
Threshold Kleptographic Attacks on Discrete Logarithm Based
Signatures

George Teşeleanu1,2[0000−0003−3953−2744]

1 Advanced Technologies Institute
10 Dinu Vintilă, Bucharest, Romania

tgeorge@dcti.ro
2 Department of Computer Science

“Al.I.Cuza” University of Iaşi 700506 Iaşi, Romania,
george.teseleanu@info.uaic.ro

Abstract. In an ` out of n threshold scheme, ` out of n members must cooperate to recover a secret.
A kleptographic attack is a backdoor which can be implemented in an algorithm and further used to
retrieve a user’s secret key. We combine the notions of threshold scheme and kleptographic attack to
construct the first ` out of n threshold kleptographic attack on discrete logarithm based digital signatures
and prove its security in the standard and random oracle models.

1 Introduction

Simmons [63, 64] was the first to study the use of digital signatures as a channel to convey information
(subliminal channels). Later on, Young and Yung [67–71] combined subliminal channels and public key
cryptography to leak a user’s private key or a message (SETUP attacks). Young and Yung assumed a
black-box environment3, while mentioning the existence of other scenarios. These attacks need a malicious
device manufacturer4 to work. The input and output distributions of a device with SETUP should not be
distinguishable from the regular distribution. However, if the device is reverse engineered, the deployed
mechanism may be detectable.

Although SETUP attacks were considered far-fetched by some cryptographers, recent events [6,56] suggest
otherwise. As a consequence, this research area seems to have been revived [5, 8, 22,44,58]. In [10], SETUP
attacks implemented in symmetric encryption schemes are referred to as algorithmic substitution attacks
(ASA). The authors of [10] point out that the sheer complexity of open-source software (e.g. OpenSSL) and
the small number of experts who review them make ASAs plausible not only in the black-box model. ASAs
in the symmetric setting are further studied in [8, 20] and, in the case of hash functions, in [3].

A practical example of leaking user keys is the Dual-EC generator. As pointed out in [13], using the
Dual-EC generator facilitates a third party to recover a user’s private key. Such an attack is a natural
application of Young and Yung’s work. Some real world SETUP attack examples may be found in [15,16].
Building on the earlier work of [66] and influenced by the Dual-EC incident, [21, 22] provide the readers with
a formal treatment of backdoored pseudorandom generators (PRNG).

A more general model entitled subversion attacks is considered in [5]. This model includes SETUP attacks
and ASAs, but generic malware and virus attacks are also included. The authors provide subversion resilient
signature schemes in the proposed model. Their work is further extended in [58,59], where subversion resistant
solutions for one-way functions, signature schemes and PRNGs are provided. In [58], the authors point out
that the model from [5] assumes the system parameters are honestly generated (but this is not always the
case). In the discrete logarithm case, examples of algorithms for generating trapdoored prime numbers may
be found in [29,35].
3 A black-box is a device, process or system, whose inputs and outputs are known, but its internal structure or
working is not known or accessible to the user (e.g. tamper proof devices).

4 that implements the mechanisms to recover the secrets

A different method for protecting users from subversion attacks are cryptographic reverse firewalls (RF).
RFs represent external trusted devices that sanitize the outputs of infected machines. The concept was
introduced in [24,49]. A reverse firewall for signature schemes is provided in [5].

In this paper, we extend the SETUP attacks of Young and Yung on digital signatures. We introduce the
first SETUP mechanism that leaks a user’s secret key, only if ` out of n malicious parties decide to do this.
We assume that the signature schemes are implemented in a black-box equipped with a volatile memory,
erased whenever someone tampers with it.

In the following we give a few examples where a threshold kleptographic signature may be useful.
Since digitally signed documents are just as binding as signatures on paper, if a recipient receives a

document signed by A he will act according to A’s instructions. Finding A’s private key, can aid a law
enforcement agency into collecting additional informations about A and his entourage. In order to protect
citizens from abuse, a warrant must be issued by a legal commission before starting surveillance. To aid
the commission and to prevent abuse, the manufacturer of A’s device can implement a ` out of n threshold
SETUP mechanism. Thus, A’s key can be recovered only if there is a quorum in favor of issuing the warrant.

Digital currencies (e.g. Bitcoin) have become a popular alternative to physical currencies. Transactions
between users are based on digital signatures. When a transaction is conducted, the recipient’s public key is
linked to the transfered money. Only the owner of the secret key can now spend the money. To protect his
secret keys, a user can choose to store them in a tamper proof device, called a hardware wallet. Let’s assume
that a group of malicious entities manages to infect some hardware wallets and they implement an ` out of
n threshold SETUP mechanism. When ` members decide, they can transfer the money from the infected
wallets without the owner’s knowledge. If `− 1 parties are arrested, the mechanism remains undetectable as
long as the devices are not reverse engineered.

In accordance with the original works, we prove that the threshold SETUP mechanisms are polynomially
indistinguishable from regular signatures. Depending on the infected signature, we obtain security in the
standard or random oracle model (ROM). To do so, we make use of a public key encryption scheme (introduced
in Section 3) and Shamir’s secret sharing scheme [61]. ROM security proofs are easily deduced from the
standard model security proofs provided in the paper. Thus, are omitted.

Structure of the paper. We introduce notations and definitions used throughout the paper in Section 2. In
order to mount the SETUP attacks, we use a variant of the Generalized ElGamal encryption scheme [46] that
is described in Section 3. In Section 4 we describe a SETUP attack on the Generalized ElGamal signature [46],
extended in Section 5. Section 6 contains a series of applications of the described attacks. Countermeasures
are provided in Section 7. We conclude in Section 8. Additional definitions are given in Appendix A. In ??
we prove the security margins claimed in Section 3.2. A two-party malicious signing protocol is presented in
Appendix B. We provide a supplementary SETUP mechanism in Appendix C.

2 Preliminaries

Notations. Throughout the paper, λ will denote a security parameter. The action of selecting a uniformly
random element x from a sample space X is denoted by x $←− X. We also denote by x← y the assignment of
value y to variable x. The probability that event E happens is denoted by Pr[E]. The action of choosing a
random element from an entropy smoothing5 (es) family H is further referred to as “H is es”. Encryption of
message m with key k using the AES algorithm6 is denoted by AESk(m).

2.1 Diffie-Hellman Assumptions

Definition 1 (Computational Diffie-Hellman - cdh). Let G be a cyclic group of order q, g a generator
of G and let A be a probabilistic polynomial-time algorithm (PPT algorithm) that returns an element from G.

5 We refer the reader to Definition 10.
6 We refer the reader to [19] for a description of AES.

2

We define the advantage

ADV cdh
G,g (A) = Pr[A(gx, gy) = gxy|x, y $←− Z∗q].

If ADV cdh
G,g (A) is negligible for any PPT algorithm A, we say that the Computational Diffie-Hellman

problem is hard in G.

Definition 2 (Decisional Diffie-Hellman - ddh). Let G be a cyclic group of order q, g a generator of G.
Let A be a PPT algorithm which returns 1 on input (gx, gy, gz) if gxy = gz. We define the advantage

ADV ddh
G,g (A) = |Pr[A(gx, gy, gz) = 1|x, y $←− Z∗q , z ← xy]− Pr[A(gx, gy, gz) = 1|x, y, z $←− Z∗q]|.

If ADV ddh
G,g (A) is negligible for any PPT algorithm A, we say that the Decisional Diffie-Hellman problem

is hard in G.

Definition 3 (Hash Diffie-Hellman - hdh). Let G be a cyclic group of order q, g a generator of G and
H : G→ Z∗q a hash function. Let A be a PPT algorithm which returns 1 on input (gx, gy, z) if H(gxy) = z.
We define the advantage

ADV hdh
G,g,H(A) = |Pr[A(gx, gy, H(gxy)) = 1|x, y $←− Z∗q]− Pr[A(gx, gy, z) = 1|x, y, z $←− Z∗q]|.

If ADV hdh
G,g,H(A) is negligible for any PPT algorithm A, we say that the Hash Diffie-Hellman problem is

hard in G.

Remark 1. The two first assumptions (cdh and ddh) are standard and are included for completeness. The
hdh assumption was formally introduced in [1, 2], although it was informally introduced as a composite
assumption in [11,74]. According to [11], the hdh assumption is equivalent with the cdh assumption in ROM.
If the ddh assumption is hard in G and H is es, then the hdh assumption is hard in G [1, 51,62]. In [32],
the authors show that the hdh assumption holds, even if the ddh assumption is relaxed to the following
assumption: G contains a large enough group in which ddh holds. One particular interesting group is Z∗p,
where p is a “large”7 prime. According to [32], it is conjectured that if G is generated by an element g ∈ Z∗p
of order q, where q is a “large”8 prime that divides p − 1, then the ddh assumption holds. The analysis
conducted in [32] provides the reader with solid arguments to support the hypothesis that hdh holds in the
subgroup G ⊂ Z∗p.

2.2 Definitions and Security Models

Definition 4 (Signature Scheme). A Signature Scheme consists of three PPT algorithms: KeyGen, Sign
and Verification. The first one takes as input a security parameter and outputs the system parameters, the
public key and the matching secret key. The secret key together with the Sign algorithm is used to generate a
signature σ for a message m. Using the public key, the last algorithm verifies if a signature σ for a message
m is generated using the matching secret key.

Definition 5 (Public Key Encryption - PKE). A Public Key Encryption (PKE) scheme consists of three
PPT algorithms: KeyGen, Encrypt and Decrypt. The first one takes as input a security parameter and outputs
the system parameters, the public key and the matching secret key. The public key together with the Encrypt
algorithm is used to encrypt a message m. Using the secret key, the last algorithm decrypts any ciphertext
encrypted using the matching public key.

Remark 2. For simplicity, public parameters will further be implicit when describing an algorithm.
7 at least 2048 bits, better 3072 bits
8 at least 192 bits, better 256 bits

3

Definition 6 (Indistinguishability from Random Bits - ind$). The security model of indistinguisha-
bility from random bits for a PKE scheme AE is captured in the following game:

KeyGen(λ): The challenger C generates the public key, sends it to adversary A and keeps the matching
secret key to himself.

Query: Adversary A sends C a message m. The challenger encrypts m and obtains the ciphertext c0. Let c1
be a randomly chosen element from the same set as c0. The challenger flips a coin b ∈ {0, 1} and returns
cb to the adversary.

Guess: In this phase, the adversary outputs a guess b′ ∈ {0, 1}. He wins the game, if b′ = b.

The advantage of an adversary A attacking a PKE scheme is defined as

ADV ind$
AE (A) = |2Pr[b = b′]− 1|,

where the probability is computed over the random bits used by C and A. A PKE scheme is ind$ secure, if for
any PPT adversary A the advantage ADV ind$

AE (A) is negligible.

Definition 7 (Anonymity under Chosen Plaintext Attacks - ano-cpa). The security model against
anonymity under chosen plaintext attacks for a PKE scheme AE is captured in the following game:

KeyGen(λ): The challenger C generates two public keys pk0 and pk1, sends them to adversary A and keeps
the matching secret keys to himself.

Query: Adversary A sends C a message m. The challenger flips a coin b ∈ {0, 1} and encrypts m using pkb.
The resulting ciphertext c is sent to the adversary.

Guess: In this phase, the adversary outputs a guess b′ ∈ {0, 1}. He wins the game, if b′ = b.

The advantage of an adversary A attacking a PKE scheme is defined as

ADV ano-cpa
AE (A) = |2Pr[b = b′]− 1|,

where the probability is computed over the random bits used by C and A. A PKE scheme is ano-cpa secure,
if for any PPT adversary A the advantage ADV ano-cpa

AE (A) is negligible.

Definition 8 (Secretly Embedded Trapdoor with Universal Protection - SETUP). A Secretly
Embedded Trapdoor with Universal Protection (SETUP) is an algorithm that can be inserted in a system such
that it leaks encrypted private key information to an attacker through the system’s outputs. Encryption of the
private key is performed using an asymmetric encryption scheme. It is assumed that the decryption function
is accessible only to the attacker.

Definition 9 (SETUP indistinguishability - ind-setup). Let C0 be a black-box system that uses a secret
key sk. Let AE be the PKE scheme used by a SETUP mechanism as defined above, in Definition 8. We
consider C1 an altered version of C0 that contains a SETUP mechanism based on AE. Let A be a PPT
algorithm which returns 1 if it detects that C0 is altered. We define the advantage

ADV ind-setup
AE,C0,C1

(A) = |Pr[AC1(sk,·)(λ) = 1]− Pr[AC0(sk,·)(λ) = 1]|.

If ADV ind-setup
AE,C0,C1

(A) is negligible for any PPT algorithm A, we say that C0 and C1 are polynomially
indistinguishable.

Remark 3. Definition 9 is a formalization of the indistinguishability property for a regular SETUP mechanism
described in [68]. More general concepts may be found in [5] (publicly undetectability) and [58] (cliptographic
game). A consequence of ind-setup is that C0 and C1 have the same security.

Remark 4. We consider that the attacks presented from now on are implemented in a device D that digitally
signs messages. The owner of the device is denoted by V and his public key by pkV . We assume that his

4

secret key skV is stored only in D’s volatile memory9. The victim V thinks that D signs messages using the
signature scheme described in Section 2.3. We stress that KeyGen and Verification algorithms are identical
to the ones from Section 2.3. Thus, KeyGen and Verification are omitted when presenting the attacks.

Throughout the paper, when presenting the SETUP mechanisms, we make use of the following two
additional algorithms

– Malicious Party(s) KeyGen − used by the attacker(s) to generate his (their) parameters;
– Recovering − used by the attacker(s) to recover V ’s secret key.

The algorithms above are not implemented in D.

2.3 Generalized ElGamal Signature

Originally described in [26], the ElGamal digital signature scheme can easily be generalized to any finite
cyclic group G. We shortly describe the algorithms of the generalized ElGamal signature scheme, as presented
in [46].

KeyGen(λ): Generate a large prime number q, such that q ≥ 2λ. Choose a cyclic group G of order q and
let g be a generator of the group. Let h : G→ Zq be a hash function. Choose a $←− Z∗q and compute y ← ga.
Output the system parameters pp = (q, g,G, h) and the public key pkV = y. The secret key is skV = a.

Sign(m, skV): To sign a message m ∈ G, first generate a random number k $←− Z∗q . Then compute the values
r ← gk and s← k−1[h(m)− a · h(r)] mod q. Output the signature (r, s).

Verification(m, r, s, pkV): To verify the signature (r, s) of message m, compute v1 ← y
h(r)
V · rs and v2 ← gh(m).

Output true if and only if v1 = v2. Else output false.

2.4 Young-Yung SETUP Attack on the Generalized ElGamal Signature

In [67–70], the authors propose a kleptographic version of ElGamal signatures and prove it secure in the
standard model under the hdh assumption. The Young-Yung SETUP mechanism can be easily adapted to
the generalized ElGamal signature, while maintaining its security. The algorithms of the generalized version
are shortly described below. We assume that user V is the victim of a malicious user M . After D signs at
least two messages, M can recover V ’s secret key and thus impersonate V .

Malicious Party KeyGen(pp): Let H : G→ Z∗q be a hash function. Choose xM
$←− Z∗q and compute yM ← gxM .

Output the public key pkM = yM . The public key pkM and H will be stored in D’s volatile memory. The
secret key is skM = xM ; it will only be known by M and will not be stored in the black-box.

Signing Sessions: The possible signing sessions performed by D are described below. Let i ≥ 1.

Session0(m0, skV): To sign message m0 ∈ G, D does the following

k0
$←− Z∗q , r0 ← gk0 , s0 ← k−1

0 [h(m0)− a · h(r0)] mod q.

The value k0 is stored in D’s volatile memory until the end of Session1. Output the signature (r0, s0).

Sessioni(mi, skV , pkM): To sign message mi ∈ G, D does the following

zi ← y
ki−1
M , ki ← H(zi), ri ← gki , si ← k−1

i [h(mi)− a · h(ri)].

The value ki is stored in D’s volatile memory until the end of Sessioni+1. Output the signature (ri, si).
9 If V knows his secret key, he is able to detect a SETUP mechanism using its description and parameters (found by
means of reverse engineering a black-box, for example).

5

Recovering(mi, ri−1, ri, si, skM): Compute α← rxM
i−1 and ki ← H(α). Recover a by computing

a← h(ri)−1[h(mi)− ki · si)].

Remark 5. Let S be an honest generator for the values r used by the Generalized ElGamal signature scheme
and let σi denote the i-th internal state and ρi = gσi the i-th output of S. The mechanism described above
can be seen as a malicious PRNG S̃ based on the honest PRNG S. We define the internal states and outputs
of S̃ by

– σ̃0 = σ0, ρ̃0 = ρ0;
– σ̃i = H(yσ̃i−1

M), ρ̃i = gσ̃i , where i ≥ 1.

In [22], the authors state that the Dual-EC generator does not output bits that are provably indistin-
guishable from random bits. To improve Dual-EC, they introduce S̃ and prove it secure under the hdh
assumption.

3 Multiplicative ElGamal Encryption

The ElGamal encryption scheme was first described in [26]. The underlying group of the scheme is Zp, where
p is a prime number. The scheme can easily be generalized to any finite cyclic group G. The description of
the generalized ElGamal can be found in [46]. Based on this description, we propose a new version of the
ElGamal encryption scheme, which will later be used to deploy our SETUP mechanisms. We prove that the
scheme is secure and that it preserves anonymity.

3.1 Scheme Description

KeyGen(λ): Generate a large prime number q, such that q ≥ 2λ. Choose a cyclic group G of order q and let
g be a generator of the group. Let H : G → Z∗q be a hash function. Choose x $←− Z∗q and compute y ← gx.
Output the system parameters pp = (q, g,G, H) and the public key pk = y. The secret key is sk = x.

Encryption(m, pk): To encrypt a message m ∈ Z∗q , first generate a random number k $←− Z∗q . Then compute
the values α← gk, β ← yk, γ ← H(β) and δ ← m · γ. Output the pair (α, δ).

Decryption(α, δ, sk): To decrypt ciphertext (α, δ), compute ε← αx, ζ ← H(ε). Recover the original message
by computing m← δ · ζ−1.

We need to prove that the scheme is sound. If the pair (α, δ) is generated according to the scheme, it is
easy to see that δ · ζ−1 ≡ m ·H(yk) · [H(αx)]−1 ≡ m ·H((gx)k) · [H((gk)x)]−1 ≡ m.

Remark 6. In the original ElGamal encryption we have m ∈ G and δ ← m · β, but in modern use of
Diffie-Hellman we have δ ← AESγ(m).

3.2 Security Analysis

In this section we prove that the Multiplicative ElGamal is a secure encryption scheme and it preserves
anonimity. We denote byMEG the Multiplicative ElGamal scheme.

Theorem 1. If hdh is hard in G then MEG is ind$ secure in the standard model. Formally, let A be an
efficient PPT ind$ adversary. There exists an efficient algorithm B such that

ADV ind$
MEG(A) ≤ 2ADV hdh

G,g,H(B).

6

Proof. Let A be an ind$ adversary forMEG with access to “random coins” sampled uniformly from a set R.
We construct an adversary B for the hdh assumption and then we provide an upper bound for the advantage
of A.

x
$←− Z∗q , y ← gx,

ρ
$←− R,m← A(ρ, y),

k
$←− Z∗q , α0 ← gk, β ← yk, γ ← H(β), δ0 ← m · γ,

α1
$←− G, δ1

$←− Z∗q , b
$←− {0, 1},

b′ ← A(ρ, y, αb, δb).

Fig. 1. The ind$ game.

Algorithm B(U, V,W) :
y ← U,

ρ
$←− R,m← A(ρ, y),

α0 ← V, δ0 ← m ·W,
α1

$←− G, δ1
$←− Z∗q ,

b
$←− {0, 1}, b′ ← A(ρ, y, αb, δb),

If b = b′ then return 1 else return 0.

Fig. 2. Algorithm B for attacking hdh.

Figure 1 describes the ind$ game. The first row sets up the public key. In the second row, A chooses the
message m it wants to be challenged on. The challenger then picks a random k and computes the encryption
(α0, δ0) of m. It also picks random choices (α1, δ1) from the same sampling sets, flips a bit b and reveals
(αb, δb). A then computes its guess b′ for b. A wins if b = b′. Formally, the probability of A winning the ind$
game is

|2Pr[b′ = b]− 1| = ADV ind$
MEG(A). (1)

Figure 2 depicts the behavior of an adversary B who runs the ind$ distinguisher A as a subroutine. B
is given as input U, V,W , where U ← gu and V ← gv, for random u, v, and W is either H(guv) or random.
Algorithm B outputs a bit indicating its guess for which of these cases occurs, where 1 means B guesses
W = H(guv). Formally, the hdh advantage of B is

ADV hdh
G,g,H(B) = |Pr[B(U, V,W) = 1|W = H(guv)]− Pr[B(U, V,W) = 1|W $←− Z∗q]|. (2)

Lets us consider the case W = H(guv) and compute the probability of B outputting 1. We note that B is
running A as the latter would run an attack on the ind$ security ofMEG. Thus, we have

Pr[B(U, V,W) = 1|W = H(guv)] = Pr[b = b′|W = H(guv)] (3)

= 1
2(2Pr[b = b′|W = H(guv)]− 1 + 1)

= 1
2ADV

ind$
MEG(A) + 1

2 .

We will now compute the probability of B outputting 1 when W random. Then if we multiply an element
m from Z∗q with an uniformly random element W of the same set, we obtain an uniformly random element.
Raising g to a random value v, yields a random element of G because g generates G. Thus, α0, δ0, α1, δ1 are
random. Since A has to choose between random elements, we have that

Pr[B(U, V,W) = 1|W $←− Z∗q] = Pr[b = b′|W $←− Z∗q] = 1
2 . (4)

Finally, the statement is proven by combining the equalities (1)− (4). ut

Theorem 2. If hdh is hard in G thenMEG is ano-cpa secure in the standard model. Formally, let A be
an efficient PPT ano-cpa adversary. There exists an efficient algorithm B such that

ADV ano-cpa
MEG (A) ≤ 4ADV hdh

G,g,H(B).

7

Proof. Let A be an ano-cpa adversary forMEG with access to “random coins” sampled uniformly from a
set R. We construct two adversaries B1, B2 for the hdh assumption and then we provide an upper bound for
the advantage of A.

x0
$←− Z∗q , y0 ← gx0 , x1

$←− Z∗q , y1 ← gx1 ,

ρ
$←− R,m← A(ρ, y0, y1),

b
$←− {0, 1}, k $←− Z∗q , α← gk, β ← ykb , γ ← H(β), δ ← m · γ,

b′ ← A(ρ, y0, y1, α, δ).

Fig. 3. The ano-cpa game.

Algorithm B(U, V,W) :
y0 ← U, z

$←− Z∗q , y1 ← gz, µ0 ← H(V z), µ1
$←− Z∗q ,

ρ
$←− R,m← A(ρ, y0, y1),

b
$←− {0, 1}, α← V, ω0 ←W,ω1 ← µb,

b′
$←− {0, 1}, δ ← m · ωb′ ,

b′′ ← A(ρ, y0, y1, α, δ),
If b′ = b′′ then return 1 else return 0.

Fig. 4. Algorithm B for attacking hdh.

Figure 3 describes the ano-ind game. The first row sets up the public keys y0 and y1. In the second row,
the adversary selects the message m it wants to be challenged on. The challenger then flips a bit b, chooses a
random k and it reveals the encryption of m under yb. A then computes its guess b′ for b. A wins if b = b′.
Formally, the probability of A winning the ano-ind game is

|2Pr[b′ = b]− 1| = ADV ano-cpa
MEG (A). (5)

Figure 4 depict the behavior of algorithm B who runs the ano-ind distinguisher A as a subroutine. B is
given as input U, V,W , where U ← gu and V ← gv, for random u, v, and W is either H(guv) or random. B
outputs a bit indicating its guess for which of these cases occurs, where 1 means B guesses W = H(guv).
Formally, the hdh advantage of B is

ADV hdh
G,g,H(B) = |Pr[B(U, V,W) = 1|W = H(guv)]− Pr[B(U, V,W) = 1|W $←− Z∗q]|. (6)

Let us consider the case W = H(guv) and compute the probability of B outputting 1. There are two
sub-cases when b = 0 and when b = 1. In the former sub-case, we note that B is running A as the latter
would run an attack on the ano-ind security ofMEG. Thus, we have

Pr[B(U, V,W) = 1|W = H(guv)] = Pr[b′ = b′′|W = H(guv)] (7)
= Pr[b′ = b′′|W = H(guv), b = 0]Pr[b = 0]
+ Pr[b′ = b′′|W = H(guv), b = 1]Pr[b = 1]

= 1
4(2Pr[b = b′|W = H(guv), b = 0]− 1 + 1)

+ 1
2Pr[b

′ = b′′|W = H(guv), b = 1]

= 1
4ADV

ano-cpa
MEG (A) + 1

4
+ 1

2Pr[b
′ = b′′|W = H(guv), b = 1].

The probability of B outputting 1 when W is random is

Pr[B(U, V,W) = 1|W $←− Z∗q] = Pr[b′ = b′′|W = H(guv)] (8)

= Pr[b′ = b′′|W $←− Z∗q , b = 0]Pr[b = 0]

+ Pr[b′ = b′′|W $←− Z∗q , b = 1]Pr[b = 1].

8

Lets consider the sub-case b = 1. If we multiply an element m from Z∗q with an uniformly random element ω0
or ω1 of the same set, we obtain an uniformly random element. Then A has two decide between two pairs
that have the same distribution. Thus, we have

Pr[b′ = b′′|W $←− Z∗q , b = 1] = 1
2 . (9)

In the sub-case b = 0, we have that

Pr[b′ = b′′|W $←− Z∗q , b = 0] = Pr[b′ = b′′|W = H(guv), b = 1], (10)

since in both case A receives one random element and one of the form H(V e), where e is random. Thus,
equality (8) becomes

Pr[B(U, V,W) = 1|W $←− Z∗q] = 1
2Pr[b

′ = b′′|W = H(guv), b = 1] + 1
4 (11)

Finally, the statement is proven by combining the equalities (5)− (11). ut

4 A SETUP Attack on the Generalized ElGamal Signature

We further introduce a new SETUP mechanism. Compared to Young-Yung’s attack, it is very easy to modify
our mechanism to allow ` out of n malicious parties to recover V ’s secret key10. The best we were able to
do, using Young-Yung’s mechanism, was to devise an ` out of ` threshold scheme11. We point out, that like
Young-Yung’s mechanism, our proposed mechanism leaks data continuously to the attacker.

4.1 Scheme Description

To implement the attack, M works in almost the same environment as in Section 2.4. Thus, we only mention
the differences between the two environments.

Signing Sessions: The possible signing sessions performed by D are described below. Let i ≥ 1.

Session0(m0, skV): To sign message m0 ∈ G, D does the following

k0
$←− Z∗q , r0 ← gk0 , s0 ← k−1

0 [h(m0)− a · h(r0)] mod q.

The value k0 is stored in D’s volatile memory until the end of Session1. Output the signature (r0, s0).

Sessioni(mi, skV , pkM): To sign message mi ∈ G, D does the following

ki ← ki−1 ·H(yki−1
M), ri ← gki , si ← k−1

i [h(mi)− a · h(ri)] mod q.

The value ki is stored in D’s volatile memory until the end of Sessioni+1. We remark that si is used as a
data carrier for M . Output the signature (ri, si).

10 We refer the reader to Section 5.
11 We refer the reader to Appendix C.

9

Recovering(mi−1,mi, ri−1, ri, si−1, si, skM): Compute α← [si ·H(rxM
i−1)]−1. Recover a by computing

a←
(
α · h(mi)− s−1

i−1 · h(mi−1)
)
·
(
α · h(ri)− s−1

i−1 · h(ri−1)
)−1 mod q.

The correctness of the Recovering algorithm can be obtained as follows. From Sessioni−1 and Sessioni,
we obtain the value of ki−1

ki−1 ≡ s−1
i−1[h(mi−1)− a · h(ri−1)] mod q (12)

ki−1 ≡ [si ·H(yki−1
M)]−1 · [h(mi)− a · h(ri)] mod q. (13)

From equalities (12) and (13) we obtain

a ·
(
α · h(ri)− s−1

i−1 · h(ri−1)
)
≡ α · h(mi)− s−1

i−1 · h(mi−1) mod q.

Using the above equality and the fact that yki−1
M = rxM

i−1, we obtain the correctness of the Recovering
algorithm.

Remark 7. Let T be an honest generator for the values r used by the Generalized ElGamal signature scheme
and let σi denote the i-th internal state and ρi = gσi the i-th output of T . The mechanism described above
can be seen as a malicious PRNG T̃ based on the honest PRNG T . We define the internal states and outputs
of T̃ by

– σ̃0 = σ0, ρ̃0 = ρ0;
– σ̃i = σ̃i−1 ·H(yσ̃i−1

M), ρ̃i = gσ̃i , where i ≥ 1.

In the case of Dual-EC, if an attacker M knows output ρ̃i−1 then he can compute the internal state σ̃i.
In the case of T̃ , computing σ̃i also requires knowledge of the previous internal state σ̃i−1. Since σ̃i−1 is
secret, the generator is not harmful on its own. But, if used to generate ephemeral keys gk for ElGamal based
signatures12, it leads to a backdoor that enables M to break the security of the system.

4.2 Security Analysis

In this section we state the security margin for our variant of the ElGamal signature SETUP. We will defer
the security proof of this scheme until the next section, since the scheme is a special case of the scheme
described in Section 5.1. We denote by GEGS the Generalized ElGamal Signature and by N − GEGS the
scheme described in the previous subsection.

Theorem 3. If the number of signatures is polynomial and hdh is hard in G then GEGS and N − GEGS
are ind-setup in the standard model. Formally, let A be an efficient PPT ind-setup adversary. There exists
an efficient algorithm B such that

ADV ind-setup
MEG,GEGS,N−GEGS(A) ≤ 4ΓADV hdh

G,g,H(B),

where Γ is the number of infected signatures.

Remark 8. Similarly to Theorem 3, we obtain that if T is a secure PRNG13, then T̃ is a secure PRNG in the
standard model.

Remark 9. As in the case of Dual-EC, it is easy to see that if in the N − GEGS scheme, we replace yM with
y′M

$←− G, the SETUP mechanism becomes benign. The security margin of the SETUP-free system remains
the same as the one stated in Theorem 3.
12 A well known vulnerability of ElGamal based signatures is that using the same k value twice, leads to secret key

recovery [14].
13 The outputs of T are computationally indistinguishable from the uniform distribution.

10

5 A Threshold SETUP Attack on the Generalized ElGamal Signature

In this section we introduce an ` out of n threshold SETUP attack, based on N − GEGS. In this secret
sharing scenario, user V is the victim of n malicious parties (denoted by {Mi}1≤i≤n) that somehow convince
the manufacturer of D to implement the described SETUP mechanism. After D signs n+ 1 messages, any
coalition of ` participants Mi can recover V ’s secret key. Once the key is obtained, V can be impersonated.
We remark that starting from signature `− 1 some coalitions of Mi can impersonate V .

5.1 Scheme Description

To ease description, we assume without loss of generality, that the first ` participants Mi decide to recover V ’s
secret key and denote by M = {mi}0≤i≤`, R = {ri}0≤i≤`, S = {si}0≤i≤`, SKM = {ski}1≤i≤`. We present
our proposed threshold SETUP scheme below.

Malicious Parties KeyGen(pp): Let H : G→ Z∗q be a hash function. For each Mi, 1 ≤ i ≤ n, choose xi
$←− Z∗q

and compute yi ← gxi . Output the public keys pki = yi. The public keys pki and H will be stored in D’s
volatile memory. The secret keys are ski = xi; they will only be known by the respective Mi and will not be
stored in the black-box.

Signing Sessions: The possible signing sessions performed by D are described below. Let 1 ≤ i ≤ n and
j > n.

Session0(m0, skV): To sign message m0 ∈ G, D does the following

k0
$←− Z∗q , r0 ← gk0 , s0 ← k−1

0 [h(m0)− a · h(r0)] mod q.

The device also chooses {fj}1≤j<` at random from Z∗q and forms the polynomial f(z) = k0 + f1 · z + . . .+
f`−1 · z`−1. The polynomial f(z) is stored in D’s volatile memory until the end of Sessionn. Output the
signature (r0, s0).

Sessioni(mi, skV , pki): To sign message mi ∈ G, D does the following

ki ← f(i) ·H(yk0
i), if f(i) 6≡ 0 mod q;

ki
$←− Z∗q , otherwise;

ri ← gki , si ← k−1
i [h(mi)− a · h(ri)] mod q.

We remark that si is used as a data carrier for Mi. Output the signature (ri, si).

Sessionj(mj , skV): To sign message mj ∈ G, D does the following

kj
$←− Z∗q , rj ← gkj , sj ← k−1

j [h(mj)− a · h(rj)] mod q.

Output the signature (rj , sj).

Recovering(M,R, S, SKM): Compute αi ← [si · H(rxi
0)]−1 and ∆i ←

∏
j 6=i

j
j−i , i, j ≤ `. Recover a by

computing

a←

(∑̀
i=1

αi · h(mi) ·∆i − s−1
0 · h(m0)

)
·

(∑̀
i=1

αi · h(ri) ·∆i − s−1
0 · h(r0)

)−1

mod q. (14)

The correctness of the Recovering algorithm can be obtained as follows. From Session0, we obtain the
value of k0

k0 ≡ s−1
0 [h(m0)− a · h(r0)] mod q. (15)

11

From Sessionsi, we obtain Mi’s share

f(i) ≡ [si ·H(yk0
i)]−1 · [h(mi)− a · h(ri)] mod q.

Using Lagrange interpolation we use the shares f(i), 1 ≤ i ≤ ` to recover k0

k0 ≡
∑̀
i=1

[si ·H(yk0
i)]−1 · [h(mi)− a · h(ri)] ·∆i mod q. (16)

From equalities (15) and (16) we obtain

a ·

(∑̀
i=1

αi · h(ri) ·∆i − s−1
0 · h(r0)

)
≡
∑̀
i=1

αi · h(mi) ·∆i − s−1
0 · h(m0) mod q.

Using the above equality and the fact that yk0
i = rxi

0 , we obtain the correctness of the Recovering algorithm.

Remark 10. The probability that key recovery is not possible due to failure is ε = 1−
(

1− 1
q

)n−`+1
. Since q

is a large prime number, we have that ε ' 0.

Remark 11. When all n participants are required to recover V ’s secret key, the scheme described in Appendix C
requires two infected signatures, while the above scheme requires n infected signatures. Thus, the scheme
described in this section is less efficient in this case. Unfortunately, we could not devise a method to extend
the scheme described in Appendix C to an ` out of n threshold scheme.

Remark 12. The mechanism described in this section requires the malicious parties to directly compute V ’s
secret key. In some cases this raises security concerns. For example, if the mechanism is used for surveillance
purposes and a warrant is issued, if V ’s secret key is directly computed, when the warrant expires V can
still be impersonated. In Appendix B we present a two party protocol extension of our scheme in order to
mitigate this issue. We could not find an extension for the scheme described in Appendix C.

Remark 13. In the scheme described above, D plays the role of a trusted dealer, that leaks the shares using
a subliminal channel to the n participants. This design choice was made in order to minimize communication
between the malicious parties. The only moment when the participants communicate is when ` of them want
to recover V ’s secret key.

Another possible scenario, was to use a secret sharing protocol with or without a trusted dealer between
the n parties. After the participants agree on a shared public key yM = gxM , the manufacturer implements, for
example, the mechanism described in Section 2.414. Note that this approach works without any modifications
to the SETUP mechanism.

Remark 14. Let P be an honest generator for the values r used by the Generalized ElGamal signature scheme
and let σi denote the i-th internal state and ρi = gσi the i-th output of P . The mechanism described above
can be seen as a malicious PRNG P̃ based on the honest PRNG P . We define the internal states and outputs
of P̃ by

– σ̃0 = σ0, ρ̃0 = ρ0;
– σ̃i = f(i) ·H(yσ0

i), ρ̃i = gσ̃i , where f(z) = σ0 + σ1 · z + . . .+ σ`−1 · z`−1 and 1 ≤ i ≤ n;
– σ̃j = σj , ρ̃j = ρj , where j > n.

Because σ0 and σj , where j > n, are identical for P and P̃ generator P̃ remains unpredictable. In the case
1 ≤ i ≤ n, a group of ` malicious parties can prove that their ρ̃i are not random, but they cannot compute
P̃ ’s internal states. Thus, when used on its own P̃ is mostly harmless. Unfortunately, if it is used to generate
r for ElGamal based signatures, then ` malicious parties can recover the V ’s secret key.
14 that uses yM

12

5.2 Security Analysis
In this subsection we prove that the threshold version described above, denoted S − GEGS, is indistinguishable
from GEGS if the attacker corrupted at most `− 1 out of n malicious parties Mi.
Theorem 4. If hdh is hard in G then GEGS and S − GEGS are ind-setup in the standard model as long as
at most `− 1 malicious parties are corrupted by A. Formally, let A be an efficient PPT ind-setup adversary.
There exists an efficient algorithm B such that

ADV ind-setup
MEG,GEGS,S−GEGS(A) ≤ 4(n− `+ 1)ADV hdh

G,g,H(B).

Proof. Let A be an ind-setup adversary that is trying to distinguish between GEGS and S − GEGS. A has
access to “random coins” sampled uniformly from a set R. Without loss of generality, we further assume that
A has corrupted the first `− 1 malicious participants.

a
$←− Z∗q , y ← ga, x1, . . . , xn

$←− Z∗q , y1 ← gx1 , . . . , yn ← gxn ,

L1 ←
(
∪`−1
i=1{xi}

)
∪ (∪ni=1{yi}) , i← 0;

C0(a,m) : k $←− Z∗q , r ← gk, s← k−1[h(m)− a · h(r)];
C1(a,m) : k $←− Z∗q , k0 ← k, f1, . . . , f`−1

$←− Z∗q , if i = 0,
k ← f(i) ·H(yk0

i), if 0 < i ≤ n and f(i) 6≡ 0 mod q,
k

$←− Z∗q , otherwise,
r ← gk, s← k−1[h(m)− a · h(r)], i← i+ 1;
b

$←− {0, 1}, ρ $←− R, b′ ← ACb(a,·)(ρ, y,L1).

Fig. 5. The ind-setup game.

Figure 5 describes the ind-setup game. The first and second rows set up the public keys. Then the GEGS
and S − GEGS oracles are described. The challenger then flips a bit b and reveals oracle Cb. A then computes
its guess b′ for b. A wins if b = b′.

We proceed by modifying oracle C1 (described in Figure 5) into oracle C2 (described in Figure 6). The
only difference between the two oracles is that in C2 the values ki, 0 < i ≤ `− 1, are chosen at random. Since
Shamir’s secret sharing scheme is information theoretically secure, an adversary cannot distinguish between
C1 and C2.

C2(a,m) : k $←− Z∗q , k0 ← k, f1, . . . , f`−1
$←− Z∗q , if i = 0,

k ← f(i) ·H(yk0
i), if ` ≤ i ≤ n and f(i) 6≡ 0 mod q,

k
$←− Z∗q , otherwise,

r ← gk, s← k−1[h(m)− a · h(r)], i← i+ 1.

Fig. 6. Oracle C2.

SinceMEG is ind$ an adversary cannot distinguish between C0 and C2. Note that the number of k values
that A has to distinguish is n− `+ 1. Thus, we obtain the security margin. ut
Remark 15. Similarly to Theorem 4, we obtain that if P is a secure PRNG, then P̃ is a secure PRNG in the
standard model.
Remark 16. As in the case of Dual-EC, it is easy to see that if in the S − GEGS scheme, we replace yi with
y′i

$←− G, 1 ≤ i ≤ n, the SETUP mechanism becomes benign. The security margin of the SETUP-free system
remains the same as the one stated in Theorem 4.

13

6 Other Applications

The schemes described in Section 5 and Appendix C can either directly be used on other signatures (e.g.
variations of the Generalized ElGamal signature [46], Pointcheval-Stern signature [57]) or indirectly, i.e. some
work must be done to recover gk (e.g. Schnorr signature [60] - see Example 1, DSA [28]).

Example 1. To be more precise, we describe the method used in the case of Schnorr signatures. We place
ourselves in the subgroup of order q generated by a g ∈ Z∗p, where p is prime. The signature generation
algorithm is

k
$←− Z∗q , r ← h(gk||m), s← a · r + k mod q.

In order to recover gk, one must compute

gs · y−r ≡ gs−ar ≡ gk.

After finding a method to recover gk, either directly or by computing it from the signature, it is fairly easy
to use the methods described in Section 5 and Appendix C. All the signatures presented in this section either
have gk directly embedded in them or the recovering mechanism is similar to the one presented in Example 1.

Some signature schemes that can be tampered with and also have the same security as S − GEGS
are: variations of the Generalized ElGamal signature [46], ECDSA [4], ECDSA variants [45], Katz-Wang
signature [38], KCDSA [42], Elliptic Curve GOST [25], EDL signature Goh-Jarecki variant [34], EDL signature
Chevallier variant [17] and Elliptic Curve Nyberg-Rueppel [48].

If G is generated by an element g ∈ Z∗p of order q, we can apply the same methods and obtain security in the
standard model15 for the following algorithms: DSA [28], GOST [47], Nyberg-Rueppel [52], Nyberg-Rueppel
IEEE variant [48], Pointcheval-Stern signature [57], Schnorr signature [60] and Girault-Poupard-Stern (GPS)
signature [33], if parameter A used by the GPS signature is prime.

Schnorr [60] and Girault-Poupard-Stern signatures [33] are derived from identification schemes. As a
consequence, we can apply similar methods to infect these identification schemes and compromise V ’s secret
key. Another identification scheme that offers the possibility of embedding a secret trapdoor is Okamoto’s
scheme [53].

Signcrypt algorithms [72,73] use a variation of the ElGamal signature in order to authenticate messages
and use a key derivation function based on the recipient’s secret key in order to encrypt messages. So, if we
embed the threshold SETUP mechanism in the signature and manage to recover the signer’s secret key, then
we can also decrypt all the messages that the signer receives.

Changing the setting to identity based signatures (IBS), we observe that Cha-Cheon IBS [18], Hess
IBS [37] and Paterson IBS [55] can be infected and the resulting schemes are secure in ROM15. A signature
that can be tampered with and obtain the same security as S − GEGS, is Bellare-Namprempre-Neven IBS [9].
This signature offers an extra feature, we can also modify the extraction algorithm, permitting ` out of n
legitimate users to obtain the master key (used by the central authority to generate keys for any legitimate
user).

When random numbers are not available or of questionable quality (e.g. malicious RNG), one may use
deterministic signatures. One such example is the deterministic variant of the Schnorr signature scheme
introduced in [50]. The authors suggest to choose k ← h(κ,m, pp), where κ is a fixed secret. Unfortunately,
this approach does not protect V . When implementing a SETUP attack for this scheme, we must ensure the
same functionality as in the SETUP-free version (i.e. signing the same message multiple times yields the
same signature). In the following we give two attacks for this deterministic signature. In the first attack, a
malicious party replaces κ by κ′ ← H(yaM) and recovers V’s secret key by computing a← h(r)−1[h(m)−k · s].
This attack can be easily extended to an ` out of ` attack16, but we were not able to extend it to an ` out of
n attack. In the second attack, D stores a list L containing the messages received as input and the associated
15 We refer the reader to Remark 1.
16 We refer the reader to Appendix C.

14

signatures. When a message m is received, D will first search m in L. If m is found, D will return the stored
signature, else it will generate a new infected signature. If D runs out of memory, it reverts to k ← h(κ,m, pp).
To save memory an attacker could, for example, restrict D to maliciously signing only short messages.

7 Countermeasures

An intuitive protection against SETUP attacks is to use multiple devices manufactured by different companies.
The underlying intuition is that it is less likely to corrupt all the vendors at the same time. Thus, by signing
the same document with independent devices, the user has high confidence that at least one private key is
not leaked to the attackers. Unfortunately, this intuitive protection comes with a performance cost (increased
length of the signature and longer verification time).

In [5], the authors show that unique signatures schemes17 are secure against subversion algorithms that
satisfy the verifiability condition17. The SETUP mechanisms described in Section 5 and in Appendix C meet
the verifiability condition, thus unique signature schemes are secure against these mechanisms. If device D
uses a re-randomizable signature scheme17, then another method of protection is the usage of an external
un-tamperable cryptographic reverse firewall17. The role of the external device is to prevent data exfiltration,
while maintaining functionality and preserve security. The reverse firewall fulfills these requirements by
re-randomizing the signature. By using such a device, V protects himself from our mechanisms.

A more general approach to subversion resistant signatures may be found in [58, 59]. The authors
propose splitting every generation algorithm into two parts: a random string generation algorithm RG and
a deterministic algorithm DG. The deterministic algorithm can be tested extensively, thus ensuring that
it is almost consistent with the specifications. This forces the malicious parties to concentrate their efforts
on the RG algorithm. To ensure that any backdoor implemented in the RG algorithm does not affect the
deterministic part, the authors use two RG algorithms, concatenate the outputs and hash them, before
passing the data to DG. Since we use a backdoor in the generator to leak information about the secret key,
the immunization techniques proposed in [58,59] protect the user against our proposed mechanisms.

Another method to counter these SETUP attacks is to use threshold signatures. We could not find any
reference or devise a method to apply SETUP mechanisms to this setting. Some examples of threshold
signatures are: threshold Schnorr signature scheme [65], threshold DSS signature [30] and threshold signature
schemes for ElGamal variants [39].

A variation of the Schnorr identification scheme is presented in [40]. The author proves that the modified
scheme is secure when the ephemeral key k is chosen by an attacker, if gdh18 is hard in the underlying group
G. A variant of the Okamoto identification scheme is introduced in [40] and proven secure, under the same
assumptions [41]. Since s is never sent in clear, only g̃s is sent, for some g̃, we cannot recover the secret key
by forcing a collision for k. Thus, our proposed mechanisms do not work for these variants. Applying the
Fiat-Shamir transform [27], we obtain signatures schemes that are also secure against our attacks.

In [36], the authors introduce a deterministic method for controlling a PRNG implemented in a black-box
device. The idea is to let the user install a blinding factor U = gu in the device. The user keeps the value u
secret. After a successful installation, the device will start generating pseudorandom numbers. Each time
a number is generated, the device will also output some control data (r′, i). Using (r′, i) and u, the user
can check if the device is attempting to cheat. Thus, no manufacturer will risk implementing our proposed
mechanisms.

8 Conclusions

In this paper we introduced two threshold SETUP mechanisms that allow a group of malicious parties
to recover a user’s secret key. We adapted Shamir’s secret sharing scheme [61] and the Hashed ElGamal
encryption scheme [62] in order to infect the Generalized ElGamal signature scheme [46]. Depending on the
17 See Appendix A for a definition of the concept.
18 i.e. in G ddh can be solved in polynomial time, but cdh is hard

15

underlying group of the signature scheme, we prove that our proposed schemes are secure in the standard or
random oracle model.

As an application of the devised threshold SETUP methods, we present other schemes that can be modified
in order to recover a user’s secret key. We, also provide countermeasures for the mechanisms described in
Section 5 and in Appendix C.

Future Work. An interesting area of research would consist in finding a method to extend SETUP attacks
applied to encryption schemes to threshold SETUP attacks. Also, it would be interesting to see if one can
mount a successful SETUP attack or threshold SETUP attack if threshold signature schemes are used.

In Appendix C we describe an ` out of ` threshold SETUP mechanism that uses only two sessions in
order to recover V ’s secret key. An extension to ` out of n would be more efficient than the approach from
Section 5.1.

Acknowledgments

The author would like to thank Adrian Atanasiu, Alejandro Hevia , Tanja Lange, Diana Maimuţ and Ferucio
Laurenţiu Ţiplea, and the anonymous reviewers for their helpful comments.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: DHAES: An Encryption Scheme Based on the Diffie-Hellman Problem.
IACR Cryptology ePrint Archive 1999/7 (1999)

2. Abdalla, M., Bellare, M., Rogaway, P.: The Oracle Diffie-Hellman Assumptions and an Analysis of DHIES. In:
CT-RSA 2001. Lecture Notes in Computer Science, vol. 2020, pp. 143–158. Springer (2001)

3. Albertini, A., Aumasson, J.P., Eichlseder, M., Mendel, F., Schläffer, M.: Malicious Hashing: Eve’s Variant of
SHA-1. In: SAC 2014. Lecture Notes in Computer Science, vol. 8781, pp. 1–19. Springer (2014)

4. Association, A.B., et al.: Working Draft: American National Standard X9. 62-1998 Public Key Cryptography for
the Financial Services Industry (1998)

5. Ateniese, G., Magri, B., Venturi, D.: Subversion-Resilient Signature Schemes. In: ACM-CCS 2015. pp. 364–375.
ACM (2015)

6. Ball, J., Borger, J., Greenwald, G.: Revealed: How US and UK Spy Agencies Defeat Internet Privacy and Security.
The Guardian 6 (2013)

7. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-Privacy in Public-Key Encryption. In: ASIACRYPT
2001, Lecture Notes in Computer Science, vol. 2248, pp. 566–582. Springer (2001)

8. Bellare, M., Jaeger, J., Kane, D.: Mass-Surveillance without the State: Strongly Undetectable Algorithm-
Substitution Attacks. In: ACM-CCS 2015. pp. 1431–1440. ACM (2015)

9. Bellare, M., Namprempre, C., Neven, G.: Security Proofs for Identity-Based Identification and Signature Schemes.
Journal of Cryptology 22(1), 1–61 (2009)

10. Bellare, M., Paterson, K.G., Rogaway, P.: Security of Symmetric Encryption Against Mass Surveillance. In:
CRYPTO 2014. Lecture Notes in Computer Science, vol. 8616, pp. 1–19. Springer (2014)

11. Bellare, M., Rogaway, P.: Minimizing the Use of Random Oracles in Authenticated Encryption Schemes. In: ICICS
1997. Lecture Notes in Computer Science, vol. 1334, pp. 1–16. Springer (1997)

12. Bellare, M., Rogaway, P.: Introduction to Modern Cryptography. UCSD CSE 207, 207 (2005)
13. Bernstein, D.J., Lange, T., Niederhagen, R.: Dual EC: A Standardized Back Door. In: The New Codebreakers,

Lecture Notes in Computer Science, vol. 9100, pp. 256–281. Springer (2016)
14. Cantero, H.M., Peter, S., Bushing, S.: Console Hacking 2010–PS3 Epic Fail. In: 27th Chaos Communication

Congress (2010)
15. Checkoway, S., Maskiewicz, J., Garman, C., Fried, J., Cohney, S., Green, M., Heninger, N., Weinmann, R.P.,

Rescorla, E., Shacham, H.: A Systematic Analysis of the Juniper Dual EC Incident. In: ACM-CCS 2016. pp.
468–479. ACM (2016)

16. Checkoway, S., Niederhagen, R., Everspaugh, A., Green, M., Lange, T., Ristenpart, T., Bernstein, D.J., Maskiewicz,
J., Shacham, H., Fredrikson, M.: On the Practical Exploitability of Dual EC in TLS Implementations. In: USENIX
Security Symposium. pp. 319–335. USENIX Association (2014)

16

17. Chevallier-Mames, B.: An Efficient CDH-Based Signature Scheme with a Tight Security Reduction. In: CRYPTO
2005. Lecture Notes in Computer Science, vol. 3621, pp. 511–526. Springer (2005)

18. Choon, J.C., Cheon, J.H.: An Identity-Based Signature from Gap Diffie-Hellman Groups. In: PKC 2003. Lecture
Notes in Computer Science, vol. 2567, pp. 18–30. Springer (2003)

19. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer Science &
Business Media (2013)

20. Degabriele, J.P., Farshim, P., Poettering, B.: A More Cautious Approach to Security Against Mass Surveillance.
In: FSE 2015. Lecture Notes in Computer Science, vol. 9054, pp. 579–598. Springer (2015)

21. Degabriele, J.P., Paterson, K.G., Schuldt, J.C., Woodage, J.: Backdoors in Pseudorandom Number Generators:
Possibility and Impossibility Results. In: CRYPTO 2016. Lecture Notes in Computer Science, vol. 9814, pp.
403–432. Springer (2016)

22. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A Formal Treatment of Backdoored Pseudorandom
Generators. In: EUROCRYPT 2015. Lecture Notes in Computer Science, vol. 9056, pp. 101–126. Springer (2015)

23. Dodis, Y., Gennaro, R., Håstad, J., Krawczyk, H., Rabin, T.: Randomness Extraction and Key Derivation Using
the CBC, Cascade and HMAC Modes. In: CRYPTO 2004. Lecture Notes in Computer Science, vol. 3152, pp.
494–510. Springer (2004)

24. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message Transmission with Reverse Firewalls—Secure Communi-
cation on Corrupted Machines. In: CRYPTO 2016. Lecture Notes in Computer Science, vol. 9814, pp. 341–372.
Springer (2016)

25. Dolmatov, V., Degtyarev, A.: GOST R 34.10-2012: Digital Signature Algorithm (2013)
26. ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE

Transactions on Information Theory 31(4), 469–472 (1985)
27. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In:

CRYPTO 1986. Lecture Notes in Computer Science, vol. 263, pp. 186–194. Springer (1986)
28. FIPS, P.: 186-4. Digital Signature Standard (DSS) (2013)
29. Fried, J., Gaudry, P., Heninger, N., Thomé, E.: A Kilobit Hidden SNFS Discrete Logarithm Computation. In:

EUROCRYPT 2017. Lecture Notes in Computer Science, vol. 10210, pp. 202–231. Springer (2017)
30. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust Threshold DSS Signatures. In: EUROCRYPT 1996.

Lecture Notes in Computer Science, vol. 1070, pp. 354–371. Springer (1996)
31. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure Distributed Key Generation for Discrete-Log Based

Cryptosystems. In: EUROCRYPT 1999. Lecture Notes in Computer Science, vol. 1592, pp. 295–310. Springer
(1999)

32. Gennaro, R., Krawczyk, H., Rabin, T.: Secure Hashed Diffie-Hellman over Non-DDH Groups. In: EUROCRYPT
2004. Lecture Notes in Computer Science, vol. 3027, pp. 361–381. Springer (2004)

33. Girault, M., Poupard, G., Stern, J.: On the Fly Authentication and Signature Schemes Based on Groups of
Unknown Order. Journal of Cryptology 19(4), 463–487 (2006)

34. Goh, E.J., Jarecki, S.: A Signature Scheme as Secure as the Diffie-Hellman Problem. In: EUROCRYPT 2003,
Lecture Notes in Computer Science, vol. 2656, pp. 401–415. Springer (2003)

35. Gordon, D.: Designing and Detecting Trapdoors for Discrete Log Cryptosystems. In: CRYPTO 1992. Lecture
Notes in Computer Science, vol. 740, pp. 66–75. Springer (1993)

36. Hanzlik, L., Kluczniak, K., Kutyłowski, M.: Controlled Randomness - A Defense against Backdoors in Cryptographic
Devices. In: MyCrypt 2016. Lecture Notes in Computer Science, vol. 10311, pp. 215–232. Springer (2016)

37. Hess, F.: Efficient Identity Based Signature Schemes Based On Pairings. In: SAC 2002. Lecture Notes in Computer
Science, vol. 2595, pp. 310–324. Springer (2002)

38. Katz, J., Wang, N.: Efficiency Improvements for Signature Schemes With Tight Security Reductions. In: ACM-CCS
2003. pp. 155–164. ACM (2003)

39. Kim, S., Kim, J., Cheon, J.H., Ju, S.H.: Threshold Signature Schemes for ElGamal Variants. Computer Standards
& Interfaces 33(4), 432–437 (2011)

40. Krzywiecki, Ł.: Schnorr-Like Identification Scheme Resistant to Malicious Subliminal Setting of Ephemeral Secret.
In: SECITC 2016. Lecture Notes in Computer Science, vol. 10006, pp. 137–148. Springer (2016)

41. Krzywiecki, Ł., Kutylowski, M.: Security of Okamoto Identification Scheme: a Defense against Ephemeral Key
Leakage and Setup. In: ACM-SCC@ASIACCS 2017. pp. 43–50. ACM (2017)

42. Lim, C.H., Lee, P.J.: A Study on the Proposed Korean Digital Signature Algorithm. In: ASIACRYPT 1998.
Lecture Notes in Computer Science, vol. 1514, pp. 175–186. Springer (1998)

43. Lindell, Y.: Fast Secure Two-Party ECDSA Signing. In: CRYPTO 2017. Lecture Notes in Computer Science, vol.
10402, pp. 613–644. Springer (2017)

17

44. Maimuţ, D., Teşeleanu, G.: Secretly Embedding Trapdoors into Contract Signing Protocols. In: SECITC 2017.
Lecture Notes in Computer Science, vol. 10543. Springer (2017)

45. Malone-Lee, J., Smart, N.P.: Modifications of ECDSA. In: SAC 2002. Lecture Notes in Computer Science, vol. 2595,
pp. 1–12. Springer (2002)

46. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC press (1996)
47. Michels, M., Naccache, D., Petersen, H.: GOST 34.10-A Brief Overview of Russia’s DSA. Computers & Security

15(8), 725–732 (1996)
48. Microprocessor, Committee, M., et al.: IEEE Standard Specifications for Public-Key Cryptography. IEEE

Computer Society (2000)
49. Mironov, I., Stephens-Davidowitz, N.: Cryptographic Reverse Firewalls. In: ASIACRYPT 2015. Lecture Notes in

Computer Science, vol. 9057, pp. 657–686. Springer (2015)
50. M’Raïhi, D., Naccache, D., Pointcheval, D., Vaudenay, S.: Computational Alternatives to Random Number

Generators. In: SAC 1998. Lecture Notes in Computer Science, vol. 1556, pp. 72–80. Springer (1998)
51. Naor, M., Reingold, O.: Number-Theoretic Constructions of Efficient Pseudo-Random Functions. Journal of the

ACM (JACM) 51(2), 231–262 (2004)
52. Nyberg, K., Rueppel, R.A.: A New Signature Scheme Based on the DSA Giving Message Recovery. In: ACM-CCS

1993. pp. 58–61. ACM (1993)
53. Okamoto, T.: Provably Secure and Practical Identification Schemes and Corresponding Signature Schemes. In:

CRYPTO 1992. Lecture Notes in Computer Science, vol. 740, pp. 31–53. Springer (1992)
54. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Eurocrypt 1999.

Lecture Notes in Computer Science, vol. 1592, pp. 223–238. Springer (1999)
55. Paterson, K.G.: ID-Based Signatures from Pairings on Elliptic Curves. Electronics Letters 38(18), 1025–1026

(2002)
56. Perlroth, N., Larson, J., Shane, S.: NSA Able to Foil Basic Safeguards of Privacy on Web. The New York Times 5

(2013)
57. Pointcheval, D., Stern, J.: Security Proofs For Signature Schemes. In: EUROCRYPT 1996. Lecture Notes in

Computer Science, vol. 1070, pp. 387–398. Springer (1996)
58. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Cliptography: Clipping the power of kleptographic attacks. In:

ASIACRYPT 2016. Lecture Notes in Computer Science, vol. 10032, pp. 34–64. Springer (2016)
59. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Destroying Steganography via Amalgamation: Kleptographically

CPA Secure Public Key Encryption. IACR Cryptology ePrint Archive 2016/530 (2016)
60. Schnorr, C.P.: Efficient Identification and Signatures For Smart Cards. In: CRYPTO 1989. Lecture Notes in

Computer Science, vol. 435, pp. 239–252. Springer (1989)
61. Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613 (1979)
62. Shoup, V.: Sequences of Games: A Tool for Taming Complexity in Security Proofs. IACR Cryptology ePrint

Archive 2004/332 (2004)
63. Simmons, G.J.: The Subliminal Channel and Digital Signatures. In: EUROCRYPT 1984. Lecture Notes in

Computer Science, vol. 209, pp. 364–378. Springer (1984)
64. Simmons, G.J.: Subliminal Communication is Easy Using the DSA. In: EUROCRYPT 1993. Lecture Notes in

Computer Science, vol. 765, pp. 218–232. Springer (1993)
65. Stinson, D.R., Strobl, R.: Provably Secure Distributed Schnorr Signatures and a (t, n) Threshold Scheme for

Implicit Certificates. In: ACISP 2001. Lecture Notes in Computer Science, vol. 2119, pp. 417–434. Springer (2001)
66. Vazirani, U.V., Vazirani, V.V.: Trapdoor Pseudo-random Number Generators, with Applications to Protocol

Design. In: FOCS 1983. pp. 23–30. IEEE (1983)
67. Young, A., Yung, M.: The Dark Side of “Black-Box” Cryptography or: Should We Trust Capstone? In: CRYPTO

1996. Lecture Notes in Computer Science, vol. 1109, pp. 89–103. Springer (1996)
68. Young, A., Yung, M.: Kleptography: Using Cryptography Against Cryptography. In: EUROCRYPT 1997. Lecture

Notes in Computer Science, vol. 1233, pp. 62–74. Springer (1997)
69. Young, A., Yung, M.: The Prevalence of Kleptographic Attacks on Discrete-Log Based Cryptosystems. In:

CRYPTO 1997. Lecture Notes in Computer Science, vol. 1294, pp. 264–276. Springer (1997)
70. Young, A., Yung, M.: Malicious Cryptography: Exposing Cryptovirology. John Wiley & Sons (2004)
71. Young, A., Yung, M.: Malicious Cryptography: Kleptographic Aspects. In: CT-RSA 2005, Lecture Notes in

Computer Science, vol. 3376, pp. 7–18. Springer (2005)
72. Zheng, Y.: Digital Signcryption or How to Achieve Cost (Signature & Encryption) � Cost (Signature)+ Cost

(Encryption). In: CRYPTO 1997, Lecture Notes in Computer Science, vol. 1294, pp. 165–179. Springer (1997)
73. Zheng, Y., Imai, H.: How to Construct Efficient Signcryption Schemes on Elliptic Curves. Information Processing

Letters 68(5), 227–233 (1998)
74. Zheng, Y., Seberry, J.: Immunizing Public Key Cryptosystems Against Chosen Ciphertext Attacks. IEEE Journal

on Selected Areas in Communications 11(5), 715–724 (1993)

18

A Additional Preliminaries

Definition 10 (Entropy Smoothing - es). Let G be a cyclic group of order q, K the key space and
H = {hi}i∈K a family of keyed hash functions, where each hi maps G to Z∗q . Let A be a PPT algorithm which
returns 1 on input (i, y) if y = hi(z), where z is chosen at random from G. Also, let We define the advantage

ADV es
H(A) = |Pr[A(i, hi(z)) = 1|i $←− K, z $←− G]− Pr[A(i, h) = 1|i $←− K, h $←− Z∗q]|.

If ADV es
H(A) is negligible for any PPT algorithm A, we say that H is Entropy Smoothing.

Remark 17. In [23], the authors prove that CBC-MAC, HMAC and Merkle-Damgård constructions satisfy
the above definition, as long as the underlying primitives satisfy some security properties.

Definition 11 (Unique Signature Scheme). Let S be a signature scheme and pk be a public key generated
by the KeyGen algorithm of S. We say that S is a Unique Signature Scheme if for any message m and any
signatures of m, σ1 6= σ2

Pr[Verification(m,σ1, pk) = Verification(m,σ2, pk) = true]

is negligible.

Definition 12 (Re-Randomizable Signature Scheme). Let S be a signature scheme and (pk, sk) be a
public/secret key pair generated by the KeyGen algorithm of S. We say that S is a Re-Randomizable Signature
Scheme if there exists a PPT algorithm ReRand such that for all messages m the output of ReRand(m,σ, pk)
is statistically indistinguishable from Sign(m, sk).

Definition 13 (Verifiability Condition). Let A be a subversion algorithm for a signature scheme S. Let
pk be a public key generated by the KeyGen algorithm of S. We say A satisfies the verifiability condition if
for all messages m and all signatures generated by A for message m

Pr[it Verification(m,σ, pk) = 1] (17)

is non-negligible.

Definition 14 (Reverse Firewall). Let S be a signature scheme and pk be a public key generated by the
KeyGen algorithm of S. A Reverse Firewall for S consists of two algorithms: KeyGen and Patch. The first
algorithm takes as input a security parameter and pk and outputs some initial state. The last algorithm takes
as input the current state and a message/signature pair and outputs a modified signature or a special symbol
⊥ and an updated state.

B Two-Party Malicious Signing

In [43], the author introduces a two-party protocol for signing with ECDSA. Based on this idea, we sketch a
protocol that extends S − GEGS. Using this extension, two malicious parties M1 and M2 can impersonate V
without explicitly computing skV .

As the Paillier cryptosystem [54] is later used in the protocol, we shortly describe its homomorphic
properties. We denote the public and private key pair of M1 by (pkp, skp), Paillier encryption by Enc(pkp, ·)
and Paillier decryption by Dec(skp, ·). Let n be a large composite number in the Paillier scheme sense,
c1 ← Enc(pkp,m1) and c2 ← Enc(pkp,m2), where messages m1,m2 ∈ Zn. The upcoming properties hold

– the addition of m1 and m2 modulo n (represented by c1 ⊕ c2 in the current section):
Dec(skp, c1c2 mod n2) = m1 +m2 mod n;

– the multiplication of m1 by a constant t modulo n (represented by t� c1 in the current section):
Dec(skp, ct1 mod n2) = tm1 mod n.

19

Before the malicious signing protocol can start, the two parties must agree on the protocol’s parameters.
In Figure 7 we present the parameters agreement protocol. The protocol uses an ideal commitment scheme
and an ideal non-interactive zero-knowledge proof. For concrete instantiation of the two, we refer the reader
to [43].

M1 M2

α1 α2

Q← gα1

Compute dl proof π1.
Generate a Paillier key-pair (pkp, skp).
Generate a proof π2 that pkp

is generated correctly.
ckey ← Enc(pkp, α1)
Generate a proof π3 of a dl in ckey.

Q,π1,π2,π3−−−−−−−−−−−→
Verify proofs π1, π2 and π3.
If false abort, else store ckey.

Fig. 7. Parameters Generation.

Let m3 be the message that M1 wants to sign. By combining equation (14) with the GEGS signing
operation we obtain the following equation for malicious signing m3

s3 ← k−1
3 ξ−1

1 [ξ1 · h(m3)− ξ2 · h(r3)] mod q, (18)

where

ξ1 ←

(2∑
i=1

αi · h(ri) ·∆i − s−1
0 · h(r0)

)
and ξ2 ←

(2∑
i=1

αi · h(mi) ·∆i − s−1
0 · h(m0)

)
.

In Figure 8 we describe in detail the two-party protocol for signing m3. To simplify the protocol, instead of
h(m) and h(r) we simply write m and r. As in Figure 7, we use a commitment scheme and a zero knowledge
protocol.

We can observe that, by using ckey and the homomorphic properties of the Paillier cryptosystem, M2 can
encrypt u1 ← k33ξ1 and u2 ← k−1

34 [ξ1 · h(m3)− ξ2 · h(r3)]. After M1 receives the ciphertexts, it decrypts them
and computes k31u1 and k32u3. Now, M1 can compute m3’s signature (r3, s3), where k3 ← k31k32k33k34.

C An ` out of ` Threshold Attack on the Generalized ElGamal Signature

In this section, we introduce an ` out of ` threshold version of the Young-Yung SETUP mechanism. In this
particular case, the proposed scheme is more efficient than the one proposed in Section 5.

C.1 Scheme Description

To implement their attack, the ` malicious parties work in almost the same environment as in Section 5.
Thus, we only mention the differences between the environments. We denote by PKM = {pki}1≤i≤` and
present these changes below.

20

M1 M2

m3, α1 m3, α2, ckey

k31, k32
$←− Z∗q

R1 ← gk31k32

Compute dl proof π1.
Compute commit τ to R1, π1.

τ−−−−−−−−−−−→

k33, k34
$←− Z∗q

R2 ← gk33k34

Compute dl proof π2.
R2,π2←−−−−−−−−−−−

Verify proof π2.
If false abort.

R1,π1−−−−−−−−−−−→
Verify commit τ and proof π1.
If false abort.
r3 ← Rk33k34

1

ρ1, ρ2
$←− Z∗q2

v1 ← α2r2∆2 − s−1
0 r0 mod q

c1 ← Enc(pkp, (k33v1 mod q) + ρ1q)
v2 ← k33r1∆1 mod q
c2 ← v2 � ckey and c3 ← c1 ⊕ c2
v3 ← r3(α2m2∆2 − s−1

0 m0) mod q
v4 ← k−1

34 (m3v1 − v3) mod q
c4 ← Enc(pkp, v4 + ρ2q)
v5 ← k−1

34 (m3r1∆1 − r3m1∆1) mod q
c5 ← v5 � ckey and c6 ← c4 ⊕ c5

c3,c6←−−−−−−−−−−−
r3 ← Rk31k32

2
u1 ← Dec(skp, c3)
u2 ← k31u1 mod q
u3 ← Dec(skp, c6)
s3 ← k−1

32 u
−1
1 u3 mod q

Verify signature (r3, s3).
If false abort, else output (r3, s3).

Fig. 8. Two-Party Malicious Signing.

Signing Sessions: The possible signing sessions performed by D are described below. Let i ≥ 1.

Session0(m0, skV): To sign message m0 ∈ G, D does the following

k0
$←− Z∗q , r0 ← gk0 , s0 ← k−1

0 [h(m0)− a · h(r0)].

The value k0 is stored in D’s volatile memory until the end of Session1. Output the signature (r0, s0).

Sessioni(mi, skV , PKM): To sign message mi ∈ G, D does the following

zi ← (y1 · . . . · y`)ki−1 , ki ← H(zi), ri ← gki , si ← k−1
i [h(mi)− a · h(ri)].

The value ki is stored in D’s volatile memory until the end of Sessioni+1. Output the signature (ri, si).

21

Recovering(mi, ri−1, ri, si, SKM): Compute αi ← rxi
i−1 and ki ← H(α1 · . . . · α`). Recover a by computing

a← h(ri)−1[h(mi)− ki · si)].

Remark 18. Let Q be an honest generator for the values r used by the Generalized ElGamal signature scheme
and let σi denote the i-th internal state and ρi = gσi the i-th output of Q. The mechanism described above
can be seen as a malicious PRNG Q̃ based on the honest PRNG Q. We define the internal states and outputs
of Q̃ by

– σ̃0 = σ0, ρ̃0 = ρ0;
– σ̃i = H(zi), ρ̃i = gσ̃i , where zi ← (y1 · . . . · y`)σ̃i−1 , i ≥ 1.

Unlike P̃ from Remark 14, Q̃ can be harmful by itself19. A coalition of ` malicious parties that know an
output ρ̃i−1 can compute the next internal state σ̃i. Q̃ is a threshold variant of the generator described in
Remark 5.

C.2 Security Analysis

In this subsection we show that the scheme described above, denoted F − GEGS, cannot be distinguished
from GEGS if adversary A corrupted at most `− 1 malicious parties Mi.

Theorem 5. If the number of signatures is polynomial and hdh is hard in G then GEGS and F − GEGS
are ind-setup in the standard model as long as at most `− 1 malicious parties are corrupted by A. Formally,
let A be an efficient PPT ind-setup adversary. There exists an efficient algorithm B such that

ADV ind-setup
MEG,GEGS,F−GEGS(A) ≤ 4ΓADV hdh

G,g,H(B),

where Γ is the number of infected signatures.

Proof. Let A be an ind-setup adversary that is trying to distinguish between GEGS and F − GEGS. A has
access to “random coins” sampled uniformly from a set R. Without loss of generality, we further assume that
A has corrupted the first `− 1 malicious participants.

a
$←− Z∗q , y ← ga, x1, . . . , x`

$←− Z∗q , y1 ← gx1 , . . . , y` ← gx` ,

L1 ←
(
∪`−1
i=1{xi}

)
∪
(
∪`i=1{yi}

)
, i← 1;

C0(a,m) : k $←− Z∗q , r ← gk, s← k−1[h(m)− a · h(r)];
C1(a,m) : k0

$←− Z∗q , if i = 0,
zi ← (y1 · . . . · y`)ki−1 , ki ← H(zi), if 1 ≤ i ≤ Γ,
r ← gki , s← k−1

i [h(m)− a · h(r)], i← i+ 1;
b

$←− {0, 1}, ρ $←− R, b′ ← ACb(a,·)(ρ, y,L1).

Fig. 9. The ind-setup game.

Figure 9 describes the ind-setup game. The first and second rows set up the public keys. Then the GEGS
and F − GEGS oracles are described. The challenger then flips a bit b and reveals oracle Cb. A then computes
its guess b′ for b. A wins if b = b′.

19 i.e not only when used with ElGamal based signatures

22

a
$←− Z∗q , y ← ga, x1, . . . , x`

$←− Z∗q , y1 ← gx1 , . . . , y` ← gx` ,

xt
$←− Z∗q , yt ← gxt ,L1 ←

(
∪`−1
i=1{xi}

)
∪
(
∪`i=1{yi}

)
, i← 1;

C0(a,m) : k $←− Z∗q , r ← gk, s← k−1[h(m)− a · h(r)];
C1(a,m) : k0

$←− Z∗q , if i = 0,
zi ← y

ki−1
t , ki ← H(zi), if 1 ≤ i ≤ Γ,

r ← gki , s← k−1
i [h(m)− a · h(r)], i← i+ 1;

b
$←− {0, 1}, ρ $←− R, b′ ← ACb(a,·)(ρ, y,L1).

Fig. 10. The new ind-setup game.

We proceed by changing the initial ind-setup game (described in Figure 9) into a new ind-setup game
(described in Figure 10). In addition to the original set up, in the new version, we choose an extra secret
internal state yt. Another change is the way we compute the ki values from oracle C1. In the original game
we multiply the element y1 · . . . · y`−1 from G with an uniformly random element y` of the same set and we
obtain an uniformly random element. In the new game we directly use a random value yt for computing the
ki values, thus the change is statically indistinguishable. Since these are the only changes, an adversary will
not notice any difference between the ind-setup games.

SinceMEG is ind$ an adversary cannot distinguish between C0 and C1. Note that the number of k values
that A has to distinguish is n. Thus, we obtain the security margin. ut

Remark 19. Similarly to Theorem 5, we obtain that if Q is a secure PRNG, then Q̃ is a secure PRNG in the
standard model.

Remark 20. As in the case of Dual-EC, it is easy to see that if in the F − GEGS scheme, we replace yi with
y′i

$←− G, 1 ≤ i ≤ n, the SETUP mechanism becomes benign. The security margin of the SETUP-free system
remains the same as the one stated in Theorem 5.

23

	Threshold Kleptographic Attacks on Discrete Logarithm Based Signatures

