
Evolving Secret Sharing:

Dynamic Thresholds and Robustness∗

Ilan Komargodski† Anat Paskin-Cherniavsky‡

Abstract

Threshold secret sharing schemes enable a dealer to share a secret among n parties such that
only subsets of parties of cardinality at least k = k(n) can reconstruct the secret. Komargodski,
Naor and Yogev (TCC 2016-B) proposed an efficient scheme for sharing a secret among an
unbounded number of parties such that only subsets of k parties can recover the secret, where k is
any fixed constant. This access structure is known as k-threshold. They left open the possibility
of an efficient scheme for the dynamic threshold access structure, in which the qualified sets are
of increasing size as the number of parties increases. We resolve this open problem and present
a construction in which the share size of the t-th party is O(t4 · log t) bits.

Furthermore, we show how to generically translate any scheme for k-threshold into a scheme
which is robust, where a shared secret can be recovered even if some parties hand-in incorrect
shares. This answers another open problem of Komargodski et al. Our construction is based
on the construction of robust (classical) secret sharing schemes of Cramer et al. (EUROCRYPT
2008) using algebraic manipulation detection codes.

∗This paper incorporates the manuscript of Paskin-Cherniavsky [Pas16].
†Cornell Tech, New York, USA. Email: komargodski@cornell.edu. Supported in part by Elaine Shi’s Packard

Foundation Fellowship. Part of this work done while being a Ph.D student at the Weizmann Institute of Science,
supported in part by grants from the Israel Science Foundation and by a Levzion Fellowship.
‡Department of Computer Science, Ariel University, Israel. Email: anatpc@ariel.ac.il.

1 Introduction

Secret sharing schemes, introduced by Shamir [Sha79] and Blakley [Bla79], are methods that enable
a dealer, that holds a secret piece of information, to distribute this secret among n parties such that
predefined qualified subsets can reconstruct the secret, while others learn nothing about it. The
monotone collection of qualified subsets is known as an access structure. Secret sharing schemes are
a basic primitive and have found numerous applications in cryptography and distributed computing;
see the extensive survey of Beimel [Bei11] and the book of Cramer et al. [CDN15]. Any access
structure admits a secret sharing scheme but the share size could be as large as O(2n), the maximal
number of possible qualified sets [ISN93]. A significant goal in secret sharing is thus to minimize
the share size, namely, the amount of information distributed to the parties.1

Almost all known secret sharing schemes assume that the number of parties n and the access
structure are known in advance. However, in many scenarios these assumptions have a cost: First,
the eventual set might turn out to be much smaller than n. Second, the access structure may
change with time, forcing the dealer to re-share its secret. In a recent work, Komargodski, Naor
and Yogev [KNY16] initiated the study of secret sharing schemes for the case where the set of
parties is not known in advanced and could potentially be infinite (or even more generally the
access structure may change). Specifically, parties arrive one by one and whenever a party arrives
there is no communication to the parties that have already received shares, i.e. the dealer distributes
a share only to the new party. In the most general case, a qualified subset is revealed to the dealer
only when the last party in that subset arrives. In special cases, the dealer knows the access
structure to begin with, just does not have an upper bound on the number of parties. We assume
that the changes to the access structure are monotone, namely, parties are only added and qualified
sets remain qualified as more and more parties join. We call this an evolving access structure.

When designing a secret sharing scheme for an evolving access structure, the goal is to minimize
the share size of the tth party arriving as a function of t. Komargodski et al. showed that any
evolving access structure can be realized albeit the share size of the tth party is 2t−1. Then, they
consider the evolving k-threshold access structure for k ∈ N, where at any point in time any k
parties can reconstruct the secret but no k − 1 parties can learn anything about the secret and
showed an efficient scheme for it in which the share size of the tth party is bounded by roughly
k · log t bits (see Theorem 2.5 for a precise statement). Their scheme was shown to be optimal in
terms of share size for k = 2.

One of the main open problems left open by their work was to construct an efficient secret
sharing scheme for the evolving majority access structure in which qualified subsets are the ones
which form a majority of the present parties at some point in time. More precisely, a set of k
parties with indices i1 < . . . < ik is qualified if and only if there exists an index j ∈ [k] such that

|{i1, . . . , ij}| ≥
1

2
· ij .

The 1/2 threshold above is arbitrary and could be replaced with any other constant in (0, 1) or even
with a sequence of growing threshold k1 ≤ k2 ≤ . . . such that the qualified sets at time t are those
sets of cardinality at least kt. We resolve this open problem and construct a secret sharing scheme
for this evolving majority access structure in which the share size of the tth party is O(t4 · log t)

1Whether having exponentially large shares is necessary is a major open problem. The best lower bound known
to date is (almost) linear by Csirmaz [Csi97].

1

bits. Our scheme is linear in the sense that reconstruction is done by applying a linear function on
the shares [Bei96, Section 4.1]. This property is desirable since it is useful in applications such as
secure multiparty computation [BGW88, CDM00].

Another question left open in [KNY16] was to construct robust secret sharing schemes for evolv-
ing access structures. In the setting described so far, secret sharing schemes assume the parties are
honest and upon reconstruction provide their correct shares. However, in most cryptographic set-
tings it is often the case that we need to handle malicious parties that manipulate their shares. For
this, the strengthened notion of robust secret sharing was proposed by Ben-Or and Rabin [RB89].
This notion requires that the shared secret can be recovered even if some parties hand-in incorrect
shares.

In the original construction of Ben-Or and Rabin each party authenticates the share of every
other party using a MAC having unforgeability security 2−λ (the reconstruction procedure checks
that the majority of the tags are verified). When the number of parties is unbounded, it is unclear
how to implement such a solution as the first party has to authenticate all future parties (which
is an unbounded number). Several follow-up constructions of robust secret sharing schemes with
smaller shares [CFOR12, BPRW16], rely on the same high-level idea of parties authenticating share
of other parties (in a pairwise manner) and thus seem unsuitable for our setting.

We observe that a different line of works on robust secret sharing, ones based on algebraic
manipulation detection (AMD) codes [CDF01, CDF+08] can be adapted to the evolving setting. We
thus present an efficient robust secret sharing scheme for the evolving k-threshold access structure
such that as long as an adversary corrupts at most k − 1 parties, from any set of 2k − 1 parties,
one can recover the secret. The failure probability of our reconstruction procedure is 2−λ and the
share size is bounded by roughly k · log t+ λ bits.

2 Preliminaries

For an integer n ∈ N we denote by [n] the set {1, . . . , n}. We denote by log the base 2 logarithm
and assume that log 0 = −∞. For a set X we denote by x← X the process of sampling a value x
from the uniform distribution over X . A function neg : N → R+ is negligible if for every constant
c > 0 there exists an integer Nc such that neg(λ) < λ−c for all λ > Nc.

We start by briefly recalling the standard setting of (perfect) secret sharing. Let Pn = {1, . . . , n}
be a set of n parties. A collection of subsets A ⊆ 2Pn is monotone if for every B ∈ A, and B ⊆ C
it holds that C ∈ A.

Definition 2.1 (Access structure). An access structure A ⊆ 2Pn is a monotone collection of
subsets. Subsets in A are called qualified and subsets not in A are called unqualified.

A secret sharing scheme involves a dealer who has a secret, a set of n parties, and an access
structure A. A secret sharing scheme for A is a method by which the dealer distributes shares to
the parties such that any subset in A can reconstruct the secret from its shares, while any subset
not in A cannot reveal any information on the secret.

Definition 2.2. A secret sharing scheme S for an access structure A consists of a pair of algorithms
(SHARE,RECON). SHARE is a probabilistic procedure that gets as input a secret s (from a domain

of secrets S such that |S| ≥ 2) and a number n, and generates n shares Π
(s)
1 , . . . ,Π

(s)
n . RECON is

a deterministic procedure that gets as input the shares of a subset B and outputs a string. The
requirements are:

2

1. Correctness: For every secret s ∈ S and every qualified set B ∈ A, it holds that

Pr[RECON({Π(s)
i }i∈B, B) = s] = 1,

where the probability is over the randomness of the sharing procedure.

2. Security: For every unqualified set B /∈ A and every two different secrets s1, s2 ∈ S, it holds

that the distributions ({Π(s1)
i }i∈B) and ({Π(s2)

i }i∈B) are identical.

The share size of a scheme S, denoted by SS(S), is the maximum number of bits each party
holds in the worst case over all parties and all secrets. For an access structure A we denote by
SS(A) the minimum of SS(S) over all schemes S for the access structure A.

Linear schemes. An important subclass of secret sharing schemes are linear schemes. In such a
scheme the secret is viewed as an element of a finite field, and the shares are obtained by applying a
linear mapping to the secret and several independent random field elements. Equivalently, a linear
scheme is defined by requiring that each qualified set reconstructs the secret by applying a linear
function to its shares [Bei96, Section 4.1]. We denote by lin-SS(A) the minimum value of SS(S)
over all linear schemes S for the access structure A.

2.1 Evolving secret sharing

We recall the notion of an evolving access structure and the corresponding notion of secret sharing
defined by [KNY16]. Roughly speaking, these definitions capture the scenario in which the access
structure is not fully known to the sharing procedure at once but is rather revealed in an online
manner. Concretely, parties arrive one by one and, in the most general case, a qualified subset is
revealed only when all parties in that subset are present (in special cases the access structure is
known to begin with, but there is no upper bound on the number of parties). To make sense of
sharing a secret with respect to such a sequence of access structures, we require that the changes
to the access structure are monotone, namely, parties are only added and qualified sets remain
qualified.

Definition 2.3 (Evolving access structure). An evolving access structures A ⊆ 2N is a (possibly
infinite) monotone collection of subsets of the natural numbers such that for any t ∈ N, the collection
of subsets At , A ∩ [t] is an access structure (as in Definition 2.1).

Below we give a generalization of the definition of a standard secret sharing scheme (see Def-
inition 2.2) to apply for evolving access structures as in [KNY16]. Intuitively, in this setting, at
any point t ∈ N in time, there is an access structure At which defines the qualifies and unqualified
subsets of parties.

Definition 2.4 (Secret sharing for evolving access structures). Let A = {At}t∈N be an evolving
access structure. Let S be a domain of secrets, where |S| ≥ 2. A secret sharing scheme S for A and
S consists of a pair of algorithms (SHARE,RECON). The probabilistic sharing procedure SHARE
and the deterministic reconstruction procedure RECON satisfy the following requirements:

1. SHARE(s, {Π(s)
1 , . . . ,Π

(s)
t−1}) gets as input a secret s ∈ S and the secret shares of parties

1, . . . , t − 1. It outputs a share for the tth party. For t ∈ N and secret shares Π
(s)
1 , . . . ,Π

(s)
t−1

generated for parties {1, . . . , t− 1}, respectively, we let

Π
(s)
t ← SHARE(s, {Π(s)

1 , . . . ,Π
(s)
t−1})

3

be the secret share of party t.

We abuse notation and sometimes denote by Π
(s)
t the random variable that corresponds to

the secret share of party t generated as above.

2. Correctness: For every secret s ∈ S and every t ∈ N, every qualified subset in At can
reconstruct the secret. That is, for s ∈ S, t ∈ N, and B ∈ At, it holds that

Pr
[
RECON({Π(s)

i }i∈B, B) = s
]

= 1,

where the probability is over the randomness of the sharing procedure.

3. Secrecy: For every t ∈ N, every unqualified subset B /∈ At, and every two secret s1, s2 ∈
S, the distribution of the secret shares of parties in B generated with secret s1 and the
distribution of the shares of parties in B generated with secret s2 are identical. Namely, the

distributions ({Π(s1)
i }i∈B) and ({Π(s2)

i }i∈B) are identical.

The share size of the tth party in a scheme for an evolving access structure is max |Πt|, namely
the number of bits party t holds in the worst case over all secrets and previous assignments.2

In [KNY16] it was shown how to construct a secret sharing scheme for any evolving access
structure. This scheme results, for party t, with a share of size exponential in t. They further
showed that in many special cases one can do much better. For example, in the evolving k-
threshold access structure which contains all subsets of size k (where k is known), they gave a
scheme in which the share size depends logarithmically on t.

Theorem 2.5 ([KNY16]). There is a secret sharing scheme for sharing a 1-bit secret for any
evolving access structure in which for every t ∈ N the share size of the tth party is 2t−1.

For the special case of the evolving k-threshold access structure for a fixed k ∈ N, there is a
secret sharing scheme for sharing an `-bit secret such that for every t ∈ N the share size of the tth

party is (k − 1) · log t+ poly(k, `) · o(log t).

On choosing the access structure adaptively. One can also consider a stronger definition
in which At is chosen at time t (rather than ahead of time) as long as the sequence of access
structures A = {A1, . . . ,At} is evolving. In this variant, the SHARE and RECON procedures get
the access structure At as an additional parameter. An illustrative example where At is known
ahead of time is the evolving k-threshold access structure mentioned above. (In this case k is fixed
and is independent of t.) We will consider (in Section 3) a natural generalization in which there
is a sequence of growing thresholds k1 < k2 . . . that say how many parties should be present as a
function of the indices of the present parties themselves. This sequence of thresholds does not have
to be known in advance.

2.2 Algebraic Manipulation Detection Codes

In our robust evolving secret sharing scheme we will use algebraic manipulation codes [CDF+08].
Originally, they were used to transform standard secret sharing schemes into robust ones.

2This means that the share size is bounded, which is almost always the case. An exception is the scheme (for
rational secret sharing) of Kol and Naor [KN08] in which the share size does not have a fixed upper bound.

4

Definition 2.6. An (S,G, δ)-AMD code is a probabilistic encoding map E : S → G for a set S of
size S and a group G of size G together with a deterministic decoding function D : ZG → [S]∪{⊥}
such that D(E(s)) = s with probability 1 for every s ∈ [S]. Furthermore, for any s ∈ [S] and
∆ ∈ ZG it holds that

Pr
E

[D(E(s) + ∆) /∈ {s,⊥}] ≤ δ.

The AMD code is called systematic if S is a group, the encoding is of the form E : S → S×G1×G2

and E(s) has the form (s, x, f(x, s)) for some function f and x ∈R G1. The decoding function of a
systematic AMD code is given by D(s′, x′, σ′) = s′ if σ′ = f(s′, x′) and ⊥ otherwise.

Theorem 2.7 ([CDF+08]). Let F be a field of size q and characteristic p, and let d be an integer
such that d+2 is not divisible by p. There exists a construction of a systematic (qd, qd+2, (d+1)/q)-
AMD code. The encoding function maps Fd to Fd × F× F.

To achieve error parameter γ, and input domain S we will instantiate the above scheme with
G = Ft2, d = 1 where t = logS + γ +O(1). We refer to this construction as AMDS,γ .

3 A Scheme for Dynamic Threshold

In this section we present a secret sharing scheme for the evolving dynamic threshold access struc-
ture. This access structure is parametrized by a sequence of threshold values k1 ≤ k2 ≤ . . . such
that at time t the qualified sets are those of cardinality at least kt. The condition that kt ≤ kt+1

is necessary for the monotonicity of the sequence of access structures, namely for the sequence of
access structures to be a valid evolving structure.

Definition 3.1 (Dynamic threshold). The dynamic threshold access structure is parametrized by
a (possibly infinite) sequence of number k1 ≤ k2 ≤ For any t ∈ N, the set At of qualified sets
at time t contains all those sets of cardinality at least kt.

Of particular interest is the following special case of dynamic threshold access structures in
which the threshold at any point in time is a fixed function. Specifically, the function that we focus
on is the one in which in time t the qualified sets are those of cardinality at least γ · t for fixed
γ ∈ (0, 1).

Definition 3.2 (γ-dynamic threshold). For a parameter γ ∈ (0, 1), the γ-dynamic threshold access
structure is the above dynamic threshold access structures with sequence of numbers γ · 1, γ · 2,
That is, k parties i1 < · · · < ik is qualified iff there exists an index j ∈ [k] such that |{i1, . . . , ij}| ≥
γ · ij .

The main result of this section is summarized in the following theorem:

Theorem 3.3. For any sequence of threshold values {kt}t∈N that define a dynamic threshold access
structures, there exists a secret sharing scheme for sharing a 1-bit secret in which the share size of
the t-th party is bounded by O(t4 · log t) bits.

High level idea. The main idea is to represent the access structure as an infinite decision tree
where the nodes in layer i are labeled by xi. Turning such an infinite decision tree into an evolving

5

secret sharing scheme can be done essentially generically via an evolving secret sharing scheme for
undirected st-connectivity. This was done somewhat implicitly in [KNY16] so we omit details here,
but we just mention that the eventual share size is proportional to the tree size. Thus, using this
naively gives us not very efficient schemes. In particular, for the dynamic threshold scheme it gives
a scheme with exponential share size.

To improve this we observe that this decision tree can be “squashed” such that now each
layer is labeled by a sequence of variables xi, . . . , xj and not just xi. We call such a sequence a
generation. Now, since every layer is labeled by a sequence of variables, we define each edge to
be some monotone Boolean function of the variables in the generation. This operation potentially
reduces the number of edges in the tree. If, in addition, this monotone function is simple enough
(i.e. there is an efficient secret sharing scheme for it), this will eventually reduce the share size of
our construction. Indeed, we can share the secret according to the new decision tree (with the
squashed layers) to a virtual set of (much fewer) parties that correspond to the squashed sets and
then re-sharing those shares via a secret sharing scheme among the parties inside a generation.

In the case of dynamic majority, each edge between two generation is labeled by the number of
parties in the generation that arrived. This is the only information we need to remember for each
generation in our structure. Now, if enough parties come so that we can reconstruct the secret,
the decision tree must contain a path that leads to an accepting node (and vice versa). Luckily,
this access structure (that counts how many parties arrived from a specific generation) can be
implemented very efficiently using Shamir’s scheme.

It remains to explain how we set the size of a generation. If we set it too low, then we do not
save much in the decision tree size. If we set it too high, then we have a lot of parties in each
generation and the first party in that generation will have to pay too much. The exact choice really
depends on the access structure in hand, but it turns out that for the dynamic threshold case, the
optimal setting of generation size is so that it increases in a specific polynomial rate, namely, the
i-th generation size is square of the (i− 1)-th generation size.

The above overview was slightly over-simplified and the actual construction requires some more
care. In particular, we present the scheme directly and not as a composition of many schemes as it
does not require familiarity with the st-connectivity scheme, and it allows us to prove its security
directly via induction.

Proof. We begin by recalling Shamir’s scheme [Sha79] which will be heavily used in our scheme.
Shamir’s scheme is a scheme for sharing a 1-bit secret s among n parties for the k-out-of-n access
structure (which contains all subsets of cardinality at least k). The share size in his scheme is
log q bits, where q > n is a prime number (or a power of a prime). We denote this scheme by
Shamir(n, k, s). Note that in the cases where k = 1 or k = n, there are more efficient schemes: for
k = 1, each party gets the secret and for k = n, each party gets a random value conditioned on
their XOR being the secret. In these cases, the share size is a single bit (and it is, in particular,
independent of n).

We assign to each arriving party t ∈ N a generation GenOf(t). The size of generation i is doubly
exponential, namely, GenSz(i) = 22i . Thus, the t-th party is part of the dlog log te-th generation (at
most) which includes at most t2 parties. The first party in generation g is

∑g
i=1 GenSz(i) =

∑g
i=1 22i .

The state of the dealer after generation g ends consists of strings sA, where A ranges over all
tuples (c0, . . . , cg) such that ci ∈ [22i]. In other words, the dealer maintains a string sA for each

A = (c0, . . . , cg) ∈ [GenSz(0)] × . . . × [GenSz(g)], where GenSz(i) = 22i . The number ci, in some
sense, represents the number of parties present from generation i.

6

For the ith party in the gth generation, denote by IdxOf(g, i) the overall index of this party since
the beginning of time. Denote by s the secret to be shared and set s(0) = s. When the (g + 1)-th
generation begins, the dealer does the following for every (c0, . . . , cg) ∈ [GenSz(0)]×. . .×[GenSz(g)]:

1. For each party i ∈ [GenSz(g + 1)] do:

(a) Share the secret s(c0,...,cg) via a (kIdxOf(g+1,i) −
∑g

i=1 ci)-ouf-of-i to get shares Π1, . . . ,Πi.

(b) For each j ∈ [i], give share Πj to the jth party in the generation.

2. For each cg+1 ∈ [GenSz(g + 1)]

(a) Sample r(c0,...,cg+1) ← {0, 1} uniformly at random.

(b) Share r(c0,...,cg+1) via a cg-ouf-of-GenSz(g + 1) scheme among the parties of the (g + 1)th

generation.

(c) Set s(c0,...,cg+1) = s(c0,...,cg) ⊕ r(c0,...,cg+1).

For correctness we observe that if ci parties arrive from generation i for every i ∈ [g + 1],
then by the correctness of Shamir’s scheme they can recover r(c0), r(c0,c1) and all the way through
r(c0,...,cg). Assume that the present set is qualified while the most recent party is the i-th party in

generation g + 1. Moreover, assume that from the (g + 1)th generation there are ` parties present
from the first i parties. Since the set is qualified,

∑g
i=0 ci + ` ≥ kIdxOf(g+1,i). Thus, the set of

parties can further recover s(c0,...,cg) (again, by the correctness of Shamir’s scheme). The latter is
s(c0,...,cg) = s(c0,...,cg−1) ⊕ r(c0,...,cg), from which we can recover s(c0,...,cg−1) (since we know r(c0,...,cg)).
Continuing in this manner, we can compute s(c0,...,cg−2) and then s(c0,...,cg−3) until we recover s(0)

which is equal to the secret we shared.
For security we need to show that an unqualified set has no information regarding s, the secret

that was shared. The proof is by induction on the number of generations. Assume that the scheme
is secure for parties coming from g generations and we will show that it is secure for parties coming
from the first g + 1 generations. The base case follows immediately from the security of Shamir’s
scheme. Let the dealer share the secret among the parties in the first generation. Now, we observe
that what the dealer does in the remaining sharing procedure is to share GenSz(0) secrets among
the remaining g generations with slightly modified access structures. That is, it shares the secret
s(i) for i ∈ [GenSz(0)] according to the sequence of dynamic thresholds k1− i, k2− i, . . . ,. We claim
that the remaining satisfies one of two cases: (1) it is unqualified in the new access structure and
therefore its shares are independent of s(i), or (2) it is qualified so can learn s(i) but in this case
it won’t be able to recover the masking of s (by the security Shamir’s scheme). The third option
where it is both qualified and can learn the masking of s cannot occur since the set is unqualified
to begin with.

Now, we apply the induction hypothesis and get that the shares held by the adversary according
to each of these schemes are independent of the secret. Moreover, the sharing is done independently
among these access structures and therefore the combination of all of these shares is independent
of the secret.

The share size. The share size of a party in generation g consists of two parts corresponding to
the above two Shamir sharing procedures. The first part, stemming from Item 1 above, is of size

7

at most

g∏
j=1

GenSz(j) · log(GenSz(g)) =

g∏
j=1

22j · 2g = 2
∑g

j=1 2j · 2g ≤ 22g+1 · 2g.

The second part, stemming from Item 2 above, is (again) of size at most

g∏
j=1

GenSz(j) · log(GenSz(g)) ≤ 22g+1 · 2g.

In total, the share size is bounded by 22g+1 · 2g · 2. The t-th party is in generation g = dlog log te
which means that its share size is bounded by 4t4 · log t.

On our generation size. The choice of parameters where generation sizes grows as GenSz(g +
1) = (GenSz(g))2 were carefully chosen to obtain optimal share complexity. The “generation-like”
schemes of [KNY16] were always growing by a linear factor and such choice in our case results
with an inefficient scheme in which shares are of super-polynomial size. Specifically, our goal is to
minimize the value of the product:

g∏
j=1

GenSz(j) · log(GenSz(g)).

Choosing generations of linearly growing size gives that GenSz(j) is roughly 2j (which is indeed
small for the t-th party which is in generation roughly log t) but there are now logarithmically
many terms in the product which results with super-polynomial share size. A further inspection
gives that our choice of the constant 2 in the exponent gives the best share size.

On sharing longer secrets. The above scheme can be generalized to support sharing of longer
secrets more efficiently than sharing it bit by bit. Roughly speaking, this follows since Shamir’s
threshold scheme can be used to share a secret longer than 1 bit without increasing the share size.
More precisely, Shamir’s scheme allows to share a secret of length ` with shares of size max{`, log q}
(where q > n is a prime number as above and n is the number of parties among which we share
the secret). So, even for long secrets, for large enough party index t ∈ N, we will apply Shamir’s
scheme on a very large set such that max{`, log q} = log q and therefore the analysis from above
will hold. For parties with low index (where max{`, log q} = `) we do pay a price proportional to
` in the share size.

3.1 A general framework

Our scheme is a special case of the following approach that can be used for more general evolving
access structures. These access structures have the property that (1) parties can be split into
generations of growing size, where the size of generation g is denoted by GenSz(g), (2) within each
generation “not too much” information has to be remembered for the future, and (3) it is possible
to efficiently “combine” all this information from different generations and decide whether a set is
qualified or not.

The access structure at time t ∈ N, denoted by At, is a function of indicator bits representing
the presence of each party in the reconstruction process. Namely, we can think of the function

8

At(x1, . . . , xt) as the indicator function of the access structure (where each xi indicates whether the
ith party is present). Denote by Xg the set of parties in generation g. Associate with each generation
g, monotone functions Ψg

0
, . . . ,Ψg

`g
: {0, 1}Xg → {0, 1} that gets the indicator of the parties in the

generation and output one bit (where `g is a parameter). Moreover, for each (c0, . . . , cg−1) ∈
{0, 1}`0× . . .×{0, 1}`g−1 , associate a monotone function Φc0,...,cg−1 : {0, 1}Xg → {0, 1} such that the
indicator of a set of parties x1, . . . , xt (where the generation of party t is g∗) is qualified in At iff

At(x1, . . . , xt) = 1 ⇐⇒ (3.1)

∃c0, . . . , cg∗−1 ∈ [`0]× . . .× [`g∗−1] : Φ
Ψ0

c0
(X0),...,Ψg∗−1

cg∗−1
(Xg∗−1)

(Xg∗).

Such an association always exists by setting each Ψ′i to be the identity function that outputs
the ith bit (i.e., `g = GenSz(g)) and letting Φc0,...,cg correspond to At (for the appropriate value
of t) where the output of Ψi for each i ∈ [g − 1] is fixed and only the last generation is not. In
some cases, however, there is a more efficient mapping. For example, in the dynamic threshold
considered above, we set each Ψi to count how many parties come from that generation, namely,
`i = GenSz(i), and the monotone function Φ`0,...,`g , on input x1, . . . , xGenSz(g) is naturally defined

to be the one that checks for each j ∈ [GenSz(g)] whether
∑g

i=0 `i +
∑j

i=1 xi is at least as large as
the required threshold.

The point in making the above mapping is that now the original access structure A can be
viewed as a composition of many access structures of the form Ψg

ci and Φco,...,cg . If we choose
the generations to be large enough but keep the `i’s not too large, and moreover have efficient
schemes for the above structures, we can overall have an efficient scheme. We describe this general
scheme next. The state of the dealer after generation g ends consists of strings sA, where A ranges
over all tuples (c0, . . . , cg) such that ci ∈ {0, 1}`i . Denote by s ∈ {0, 1} the secret to be shared
and set s(0) = s. When the (g + 1)-th generation begins, the dealer does the following for every
(c0, . . . , cg) ∈ [`0]× . . .× [`g]:

1. Share the secret s(c0,...,cg) via a Φc0,...,cg among the parties in generation g + 1.

2. For each cg+1 ∈ [`g+1]

(a) Sample r(c0,...,cg+1) ← {0, 1} uniformly at random.

(b) Share r(c0,...,cg+1) via a Ψg+1
cg+1 among the parties of generation g + 1.

(c) Set s(c0,...,cg+1) = s(c0,...,cg) ⊕ r(c0,...,cg+1).

The correctness and security of the scheme follows by identity 3.1, similarly to how we proved
correctness and security for the dynamic threshold scheme. We omit further details here.

The share size of a party in generation g + 1 consists of two parts corresponding to the above
two Φ and Ψ sharing procedures. We assume that the share size of each Φc0,...,cg upper bounded
by φc0,...,cg and that the share size of each Ψg

cg is upper bounded by ψgcg . The first part, stemming
from Item 1 above, is of size at most ∏

c0∈[`0]

. . .
∏

cg∈[`g]

φc0,...,cg .

9

The second part, stemming from Item 2 above, is of size at most∏
c0[`0]

. . .
∏

cg∈[`g]

∏
cg+1∈[`g+1]

ψgcg .

In total, the share size of party t that resides in generation g is bounded by the sum of the two
terms above.

Instantiations. The above general blueprint captures not only the dynamic threshold scheme we
presented above, but also can be used to capture the scheme for general access structures and the
scheme for k-threshold for constant values of k of [KNY16]. However, the choice of the generation
size is different in each case. In the general case, the generations are of size 1 (as we cannot gain
anything from squashing since the structure is completely arbitrary), and in the k-threshold case,
the generations are growing in linear rate (linear in k) rather than polynomial in t as we have in
the dynamic threshold case.

4 Robust Evolving Secret Sharing

In this section we show how to generically make any k-threshold scheme robust in the sense that
even if some parties hand-in incorrect shares, the correct secret can be recovered. The formalization
of this notion is done by augmenting a standard secret sharing for evolving access structures with
an additional procedure called R-RECON which gets as input the shares of a set of parties A from
which it can recover the secret. The adversary is allowed to corrupt any set B ⊆ A such that
A \ B is still qualified. The aforementioned reconstruction procedure succeeds with all but 2−λ

probability, where λ is a parameter that is fixed during the sharing procedure.

Definition 4.1 (Robust evolving secret sharing). A robust secret sharing scheme R is described by
three procedures (SHARE,RECON,R-RECON). The procedures (SHARE,RECON) form an evolving
secret sharing scheme (as in Definition 2.4) in which the procedure SHARE is augmented with an
additional input 1λ for a security parameter λ. The additional procedure R-RECON satisfies the
following requirement:

3 Robust reconstruction: The secret s is shared using SHARE(1λ, s). An adversaryA chooses
a time t and two subsets of parties A,B ⊆ [t] such that (1) B ⊆ A, (2) B is unqualified, and
(3) A\B is qualified. The adversary A is then given the shares of the parties in B, denoted by
Πs
B, and it changes it arbitrarily to get Πs

B
′. Finally, the value of s′ = R-RECON(1λ,Πs

A∪Πs
B
′)

is output.

We say that the scheme is λ-robust if for any such adversary A if it holds that

Pr[s′ 6= s] ≤ 2−λ.

The next theorem shows how to obtain a robust secret sharing scheme for the evolving k-
threshold access structure in which qualified sets are those of size at least k.

Theorem 4.2. Let k ∈ N+ and λ > 0. Assume there exists a linear evolving (family of) schemes
for k-threshold such that for the domain of secrets S, it is linear over the field F = Ft2 (t ≥ log |S|).

Then, there exists an evolving λ-robust secret sharing scheme for the evolving k-threshold access
structure. The overhead in the share for party t is an additive factor of O(λ+k · log k) bits relatively
to the share size of the original scheme (for a sufficiently large domain S, otherwise the overhead
is multiplicative).

10

We prove the theorem, by adapting the robust (standard) secret sharing scheme of [CDF+08]
to the evolving setting. Then, we use the linear scheme of [KNY16] for the evolving k-threshold
access structure and transform it into a robust one.3 The high-level idea of the construction is,
instead of sharing the secret itself, to share an AMD encoding of the secret (see Definition 2.6).
Roughly speaking, the resulting scheme is robust since AMD codes protect information against
additive attacks and our secret sharing scheme is linear.

Proof of Theorem 4.2. Our construction assumes a linear evolving scheme E = (SHARE,RECON)
for a k-threshold access structure and turns it into a robust evolving scheme for the same structure.
We share secrets from domain S. As an instantiation of the base scheme, we use the construction
from [KNY16] for the evolving k-threshold access structure over a sufficiently large secret space.
The share size for the t-th party in their scheme is roughly σ(t) = k log t bits for large enough t.
Fix a γ′ = (λ+ k log k)-AMD code (E,D) for secret domain |S|. Concretely, we use AMDσ,γ′ .

Our new robust secret sharing scheme is described next:

1. The new sharing procedure SHARE′(1λ,Πs
1, . . . ,Π

s
t−1, s) gets as input a robustness parameter

1λ, the shares of parties 1, . . . , t− 1 and the original secret s and generates the share for the
t-th party as follows. At the beginning of time (before the first party arrives), it computes
an AMD encoding of s, denoted ŝ = E(s), and shares this value using the underlying scheme
by running (in the t-th time step) the procedure SHARE(Πs

1, . . . ,Π
s
t−1, ŝ) and giving the t-th

party this value.

2. The reconstruction procedure RECON′(Πs
B, B) on input the shares of a subset of parties B

applies the original reconstruction procedure of the underlying scheme RECON(Πs
B, B) to

obtain an AMD encoding ŝ. Then, it outputs the AMD decoding of this value s = D(ŝ).

3. The robust reconstruction procedure R-RECON(1λ,Πs
B, B) on input the robustness parameter

1λ and the shares of a set of parties B works as follows. Let B′ denote the set of the first
min{2k − 1, |B|} parties in B. Go over all minterms T ⊆ B′ (sets of size exactly k), and
apply the reconstruction procedure on each of them: ŝT = RECON′(1λ,Πs

T , T). If all ŝT are
⊥, output ⊥. Otherwise, output the first value which is not ⊥.

Notice that since k is constant, the running time of this procedure is polynomial in its input
size.

We proceed with the correctness, security and robustness of the above construction. As the
original scheme is an evolving k-threshold scheme, and as the AMD scheme is perfectly correct
the resulting scheme satisfies perfect correctness and privacy. As to robustness, first observe that
|B′| ≤ 2k − 1, and it must contain a qualified subset T ′ in which no party is malicious. Indeed,
if B′ = B, this follows by our guarantee on the choice of the malicious parties the adversary is
allowed to make (otherwise, the adversary chose a qualified set which is illegal). If |B′| = 2k − 1,
then the set of honest parties in this subset is of size k, and is therefore qualified.

Next, we prove that with probability at least 1 − 2−λ, the robust reconstruction procedure
R-RECON outputs the shared secret s. By perfect correctness of the AMD scheme, ŝ′T ′ = s. It

3 Observe that the construction from [KNY16] for the evolving k-threshold access structure are “almost” of the
right form. One minor issue is that the field over which the various instances of Shamir operate grow as more parties
arrive. Using extension fields, the shares can be viewed as a vector of linear combinations over a single field Ft

2 of a
suitable size, and the proof applies in a similar way. Our scheme from Theorem 3.3 has the same property.

11

remains to show that for all other minterms T , it holds that ŝT ∈ {s,⊥} with probability 1− 2−λ

(the proof is similar to the one in [CDF+08], and is included here for completeness). For each
T , consider any possible shift ∆T in the shares chosen by the adversary. This shift naturally
corresponds to an additive shift on the total set of shares used for reconstruction, as thus on the
shared value (since the scheme basic evolving k-threshold scheme is linear).

By the security of the secret sharing scheme, the adversary’s view (i.e. the shares of the parties
he controls) does not depend on ŝ. Thus the distribution of shifted shares is also independent
of the secret ŝ. Now, by the security of the AMD code, ŝT /∈ {s,⊥} with probability at most

2−λ+k·(log k+1). As there are at most
(|B′|
k

)
≤
(

2k−1
k

)
possible different sets T (minterms), we can

apply a union bound and get that the probability that this happens for some ŝT is at most

(2k)k · 2−λ+k·(log k+1) = 2k·(log k+1) · 2−λ+k·(log k+1) ≤ 2−λ,

as required.

Acknowledgments

We thank Amos Beimel and the anonymous reviewers for their comments and suggestions.

References

[Bei96] Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis,
Technion - Israel Institute of Technology, 1996. http://www.cs.bgu.ac.il/~beimel/
Papers/thesis.ps.

[Bei11] Amos Beimel. Secret-sharing schemes: A survey. In Coding and Cryptology - 3rd
International Workshop, IWCC, volume 6639, pages 11–46, 2011.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, STOC, pages
1–10, 1988.

[Bla79] George R. Blakley. Safeguarding cryptographic keys. Proceedings of the AFIPS National
Computer Conference, 22:313–317, 1979.

[BPRW16] Allison Bishop, Valerio Pastro, Rajmohan Rajaraman, and Daniel Wichs. Essentially
optimal robust secret sharing with maximal corruptions. In Advances in Cryptology -
EUROCRYPT, pages 58–86, 2016.

[CDF01] Ronald Cramer, Ivan Damg̊ard, and Serge Fehr. On the cost of reconstructing a secret,
or VSS with optimal reconstruction phase. In Advances in Cryptology - CRYPTO,
pages 503–523, 2001.

[CDF+08] Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs. De-
tection of algebraic manipulation with applications to robust secret sharing and fuzzy
extractors. In Advances in Cryptology - EUROCRYPT, pages 471–488, 2008.

12

http://www.cs.bgu.ac.il/~beimel/Papers/thesis.ps
http://www.cs.bgu.ac.il/~beimel/Papers/thesis.ps

[CDM00] Ronald Cramer, Ivan Damg̊ard, and Ueli M. Maurer. General secure multi-party com-
putation from any linear secret-sharing scheme. In Advances in Cryptology - EURO-
CRYPT, pages 316–334, 2000.

[CDN15] Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Secure Multiparty Computa-
tion and Secret Sharing. Cambridge University Press, 2015.

[CFOR12] Alfonso Cevallos, Serge Fehr, Rafail Ostrovsky, and Yuval Rabani. Unconditionally-
secure robust secret sharing with compact shares. In Advances in Cryptology - EURO-
CRYPT, pages 195–208, 2012.

[Csi97] László Csirmaz. The size of a share must be large. Journal of Cryptology, 10(4):223–231,
1997.

[ISN93] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Multiple assignment scheme for sharing
secret. Journal of Cryptology, 6(1):15–20, 1993.

[KN08] Gillat Kol and Moni Naor. Games for exchanging information. In Proceedings of the
40th Annual ACM Symposium on Theory of Computing, STOC, pages 423–432, 2008.

[KNY16] Ilan Komargodski, Moni Naor, and Eylon Yogev. How to share a secret, infinitely. In
14th International Conference, TCC 2016-B, volume 9986 of Lecture Notes in Computer
Science, pages 485–514, 2016.

[Pas16] Anat Paskin-Cherniavsky. How to infinitely share a secret more efficiently. IACR
Cryptology ePrint Archive, 2016:1088, 2016.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, pages 73–85, 1989.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

13

	Introduction
	Preliminaries
	Evolving secret sharing
	Algebraic Manipulation Detection Codes

	A Scheme for Dynamic Threshold
	A general framework

	Robust Evolving Secret Sharing
	References

