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Abstract. Keeping correct and informative log files is crucial for system
maintenance, security and forensics. Cryptographic logging schemes offer
integrity checks that protect a log file even in the case where an attacker
has broken into the system.
A relatively recent feature of these schemes is resistance against trunca-
tions, i.e. the deletion and/or replacement of the end of the log file. This
is especially relevant as system intruders are typically interested in ma-
nipulating the later log entries that point towards their attack. However,
there are not many schemes that are resistant against truncating the log
file. Those that are have at least one of the following disadvantages: They
are memory intensive (they store at least one signature per log entry),
or fragile (i.e. a single error in the log renders the signature invalid and
useless in determining where the error occurred).
We obtain a publicly-verifiable secure logging scheme that is simultane-
ously robust, space-efficient and truncation secure with provable security
under simple assumptions. Our generic construction uses forward-secure
signatures, in a plain and a sequential aggregate variant, where the
latter is additionally fault-tolerant, as recently formalized by Hartung
et al. (PKC 2016). Fault-tolerant schemes can cope with a number of
manipulated log entries (bounded a priori) and offer strong robustness
guarantees while still retaining space efficiency. Our implementation and
the accompanying performance measurements confirm the practicality of
our scheme.
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1 Introduction

Log files are an indispensable source of information for administrators investigat-
ing incidents in a computer system. They provide fine-grained information on
actions and events that happened within the system, such as business transac-
tions, errors, or security violations. Attackers frequently modify log files to cover
their traces, so being able to distinguish real and faked information is crucial.

Therefore, the need to detect modifications to log files is widely recognized
among computer security professionals, and much effort has been devoted to
finding solutions that unveil such modifications (see below). Cryptographic
solutions must be resilient to attackers that gain full control of the log server
which holds the secret key. Thus, a secure logging scheme must stay secure even
if the attacker obtains the secret key at some point in time, and must continue to
enable the discovery of illicit log changes which occurred before the secret key was
stolen by the attacker. This protects old log entries from unnoticed modification.

As this is impossible with standard authentication schemes, Anderson [1]
(later formalized in [2], as remarked in [6]) proposed forward-secure schemes.
These schemes assume that time is divided into intervals, called epochs, and use
distinct secret keys for all epochs. For efficiency, we require that the secret key
for an epoch t is computed from the secret key of the previous epoch t− 1, and
that there is a single verification key. By securely erasing secret keys when they
expire, one ensures that an attacker cannot forge signatures for previous epochs.

Detecting log truncations is a surprisingly hard problem, because any au-
thentication information computed by the log server can only authenticate past
entries, and so there is nothing that authenticates the end of such a chain. Ma
and Tsudik [22] were the first to present a mechanism to detect truncations of
log files. Their solution is based on forward-secure sequential aggregate signatures.
These signature schemes allow to “integrate” a signature for a new message into
an already existing signature, which still has the size of a single signature, but
authenticates all aggregated messages simultaneously.

The core property of their solution lies in the fact that for specific (sequential)
aggregate signature schemes (such as [4]), removing a message from a given
aggregate signature is intractable under standard assumptions. Ma and Tsudik
[22] use this property by keeping only a single signature for the entire log file,
which is an aggregate of the signatures for each individual message. The hardness
of removing an individual signature then guarantees that no attacker can remove
any message from the log file without notice, as in truncation attacks.

Problems with Existing Solutions. The approach by [22] is fragile, i.e. a
single erroneous log entry renders the signature invalid, without any information
on where the error is located. In a following investigation, distinguishing between
real and faked information is no longer possible.

Only two solutions proposed so far are robust and truncation-secure at the
same time, namely the second immutable scheme in [22], and the scheme of
Hartung [8]. However, this robustness property is “bought” by falling back to
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single signatures for each log entry, resulting in a very large log signature that is
linear in the log size. Moreover, the truncation security of the former scheme is
only argued informally, lacking a rigorous proof.

Our Solution. We propose a solution that overcomes these problems. The
theoretical part of this paper formalizes a well-motivated security notion for
secure logging and provides a provably-secure generic construction combining
the fault-tolerance approach of [9] with the non-robust construction of [22], and
add a single forward-secure signature on the log length for truncation security.
This results in a scheme that is publicly-verifiable (as defined in [10]), and
simultaneously features short signatures, robustness and truncation resistance.

We employ a recent technique from [9] to construct so-called fault-tolerant
aggregate signatures, port this technique to the world of sequential aggregate
signatures, and wed it with forward-security required for securing log files, which
might be of independent interest. This is because sequential aggregate signatures
are easier to obtain, often more efficient than ordinary aggregate signatures, and
fully sufficient to realize secure log files with short signatures.

The technique from [9] also features so-called selective verification: To verify
a single log entry, one can use the signature’s redundancy to call the verification
routine on a smaller set, instead of the whole log file, see [9, Sect. 4.2]. (Space-
inefficient logs using single signatures have this feature trivially.)

Our approach is provably secure and uses a tight security reduction. For
this, we define a security model for the logging scenario that captures truncation
attacks as well as a wide range of other manipulations. This distinguishes our
work from previous publications [23, 20] where truncation security is only argued
for informally and it is not part of the security model.

We provide a secure logging scheme that can run on a stand-alone server
without any interaction with another party. Our system does not require public
ledgers (e.g. blockchains) or any other third party that needs to vouch for the
integrity of the log file. However, our scheme can easily be combined with such
techniques, and thus can be re-used as a building block for future schemes.

Contribution. In our work, we

– discuss why the notion of fault-tolerance from [9] is not applicable to the case
of sequential aggregate signatures, give an alternative definition that also
captures addition or removal of messages, adapt the generic construction of
fault-tolerant aggregate signatures from [9] to the sequential aggregate case,
prove its security, and prove its fault-tolerance w.r.t. our new definition,

– give a realistic and strong security notion for secure logging (similar to [8])
that also captures truncation attacks,

– give a generic construction of a publicly-verifiable robust secure logging
scheme, which is space efficient and has a tight security reduction,

– present benchmark results based on a prototypical implementation of our
scheme for multiple sets of parameters.

3



Related Work. Forward-secure signatures were first introduced by Bellare
and Miner [2]. Many subsequent works followed, for example by Krawczyk [15]
and Itkis and Reyzin [13]. Based on these works, Ma and Tsudik [20, 21] first
considered forward security for sequential aggregate signatures.

Schneier and Kelsey [24] presented a logging scheme based on forward-secure
MACs. Their scheme includes encryption of log entries to preserve confidentiality.
Crosby and Wallach [7] presented a log scheme which allows for secure deletion of
log entries without sacrificing the verifiability of the whole log. Their scheme relies
on frequent interactions between a log server and several auditors. PillarBox [5]
is a logging system focusing on additional properties such as confidentiality of log
entries and logging rules. They assume forward-secure MACs as a tool, and use
interaction to obtain truncation security. The only works that consider truncation
security in a non-interactive setting are [10], [22] and [8], where only the latter
takes a formal approach. The SALVE scheme in [8] additionally supports the
secure generation of log excerpts which can be verified w.r.t. correctness and
completeness for the excerpt criterion, without revealing log entries not in the
excerpt. This scheme, [10] and the robust variants in [22] achieve robustness by
recording one signature per message. In this paper, we obtain robustness without
storing a signature for each log entry (saving storage space and potentially
transmission bandwidth), while treating truncation security in a rigorous and
formal manner.

2 Preliminaries

We define [n] := {1, . . . , n}. For vectors/tuples v, v[i] denotes its i-th entry. If
M is a matrix, rows(M) and cols(M) denote its number of rows and columns.
M [i, j] is the entry in the i-th row and j-th column of M .

The security parameter is denoted by κ ∈ N. A probabilistic algorithm A is
probabilistic polynomial time (PPT) if its running time is polynomial in κ. All
algorithms are implicitly given 1κ as input, even when not stated explicitly.

For m1,m2 ∈ {0, 1}∗, m1 ‖m2 denotes the concatenation of m1 and m2. For
technical reasons, we assume that m1 and m2 can be uniquely derived from
m1 ‖m2. We use the same symbol for the concatenation of sequences, i.e. let
n, n′ ∈ N and C = (c1, . . . , cn) and C ′ = (c′1, . . . , c′n′) be two sequences, then
C ‖C ′ := (c1, . . . , cn, c

′
1, . . . , c

′
n′). If C ′ is a sequence with only one element c′, we

abbreviate this as C ‖ c′. If C = (c1, . . . , cn), then |C| = n.

2.1 Aggregate Signatures

Aggregate signature schemes were introduced by Boneh et al. [4]. Aggregate
signatures can “combine” signatures from different signers on different messages
into one single signature of equal size, authenticating all messages at once.

In their scheme, a signature is a single element of a group with a bilinear
map. The aggregate of several signatures is their product in the group. Therefore,
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aggregation is very flexible: signatures can be aggregated in any order, and
aggregated signatures can be aggregated further.

Sequential aggregate signatures [19] do not support this fully flexible aggre-
gation: Messages are added to an aggregate one-by-one, each message by its
signer. Signing and aggregation may be a single, inseparable process (i.e., once
created, signatures cannot in general be combined further). Sequential aggregate
signatures are not as flexible, but are still useful in a wide range of applications,
such as certificate chains, version control systems, and securing log files [22].

Claims and Claim Sequences. A claim c = (pk, i,m) is a triple of a public
key pk, an epoch number i ∈ N0, and a message m. It conveys the meaning that
the owner of pk has signed the message m during epoch i.1

A claim sequence is a finite sequence of claims. The empty signature λ is
a signature valid for only the empty claim sequence (). Let C = (c1, . . . , cn)
be a claim sequence and b ∈ {0, 1}∗ with |b| ≥ n a bit sequence specifying a
selection of indices. Then C[b] is the subsequence of C containing the elements cj
(1 ≤ j ≤ n) where b[j] = 1. If M is a matrix with only 1 and 0 entries, then
C[Mi] is the subsequence containing all cj , whereM[i, j] = 1, for i ∈ [rows(M)].

2.2 Forward-Secure Signatures

A forward-secure signature scheme [2] uses distinct secret keys for signing in each
time interval (epoch). Throughout this paper we assume w.l.o.g. that the current
epoch number can be efficiently derived from the current secret key.

Definition 1. A forward-secure signature (FSS) scheme is a tuple of PPT
algorithms FS = (KeyGen,Update,Sign,Verify), where

– KeyGen(1κ, 1T ) takes as input the security parameter κ and an a priori upper
bound T on the number of epochs. It outputs a key pair (pk, sk0), where sk0
is the secret key for the first epoch.

– Update(skt) takes as input the secret key skt of period t. If t ≥ T − 1 its
output is not defined. If t < T − 1 it computes the secret key skt+1 for the
following period t+ 1. It then securely erases the old secret key skt.

– Sign(skt,m) takes as input a secret key skt and a message m ∈ {0, 1}∗ and
outputs a signature σ for claim (pk, t,m), where t is the epoch of skt.

– Verify((pk, t,m), σ) outputs 1 if σ is a valid signature for the message m in
epoch t under public key pk, and 0 otherwise.

A FSS scheme is correct if any regularly signed message is valid, i.e. if for
all epoch bounds T = poly(κ), all indices t ∈ {0, . . . , T − 1} and all messages
m ∈ {0, 1}∗, it holds that Verify((pk, t,m),Sign(skt,m)) = 1, where (pk, sk0)←
KeyGen(1κ, 1T ) and skt+1 = Update(skt) for t = {0, . . . , T − 2}.
1 The terms “claim” and “claim sequence” are borrowed from [9]. However, we have
added an epoch index i to each claim, because we are considering forward security in
this work.
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Security Notion for Forward-Secure Signatures. The security experiment
for forward-secure signatures consists of four phases and is based on [2]. The
general idea is that an adversary should not be able to forge a signature for any
earlier epoch, even if he knows the secret key of the current epoch.

– Setup Phase. The challenger C generates a key pair (pk∗, sk∗0)← KeyGen(1κ, 1T )
(where T is the maximal number of epochs) and gives the public key pk∗ and
T to the adversary. It sets t := 0.

– Query Phase. The adversary A has access to an Update and a Sign oracle.
When A calls the Update oracle, C computes sk∗t+1 := Update(sk∗t ), sets
t := t+ 1, and returns “ok”. A may only make T − 1 Update queries. A may
(adaptively) issue signature queries to the Sign oracle for messagesm ∈ {0, 1}∗.
For these queries, the challenger responds with a signature σ ← Sign(sk∗t ,m).

– Break In Phase. A may send a break in request to obtain the current secret
key. C sets tBreakIn := t and sends skt to A. Afterwards, A is denied any
further access to his oracles. We set tBreakIn :=∞ if A does not break in.

– Forgery Phase. Finally, A outputs a claim (pk∗, t∗,m∗) and a corresponding
signature σ∗.

The adversary wins the experiment iff σ∗ is a valid signature for claim (pk∗, t∗,m∗),
and it is non-trivial, which means that m∗ was not queried to the Sign oracle
during period t∗, and t∗ < tBreakIn.

A FSS scheme is forward-secure existentially unforgeable under chosen message
attacks (FS-EUF-CMA-secure) if for each T = poly(κ) any PPT adversary A
wins the above experiment with a probability that is at most negligible in κ.

2.3 Forward-Secure Sequential Aggregate Signatures

The following definition is the forward-secure sequential aggregate signature
definition in [20], which is based on [2] and [19].

Definition 2. A forward-secure sequential aggregate signature (FS-SAS) scheme
is a tuple of four PPT algorithms AS = (KeyGen,Update,AggSign,Verify), where

– KeyGen(1κ, 1T ) takes as input the security parameter κ and an a priori upper
bound T on the number of epochs. It generates and outputs a key pair (pk, sk0),
where sk0 is the initial secret key for the first epoch.

– Update(skt) takes as input the secret key skt of period t. If t ≥ T − 1 the
output of Update is not defined. If t < T − 1 it computes the secret key skt+1
for the following period t+ 1. It then securely erases the old secret key skt.

– AggSign(skt, Ci−1, σi−1,mi) takes as input a secret key skt for an epoch t,
a claim sequence Ci−1, a corresponding signature σi−1 and a message mi. It
outputs a signature σi for the new claim sequence Ci := Ci−1 ‖(pk, t,mi).

– Verify(C, σ) takes as input a claim sequence C and a signature σ and outputs
1 if σ is valid for C, and 0 otherwise.
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Informally, a signature is regular if it was generated with the correct use of
the algorithms of a FS-SAS scheme. Formally, let Ci be a claim sequence and
σi a signature. We say that σi is regular for Ci iff either Ci = () and σi = λ,
or Ci = Ci−1 ‖(pk, t,mi) and σi ← AggSign(skt, Ci−1, σi−1,mi) where σi−1 is a
regular signature for Ci−1, mi is an arbitrary message, (pk, sk0) is a key pair
output by KeyGen(1κ, 1T ), and skt+1 = Update(skt), for t ∈ {0, . . . , T − 1}.

A FS-SAS scheme is correct if for all bounds on the number of epochs
T = poly(κ), any signature σ which is regular for C is also valid for C.

Security Notion for FS-SAS Schemes. The security experiment for forward-
secure sequential aggregate signatures in [20] consists of four phases and combines
the experiments of forward-security [2] and sequential aggregate signatures [19].

– Setup Phase. The challenger generates a key pair (pk∗, sk∗0)← KeyGen(1κ, 1T ),
where T is the maximal number of time periods and gives the public key pk∗
and T to the adversary. It sets t := 0.

– Query Phase. Here, the adversary A has access to an Update and an AggSign
oracle. When A calls the Update oracle, the challenger computes sk∗t+1 :=
Update(sk∗t ), sets t := t+ 1, and returns “ok”. A is not allowed to make more
than T − 1 queries to this oracle. The AggSign oracle takes as input a claim
sequence Ci−1, a corresponding signature σi−1 and a message mi. It responds
with σi ← AggSign(sk∗t , Ci−1, σi−1,mi), where sk∗t is the secret key for the
current period t.

– Break In Phase. The adversary may send a break in request to obtain the
current secret key. In this case, the experiment sets tBreakIn := t and sends the
current secret key skt for period t to A. After A has broken in, he is denied
any further access to his oracles. We set tBreakIn :=∞ if A does not break in.

– Forgery Phase. Finally, A outputs a claim sequence C∗ and a corresponding
signature σ∗.

The adversary wins the experiment iff σ∗ is a valid signature for C∗, and C∗

is non-trivial, i.e., C∗ contains a claim (pk∗, t∗,m∗) for which t∗ < tBreakIn and
A did not query m∗ at its AggSign oracle during epoch t∗. A FS-SAS scheme
is forward-secure sequential aggregate signature existentially unforgeable under
chosen message attacks (FS-SAS-EUF-CMA-secure) if for each T = T (κ) ∈
poly(κ) all PPT adversaries A win the above experiment only with a probability
that is negligible in κ.2

2.4 Cover-Free Families

Cover-free families [14] are a combinatorial structure that allows us to achieve
fault-tolerance in our constructions, as in [9]. Let S be a finite set, B be a set of
2 This security notion is slightly weaker with respect to the non-triviality of forgeries
than the one for sequential aggregate signatures by Lysyanskaya et al. [19]. There,
they allow for all messages in C∗ to be already queried before, but in different order.
However, our notion additionally considers forward security.
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subsets (or blocks) of S and d ∈ N. The pair F = (S,B) is a d-cover-free family
if for any d blocks B1, . . . , Bd ∈ B and any distinct B ∈ B \ {B1, . . . , Bd}, we
have that B * B1 ∪ · · · ∪Bd, i.e. no block is covered by the union of any other d
blocks of B. F is a cover-free family (CFF) if it is d-cover-free for a d ≥ 1.

A CFF with a linear order ≤ on B is called ordered. To simplify the presenta-
tion, we also assume an order on S and usually identify S with [r], for r = |S| in
this case. The incidence matrix M of an ordered CFF is defined via

M[i, j] =
{

1, if i ∈ Bj ,
0, otherwise,

for i ∈ [r] = S, B = {B1 ≤ · · · ≤ Bm} and j ∈ [m].
We denote the i-th row ofM byMi ∈ {0, 1}m. In this way, the rows of the

matrix represent the elements of S and the columns represent the elements of B.

3 Fault-Tolerant Forward-Secure Sequential Aggregate
Signatures

In this section we define the syntax of forward-secure (multi-key) sequential
aggregate signatures (SAS) with fault tolerance, discuss why the definition of
fault-tolerance from [9] is not applicable in our case, and give an alternative
definition. We then present a security notion that captures the forward-security
property and is compatible with fault-tolerant sequential aggregate signatures,
give a construction of such a scheme, and prove its fault-tolerance and its security.

Definition 3. A key-evolving SAS scheme with list-verification Σ is a tuple of
four PPT algorithms Σ = (KeyGen, Update, AggSign, Verify), where:

– KeyGen(1κ, 1T ) takes as input the security parameter κ and an upper bound T
on the number of epochs. It outputs a key pair (pk, sk0), where sk0 is the
secret key for the first epoch.

– Update(skt) takes as input the secret key skt of period t. If t ≥ T − 1 the
output of Update is not defined. If t < T − 1 it computes the secret key skt+1
for period t+ 1 and securely erases the old key skt irrecoverably.

– AggSign(skt, Ci−1, σi−1,mi) takes as input a secret key skt for an epoch t,
a claim sequence Ci−1, a corresponding signature σi−1 and a message mi. It
outputs a signature σi for the new claim sequence Ci := Ci−1 ‖(pk, t,mi).

– Verify(C, σ) takes as input a claim sequence C of length n ∈ N0 and a
signature σ for C and outputs a sequence V (also of length n) of claims
and error symbols ⊥. We require that for each i ∈ [n], either V [i] = C[i] or
V [i] = ⊥. (In other words, V can be obtained from C by replacing claims
with ⊥.) Claims output by Verify are taken to be valid.

Let Ci be a claim sequence and τi be a signature. We say that τi is reg-
ular for Ci iff either Ci = () and τi = λ, or Ci = Ci−1 ‖(pk, t,mi) and
τi ← AggSign(skt, Ci−1, τi−1,mi) where τi−1 is a regular signature for Ci−1,
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mi is an arbitrary bit string, t ∈ {0, . . . , T − 1}, T = T (κ) ∈ poly(κ), and skt is
the t-times updated version of some secret key sk0 such that (pk, sk0) is a key-pair
output by KeyGen(1κ, 1T ). We say that a SAS scheme with list verification is
correct, if it is 0-fault-tolerant, as defined in the next section.

3.1 Fault Tolerance of FS-SAS Schemes

Let C = (c1, . . . , cn), C ′ = (c′1, . . . , c′n′) be claim sequences. We say that C and C ′
differ on ` positions (0 ≤ ` ≤ min(n, n′)) iff ci 6= c′i for ` indices 1 ≤ i ≤ min(n, n′)
and ci = c′i for the rest. Moreover, we say that C ′ contains d errors with respect
to C iff they differ on ` positions and d = |n− n′|+ `.

A key-evolving SAS scheme Σ with list verification is tolerant against d errors,
if for all claim sequences C,C ′, such that C ′ contains at most d errors with respect
to C and for all signatures τ that are regular for C, we have

V [i] = ci for all 1 ≤ i ≤ min(n, n′) where ci = c′i,

where V ← Σ.Verify(C ′, τ). In other words, Verify outputs at least all claims ci
from C that C ′ did not modify. (It may also output claims where C[i] 6= C ′[i],
but our security proof will show that such events are extremely rare or trivial.)

A d-fault-tolerant key-evolving SAS scheme is an SAS scheme with list ver-
ification that is tolerant against d errors. A scheme is fault-tolerant, if it is
d-fault-tolerant for some d > 0.

On the Definition of Fault-Tolerance. In [9] a multiset of claim–signature
pairs (ci, τi) is said to contain d errors if d signatures τi are not regular for
their respective claim ci. This definition is not applicable to sequential aggregate
signatures due to the lack of individual signatures τi. A natural approach that
comes to mind is to define the number of errors via “intermediate” claim sequences
Ci = (c1, . . . , ci) and their respective signatures τi. (This might not even be well-
defined, but let us ignore this problem for the moment.) Following this approach,
one might say that a claim sequence C contains d errors iff d of the signatures τi
are not regular outputs of AggSign(skt, Ci−1, τi−1,mi).

This approach fails, however, as it does not distinguish between signatures τi,
which are partially damaged but sufficiently intact to authenticate some of the
claims, and signatures that are completely destroyed. For example, consider the
claim sequence C = (c1, . . . , cn) and the signatures τ1, . . . , τn, where all τi for
1 ≤ i < n are regular for the respective intermediate claim sequence Ci, but τn is
completely random. Then there was only one irregular step, and hence only one
error with regard to this definition, but Verify(C, τn) will output (⊥, . . . ,⊥).

An alternative way to look at this is to observe that [9] implicitly assumes
that the aggregation is correct, while errors only occur during signing. In the
sequential aggregate case these two operations are inseparable in general, and we
cannot assume that the aggregation did not introduce additional errors.

We therefore restrict our attention to specific changes to the claim sequence C:
replacements of individual claims as well as addition or removal of claims at the
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end of the sequence. These changes closely model our secure-logging scenario,
as they capture events where an attacker edits log entries after breaking in, or
removes tail-end log messages. (Note that addition or removal of claims is not
considered in [9].)

3.2 Security Notion

Let AS = (KeyGen,Update,AggSign,Verify) be a key-evolving SAS scheme with
list verification, A be a PPT algorithm, κ ∈ N a security parameter, and T be
the number of epochs. The security experiment for a forward-secure SAS scheme
with list verification is identical to that of forward-secure SAS schemes described
in Sect. 2.3. The adversary A wins the experiment iff Verify(C∗, τ∗) contains a
claim c∗ such that c∗ = (pk∗, t∗,m∗) for some m∗ ∈ {0, 1}∗ and t∗ < tBreakIn, and
c∗ is non-trivial in the sense that m∗ was not given as an input to the AggSign
oracle during epoch t∗.

A key-evolving SAS scheme with list verification is called forward-secure
sequential aggregate signature existentially unforgeable under chosen message
attacks (FS-SAS-EUF-CMA-secure) if for all T = T (κ) ∈ poly(κ), the probability
of each PPT adversary A to win the above experiment is negligible in κ.

We say that a key-evolving SAS scheme with list verification is single-key
FS-SAS-EUF-CMA-secure, if the above holds for all PPT adversariesA that never
output claim sequences (to the signature oracle or as the forgery C∗) that contain
a claim c = (pk, t,m) for a public key pk 6= pk∗. Clearly, a FS-SAS-EUF-CMA-
secure scheme is also single-key FS-SAS-EUF-CMA-secure.

3.3 Generic Construction

We claim that the generic construction of [9] preserves the forward-security
property of the underlying signature scheme. We use it to convert a forward-
secure SAS scheme FSSAS to a fault-tolerant forward-secure SAS scheme.

Let FSSAS be a forward-secure SAS scheme, F a d-cover-free family (d ∈ N0),
and M its incidence matrix. A signature in the new scheme is a vector of
signatures of FSSAS. The algorithms of our scheme are as follows:

– KeyGen and Update are identical to the respective algorithms of FSSAS.
– AggSign(skt, Cj−1, τj−1,mj) takes as input a secret key skt, a claim sequence
Cj−1 = (c1, . . . , cj−1), its corresponding signature τj−1 and a message mj

to sign. The sequential aggregate signature is updated component-wise,
according to the entries ofM. More precisely, we set

τj [i]← FSSAS.AggSign(skt, Cj−1[Mi], τj−1[i],mj),

whereM[i, j] = 1, and let τj [i] := τj−1[i] otherwise (i ∈ [rows(M)]). Here,
C0 := () and τ0[i] := λ for each i. The output is τj .

– Verify(C, τ) takes as input a claim sequence C of length n ∈ N0 and an
aggregate signature τ for C. We compute a bit vector b ∈ {0, 1}n that specifies
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for each claim if it can safely be considered valid. For this, let v|` denote the
vector v, truncated to the first ` elements. We initialize b to 0n, and iterate
over all entries τ [i] of τ , letting b← b∨Mi|n if FSSAS.Verify(C[Mi], τ [i]) = 1
in each iteration. (Here, ∨ denotes the bitwise logical OR of two bitstrings.)
Finally, we build the output sequence V component-wise, by letting

V [j] =
{
C[j], if b[j] = 1,
⊥, otherwise,

for all j ∈ [n].

Theorem 1. Let Σ be the key-evolving SAS scheme with list verification defined
above. If Σ is based on a d-CFF F = (S,B), then it is tolerant against d errors.

Theorem 2. Let FSSAS be a key-evolving SAS scheme, F be a cover-free family
with incidence matrixM, and Σ be the scheme from Sect. 3.3. If there exists a
PPT algorithm A that breaks the security of Σ with success probability εA, then
there exists an attacker B that breaks the FS-SAS-EUF-CMA-security of FSSAS
with success probability εB ≥ εA.

Due to space constraints, we only give proof sketches here. The complete proofs
can be found in the full version. For fault-tolerance, observe that each message
mj is redundantly aggregated into several of the signatures τ [i], namely those
whereM[i, j] = 1. If errors occur on at most d positions, verification of a certain
subset of all rows will fail. However, this subset cannot cover the rows for any
correct message due to the cover-freeness of F . Thus, each correct message can
be verified from at least one row, and will therefore be output by our scheme.

For the security, note that our scheme essentially outputs the union of all
messages that are contained in valid rows. Thus, to break the security, the attacker
must create a signature where the target claim c∗ is contained in at least one
valid row, which constitutes a successful attack on the underlying scheme FSSAS.

4 Robust Secure Logging

In this section we introduce the notion of robust logging schemes and give a
generic construction based on a plain forward-secure signature scheme, and a
fault-tolerant forward-secure SAS scheme.

The syntax is as in FT-FS-SAS schemes, except that the key update algorithm
may write to the log, and an additional error detection algorithm VerifyLog allows
for fine-grained feedback on problems a log signature may have. This gives precise
and reliable information on which parts of the log file are still trustworthy.

Definition 4. A logging scheme with list verification Λ = (KeyGen, Append,
Update, ValidEntries, VerifyLog) is a tuple of five PPT algorithms, where

– KeyGen(1κ, 1T ) takes as input the security parameter κ and an a priori upper
bound T on the number of epochs. It outputs a key pair (pk, sk0), where sk0
is the secret key for the first epoch.

11



– Append(skt, Ci−1, σi−1,mi) takes as input a secret key skt for epoch t, a claim
sequence Ci−1, a corresponding signature σi−1 and a message mi. It outputs
a signature σi for the new claim sequence Ci := Ci−1 ‖(pk, t,mi), thereby
adding mi to the log. (For efficiency, the public key is written just once into
the log file in the single-key setting, instead of adding it to each log entry.)

– Update(skt, C, σ) takes as input the secret key skt of period t. If t ≥ T − 1 the
output is undefined. If t < T − 1 it computes the secret key skt+1 for period
t+ 1 and securely erases the old key skt. The arguments C (a claim sequence)
and σ (a signature) may be modified, e.g. to add epoch markers [3].

– ValidEntries(C, σ) takes as input a claim sequence C of length n ∈ N0 and
a signature σ for C and outputs a sequence V (also of length n) of claims
and error symbols ⊥. We require that for each i ∈ [n], either V [i] = C[i]
or V [i] = ⊥. (I.e., V can be obtained from C by replacing claims with ⊥.)
Claims output by Verify are taken to be valid.

– VerifyLog(C, σ) outputs either ∅, if the signature is without errors, or a subset
of a set of error symbols E, otherwise. We set E := {⊥sig,⊥len,⊥em}, with
the interpretation that ⊥sig ∈ VerifyLog(C, σ) iff the signature is not valid,
i.e. ValidEntries(C, τ) 6= C. Moreover, if ⊥len ∈ VerifyLog(C, σ), the signature
may have been truncated. Finally, ⊥em ∈ VerifyLog(C, σ) if some problem
with epoch markers has been detected.

Fault-tolerance is defined analogously to Sect. 3.1, substituting Append for
AggSign, and ValidEntries for Verify. A logging scheme with list verification is
robust if it is fault-tolerant and we have that regular log files are error-free (i.e.
VerifyLog(C, σ) = ∅) and error-free log files are valid (i.e. ValidEntries(C, τ) = C).
Note that, if the signature is valid in the sense that all claims are returned by
ValidEntries, it is still possible that an attacker might have truncated the log. In
this case an error symbol returned by VerifyLog points towards this possibility.

The security notion for logging schemes is similar to the FS-EUF-CMA notion
for FT-FS-SAS schemes, but models the real world setting of secure logging more
closely: The log server maintains a state which the adversary influences only
through his oracles. In more detail, a log append oracle appends an entry to the
internal log file, and an adversary can never again add messages to any earlier
state of the log file. Moreover, the internal signatures remain hidden from him
by default, as these usually stay on the server.

To strengthen the notion, we introduce an additional oracle returning the
current signature, which models a public verification of the log file by a third
party. To exclude trivial attacks, we explicitly disallow an adversary to truncate
the log file to a state he has gotten a signature for. However, he may try to use
these signatures to, e.g., truncate the log file to a different previous state.

At the end of the experiment, the attacker outputs a forgery. We require
error-freeness (VerifyLog(C∗, σ∗) = ∅), as otherwise the adversary might use a
combination of introducing faults and truncating the claim sequence to obtain a
valid signature (verification of the forged signature and claim sequence outputs
the full forged claim sequence) that violates other anti-truncation mechanisms.
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Definition 5. For a log scheme with list verification Λ = (KeyGen,Append,
Update,ValidEntries,VerifyLog), a PPT adversary A, the number of epochs T
and the security parameter κ ∈ N0, the security experiment FS-EUF-CLMA3-
ExpΛ,A,T (κ) is defined as follows:

Setup Phase. The experiment generates a key pair (pk, sk0)← KeyGen(1κ, 1T ),
the log file C0 := () and signature σ0 := λ. It initializes the epoch counter
t := 0, and starts A with inputs pk, T .

Query Phase. A may adaptively issue queries to the following oracles:
LogAppend Oracle. The experiment appends the specified message m to

the log and updates the signature via σi ← Append(skt, Ci−1, σi−1,m),
where σi−1 denotes the previous signature, and returns “ok”.

NextEpoch Oracle. The oracle updates the secret key, the log and its
signature via Update(skt, Ci−1, σi−1), increments the epoch counter t :=
t+ 1 and returns “ok”. It may be queried at most T − 1 times.

GetSignature Oracle. Whenever A calls the GetSignature oracle, the chal-
lenger responds with the current signature σi of the log.

Break In Phase. The adversary may break in to obtain the current secret key
skt. If A does, the experiment sets tBreakIn := t. Otherwise, let tBreakIn :=∞.

Forgery Phase. A outputs a log file C∗, and a forged signature σ∗ for C∗.

We say that A wins the experiment, iff the following conditions hold.

– The signature σ∗ is error-free, i.e. VerifyLog(C∗, σ∗) = ∅. (This implies that
the signature is valid.)

– The signature is non-trivial as defined next. Let C ′ be the subsequence of
C∗ that is obtained by deleting all claims c = (pk, t,m) from C∗, where
t ≥ tBreakIn. A’s forgery is non-trivial, iff |C ′| 6= 0 and C ′ does not equal the
content of the log file during any GetSignature query.

A logging scheme with list verification Λ is said to be FS-EUF-CLMA-secure, iff
for all T = T (κ) ∈ poly(κ) and all probabilistic polynomial time attackers A the
probability for A winning the above experiment is negligible in κ.

4.1 Generic Construction

We give a generic construction of a simultaneously secure and robust log scheme
Λ = (KeyGen,Append,Update,ValidEntries,VerifyLog). Let AS be a key-evolving
SAS scheme with list verification and FS a key-evolving signature scheme.

– KeyGen(1κ, 1T ) creates key pairs of the underlying schemes AS and FS as
(pkAS, skAS) ← AS.KeyGen(1κ, 1T ), (pkFS, skFS) ← FS.KeyGen(1κ, 1T ) and
returns pk = (pkAS, pkFS) and sk0 = (skAS, skFS).

3 forward-secure existentially unforgeable under chosen log message attacks
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– Append(skt, Ci−1, τi−1,mi) takes as input a secret key skt = (skAS, skFS) for
period t, a claim sequence Ci−1 = (c1, . . . , ci−1), its corresponding signature
τi−1 = (σi−1, si−1) and a message mi to sign. Both signature components
are obtained from the signature algorithms of AS and FS via

σi ← AS.AggSign(skAS, Ci−1, σi−1,mi ‖ i), and
si ← FS.Sign(skFS, i).

Append securely erases the old length signature si−1 so that it cannot be used
in case of a later break in. The resulting signature τi = (σi, si) is returned.

– Update(skt, Ci−1, τi−1) takes as input the secret key skt = (skAS, skFS), a
claim sequence Ci−1 and a corresponding signature τi−1, and appends an
epoch marker to the log file that is valid for the current epoch t, via

τi ← Append(skt, Ci−1, τi−1,mi),

where mi = "End of epoch:" ‖ t. It then updates the components of skt via
sk′AS ← AS.Update(skAS) and sk′FS ← FS.Update(skFS). (These algorithms
erase the old keys securely.) The new secret key is skt+1 = (sk′AS, sk

′
FS), the

new claim sequence is Ci = Ci−1 ‖(pk, t,mi), and the new signature is τi.
– ValidEntries(C, τ) takes as input a claim sequence C and a signature τ = (σ, s)

for C. It outputs AS.Verify(C ′, σ), where C ′ is the claim sequence generated
from C by appending the message number i to mi for all claims in C.

– VerifyLog(C, τ) takes as input a claim sequence C and a signature τ = (σ, s)
for C. It maintains an error set E initialized to ∅. Firstly, it verifies the FS sig-
nature s using b = FS.Verify((pkFS, t, |C|), s). If b = 0, it adds ⊥len to E. Then
it proceeds with checking the epoch markers: For all claims ci = (pk, ti,mi)
and ci+1 = (pk, ti+1,mi+1) in C, where ti+1 6= ti, consider two cases. If
ti+1 6= ti + 1 then output ⊥em, else check if mi = "End of epoch:" ‖ ti,
otherwise output ⊥em. Finally, it checks whether the signature is valid, i.e.
ValidEntries(C, τ) = C, and adds ⊥sig to E, if this is not the case. It outputs
the set of errors E.

The log scheme Λ described above is d-fault-tolerant, if the underlying FT-FS-SAS
scheme AS is d-fault-tolerant. We omit the proof due to space restrictions.

Theorem 3. Our log scheme with list verification Λ is FS-EUF-CLMA-secure,
if AS is FS-SAS-EUF-CMA-secure and FS is FS-EUF-CMA-secure. More pre-
cisely, for any PPT adversary A who breaks the FS-EUF-CLMA-security with
success probability εA, there exists a PPT adversary B who either breaks the
FS-SAS-EUF-CMA-security of AS or the FS-EUF-CMA-security of FS with
success probability at least εAS

B ≥
εA
2 and εFS

B ≥
εA
2 , respectively.

Let us first give some overview and intuition about the proof. To win the security
experiment, an attacker A must either truncate the log file to a state he has not
seen the signature for, or create a valid signature for a log file modified w.r.t. an
epoch before his break-in. If A truncates the log file without detection, he must
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create a new signature s for the length of the log file, which violates the security
of FS. If A forges a signature for log file modified w.r.t. a previous epoch, then
A has broken the security of AS. Since we assume that both base schemes are
secure, our resulting construction must be secure, too.
Proof. A FS-EUF-CLMA-adversary A can adaptively query the three oracles
LogAppend, GetSignature and NextEpoch before he may break in, and then
outputs a forgery (C∗, τ∗), where τ∗ = (σ∗, s∗). As any signatures appended
after the break in are trivial to produce, let C ′∗ be the claim sequence after
deleting all claims (pk, t,m) of C∗, where t ≥ tBreakIn. Let Cexp be the internal
claim sequence of the experiment, after A did his last GetSignature query in a
period t < tBreakIn. We consider two different events:

– E1 occurs, if (C∗, τ∗) is error-free, non-trivial and C ′∗ is not a prefix of Cexp.
– E2 occurs, if (C∗, τ∗) is error-free, non-trivial and C ′∗ is a prefix of Cexp.

We have εA ≤ Pr[E1] + Pr[E2] and thus Pr[E1] ≥ εA
2 or Pr[E2] ≥ εA

2 . Please
note that in the following paragraphs skiAS, sk

i
FS denote the secret keys of period

i for the respective schemes.

Attack on the FS-SAS-EUF-CMA-security of AS. First we construct a
FS-SAS-EUF-CMA-adversary B on AS, who uses a successful FS-EUF-CLMA-
adversary A and has to simulate the FS-EUF-CLMA-security experiment for A.
The challenger in the FS-SAS-EUF-CMA-security experiment generates a key pair
(pkAS, sk0

AS) ← AS.KeyGen(1κ, 1T ) and sends pkAS and the maximal number of
epochs T to B. B uses FS to generate a key pair (pkFS, sk0

FS)← FS.KeyGen(1κ, 1T ),
s.t. pk := (pkAS, pkFS) and sk0 := (sk0

AS, sk
0
FS) for the current period 0. B forwards

pk and T to A. B initializes the log and signature it maintains towards A as
C0 := (), σ0 := λ and sets i := 0, t := 0 and LFS := {sk0

FS}.
We describe how B simulates the three oracles and the break in phase for A:

LogAppend Oracle. A sends B a query mi. B sets Ci := Ci−1 ‖ (pkAS, t,mi ‖ i)
for the current period t. B sends an AggSign query mi ‖ i with claim sequence
Ci−1 and signature σi−1 to his challenger who responds with a signature σi.
Finally, it sets i := i+ 1 and sends A the string “ok”.

NextEpoch Oracle. When A sends a NextEpoch query, B stops if t ≥ T − 1
and outputs ⊥, otherwise B sets mi := "End of epoch:" ‖ t and Ci :=
Ci−1 ‖ (pkAS, t,mi ‖ i). B obtains the signature σi for Ci from his AS.AggSign
oracle the same way as before. B sends an Update query to the challenger, who
computes skt+1

AS := AS.Update(sktAS). B computes skt+1
FS := FS.Update(sktFS)

by its own. B sets i := i+ 1, t := t+ 1 and LFS := LFS ∪ {skt+1
FS } and returns

“ok”.
GetSignature Oracle. When A calls the GetSignature oracle, B determines

the length i of the current claim sequence Ci and the period tlast of the last
claim in Ci, which is either the current period t or t−1 (since an epoch switch
always adds an end-of-epoch claim). B gets sktlast

FS from LFS and computes
si ← FS.Sign(sktlast

FS , i). The new signature for Ci is now τi = (σi, si) and B
sends τi to A.

15



Break In Phase. When A breaks in, B sets tBreakIn := t and sends his challenger
also a break in request. B gets the current secret key sktAS and sends A the
current secret key skt = (sktAS, sk

t
FS).

If event E1 occurs, then A sends B an error-free and non-trivial signature
τ∗ = (σ∗, s∗) for a claim sequence C∗, where C ′∗ is not a prefix of Cexp. Since
τ∗ is non-trivial, i′ := |C ′∗| 6= 0. In this case, there exists an index j′ ∈ [i′],
s.t. the claim c∗j′ = (pk, t∗j′ ,m∗j′) 6= cexp

j′ and tj′ < tBreakIn. Let C ′ be the claim
sequence that is generated by appending the message index i to mi in each of
the claims from C∗. Since A’s forgery is valid, (C ′, σ∗) is also a valid forgery for
B’s challenger and it is non-trivial, because the claim (pk, t∗j′ ,m∗j′ ‖ j′) is fresh4.
So B can forward this and therefore has success probability εAS

B ≥ Pr[E1].

Attack on the FS-EUF-CMA-security of FS. Next, we construct a FS-EUF-
CMA-adversary B on FS, who uses a successful FS-EUF-CLMA-adversary A and
has to simulate the FS-EUF-CLMA-security experiment for A. The challenger
in the FS-EUF-CMA-security experiment generates a key pair (pkFS, sk0

FS) ←
FS.KeyGen(1κ, 1T ) and sends pkFS and the maximal number of epochs T to B. B
uses the AS-scheme and generates a key pair (pkAS, sk0

AS)← AS.KeyGen(1κ, 1T )
and forwards pk = (pkAS, pkFS) and T to A. B initializes the log and signature
it maintains towards A as C0 := (), σ0 := λ and sets i := 0, t := 0, t′ := 0. We
describe how B simulates the three oracles and the break in phase for A:

LogAppend Oracle. A sends B a query mi. B sets Ci := Ci−1 ‖ (pkAS, t,mi ‖ i)
for the current period t and σi ← AS.AggSign(skAS, Ci−1, σi−1,mi ‖ i). Then
B sets i := i+ 1 and sends A the string “ok”.

NextEpoch Oracle. When A sends a NextEpoch query, B stops if t ≥ T − 1
and outputs ⊥, otherwise B sets mi := "End of epoch:" ‖ t and Ci :=
Ci−1 ‖ (pkAS, t,mi), and computes σi in the same way as before. B computes
skt+1

AS := AS.Update(sktAS) by its own, sets i := i+ 1, t := t+ 1 and returns
“ok”.

GetSignature Oracle. When A calls the GetSignature oracle B determines the
length i of the current claim sequence Ci and the period tlast of the last claim
in Ci (tlast is either t or t− 1). If tlast − t′ := d 6= 0, then B sends d Update
queries to his challenger, who computes sktlast

FS via updating the current skt
′

FS
d times. Then B sends a query m = i to his challenger, who responds with
si ← FS.Sign(sktlast

FS , i). The new signature for Ci is now τi = (σi, si) and B
sends τi to A. B sets t′ := t and if t− tlast = 1, sends one more Update query.

Break In Phase. When A sends his break in request, B sets tBreakIn := t. If
t − t′ := d 6= 0, then B sends d Update queries to his challenger and then
sends also a break in request. B gets the current secret key sktFS and sends A
the current secret key skt = (sktAS, sk

t
FS).

4 Remember that we assume that m and i can be uniquely derived from m ‖ i, which
implies that the claims c∗

j′ and cexp
j′ also differ after concatenating j′ to their messages.

Since j′ is also only used once, the claim c∗
j′ cannot become equal to any other claim

of Cexp after this concatenation, either.
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If event E2 occurs, then A sends B an error-free and non-trivial signature
τ∗ = (σ∗, s∗) for a claim sequence C∗, where C ′∗ is a prefix of Cexp. Let |C∗| =: i∗,
|C ′∗| =: i′, |Cexp| =: iexp. Thus, s∗ is a valid signature for i∗. We show that
i∗ < iexp and i∗ was not queried to B′s challenger during the experiment before.

If i∗ ≥ iexp, then i′ > iexp is not possible, since C ′∗ is a prefix of Cexp.
i′ < iexp is possible neither, since the claim c∗i′ must then be (pk, ti′ ,mi′ =
"End of epoch:" ‖ ti′) (since all claims where t ≥ tBreakIn were deleted, the last
claim of C ′∗ must be a claim for an epoch marker – this follows from the error-
freeness of τ∗) for ti′ = tBreakIn − 1. Because C ′∗ is a prefix of Cexp this is also a
claim in Cexp. Since Cexp also contains no claims for any t ≥ tBreakIn, this also
has to be the last claim in Cexp. Therefore |C ′∗| must be equal to |Cexp|. Thus,
i′ = iexp and C ′∗ = Cexp, but in this case, τ∗ is not a non-trivial signature,
because A queried his GetSignature oracle for C ′∗ = Cexp per definition.

So, we have i∗ < iexp and therefore C∗ = C ′∗ since C∗ contains no claims
with t ≥ tBreakIn in this case. So, C∗ is also a prefix of Cexp. Because τ∗ is an
error-free and non-trivial signature, A has never queried the GetSignature oracle
when the internal state of the log was equal to C∗. Thus, B has never queried
his FS.Sign oracle for i∗, so s∗ is a fresh and valid signature of i∗ under skti∗ ,
with ti∗ < tBreakIn. Thus, B forwards a valid forgery (i∗, s∗) to his challenger with
success probability εFS

B ≥ Pr[E2]. In total, we have εAS
B ≥

εA
2 or εFS

B ≥
εA
2 . ut

5 Implementation and Performance Results

We implemented our generic construction from Sect. 4.1 and conducted various
benchmarks. Our scheme uses the BGLS-FS-SAS scheme [23, 20] and the BM-FSS
scheme [2]. Our results are shown in Table 1. Details of our implementation and
benchmarks are provided in Appendix A.

Methodology. For our experiments, we defined several sets of processes. Each
process was repeated three times. The averages and standard deviations shown
in Table 1 have therefore been computed from a sample of size 3.

For the first set of processes, we called the KeyGen algorithm with the given
parameter T and measured its total run-time. In the second set, we created a
random key for T epochs, and then measured the run-time of updating the key
T times, without computing any signatures. Table 1 shows the average run-time
per invocation of Update.

The third process consisted of creating a key-pair valid for n epochs, and
then calling the AggSign algorithm n times, switching epochs every ` messages.
For each epoch switch, we created and signed an epoch marker first, and then
updated the secret key. The process also included signing the current counter
value with a forward-secure digital signature scheme and updating that scheme.
The time shown in Table 1 is the total time of all signing and updating operations,
divided by the number of messages, so it represents the average time needed for
adding a single log entry to the log file. The standard deviation was computed
over the average signing time in each run.
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Table 1. Runtimes of our robust secure logging schemes based on the BGLS-FS-SAS
from [20]. See the methodology section for an explanation of this table and the full
version for more data.

Algorithm Parameter ` avg [ms] STD [ms]
KeyGen T = 10 000 38 053 241

Update T = 10 000 18.6 0.033

AggSign + Update n =
1000 10 67.5 0.014
1000 100 60.4 0.048
1000 1000 59.7 0.019

Verify n =
1000 10 271 2.05
1000 100 227 1.87
1000 1000 22.5 0.15

The measurements in the last set of processes were obtained by calling Verify
after a completion of a process from the third set. The time given in Table 1
is an average of the run-time of three executions divided by the number of
messages that were verified. Hence, it represents the average verification time
per message. The standard deviation was computed over the run-times of an
individual execution divided by n. We did not consider invalid signatures in our
experiments.

6 Conclusion

We give a simple solution to the problem of space-efficient logging, while still
retaining robustness and truncation security for a properly formalized security
notion of secure logging and achieve provable security. Combining a fault-tolerant
forward-secure sequential aggregate signature with a forward-secure signature on
the current log length elegantly solved these problems in combination. For this
we modified the notion of fault-tolerance from [9] (which is based on cover-free
families to introduce redundancy), to fit the more restricted setting of sequential
aggregate signatures, allowing for more efficient implementations due to less
requirements than in the case of general aggregation. Finally, we evaluated the
performance of a prototype implementation of our space-efficient and truncation-
resistant robust secure logging scheme.

A Implementation Details

This section gives details about our implementation of the scheme from Sect. 4.1.
Our implementation is written in C++11, and will be made available under a
free software license. For the BM-FSS scheme, we chose a modulus size of 1024
bits, roughly equivalent to a security level of 80 bit. The BGLS scheme was
instantiated using elliptic curve groups 160 bits, and the base field had 1024 bits.
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We used an instantiation of the cover-free family based on polynomials, described
in [16]. For a CFF supporting n = 100, 1000, and 10000 messages, we chose
the field size q = 5, 11, and 23, respectively, and fixed the polynomial degree
at k = 2. This led to d = 2, 5 and 11, respectively. (The resulting CFFs were
slightly larger than required: They supported 125, 1331, and 12167 messages,
respectively.) Whenever a hash function was needed, we used SHA-256. We used
a constant string of 200 bytes for all messages.

Our experiments were conducted on a laptop computer with an Intel Core
i5-2430M CPU [12] with a clock rate of 2.4GHz. (Our implementation is not
parallelized and therefore did not make use of the additional processor cores.)
The processor has private (per-core) caches of 128KB (Level 1) and 512KB
(Level 2), and a shared Level 3 Cache of 3072KB [11, Section 1.1] The system was
equipped with 5.7GiB of RAM and running a 64-bit version desktop version of
the Fedora 23 GNU/Linux operating system, equipped with Linux Kernel version
4.4.9-300. All code was compiled with the GNU C Compiler (version 5.3.1) and
optimization level set to -O2. We used Shoups NTL library [25] (version 9.4.0)
for the implementation of the BM-FSS scheme and the PBC library [18] (version
0.5.14) for the implementation of the BGLS-FS-SAS scheme.
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