wi, ξ1I, . . . , ξi−1I, Ei, ξi+1I, . . . , ξdI).

These components of the diagonal matrix work as follows:

– mi is a plaintext element used for the actual plaintext encoding.
– vi and wi are elements freshly sampled at random for this matrix. Their sole purpose is to enforce a

requirement called non-shortcutting, which will arise in the security proof. They are canceled out in valid
products by 0’s in the bookend vectors, defined later.

– The remainder of the diagonal consists of ` block matrices, where ` − 1 of them are set to random
multiples of the identity, and the uth matrix is set to be an “enforcing matrix” Ei. The purpose of these
matrices is roughly to prevent an adversary from arbitrarily mixing and matching the matrices from
different encodings. For the sake of clarity, we defer the details of these matrices to Section 5.2.



Next, d` + 1 Kilian randomization matrices Ri are generated [Kil88], once for each column (plus an

additional matrix). All encodings will share the same Kilian matrices. The Âi matrices are left- and right-
multiplied by the appropriate Kilian matrices, giving

B̂i = R−1
u+(i−1)d−1ÃiRu+(i−1)d.

Each element of this matrix is encoded in an asymmetric CLT13 multilinear map at level {u + (i −
1)d}CLT13 (we differentiate levels of the underlying CLT13 map with this subscript, to avoid confusion with
the levels of our multilinear map) corresponding to the column it belongs to. The resulting matrix of CLT13
encodings is taken to be Ai.

For a matrix Ai, we refer to the underlying mi as the matrix plaintext. This is the only component of
the matrix used for encoding actual plaintext elements. Therefore, as described so far, every meta-encoding
in our scheme encodes a length-` vector of ring elements.

We also give out “bookends” s, t, which are CLT13 encodings of the vectors

ŝ = (1, 1, 0, F1, . . . , Fd) ·R0 , t̂ = R−1
d` · (1, 0, 1, G1, . . . , Gd)

T .

For the sake of clarity, we defer discussing the F,G vectors until Section 5.2. The 1 in the first position
is used to extract the matrix plaintexts. The 0 in the second position of t̂ will zero-out the vi terms, while
the 0 in the third position of ŝ will zero-out the wi terms. s is encoded at CLT13 level 0, while t is encoded
at level d`+ 1.

Let Rptxt be the CLT13 plaintext ring. A meta-encoding of x ∈ Rptxt at singleton level {u} is simply a
sequence of matrices (Ai)i∈[`] whose corresponding sequence of matrix plaintexts is (x, 0, 0, . . . , 0).
At instance generation, we generate and publish a set of initial public encodings.

– For each singleton level {u} ⊆ [d], we publish encodings of 1, 2, 4, . . . , 2ρ−1, where ρ is specified later.
– For each singleton level {u} ⊆ [d], we publish τ encodings of zero, where τ is specified later.
– For the top level [d], we publish a special pre-zero-test encoding that will have most of the structure

of a valid top level encoding, except that it will not correctly encode an actual plaintext element. Its
sequence of matrix plaintexts will be (0, 1, 1, . . . , 1), which differs from a normal encoding where the
matrix plaintexts are all 0 after the first slot. The sole purpose of this encoding is to be added to any
top level encoding we seek to zero test. Roughly, the element submitted for zero testing is the product
of an encoding’s matrix plaintexts, and without this step the product would always be zero.

To add/subtract two meta-encodings at the same singleton level {u}, which are two sequences of `
matrices, we line up the sequences of matrices and add/subtract the corresponding matrices component-wise.
The resulting sequence of ` matrices is taken as the encoding of the sum. Intuitively, this works because
adding these matrices also adds the sequence of matrix plaintexts. As we show in Section 5.2, the structure
of the enforcing matrices is also preserved. If the input encodings have matrix plaintexts (x1, 0, . . . , 0) and
(x2, 0, . . . , 0), the result of addition/subtraction has matrix plaintexts (x1 ± x2, 0, . . . , 0).

To pair d meta-encodings, one from each singleton level, we do the following. For each i ∈ [`], we line up
the ith matrix from each encoding, in the order specified by the columns of our scheme, and multiply the
matrices together. The resulting i matrices are then added to the corresponding i matrices from the pre-
zero-test encoding. Based on the structure of our encoding scheme, the resulting i matrices have the matrix
plaintext sequence (

∏
u xu, 1, . . . , 1), where xu was the value encoded at level {u}. Finally, we multiply all of

these matrices together. The resulting matrix will have
∏
u xu in the upper-left corner. Finally, we multiply by

the bookends s, t to obtain a single top-level CLT13 encoding. We set up the enforcing matrices in Section 5.2
to guarantee that this product becomes a CLT13 encoding of

∏
u xu.

The remaining procedures work as follows.
Encode. To encode a plaintext x ∈ Z2ρ at a singleton level {u}, write the plaintext in base 2, and then
sum the appropriate public encodings of powers of 2. We note that we do not publish a description of the
plaintext ring Rptxt = ZM , where M =

∏
i gi. Therefore, the input to the encoding procedure is some integer



x ∈ Z2ρ , and the output is an encoding of x mod M , where Rptxt = ZM . We set ρ = M × 2λ for a security
parameter λ so that a random x ∈ Z2ρ yields an element x mod M that is statistically close to random in
Rptxt.
Re-randomize. To re-randomize this encoding, add a random subset sum of the public encodings of zero
available for the level. We choose the parameter τ , roughly, to be large enough so that the result is statistically
close to a fresh random encoding. To determine τ , several things need to be taken into account:

– CLT13 multilinear maps are noisy. Therefore, τ needs to be large enough so that, after adding a random
subset sum, the noise terms of all encodings in the meta-encoding are statistically close to random, and
independent of the original noise. A lower bound τ0 on τ can be computed using the “leftover hash
lemma over lattices” [AGHS13]. This requires the noise of the post-re-randomization encodings to be
noticeably larger than the original noise. Therefore, there are actually two noise values for our scheme,
one for the public parameters and one for the encodings produced by re-randomization, which are the
actual encodings users will produce.

– The enforcing matrices need to be statistically close to random fresh enforcing matrices. A lower bound
τ1 on τ for this use can be computed using the standard leftover hash lemma.

By setting τ = τ0 + τ1, we can guarantee that a re-randomized encoding is statistically close to a new
fresh encoding of the same element.
Zero-test and Extract. Zero testing and extraction on top-level encodings (which are just top-level CLT13
encodings) are performed exactly as in CLT13.

5.2 Enforcing Matrix Structure

We now describe the enforcing matrix structure used in the matrices of our scheme. Consider the ` matrices
associated to an encoding at any singleton level {u} for u ∈ [d], which have a block diagonal form. For each
matrix, all the diagonal entries except the top left three entries are responsible for providing the enforcing
structure. This enforcing block is itself a block diagonal matrix, divided into d matrices. d−1 of these blocks
set to random multiples of the identity matrix, and the uth block set to Ei. This Ei block provides the
enforcing structure for level {u}, while the other blocks are set to the identity to avoid interfering with the
enforcing structure of the other singleton levels.

To construct an Ei for a new encoding, we sample a random vector α of dimension `. Denote the ith
component as αi. The matrix Ei is set to be the following diagonal matrix of width 2(`− 1):

Ei = diag(αi, ασ(12)(i), αi, ασ(23)(i), . . . , αi, ασ(`−1,`)(i))

Here, σ(ab) denotes the transposition swapping a and b. We additionally have two bookend vectors F,G,
used by all enforcing matrices for a particular singleton level. The left bookend vector F is simply the all 1’s
row vector of dimension 2(`− 1). The right bookend vector G is a column vector of dimension 2(`− 1). We
sample `− 1 random values {ηi}i∈[`−1], and set the entry in position 2i− 1 to ηi, and the entry in position
2i to −ηi for all i ∈ [`− 1].

Analysis We now consider a setting where the adversary has access to dk meta-encodings of various matrix
plaintext vectors, k in each singleton level. These encodings form a d` × k grid, with k matrices in each of
the d` columns.

Applied to our construction, the matrices are the various meta-encodings of 0 and powers of 2 that
the adversary is given in the public parameters. The adversary also has access to a pre-zero-test encoding,
which does not fit this pattern. However, we can think of the pre-zero-test encoding as arising from d
meta-encodings with matrix plaintext sequence (0, 1, . . . , 1), one encoding per singleton level. The actual
pre-zero-test encoding is obtained by multiplying these encodings together.

Definition 5. We define an integer combination product to be a product of matrices resulting from taking
the same integer linear combination of matrices in each column, and multiplying all the resulting matrices



together in column order. We restrict the allowed integer combinations to be the set of k dimensional vectors
of non-negative integers that sum to exactly `. Denote this set by H`,k.

We let C
(u)
i be the width 2d(` − 1) diagonal matrix made up of d blocks of matrices. Essentially, these

will be the matrices Ai defined earlier, except that the first three rows and columns will be deleted. Thus,

d − 1 of the blocks of C
(u)
i are set to be width-2(` − 1) identity matrices (randomly scaled) and the uth

block is set to Ei, where a fresh random set of Ei is generated for each C(u). Let C(u) denote the list of C
(u)
i

matrices. The bookends are formed by concatenating d independently generated instances of our 2(` − 1)
dimensional bookends.

Consider several different generations of these C(u), denoted C
(u)
(j) as j ranges from 1 to k for some

parameter k. Let C
(u)
i,j denote the ith matrix in C

(u)
(j) . Notice that adding point-wise C

(u)
(j0) to C

(u)
(j1) or scaling

C
(u)
(j) preserves the form of the matrices (though now the α’s are different). Notice also that multiplying all

the matrices in C
(u)
(j) together along with our bookend vectors, gives 0. Therefore, we can take arbitrary linear

combinations of the C
(u)
(j) , multiply them together, and still get 0. Next, we show that this is essentially the

only way to combine different C
(u)
i,j to get zero.

Definition 6. We define a valid monomial to be a polynomial representing a product of the C
(u)
i,j matrices,

so that exactly one matrix is taken from each column, in column order, along with the bookends.

These enforcing matrices are designed so the following lemma holds:

Lemma 3. Let Q be a linear combination of valid monomials. If Q evaluates to 0 as a polynomial over

the underlying randomness of the C
(u)
i,j matrices, then Q must in fact be a linear combination of integer

combination products.

Proof. First, we prove this theorem for the case where d = 1, so we can suppress the superscript (u). Let

αj,1, . . . , αj,` be the sequence of α’s used in C
(u)
(j) .

Consider an arbitrary monomial. We represent choosing a matrix from each column as the vector v =
(v1, v2, . . . , v`) where each vi ∈ [k]. The matrix resulting from this product, multiplied by the bookend vectors
is

[
1 1 1 1 · · ·

]


∏`
i αvi,i ∏`

i αvi,σ(12)(i) ∏`
i αvi,i ∏`

i αvi,σ(23)(i)

. . .




η1

−η1

η2

−η2

...


We can multiply out the above matrix product, which allows us to write the general form of a polynomial

that sums over all such v as

∑
v∈[k]`

βv

`−1∑
h=1

ηh

(∏̀
i

αvi,i −
∏̀
i

αvi,σ(h,h+1)(i)

)
,

We treat each ηh and αi,j as distinct formal variables. If this polynomial equals zero, then each monomial

over these variables must have a coefficient of zero. Consider the monomial ηh′
∏`
i αv′i,i where h′ is a fixed

integer and v′ is a fixed vector. Only two terms in the above sum contribute to this coefficient, giving
βv′ − βσ(h′,h′+1)(v

′) = 0. The transpositions (12), (23), . . . , (`− 1, `) generate the entire symmetric group S`.

Thus, by considering all possible choices of h′, we conclude that βv = βσ(v) for any permutation σ ∈ S`.



The constraint that βv remains the same when v is permuted means that a general polynomial of the
form

∑
v∈[k]` βv

∏
i∈[`] Ci,vi can be written as a linear combination of polynomials from the set ∑

v=σ(v̄),σ∈S`

∏
i∈[`]

Ci,vi | v̄ ∈ [k]`, v̄ is non-decreasing

 .

We let I`,k denote the set of non-decreasing vectors in [k]`. Our general polynomial can be written using
only βv̄ coefficients where v̄ ∈ I`,k as ∑

v̄∈I`,k

βv̄
∑

v=σ(v̄),σ∈S`

∏
i∈[`]

Ci,vi .

The last step is to show that this polynomial can in fact be written as a linear combination of integer
combination products, where each integer combination vector has non-negative integer components that sum
to `. Let the set of such k-dimensional vectors x be denoted as H`,k. The goal is to show that there exist µx
coefficients such that

∑
v̄∈I`,k

βv̄

 ∑
v=σ(v̄),σ∈S`

∏
i∈[`]

Ci,vi

 =
∑

x∈H`,k

µx

∏̀
i=1

k∑
j=1

xjCi,j

 .

It turns out that we can prove a slightly stronger claim. Consider the space of all polynomials over the

monomials
{∏

i∈[`] Ci,vi

}
v∈[k]`

that are symmetric under permutations of v. It is clear that
{∑

v=σ(v̄),σ∈S`
∏
i∈[`] Ci,vi

}
v̄∈I`,k

give a set of basis vectors for this space of polynomials. We claim that
{∏`

i=1

∑k
j=1 xjCi,j

}
x∈H`,k

are also

a basis for this space. Observe that |H`,k| = |I`,k| =
(
`+k−1
k−1

)
.

Consider the (` + k − 1) × (` + k − 1) matrix M`,k where each row is indexed by a distinct element
of H`,k. Let each column also be indexed by a distinct element of H`,k. To compute an element of this
matrix, we consider the associated row index, a vector x = (x1, . . . , xk), and the associated column, a vector

y = (y1, . . . , yk). The element is set to
∏k
i=1 x

yi
i . Brunat and Montes show that this matrix has positive

determinant over the integers for all positive integers `, k where k ≥ ` [BM07]. Moreover, they show all
of the determinant’s prime factors are at most `, which is a polynomial. We work over the ciphertext ring
Rctxt = ZN , where all the prime factors of N are exponentially large. Therefore, the determinant is a unit in
Rctxt. Hence, this matrix is invertible over Rctxt.

The row corresponding to any x ∈ H`,k can be interpreted as the vector needed to write
∏`
i=1

∑k
j=1 xjCi,j

as a linear combination of vectors from {
∑
v=σ(v̄),σ∈S`

∏
i∈[`] Ci,vi}x∈I`,k . To see this, we consider the fol-

lowing bijection from the column indices, which are elements in H`,k, to elements of I`,k. Given an element
(y1, y2, . . . , yk) ∈ H`,k, we form a vector where the first y1 entries are 1, the next y2 entries are 2, etc., which
gives an element in I`,k. Given this bijection, the entry whose row corresponds to x ∈ H`,k and whose column

corresponds to v̄ ∈ I`,k can be seen as
∏`
i xv̄i . This is precisely the coefficient of

∑
v=σ(v̄),σ∈S`

∏
i∈[`] Ci,vi

when
∏`
i=1

∑k
j=1 xjCi,j is expanded out.

Thus, we have an invertible linear transformation from one set of vectors to the other, and therefore a

general polynomial can be rewritten in the form
∑
x∈H`,k µx

(∏`
i=1

∑k
j=1 xjCi,j

)
.

To complete the proof, we claim that the above argument for the one-input case generalizes easily to

the d-input case. We return to the notation where C
(u)
i,j is the jth matrix in the ith column associated to

singleton set {u}. General polynomials are now of the form∑
v(1),...,v(d)∈[k]`

βv(1),...,v(d)
∏
i∈[`]

C
(1)

i,v
(1)
i

· · ·
∏
i∈[`]

C
(d)

i,v
(d)
i

.

Note that the enforcing matrices are constructed so that all matrices not corresponding to set {i} have
(scaled) identity matrices in the set of positions used to enforce {i}. The analysis we perform in the d = 1 case



to conclude that each βv is constant under permutations of v therefore still applies. Thus, these polynomials
can actually be written as

∑
v̄(1),...,v̄(n)∈I`,k

βv̄(1),...,v̄(n)

 ∑
v(1)=σ(1)(v̄(1)),σ(1)∈S`

∏
i∈[`]

C
(1)

i,v
(1)
i

 · · ·
 ∑
v(d)=σ(d)(v̄(d)),σ(d)∈S`

∏
i∈[`]

C
(n)

i,v
(n)
i

 .

The goal is to write these polynomials as a linear combination of integer combination products, which
requires finding µx(1),...,x(n) variables so that the polynomial can be re-written as

∑
x(1),...,x(n)∈H`,k

µx(1),...,x(n)

∏̀
i=1

k∑
j=1

x
(1)
j C

(1)
i,j

 · · ·
∏̀
i=1

k∑
j=1

x
(n)
j C

(n)
i,j

 .

The same linear transformation argument from the n = 1 case works. The set of polynomials
 ∑
v(1)=σ(1)(v̄(1)),σ(1)∈S`

∏
i∈[`]

C
(1)

i,v
(1)
i

 . . .

 ∑
v(d)=σ(d)(v̄(d)),σ(d)∈S`

∏
i∈[`]

C
(d)

i,v
(d)
i


v̄(1),...,v̄(d)∈I`,k

is a basis of all polynomials where each monomial consists of one variable from each column, and that are
symmetric with respect to permutation on each v(u).

The linear transformation matrix to the set of polynomials
∏̀
i=1

k∑
j=1

x
(1)
j C

(1)
i,j

 · · ·
∏̀
i=1

k∑
j=1

x
(d)
j C

(d)
i,j


x(1),x(d)∈H`,k

.

is simply the dth Kronecker product of M`,k with itself. Since M`,k is invertible in the ring Rctxt, its dth
Kronecker product is also invertible, finishing the proof.

5.3 Security

The security of this multilinear map will rest on the following assumption about annihilating vector-input
branching programs.

Recall that we define H`,k to be the set of vectors of dimension k with non-negative integer components
that sum to `. Additionally, we refer to a generic vector-input branching program as one whose matrix
elements are all distinct formal variables.

Assumption 1 (The (`, s)-VBPUA Assumption) Let ` = poly(n, λ) and s = poly(n, λ) be parameters,
and let f(x) be a generic vector-input branching program that reads each input ` times and consists of
s × s matrices. Let A denote a probabilistic exponential-time algorithm that, on input (1n, 1λ), outputs a
polynomial number of exponentially-sized polynomials of the form Pr =

∑
x∈H`,t αr,xf(x) where each set of

vectors in {αr}r (interpreted as vectors over all x) are linearly independent. Then there does not exist any
polynomial-sized circuit Q of degree at most 2o(λ) such that Q({Pr}r) ≡ 0 as a polynomial over the formal
variables of the generic VBP.

To prove the security of this multilinear map, we consider two worlds. Suppose the multilinear map is
used to encode a sequence m1, . . . ,mv of plaintexts at levels S1, . . . , Sv.

In the “real” world, the adversary interacts with our weak CLT13 model, whose plaintexts consist of
all the elements of all the matrices output by our multilinear map encoding procedure as well as all the
elements of the public parameter matrices. These plaintexts are encoded at the appropriate levels derived



from S1, . . . , Sv. The adversary can submit level-respecting polynomials over these plaintexts as zero-test
queries, and receives a handle to the result of the zero-test computation for successful queries. Then the
adversary enters a post-zero test stage, and can automatically win by submitting a polynomial Q that
satisfies the necessary conditions.

In the “ideal” world, the adversary interacts with a simulator that can interact with a vanilla generic
multilinear map model. In this world, the model only stores the actual plaintexts m1, . . . ,mv and levels
S1, . . . , Sv. The adversary submits level-respecting polynomials over the plaintexts of the real world. The
simulator answers these queries using only queries to its model over the actual plaintexts. As in the real
world, the adversary enters a post-zero test stage, which the simulator must respond to.

The multilinear map is secure as long as (1) the adversary can never create a successful polynomial Q in
the real world, and (2) any information the adversary gets in the real world, the adversary can also obtain
in the ideal world. Formally, this requires proving the existence of a simulator such that no PPT adversary
can distinguish between the two worlds.

Theorem 2. There exists a simulator S such that for all PPT adversaries A,

Pr[EXPreal(A) = EXPideal(S,A)] = 1− negl

Moreover, S always responds to post-zero test queries with 0.

Proof. First, we rule out the case where there are no plaintexts to be encoded. In this case, the vanilla
generic multilinear map model is vacuous, and the only way to win is for the adversary to come up with
a polynomial Q causing the weak CLT13 model to declare a win. We invoke Theorem 1, which states that
if A can win, then there exists another adversary A′ that wins in the CLT13 annihilating model. We will
show that the existence of such an adversary A′ violates the (`, s)-VBPUA assumption. As in the previous
section, for simplicity, we will imagine the pre-zero-test encoding given out as a set of d meta-encodings at
the singleton levels. Forcing them to be pre-multiplied only makes the adversary’s task harder.

Consider an annihilating polynomial Q′ that A′ submits in order to win in the plain annihilating model.
Since A′ must construct this polynomial from the results of successful zero-tests on elements from the public
parameters, the level structure imposes some restrictions on the allowed monomials. Recall that the matrices
in the public parameters are encoded so that all elements of all matrices in column i are encoded at level
{i} (and the two bookends are encoded at level {0} and {n`+ 1} respectively), and that the top level of the
map is {0, 1, . . . , n`+ 1}. This means each monomial is a product of n`+ 2 matrix entries, such that exactly
one entry is chosen from each of the n` columns, plus two entries chosen from the bookend vectors. Note
that there may be exponentially many monomials in this polynomial.

Our next step is to apply Lemma 2 (stated in Section 3 and proved in Appendix A). The collection of
matrices {Ai,j} in the lemma statement are set to be the matrices given out in the public parameters. The
set S of allowable products will be the exponentially-sized set that simply allows all level-respecting products
(i.e. one element/matrix from each column). Additionally non-shortcutting is satisfied: the vi, wi entries in
the second and third positions in each matrix are all distinct. This means, when treated as formal variables,
they cause any iterated matrix product not including one of the bookends to contain a unique product of
these values. Hence, all partial iterated matrix products are linearly independent. Applying the lemma to
the annihilating polynomial Q′ tells us that Q′ is in fact a linear combination of matrix products, where each
product consists of exactly one matrix chosen from each column (and the bookends).

The lemma also tells us that Q′, evaluated over the original un-randomized matrices, is zero. Now we
invoke the enforcing matrices. Q′ satisfies the conditions required to invoke Lemma 3, from which we con-
clude that Q′ is a linear combination of integer combination products. Furthermore, the types of integer
combinations that are allowed are precisely those that live on the simplex.

Observe that we can view the public parameters of multilinear map as the matrices in a vector-input
branching program (VBP). Each integer combination product of the multilinear map matrices is just the
evaluation of this VBP on a simplex input vector. The (`, s)-VBPUA assumption states that there does not
exist a polynomial that can annihilate a linear combination of VBP evaluations on simplex input vectors,
which directly contradicts the existence of Q′.



We conclude that A′ cannot win in the annihilating model with non-negligible probability, and thus A
cannot win in the weak model.

Now we extend to the case where A and A′ obtain some encodings outputted by the encoding procedure.
However, recall that the encoding procedure just computes a linear combination over the terms in the
public parameters. Therefore, if A or A′ can win (i.e. produce a successful post-zero test polynomial Q
or Q′, respectively), then they can be used to construct adversaries B and B′ that only require the public
parameters.

At this point, we have shown that no adversary in our weak CLT13 model can create a successful post-
zero-test query. Therefore, we can effectively ignore these queries, as the simulator can always respond with
“non-zero”.

Thus, for A to distinguish between the two real and ideal worlds, it must do so entirely based on
information from the zero-test queries. In other words, it must attack our scheme in the vanilla generic
graded encoding model. It now suffices to give a simulator S that can answer A’s queries in the ideal world
the same way that they would be answered in the real world.

The simulator S works as follows. A submits a polynomial Q to S for zero-testing. This polynomial Q is
over the public parameters of the multilinear map, as well as the encodings of the plaintexts, where we denote

the ith plaintext for level {u} as m
(u)
i . First, the simulator S attempts to re-express the polynomial in the

form
∑
x∈H`,k µxPx, where each Px is the result of taking the integer linear combination of matrices specified

by x in each column, and multiplying them all together. Note that this step of S may be computationally
inefficient, but we will allow this in the vanilla generic multilinear map model.

If the polynomial cannot be re-expressed in this form, our previous analysis implies that it is not zero
with high probability. At this point, the simulator S can simply return “not zero”. Otherwise, we know that
in order for the query to be zero (except with negligible probability), it must be that the polynomial, when
evaluated on the pre-Kilian-randomized A matrices, gives identically 0. Suppose the kth matrix corresponding

to meta-level u encodes the sequence of matrix plaintext (m
(u)
i,1 ,m

(u)
i,2 , . . . ,m

(u)
i,` ). Then, using the structure

of our matrices, the polynomial, when evaluated on the A matrices, outputs

∑
x∈H`,k

µx

 d∏
u=1

∏̀
j=1

(
∑
i

xim
(u)
i,j )

 .

For the matrices belonging to the public parameters, the m
(u)
i,j are just known constants derived from

the structure of the public parameters. For the matrices belonging to singleton encodings, the simulator

knows that m
(u)
i,j = 0 for j > 1, and that m

(u)
i,1 corresponds to the unknown plaintext mv encoded by the

meta-encoding. Thus, by hardcoding the appropriate constants and re-naming variables, S can construct
a polynomial X over the mv terms which has total degree at most d. Notice that since we are restricting
to a constant-degree multilinear map, this polynomial can be represented as a linear combination of its
monomials, and this representation only has polynomial size. Thus, this query can be implemented as a
polynomial-sized circuit. Therefore, S can submit X to its multilinear map oracle to determine whether X
evaluates to zero on the mv. With overwhelming probability, the answer is the same as whether Q evaluates
to zero. Thus, S successfully answers each of the adversary’s queries.

5.4 Extending Our Maps to Allow Intermediate Levels

We now briefly describe how to extend our scheme to allow intermediate levels. Such intermediate levels
allow for a richer level structure that is needed by many applications.

First, notice that our construction naturally allows for level {u, u + 1} meta-encodings for any u. Such
encodings are obtained from a level u and level u + 1 meta-encoding by multiplying the ith matrix of level
u by the ith matrix of level u + 1, for each i. The structure of such intermediate encodings can be inferred
from the structure of the singleton meta-encodings. Essentially, they have the same structure as singleton
encodings, except now two of the block diagonal terms are set to be (independent) enforcing matrices.



These higher level encodings can easily be generalized to any interval [a, b] ⊂ [d]. Unfortunately, due to
having different Kilian randomizing matrices for each column, we cannot directly multiply level u and u+ 2
meta-encodings to obtain a level {u, u + 2} encoding in this fashion. Instead, we observe that instead of
multiplying the underlying matrices, we can tensor the matrices, obtaining a list of all degree-2 products.
The structure here is slightly more complicated, but can still be inferred from the structure of singleton
meta-encodings. Now a tensored level-{u, u+ 2} encoding can be multiplied, say, by a level u+ 1 encoding,
arriving at a level [u, u+ 2]. This is done be using the degree-2 products to re-construct the necessary 3-way
matrix product.

This tensoring can be extended to any subset of [d], though the size of the encodings grows exponentially
in d. However, since we keep d a constant, the size of encodings never grows beyond a polynomial.

Finally, we can allow re-randomization at any encoding level by giving out many encodings of zero at
that level. The number of encodings will need to be much higher in order to completely re-randomize, as
now there are many more terms that need to be random.

While tedious, we can also extend our security proof from the preceding section to handle this new setting.
The idea is similar to how we handled the pre-zero-test encoding. Basically, we can express the encodings in
the public parameters as the result of polynomial computations on many bottom-level terms. This allows us
to apply the proof from the previous section. We omit the precise details.

6 Acknowledgements

We thank Leon Zhang (UC Berkeley Math) for helpful discussions regarding the proof of Lemma 3.

References
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A Proof of Lemma 2

Proof. We prove this by induction on the number of columns. The base case is where the number of columns
is one. There are no Ri matrices and every matrix must be a 1 ×1 matrix, and thus any allowable polynomial
is immediately an allowable matrix product.

For the inductive step, we assume that this lemma holds for k columns and any set S. We let s denote
an element of S, and we let s(i) denote the ith element of tuple s. For notational convenience, we use As(i)
as shorthand for the matrix Ai,s(i). As(i),i′,j′ will denote the (i′, j′) entry of matrix As(i).

Consider an arbitrary allowable polynomial:

p =
∑

s∈S,i1,i2,j2,...,in

αs,i1,i2,j2,...,inAs(1),1,j1

 ∏
k∈[n−1]\{1}

As(k),ik,jk

As(n),in,1

We can expand out this polynomial in terms of the matrix R1:

p =
∑

s∈S,i1,i2,j2,...,in,m,`

αs,i1,i2,j2,...,inAs(1),1,mR
adj
1,m,j1

R1,i2,`

(As(2) ·Radj
2 )`,j2

 ∏
k∈[n−1]\{1,2}

As(k),ik,jk

As(n),in,1

We define a new coefficient:

α′s,j1,i2,` =
∑

j2,...,in

αs,j1,i2,j2,...,in(As(2) ·Radj
2 )`,j2

 ∏
k∈[n−1]\{1,2}

As(k),ik,jk

As(n),in,1

This allows us to rewrite our polynomial as

p =
∑

s∈S,j1,i2,m,`

α′s,j1,i2,`As(1),1,mR
adj
1,m,j1

R1,i2,`

We can expand p by substituting the following expression for the entries of the adjoint matrices:

Radj1,m,j1
=

∑
σ:σ(m)=j1

sign(σ)

∏
t6=m

R1,σ(t),t

 .

This substitution gives

p =
∑

s∈S,i2,m,`,σ

sign(σ)α′s,σ(m),i2,`
As(1),1,m

∏
t6=m

R1,σ(t),t

R1,i2,`

Since p is identically zero, the coefficients of any product of
(∏

t 6=mR1,σ(t),t

)
R1,i2,` terms must be 0. We

consider the possible types of products we can have.



– Well-formed products. These products arise when the unselected entry R1,σ(m),m is reselected as R1,i2,`.
The same product results when the permutation is fixed and the un-selected entry varies. This forces
` = m and i2 = σ(m). For each σ, the constraint that the coefficient of this product is zero gives the
following expression: ∑

s∈S,m
α′s,σ(m),σ(m),mAs(1),1,m = 0

Since we can pick σ so that σ(m) ranges over all possible values of i, we conclude that for all i,∑
s∈S,m

α′s,i,i,mAs(1),1,m = 0

– Malformed Type 1. In these products, we unselect an entry and reselect one in a different column and
row. This fixes ` 6= m and i2 6= σ(m). Write σ(m) = j1. Then for any choice of ` 6= m, i2 6= j, we have∑

s∈S
α′s,j1,i2,`As(1),1,m = 0

– Malformed Type 2. (Note that these are modified from the original malformed type 2 products defined
in [BMSZ16]; here we select a different entry in the same row instead of column)
In these products, we unselect the entry and then select a different entry in the same row. Consider some
other choice of i′2,m

′, `′, σ′ that leads to the same product. We know that `′ = ` is uniquely determined
as the column with two entries. Furthermore, we know that m = m′ is the only column with no entries.
It remains to consider the i2 6= i′2. case. Then σ′ and σ have opposite parity. So we choose any σ that
satisfies the following i2 6= i′2, ` = `′, σ(m) = i2, σ′(m′) = i′2, and ` 6= m.
So we have that for any fixed choice of i2, i

′
2 6= i2,m 6= `, that∑

s∈S
(α′s,i2,i2,` − α

′
s,i′2,i

′
2,`

)As(1),1,m = 0

– Malformed Type 3. (Again, note these are modified from the original malformed type 3 products defined
in [BMSZ16]). In these products, we select something in an entirely different row. In other words, these are

products of the form
(∏

t6=mR1,σ(t),t

)
R1,i2,` where i2 6= σ(m). The equations that result are redundant,

so we do not consider them.

We can expand the equations resulting from the malformed type 1 products with the definitions. This
gives the constraint that for any j1 6= i2, ` 6= m,

∑
s∈S,j2,...,in

αs,j1,i2,j2,...,inAs(1),1,m(As(2) ·Radj
2 )`,j2

 ∏
k∈[n−1]\{1,2}

As(k),ik,jk

As(n),in,1 = 0

Fix specific values of m, j1, i2. Now we apply the inductive hypothesis to the case where

A′1,j = (A2,j ·Radj
2 )` for 1 ≤ j ≤ a(2)

A′γ,j = Aγ+1,j for 2 ≤ γ ≤ n− 1, 1 ≤ j ≤ a(γ)

The set S′ of allowable products is simply the set of all n − 1-tuple suffixes of n-tuples in S. Note
that if we assume the non-shortcutting properties of the original matrices, the matrices resulting from this
transformation satisfy non-shortcutting as well.



To apply this induction, we absorb the As(1),1,m term into the αs coefficients. Thus, when we apply
induction, the coefficients are:

βs′,j2,i3,j3,...,in =
∑

s∈S|s′ is a suffix of s

αs,j1,i2,j2,...,inAs(1),1,m for s′ ∈ S′

The inductive hypothesis states that this polynomial must be a valid matrix product polynomial. So in
particular, it states that any βs′,j2,i3,j3,...,in for any s′ ∈ S′ that satisfies j2 = i3, j3 = i4, . . . , jn−1 = in can in
fact be written as βs′ , a term that has no dependence on j2, . . . , in. Furthermore, if any of j2 = i3 or j3 = i4,
etc. fail to hold, then the coefficient is 0.

Now we label each s′ ∈ S′ with a distinct number from 1, . . . , |S′|. Define the matrix M with entries

M`,q = (As′(1))`

 ∏
k∈[n−1]

As′(k)

 for s′ ∈ S′ with label q

The right non-shortcutting property implies the columns of this matrix are linearly independent. Thus,
this matrix has rank |S′|. Define the column vector where the qth entry is βs′ for s′ with label q. Observe
the inner product of each row of M with this vector is 0, as the product is precisely the quantity in the
malformed type 1 equations. Since there are |S′| linearly independent rows, this vector must be the 0 vector.

The fact that βs′ = 0 for all s′ ∈ S′ tells us that∑
s′∈S′

βs′ =
∑
s∈S

αs,j1,i2,j2,...,inAs(1),1,m = 0

for fixed j1, i2, and j2, . . . , in that satisfy j2 = i3, j3 = i4, . . . , jn−1 = in.
Now we label each s ∈ S with a distinct number from 1, . . . , |S|. Define the matrix W with entries

Wm,r = As(1),1,m for s ∈ S with label r

The left non-shortcutting property implies that all the columns are linearly independent, and thus this
matrix has rank |S|. Define the column vector where the rth entry is αs,j1,i2,j2,i3,j3,...,in (for the same fixed
for fixed j1, i2, j2, . . . , in) for s with label r. Then the inner product of this vector with any row of W is 0.
Since there are |S| linearly independent rows, this vector must be the 0 vector.

So we conclude that each coefficient αs,j1,i2,j2,...,in is zero if j1 6= i2 for any superscript S.
We can apply this exact reasoning to the equations generated by the malformed type 2 products, and

conclude that for any choice of s ∈ S, j2, . . . , in, and i2 6= i′2,

αs,i2,i2,j2,...,in = αs,i′2,i′2,j2,...,in .

If we consider any general polynomial p over all possible monomials, the coefficient of any monomial
that would not result from a proper multiplication of two matrices in the first two columns is zeroed out.
Furthermore, if the coefficients “match up” so that all the remaining monomials are the result of a valid
multiplication of two matrices in the first two columns.

Thus, any polynomial p is in fact a general polynomial over the following collection of matrices with n−1
columns. The first column is the set of all pairwise products of matrices in the original first two columns
such that the product appears as the first two indices for some s ∈ S. The remaining n− 2 original columns
are left the same. The set of allowable products has the same size as the original S, but with each n-tuple
rewritten as an n − 1-tuple where the first index of the tuple corresponds to the matrix that results from
multiplying the first two indices of the original tuple.

The inductive hypothesis is that any general polynomial over this collection of matrices is a valid matrix
product polynomial. Note that valid matrix product polynomials over this collection of matrices are also
valid matrix product polynomials over the original collection of matrices.

Finally, we note that the equations resulting from the well-formed product immediately imply that this
polynomial evaluates to 0. This completes the induction.


