
Anonymity Trilemma: Strong Anonymity, Low
Bandwidth, Low Latency—Choose Two

Debajyoti Das
Purdue University, USA

das48@purdue.edu

Sebastian Meiser
University College London, UK

s.meiser@ucl.ac.uk

Esfandiar Mohammadi
ETH Zurich, Switzerland
mohammadi@inf.ethz.ch

Aniket Kate
Purdue University, USA

aniket@purdue.edu

Abstract—This work investigates the fundamental constraints
of anonymous communication (AC) protocols. We analyze the
relationship between bandwidth overhead, latency overhead, and
sender anonymity or recipient anonymity against the global
passive (network-level) adversary. We confirm the trilemma that
an AC protocol can only achieve two out of the following three
properties: strong anonymity (i.e., anonymity up to a negligible
chance), low bandwidth overhead, and low latency overhead.

We further study anonymity against a stronger global passive
adversary that can additionally passively compromise some of the
AC protocol nodes. For a given number of compromised nodes,
we derive necessary constraints between bandwidth and latency
overhead whose violation make it impossible for an AC protocol
to achieve strong anonymity. We analyze prominent AC protocols
from the literature and depict to which extent those satisfy our
necessary constraints. Our fundamental necessary constraints
offer a guideline not only for improving existing AC systems
but also for designing novel AC protocols with non-traditional
bandwidth and latency overhead choices.

I. INTRODUCTION

Millions of users from all over the world employ anonymous
communication networks, such as Tor [1], to protect their
privacy over the Internet. The design choice made by the
Tor network to keep the latency and bandwidth overheads
small has made it highly attractive to its geographically
diverse user-base. However, over the last decade, the academic
literature [2]–[8] has demonstrated Tor’s vulnerability to a
variety of traffic correlation attacks. In fact, Tor also has been
successfully attacked in practice [9].

It is widely accepted that low-latency low-bandwidth over-
head of anonymous communication (AC) protocols, such as
Tor [10], can only provide a weak form of anonymity [11].
In the anonymity literature, several AC protocols were able
to overcome this security barrier to provide a stronger anony-
mity guarantee (cryptographic indistinguishability based ano-
nymity [12], [13]) by either increasing the latency overhead or
the bandwidth overhead. In particular, high-latency approaches
(such as threshold mix networks [14]) can ensure strong
anonymity by introducing significant communication delays
for users messages, while high-bandwidth approaches (such as
Dining Cryptographers network [15] and its extensions [16]–
[18]) can provide strong anonymity by adding copious noise
(or dummy) messages.

There have been a few efforts to propose hybrid ap-
proaches [19]–[24] that try to provide anonymity by simultane-
ously introducing latency and bandwidth overhead. However,

it is not clear how to balance such system parameters to ensure
strong anonymity while preserving practical performance.

In general, in the last 35 years a significant amount of
research efforts have been put towards constructing novel
AC protocols, deploying them, and attacking real-world AC
networks. However, unlike other security fields such as cryp-
tography, our understanding regarding the fundamental limits
and requirements of AC protocols remains limited: Can we
prove that stronger anonymity cannot be achieved without
introducing large latency or bandwidth overhead? When we
wish to introduce the latency and bandwidth overheads simul-
taneously, do we know the overhead range values that still
fall short at providing stronger anonymity? This work takes
some important steps towards answering these fundamental
questions associated with anonymous communication.

Our Contribution. We confirm a previously conjectured [24],
[25] relationship between bandwidth overhead, latency over-
head and anonymity. We find that there are fundamental
bounds on sender and recipient anonymity properties [12],
[13], [26] of a protocol that directly depend on the introduced
bandwidth and latency overheads.

This work presents a generic model of AC protocols us-
ing petri nets [27], [28] such that different instantiations of
this model will represent different AC protocols, covering
most practical AC systems in the literature. We derive upper
bounds on anonymity as functions of bandwidth overhead and
latency overhead, against two prominent adversary classes:
global passive network-level adversaries and strictly stronger
adversaries that further (passively) compromise some protocol
parties (e.g., relays in case of Tor). Naturally, the bounds are
valid against any stronger adversary class as well.

For both adversary classes, we analyze two different user
distributions: (i) synchronized user distributions, where users
globally synchronize their messages, and (ii) unsynchronized
user distributions, where each user locally decides when to
send his messages independent of other users.

We analyze the trade-off between latency overhead and
bandwidth overhead required to achieve strong anonymity,
i.e., anonymity up to a negligible (in a security parameter η)
chance of failure. For any AC protocol where only a fraction
of β users send noise messages per communication round,
and where messages can only remain in the network for `
communication rounds, we find that against a global network-

level adversary no protocol can achieve strong anonymity if
2β` < 1 − 1/poly(η) even when all the protocol parties
are honest. In the case where a strictly stronger adversary
additionally passively compromises c (out of K) protocol
parties, we show that strong anonymity is impossible if
2(`−c)β < 1−1/poly(η) (for c < `), or 2β` < 1−1/poly(η)
and ` ∈ O(1) (for c ≥ `).

We show the correctness of our results and assess their
practical impact by analyzing prominent AC protocols. Our
impossibility results naturally only offer necessary constraints
for anonymity, but not sufficient conditions for the AC proto-
col. However, these necessary constraints for sender and re-
cipient anonymity are crucial for understanding bi-directional
anonymous communication. In fact, we find that several AC
protocols in literature are asymptotically close to the suggested
constraints, and we propose designers of new AC protocols to
use our results as a necessary guideline of their designs.
Organization. Section II presents a detailed overview of
our protocol model and our analysis. Section III formally
defines the anonymity property, the game setup, and the
user distributions. Section IV details our protocol model for
AC protocols using timed colored petri-net, the anonymity
invariant, and an ideal protocol. In Section V and Section VI,
we analyze the anonymity for the synchronized user distri-
bution against non-compromising and partially compromised
adversary respectively. In Section VII and Section VIII, we
analyze the anonymity for the unsynchronized user distri-
bution. In Section IX, we describe the results for recipient
anonymity. Section X compares our anonymity bounds for
some prominent AC protocols. Section II-E discusses the
related work.

II. OVERVIEW

A. Formalization and Adversary Model

AC Protocols as Petri Nets. We define a view of AC
protocols as petri nets [27], [28], i.e., as graphs with two
types of labeled nodes: places, that store colored tokens, and
transitions, that define how these tokens are sent over the
graph. In our case, each colored token represents a message,
places are the protocol parties that can receive, hold and send
messages, and transitions describe how parties exchange and
relay messages. Our model captures all AC protocols under the
assumption that messages are transmitted directly, i.e., in order
for Bob to receive a message from Alice, Alice has to send the
message and the message (albeit relayed, delayed and crypto-
graphically modified) eventually has to reach Bob. While this
requirement may sound strict, as elaborated in Section IV-C,
we effectively only exclude few esoteric protocols.
User distributions, communication rounds, bandwidth
overhead, and latency. We consider two types of user
distributions. In the first user distribution (synchronized) N
users send their messages in exactly N rounds (see Figure 1
for notations). Per round, exactly one user sends a message.
The protocol decides which users send noise messages in each
round. In the second user distribution (unsynchronized) each

user independently decides whether to send a message in a
round using a biased coin flip, with a bias p.

The model considers synchronous communication rounds as
in [16], [17], [29], [30]. We model latency overhead ` as the
number of rounds a message can be delayed by the protocol
before being delivered. We formalize bandwidth overhead β
as the number of noise messages per user that the protocol
can create in every round, i.e., the dummy message rate.

Our two types of user distributions cover a large array of
possible scenarios. Results for our user distributions imply
results for similar distributions, if a reduction proof can show
that they are less favorable to the protocol. 1

Adversaries. We consider global passive non-compromising
adversaries, that can observe all communication between
protocol parties; and strictly stronger partially compromising
(passive) adversaries, that can compromise protocol parties to
learn the mapping between inputs and outputs for this party.
Anonymity Property. We leverage an indistinguishability
based anonymity notion for sender anonymity: the adversary
has to distinguish two senders of its own choosing [12], [13].

For a security parameter η, we say that a protocol achieves
strong anonymity, if the adversary’s advantage remains neg-
ligible in η. If an AC protocol has strong anonymity, it is
secure under composition (e.g., for streams of messages or
usage over a longer time period) and formally, η limits the
number of compositions.

Strong anonymity is relative to a strength η, which is
bound to system parameters or analysis parameters such as the
number of users or protocol parties, the latency overhead and
the bandwidth overhead. These parameters typically increase
as η increases, which improves the protocol’s anonymity.2

Anonymity in relation to η unifies a wide variety of possible
analyses on how the anonymity bound changes with changing
system parameters, and user numbers and behaviors.

B. Brief Overview of the Proof Technique

As non-compromising adversaries are a subset of partially
compromising adversaries, our proof technique for the former
is a simplified case of the latter. In general, we derive our
results in four main steps.

First, we define a concrete adversaryApaths, that uses a well
established strategy: upon recognizing the challenge message
(as soon as it reaches a receiver) Apaths constructs the possible
paths this message could have taken through the network, and
tries to identify the user who has sent the message.

Second, given the concrete adversary Apaths, we identify a
necessary invariant that any protocol has to fulfill in order to
provide anonymity. Intuitively: both challenge users chosen by
the adversary must be active (i.e., send at least one message)
before the challenge message reaches the recipient, and it
must be possible for these messages to meet in at least one

1Such distributions might contain usage patterns, irregularities between
users and synchronization failures that the adversary can exploit.

2In some analyses, individual parameters may reduce with increasing η,
such as the bandwidth overhead per user, as the other parameters, such as the
number of users, increase.

2

honest party along the way. We prove that indeed this natural
invariant is necessary for anonymity.

Next, we propose an ideal protocol Πideal that is optimal in
terms of satisfying the invariant: The probability that Πideal

fulfills the necessary invariant is at least as high as for any
protocol within our model (limited by the same constraints for
β and `). Moreover, whenever Πideal satisfies the invariant, the
advantage of Apaths is zero. Thus, Πideal is at least as good
as any protocol within our model at winning against Apaths.

Finally, we calculate the advantage of Apaths against Πideal

to obtain a lower bound on the adversarial advantage against
all protocols within our model.3

C. Scenarios and Lower Bounds

We devise necessary constraints for four different scenarios.
Let Π be a protocol in our model, with N users, restricted

by bandwidth overhead β and latency overhead `. For the
compromising cases, the adversary is allowed to compromise
c out of K protocol parties. We derive the following lower
bounds for δ-sender anonymity in the respective scenarios.
Synchronized Users, Non-compromising Adversaries:

δ < 1− fβ(`), where fβ(d) = min
(

1,
(
d+βNd
N−1

))
.

Synchronized Users, Partially Compromising Adversaries:

δ <

{
1− [1−

(
c
`

)
/
(
K
`

)
]fβ(`) c ≥ `

1− [1− 1/
(
K
c

)
]fβ(c)− fβ(`− c) c < `.

Unsynchronized Users, Non-compromising Adversaries:

δ < 1 − [1/2 + fp(`)], where for p ≈ β we have
fp(d) = min(1/2, 1− (1− p)d) for a positive integer d.

Unsynchronized Users, Partially Compromising Adv.:

δ <

1− [1−

(
c
`

)
/
(
K
`

)
][1/2 + fp(`)] c ≥ `

(1− [1− 1/
(
K
c

)
][1/2 + fp(c)])

· [1− [1/2 + fp(`− c)]] c < `.

We derive bounds for sender anonymity in the body of
this paper. The bounds for recipient anonymity are obtained
analogously and can be found in Appendix C.

D. Interpretation and Interesting Cases

Our first and third lower bounds, for respectively synchro-
nized and unsynchronized user behaviors against in a non-
compromised AC network, suggest an anonymity trilemma.
Both lower bounds can be simplified under some natural
constraints to the following simplified lemma:

Lemma 1 (Informal Trilemma). For security parameter η, no
protocol can achieve strong anonymity if 2`β < 1 − ε(η),
where ε(η) = 1

ηd
for any positive constant d.

3Apaths is a possible adversary against all protocols within our model. If
Apaths has an advantage of δ against our ideal protocol Πideal (bounded
by β and `), then Apaths will also have an advantage of at least δ against
any protocol within our model (that is also bounded by β and `). Thus, our
bound for δ describes a lower bound on the adversarial advantage against
any protocol within the model, while against particular protocols there can be
other adversaries (in the same adversary class) with an even higher advantage.

Ideal asymptotic values for latency overhead is ` = O(1)
(i.e., a constant number of hop separation from the receiver),
while ideal asymptotic values for bandwidth overhead is
β = O(1/N) = O(1/poly(η)) (i.e., a constant number of
message per round from all N = poly(η) users combined). It
is easy to see that for this ideal overhead `β = O(1/poly(η)),
the trilemma excludes strong anonymity, while, with latency
overhead ` = N = O(poly(η)) or with bandwidth overhead
β = O(1), the trilemma does not exclude strong anonymity.

We find some interesting possible overhead constraints for
strong anonymity (e.g. ` = O(η) and β = O(1/η)) demanding
some compromise in both latency and bandwidth. These con-
straints can help understand and improve existing AC protocols
as well as inform the design of future AC protocols.

For partially compromised scenarios the requirements are
naturally stronger. All constraints discussed here are in addi-
tion to the requirements from the non-compromised case.

While bandwidth overhead might be sufficient against non-
compromising adversaries, it is not sufficient if parts of the
protocol are compromised. With ` = η and K

c = constant
strong anonymity may be possible, whereas with ` = O(1),
strong anonymity is impossible, even for K ∈ poly(η) and
c = O(1).

In case c < `, strong anonymity guarantees may be possible
if 2(`−c)p < 1−ε(η), where p = p′+β combines the genuine
user messages p′ with their bandwidth overhead β. Our result
shows a connection between the expected usage behavior p and
the latency `. If p is not particularly large, the latency cannot
be low; otherwise, the path-length cannot be sufficiently high
to ensure mixing at an honest node. In other words, unless
p is very large (as should be the case for some file sharing
applications), a low latency renders the AC protocol cheap to
compromise, i.e., c can be low.

E. Related Work

In contrast to previous work, our work provides necessary
constraints for strong anonymity w.r.t. to bandwidth and
latency overhead. While there is a successful line of work
on provable anonymity guarantees [12], [32]–[36], it is is
incomparable since it provides lower bounds on anonymity for
specific protocols, and does not prove any general statements
about sufficient conditions for strong anonymity.

Previous work on attacks against anonymous communica-
tion protocols, except for Oya et al. [37], solely provides
upper bounds on anonymity for specific protocols [38]–[41].
Oya et al. [37] cast their attack in a general model and
provide a sophisticated generic attacker. However, they only
compute bounds w.r.t. a dummy message rate against timed
pool mixes, not against other protocols and not w.r.t. latency
and compromisation rate. Even more important, none of these
results discuss the relationship of the lower bounds for latency
and bandwidth overheads.

III. ANONYMITY DEFINITION AND USER DISTRIBUTIONS

Here, we define our indistinguishability-based anonymity
notion.

3

` Latency overhead for every message.
β Bandwidth overhead for every user per round.
p Probability to send a message per user per round.
K Number of (internal) protocol parties.
c Number of compromised protocol parties.
N Number of online users (that may send messages).
δ Adversarial advantage in the anonymity game.
Π A protocol. Π ∈M : Π is within our model.
η The security parameter.
ε A (very small, but not negligible) function.

Fig. 1. Notation

A. AnoA-Style Anonymity Definition

We define our anonymity notions with a challenge-response
game similar to AnoA [26], where the challenger simulates
the protocol and the adversary tries to deanonymize users.
The challenger Ch(Π, α, b) allows the adversary to adaptively
control user communication in the network, up to an un-
certainty of one bit for challenges, and is parametric in the
following parts: (i) the AC protocol Π to be analyzed, (ii)
the so called anonymity function α, that describes the specific
variant of anonymity such as sender anonymity, recipient
anonymity and relationship anonymity, (iii) and the challenge
bit b which determines the decision the challenger takes in
challenge inputs from the adversary.

Given a security parameter η, we quantify the anonymity
provided by the protocol Π simulated by Ch(Π, α, b) in terms
of the advantage the probabilistic polynomial time (PPT)
adversary A has in correctly guessing Ch’s challenge bit b. We
measure this advantage in terms of indistinguishability of ran-
dom variables additively, where the random variables in ques-
tion represent the output of the interactions 〈A|Ch(Π, α, 0)〉
and 〈A|Ch(Π, α, 1)〉.
Definition 1 ((α, δ)-IND-ANO). A protocol Π is
(α, δ)-IND-ANO 4 for the security parameter η, an adversary
class C, an anonymity function α and a distinguishing factor
δ(·) ≥ 0, if for all ppt machines A ∈ C,

Pr [0 = 〈A|Ch(Π, α, 0)〉] ≤ Pr [0 = 〈A|Ch(Π, α, 1)〉] + δ(η)

For an anonymity function α, we say that a protocol Π
provides strong anonymity [12], [13] if it is (α, δ)−IND-ANO
with δ ≤ neg(η) for any negligible function neg. If δ is
instead non-negligible in η, then we say that Π provides
weak anonymity. Note that η does not measure the size of
the anonymity set, but the computational limitation of the
adversary.
Sender Anonymity. Sender anonymity characterizes the ano-
nymity of users against a malicious server through the inability
of the server (or some intermediary) to decide which of two
self-chosen users have been communicating with the server.
We borrow the sender anonymity αSA definition from the
AnoA framework [26], where αSA selects one of two possible

4AnoA also allows a multiplicative factor ε; we use the simplified version
with ε = 0, such that δ directly corresponds to the adversarial advantage.

Adaptive AnoA Challenger Ch(Π, α, b)

Upon message (Input, u, R,m): RunProtocol(u,R,m)

Upon message (Challenge, u0, u1, R0, R1,m):

if this is the first time, such a message is received then
Compute (u∗, R∗)← α(u0, u1, R0, R1, b)
RunProtocol(u∗, R∗,m))

end if

RunProtocol(u,R,m):

Run Π on r = (u,R,m) and forward all messages that are sent by
Π to the adversary A and send all messages by the adversary to Π.

αRA(u0, u1, R0, R1, b) = (ub, R0)

αSA(u0, u1, R0, R1, b) = (u0, Rb)

Fig. 2. Adaptive AnoA Challenger [26] for sender anonymity

challenge users and makes sure that the users cannot be
distinguished based on the chosen recipient(s) or message(s).

Definition 2 (Sender anonymity). A protocol Π provides δ-
sender anonymity if it is (αSA, δ)-IND-ANO for αSA as
defined in Figure 2.

Recipient Anonymity. Recipient anonymity characterizes
that the recipient of a communication remains anonymous,
even to observers that have knowledge about the sender in
question. Similar to sender anonymity, we borrow the recipient
anonymity αRA definition from the AnoA framework, where
αRA selects one of two possible recipients for a message and
makes sure that the recipients cannot be distinguished based
on the chosen sender(s) or message(s).

Definition 3 (Recipient anonymity). A protocol Π provides
δ-recipient anonymity if it is (αRA, δ)-IND-ANO for αRA as
defined in Figure 2.

We omit the detailed technical notation of the anonymity
functions in the following sections, and write Pr [0 = A|b = i]
instead of Pr [0 = 〈A|Ch(Π, αSA, i)〉].
B. Game Setup

Let S be the set of all senders, R be the set of all recipients,
and P be the set of protocol parties that participate in the
execution of the protocol (like relays/mix-nodes in Tor/mix-
nets, for DC-net or P2P mixing users and protocol parties are
the same). We consider a system of total |S|= N senders.
Given our focus on sender anonymity, we need only a single
element in R. We allow the adversary to set the same entity
(say R) as the recipient of all messages, and expect R to be
compromised by the adversary. The adversary uses a challenge
(as defined in Figure 2) of the form (u0, u1, R, ,m0), where
u0, u1 ∈ S, for our sender anonymity game.

We consider a completely connected topology, which means
any party can send a message directly to any other party. We
assume the standard (bounded) synchronous communication
model as in [16], [17], [29], [30], where a protocol operates

4

in a sequence of communication rounds. In each round, a
party performs some local computation, sends messages (if
any) to other party through an authenticated link. By the
end of the round, every party receives all messages sent by
the other parties to her the same round. With our focus on
computing lower bounds, our model abstracts from the time
the computations at the node take and also the length of the
messages. Nevertheless, as we are interested in quantifying the
communication/bandwidth overhead, unlike [16], [17], [30],
we do not assume that the parties have access to ready-made
broadcast communication channels; Parties are expected to
communicate with each other to implement broadcast fea-
tures [29], [42]. Lastly, the use of the asynchronous communi-
cation model offers more capabilities to the attacker, and thus,
our impossibility results for the synchronous model naturally
apply to the asynchronous model as well.

We define the latency overhead ` as the number of rounds a
message can be delayed by the protocol before being delivered.
We define the bandwidth overhead β as the number of noise
messages per user that the protocol can create in every round
and we do not restrict the time these noise messages reside
within the protocol (i.e., the dummy message rate).

We consider two types of global passive adversaries:
Our non-compromising adversaries (which model network-
level eavesdroppers) can observe all communication be-
tween all protocol parties, but do not compromise any party
of the AC protocol except the recipient R. We say that
the AC protocol is non-compromised. Our strictly stronger
partially compromising adversaries (which model hacking and
infiltration capabilities) can additionally compromise some of
the AC parties in the setup phase of the game to obtain
these parties’ mapping between the input messages and output
messages during the protocol’s runtime. We say the AC
protocol is partially compromised.

C. User Distributions

We consider two kinds of user distributions in our anony-
mity games and both of them assume an N sized set S of users
that want to send messages. In both cases, the adversary can
choose any two senders u0, u1 ∈ S . However, the time and
method by which they actually send messages differs:
• In the synchronized user distribution the users globally

synchronize who should send a message at which point in
time. We assume that each user wants to send exactly one
message. Consequently, we choose a random permutation of
the set of users S and the users send messages in their
respective round. In every single round out of a total of N
rounds exactly one user sends a message. Since the users
globally synchronize their sending of messages, we allow the
protocol to also globally decide on the bandwidth overhead it
introduces. Note that, here, the requirements are identical to
those of the Bulk protocol in [17].
• In the unsynchronized user distribution each of the N users

wants to send messages eventually and we assume that each
user locally flips a (biased) coin every round to decide whether
or not to send a message. In this case we define the bandwidth

Protocol

S TS

$1
P1 TP1

P2 TP2

P3 TP3

R

Fig. 3. Petri net of an AC protocol with K = 3 parties.

overhead as an increased chance of users sending messages.
Since the protocol does not globally synchronize the input
messages, for noise messages also we allow the users to decide
it locally and send noise messages with a certain probability.

IV. A PROTOCOL MODEL FOR AC PROTOCOLS

An AC protocol allows any user in the set of users S to
send messages to any user in R, via a set of anonymizing
parties P. We define protocols that are under observation of
an eavesdropping adversary A that may have compromised
a set of c parties Pc ⊆ P and that furthermore observes the
communication links between any two parties, including users.

Technically, whenever a party P1 ∈ P∪S sends a message
to another party P2 ∈ P∪R, the adversary is able to observe
this fact together with the current round number. However,
we assume the protocol applies sufficient cryptography, s.t.,
the adversary can not read the content of any message except
the messages sent to the malicious recipient, which technically
results in simply being able to additionally recognize when the
challenge reaches the recipient.

For an actual protocol, the sets S, R, and P may not be
mutually exclusive [15], [16], [18]. Since we have only one
malicious party in R, and the content of a message can only
be read when it reaches its final recipient, we consider R to be
mutually exclusive from S ∪ P for the purpose of simplicity.
With the above preliminaries in mind, we shall now formally
define our generic AC protocol using a petri net model.

A. Protocol Model

We model any AC protocol with K parties by a timed
colored petri net [27], [28] M , consisting of places S for
the users, P1, . . . , PK symbolizing the protocol parties, $1 for
randomness and R for recipients of messages, and colored
tokens m symbolizing the messages (real or noise) sent by
clients or protocol parties, and transitions TS for inserting
messages into the network and TP1

, . . . , TPK
as functions for

sending the messages from one party to another. The structure
of the petri net with its places, tokens and transitions remains
the same for every AC protocol. However, the implementation
of the guards within the transitions is different for different
protocols: protocols can choose to which party messages are

5

to be sent next and whether they should be delayed. We refer
to Figure 3 for a graphical depiction of petri net model M .

Definition 4 (Colored token). A colored token is represented
by the tuple m = 〈msg, meta, tr, IDt, prev, next, ts〉, where,
msg is the content of the message, meta is the internal protocol
meta-data for this message, tr is the time the message can
remain in the network, IDt is a new unique ID generated by
each transition for each token by honest parties; dishonest
parties instead keep the ID untouched to allow the adversary
to link incoming and outgoing messages, prev is party/user
that sent the token and next is the user/party that receives the
token. Finally, ts is the the time remaining for the token to be
eligible for a firing event (a feature of timed petri-net). Here,
ts either describes when new messages are introduced into the
petri net or is set to the next round, such that messages can be
processed in every round as soon as they enter the network.

The four fields IDt, prev, next, ts are public, and are visible
to the adversary. The remaining three fields msg, meta and tr
in a token are private and can not be observed by the adversary,
with the exception that msg can be observed when a message
reaches its destination, i.e, is received by a recipient. Formally,
we introduce a set Tokens, that is initially empty and in which
we collect the pair (t, r), where t is a token and r the round
number in which the token was observed.
Places. Any AC protocol with K parties P = {P1, . . . , PK}
consists of the following places:
• S: A token in S denotes a user message (real or noise)

which is scheduled to enter to network after ts rounds.
• $1: This place is responsible for providing randomness.

Whenever a transition picks a token from this place, the
transition basically picks a random value.
• Pi with Pi ∈ P: A token in Pi denotes a message which

is currently held by the party Pi ∈ P.
• R: A token in R denotes a message which has already

been delivered to a recipient.
Transitions. As part of the initial configuration, the chal-
lenger populates S on behalf of the protocol. All other places
are initially empty. The transitions then consumes tokens from
one place and generate tokens to other places, to modify the
configuration of the petri-net. The event of consumption of a
token from one place by a transition and generation of a new
token represents the movement of a message from one party
to another. We define the following transitions:
• TS : takes a token 〈msg, , , , u, , ts〉 from S and a

token from $1 to write t = 〈msg,meta, `, IDt, u, Pi, ts = 1〉 to
Pi; the values of i and meta are decided by the AC protocol.
• TPi

: takes a token 〈msg,meta, tr, IDt, , Pi, ts〉
from Pi and a token from $1 to write t =
〈msg,meta′, tr − 1, IDt

′, Pi, P
′, 1〉 to P ′. If Pi is an honest

party IDt
′ is freshly generated, but if Pi is a compromised

party IDt
′ = IDt. The place P ′ ∈ {P1, . . . , PK} ∪ {R} and

meta′ are decided by the AC protocol, with the exception
that if tr = 0, P ′ always is R.
In either case, the transition also adds an element (t′, r) to
the set Tokens, where r is the current round number and t′

Transitions in petri net model M

TS on tokens q = 〈msg, , , , u, , ts〉 from S and $ from $1:

(Pi,meta) = fΠ(q, $); IDt = a fresh randomly generated ID
r = current round; t = 〈msg,meta, `, IDt, u, Pi, 1〉
if Pi = R then Tokens = Tokens ∪ (〈msg, , , IDt, u, Pi, 1〉, r)
else Tokens = Tokens ∪ (〈 , , , IDt, u, Pi, 1〉, r)

Output: token t at Pi

TPi
on tokens q = 〈msg, , tr, IDt, , Pi, ts〉 from Pi, $ from $1:

(P ′,meta′) = fΠ(q, $) ; r = current round
if tr − 1 = 0 then P ′ = R
if Pi is honest then IDt

′ = a fresh randomly generated ID
else if Pi is compromised then IDt

′ = IDt

t = 〈msg,meta′, tr − 1, IDt
′, Pi, P ′, 1〉

if Pi = R then Tokens = Tokens∪ (〈msg, , , IDt
′, Pi, P ′, 1〉, r)

else Tokens = Tokens ∪ (〈 , , , IDt
′, Pi, P ′, 1〉, r)

Output: token t at P ′

fΠ: The code for this function is provided by protocol Π. It decides the
next party where the message should go, as well as the content of the
meta field in the token.

Fig. 4. Transitions in petri net model M

is the respective (new) token, where the fields meta and tr
are removed. If the place t was written to is not R, then
additionally the field msg is removed.

B. Game Setting

We consider the following game between a PPT adversary
A and an honest challenger Ch:
• A compromises up to c parties from P.
• A chooses two distinct users u0 and u1. A sends the

challenge for those chosen users.
• Ch then sets the initial configuration complying with the

challenge sent by the A. But Ch can not use the knowledge
of compromised parties to decide the initial configuration.
• Then Ch runs the petri-net in a non-deterministic way. Ch

does not use the knowledge of challenge users or challenge
message to make her decisions. Ch picks the best sequence of
configurations, and outputs the tokens of all the configurations
of that sequence in order.
• A can see the public parts of all tokens (IDt,

prev, next, ts), but not the private parts (msg,meta, tr).
• The goal of the adversary is to deanonymize the sender

of the challenge message, i.e., to learn whether the challenge
message was sent by u0 or by u1. The interaction between Ch
and A ends as soon as A makes his guess.
Validity of the Protocol Model. The above protocol model
M behaves as expected (more details in Lemma 2 in Ap-
pendix A). The protocols indeed have a bandwidth overhead
of β and a latency overhead of `. For every message that is
sent from one party in S ∪ P to another party in P ∪ R, the
adversary learns the time, the sender, and the receiver. When
a message leaves the network, the attacker learns whether it
was the target (i.e., the challenge) message. The attacker also
learns the mapping between the input and output messages of
compromised parties.

6

C. Expressing Protocols

Our protocol model M allows the expression of any AC
protocol with very few, esoteric exceptions. Mix networks can
be naturally embedded into our model, in particular any stop-
and-go mix [43] that uses discrete distribution and even AC
protocols with specialized path selection algorithms [44], [45].
This section illustrates embedding techniques into our model
for some other kinds of protocols, but a much larger variety
of protocols can be expressed in our model.
Users as protocol parties. In peer-to-peer protocols like
dining cryptographers networks (DC net) [16], [46], there are
no separate protocol parties, users act as a type of relays. Also,
any noise sent by users counts into the bandwidth overhead of
the protocol (we will see in Claim 2 that noise sent by nodes
that are not users can be treated differently). Whenever a user
wants to send a message it should use the transition TS , but
when it acts as a relay it should use the transition TPi . For
interested readers, we show in Section A-B how to model a
specific DC net type protocol using our petri net model.
Splitting and Recombining Messages. We model protocols
that split and later re-combine messages by declaring one of
the parts as the main message and the other parts as noise,
which may count into the bandwidth overhead. This declara-
tion is mainly required for the analysis, i.e., for evaluating the
success of the adversary and for quantifying the amount of
noise messages introduced by the protocol. We don’t restrict
the strategy by which the protocol decides which message
is “the main share” (i.e., the message that is sent on) and
which is “an additional share” (i.e., a fresh noise message). A
more complex scenario involves threshold schemes in which
a smaller number of shares suffices for reconstructing the
message and in which some shares are dropped randomly.
In such cases we consider the protocol to decide beforehand
which of the constructed shares will be dropped later and to
declare one of the remaining shares the “main share”.
Broadcasting Messages. If the protocol chooses to copy or
broadcast messages to several receivers, we consider the copy
sent to the challenge receiver to be the main message and
copies sent to other receivers to be noise (which, if the copies
are created by nodes that are not users, will not count into the
bandwidth overhead).5

Private Information Retrieval. In schemes based on private
information retrieval we require that the receiver retrieves the
information sufficiently fast (within the latency limit). Other-
wise, our method is similar to the broadcasting of messages:
the receiver of interest will retrieve the main message, whereas
other receivers will retrieve copies that are modeled as noise.
Excluded Protocols. For this work we exclude protocols that
cannot guarantee the delivery of a message within the given

5We note that in some cases, where users act as nodes and broadcast
messages to other users, our quantification of the bandwidth overhead might
be a bit harsh. If the group of users to which the broadcast will be sent is
known in advance (i.e., if messages are broadcast to all users or to pre-existing
groups of users), we can allow the protocol to use a single receiver for these
messages instead.

latency bound (except if this occurs with a negligible proba-
bility). Moreover, we cannot easily express the exploitation of
side channels to transfer information, e.g., sending information
about one message in the meta-data of another message, or
sending bits of information by not sending a message.

D. Construction of a Concrete Adversary

Given two challenge users u0 and u1 and the set of observed
tokens (t, r) ∈ Tokens, where t is the token and r the round
in which the token was observed, an adversary can construct
the sets S0 and S1 as follows (for j ∈ {0, 1}):

Sj = {p = (t1.prev, . . . , tk.prev, tk.next) :

((t1, r1), . . . , (tk, rk)) ∈ Tokens∗ s.t.

∀i∈{1,...,k−1}ti.next = ti+1.prev

∧ ∀i∈{1,...,k−1}ri+1 = ri + 1

∧ t1.prev = uj ∧ tk.next = R

∧ tk.msg = Challenge ∧ k ≤ `
∧ ∀i∈{1,...,k−1}(∃(t

′
i+1, ri+1) ∈ Tokens :

t′i+1.prev = ti.next ∧ t′i+1.IDt = ti.IDt)

⇒ t′i+1 = ti+1}

Each element p ∈ Sj represents a possible path of the chal-
lenge message starting from uj (j ∈ {0, 1}). With challenge
bit b, Sb cannot be empty, as the actual path taken by the
challenge message to reach R has to be one element in Sb.

Definition 5 (Adversary Apaths). Given a set of users S, a set
of protocol parties P, and a number of possibly compromised
nodes c, the adversary Apaths proceeds as follows: 1) Apaths
selects and compromises c different parties from P parties
uniformly at random. 2) Apaths chooses two challenge users
u0, u1 ∈ S uniformly at random. 3) Apaths makes observa-
tions and, based upon those, constructs the sets S0 and S1.
For any i ∈ {0, 1}, if Si = ∅, then Apaths returns 1 − i.
Otherwise, it returns 0 or 1 uniformly at random.

Apaths thus checks whether both challenge users could have
sent the challenge message. We explicitly ignore differences
in probabilities of the challenge users having sent the chal-
lenge message, as those probabilities can be protocol specific.
Naturally, when c = 0, Apaths represents a non-compromising
adversary; but when c 6= 0, Apaths is partially compromising.

E. Protocol Invariants

We now investigate the robustness of protocols against our
adversary. We define an invariant that, if not satisfied, allows
Apaths to win against any protocol. Moreover, we present
a protocol that maximizes the probability of fulfilling the
invariant. Moreover, we show that whenever the invariant is
fulfilled by our protocol, the advantage of Apaths reduces to
zero (as it is forced to randomly guess b).
Necessary invariant for protocol anonymity. It’s necessary
that at least both challenge users send messages in the `
rounds before the challenge message reaches the recipient,

7

as otherwise there is no way both of them could have sent
the challenge message. Moreover, on the path of the actual
challenge message, there needs to be at least one honest
(uncompromised) party, as otherwise the adversary can track
the challenge message from the sender to the recipient (Sb
will have exactly one element and S1−b will be empty). Those
two conditions together form our necessary protocol invariant.

Invariant 1. Let u0 and u1 be the challenge users; let b be the
challenge bit; and let t0 be the time when ub sends the chal-
lenge message. Assume that the challenge message reaches the
recipient at r. Assume furthermore that u1−b sends her mes-
sages (including noise messages) at V = {t1, t2, t3, . . . , tk}.
Now, let T = {t : t ∈ V ∧ (r − `) ≤ t < r}. Then,

(i) the set T is not empty, and
(ii) the challenge message passes through at least one honest

node at some time t′ such that, t′ ∈ {min(T), . . . , r − 1}.

Claim 1 (Invariant 1 is necessary for anonymity). Let Π be
any protocol ∈ M with latency overhead ` and bandwidth
overhead β. Let u0, u1, b and T be defined as in Invariant 1.
If Invariant 1 is not satisfied by Π, then our adversary Apaths
as in Definition 5 wins.

We refer to Appendix B for the proof. We next show that it
suffices to consider noise messages sent by users that also
remain within the system for at most ` rounds, i.e., noise
messages that follow the same rules as real messages. Note that
we consider every new message originating from any user’s
client as a fresh noise message.

Claim 2 (Internal noise does not influence Invariant 1). Any
message not originating from an end user u ∈ S does not
influence the probability for Invariant 1 being true. Moreover,
noise messages do not contribute to the probability for Invari-
ant 1 being true after they stayed in the network for ` rounds.

Proof. Let u0, u1 be the challenge users and let b be the
challenge bit and let r be the round in which the challenge
message is delivered to the recipient. We discuss both parts of
the invariant separately:

(i) The set T is not empty. Since by definition, T is the set
of messages sent by u1−b, messages originating in any party
not in S do not influence T . Moreover, any message sent by
u1−b in a round previous to r− ` does not influence T either.
Thus, noise messages staying in the protocol for more than
` rounds, does not improve the probability of T being not
empty.

(ii) The challenge message passes through at least one hon-
est node at some time t′ such that, t′ ∈ {min(T), . . . , r − 1}.
Obviously this second part of the invariant does not depend
on any noise message.

Consequently, noise introduced by u in P but not in S do
not modify the probability to fulfill Invariant 1. We henceforth
consider noise messages as a protocol input.

F. Ideal Protocol

We now provide a protocol Πideal that maximizes the
probability of fulfilling Invariant 1. Moreover, we show that
the invariant is also sufficient for Πideal to win against Apaths,
i.e., to reduce its advantage to zero. Thus, quantifying the prob-
ability that Πideal satisfies Invariant 1 yields an impossibility
result for all protocols within our model.

Given the set of all protocol parties P = {P0, . . . , PK−1} of
size K, the strategy of Πideal is as follows: in round r, Πideal

delivers all messages scheduled for delivery to a recipient. All
other messages are sent to the protocol party Pi with i = r
mod K. For every message that enters the protocol, Πideal

queries an oracle O for the number of rounds the message
should remain in the protocol. Before explaining how oracle
O works, let us define the following events:
• u.sent(x, y) : user u has sent at least one message within

rounds from x to y. For a single round we use u.sent(x).
• Cmpr(x) : Apaths has compromised the next x consec-

utive parties on the path.
• ¬H : NOT of event H .

Given a message sent at t0 by sender x, and delivered to the
recipient at (t0 + t), we define Pt for sender v ∈ S \ {x}:

Pt =
∑t0

j=r−`
Pr [v.sent(j) ∧ ¬v.sent(j + 1, t0)] · Pr [¬Cmpr(t)]

+
∑r

j=t0+1
Pr [v.sent(j) ∧ ¬v.sent(r − `, j − 1)]

· Pr [¬Cmpr(r − j + 1)]

When v = u1−b, and the message is the challenge message,
Pt is the probability of fulfilling Invariant 1, for the above
mentioned strategy. But since our protocol, and consequently
the oracle, is oblivious to the challenge users or the challenge
message, oracle O chooses an optimal t that maximizes the
expectation of Pt over all users. And that maximizes the
probability of Invariant 1 being true, since u1−b can be any
random user from S. Due to the over-approximation with
this (most likely not realizable) oracle, the resulting protocol
is optimal w.r.t. Invariant 1 (proof in the appendix).

Claim 3 (Ideal protocol is ideal for the invariant). Πideal

satisfies Invariant 1 with a probability at least as high as any
other protocol in M , against the given adversary Apaths.
Proof. We want to prove our claim by contradiction. Suppose,
Πideal is not the best protocol. Then, there exists a protocol
Πnew, which satisfies Invariant 1 with a probability higher
than that of Πideal, against the given adversary Apaths.

Now we construct a new protocol Πhybrid, which exactly
follows the strategy of Πideal with one exception: for a given
message Πhybrid selects the time delay t same as Πnew,
instead of querying it from oracle O. Suppose, the challenge
message is delivered to the recipient at round r. Given the
set {min(T), . . . , r − 1}, the ideal strategy for ensuring that
at least one honest party is on the path of the challenge
message is to ensure that as many distinct parties as possible
are on this path. Also, given the time delay t, the value of
min(T) is independent of the protocol, since protocols in M

8

are oblivious to the challenge users and the challenge message.
Hence, Πhybrid has a probability of satisfying Invariant 1 at
least as high as Πnew.

Now, if we compare Πhybrid and Πideal: they follow the
same strategy. But Πideal picks the time delay t for any
message from oracle O such that t is optimal. The time
delay t can be picked for each message independent of other
messages. Hence, the value of t received from oracle O for
the challenge message is also optimal. Hence, Πideal satisfies
Invariant 1 with a probability at least as high as Πhybrid.
Thus, Πnew does not have a higher probability of satisfying
Invariant 1 than Πideal.

Claim 4 (Ideal protocol wins). If Πideal satisfies Invariant 1,
Apaths has an advantage of zero:

Pr[b = Apaths | Invariant 1 holds] = 1
2

Proof. If the Invariant is true, the challenge message passes
through an honest party at t′, such that t′ > min(T). Hence,
there is at least one message (noise or original message)
from u1−i which visits the same honest party together with
the challenge message (Πideal ensures that all messages are
always kept together until they are delivered). That ensures that
in addition to Sb 6= ∅, we also have S1−b 6= ∅ and thus Apaths
outputs a random bit (and has an advantage of zero).

V. SYNCHRONIZED USERS WITH NON-COMPROMISING
ADVERSARIES

Our first scenario is a protocol-friendly user distribution
UB , where inputs from all users are globally synchronized:
over the course of N rounds, exactly one user per round
sends a message, following a random permutation that assigns
one round to each user. Analogously, the protocol globally
instructs the users to send up to B = βN noise messages
per round in total, or β noise messages per user per round,
where 0 ≤ β ≤ 1. We consider non-compromising passive
adversaries that can observe all network traffic.

A. Lower Bound on Adversarial Advantage

Theorem 1. No protocol Π ∈ M can provide δ-sender
anonymity for the user distribution UB , for a δ < 1− fβ(`),
where fβ(d) = min(1, ((d+ βNd)/(N− 1))).

Proof. By Claim 3, we know that Πideal is an optimal protocol
against Apaths; and with c = 0, Apaths is our representative
non-compromising adversary. Thus, it suffices to calculate the
advantage of Apaths against Πideal as a lower bound of the
adversary’s advantage against any protocol.

Let, u0 and u1 be the users chosen by the adversary and
let b be the challenge bit. Let t0 be the round in which ub
sends the challenge message and let r be the round in which
the challenge message reaches the recipient.

Recall that Invariant 1 is necessary for the protocol to pro-
vide anonymity; u1−b sends her messages (can be a noise mes-
sage) at V = {t1, t2, t3, . . . , tk}, then T = {t : t ∈ V ∧ (r −
`) ≤ t < r}. Since we are considering a non-compromising
adversary, Pr [Invariant 1 is true] = Pr [T is not empty] .
With the above in mind, let us define the following events:

H1: In ` rounds u1−b sends at least one noise message.
H2: u1−b sends his own message within the chosen ` rounds.
H3: there is at least one message from u1−b within the chosen

` rounds ≡ T is not empty ≡ Invariant 1 is true.
Consider any slice of ` rounds around the challenge message,
there are exactly (` − 1) user messages other than the chal-
lenge message. Hence, any slice of ` rounds yields the same
probability of containing a user message from u1−b, except
when r < ` OR r > N where the probability is smaller. Thus,
no matter what value of t is returned by O, Pr [H2] ≤ `−1

N−1 .
Given any values `, β ≥ 0 , Apaths has the least chance of

winning, if for a given interval of ` rounds, βN` unique users
are picked to send the noise messages in such a way that they
are not scheduled to send their own messages in that interval.

Pr [¬H3] = Pr [¬H1,¬H2] ≥ max(0, (N− `− βN`)/(N− 1)).

Pr [H3] = 1− Pr [¬H3] ≤ min(1, ((`+ βN`)/(N− 1))).

Thus, we can bound the probability for the adversary as
Pr[0 = Apaths|b = 1] = Pr[1 = Apaths|b = 0] = 1

2Pr [H3];
and Pr[0 = Apaths|b = 0] = 1− 1

2Pr [H3]. And therefore,
since δ ≥ Pr[0 = Apaths|b = 0] − Pr[0 = Apaths|b = 1],
δ ≥ 1− Pr [H3] ≥ 1− fβ(`).

B. Impossibility for Strong Anonymity

We now investigate under which constraints for ` and β
Theorem 1 rules out strong anonymity.

Theorem 2. For user distribution UB with ` < N and
βN ≥ 1, no protocol in M can achieve strong anonymity if
2`β < 1− ε(η), where ε(η) = 1

ηd
for a positive constant d.

We refer to Appendix B for the proof.

Case Study. For illustration, we now discuss a few examples
for different values of `, β, and N.

1) If ` = N, we can have δ = 0 even for β = 0. Anonymity
can be achieved trivially by accumulating all messages from
all N users and delivering them together at round (N + 1). In
this case 2`β = 0 < 1− ε(η), but also βN = 0 ≤ 1.

2) β = 1
η , ` = η: We have δ ≥ N−η−N

N ≥ −ηN . In ` rounds
the protocol can send `βN = N noise messages and achieve
strong anonymity (all N users send a noise message each).

3) β = 1
2η , ` = η: Here we have, δ ≥ N−η− N

2

N = 1
2 −

η
N .

In this case, strong anonymity is possible if η
N ≥ 1

2 − neg(η).
Even though 2`β = 1 > 1 − neg(η), anonymity depends on
the relation between η and N.

4) β = 1
2 , ` = 1: We have δ ≥ N−1− N

2

N u 1
2 . For Πideal,

only half of the users send messages in ` rounds. Πideal cannot
achieve strong anonymity here even though 2`β > 1−neg(η).

5) β = 1
9 , ` = 3: For η > 3 and N > 3, which is a very

natural assumption, we have 2`β = 2
3 < 1−neg(η). Then, δ ≥

N−3−N
3

N = 1− 3
N− 1

3 . Here, δ can not be neg(η). If we consider
our Πideal, in ` rounds it receives only (N

3 +3) messages (noise
+ user messages). So a maximum of (N

3 + 2) users can send
messages other than the challenge user, and there is a high
probability that u1−b has not sent a message. Hence Πideal

9

cannot achieve strong anonymity, and consequently no other
protocol can achieve that.

VI. SYNCHRONIZED USERS WITH PARTIALLY
COMPROMISING ADVERSARIES

We now extend our analysis of the previous section by
having compromised protocol parties. Given the set of protocol
parties P, now our adversary Apaths can compromise a set of
c parties Pc ⊂ P. If Apaths can compromise all the parties
in P, anonymity is broken trivially - that’s why we do not
analyze that case separately. Recall from Section IV-D that
Apaths picks the c parties from P uniformly at random. We
consider the same user distribution UB as in Section V.

A. Lower Bound on Adversarial Advantage

In our protocol Πideal the oracle O decides on the time t to
deliver each message, which is within [1, `], s.t. t maximizes
the probability that Invariant 1 is true. Similar to Section V,
we now calculate the advantage of Apaths against Πideal.

Theorem 3. No protocol Π ∈ M can provide δ-sender
anonymity for the user distribution UB , where

δ <

{
1− [1−

(
c
`

)
/
(
K
`

)
]fβ(`) c ≥ `

1− [1− 1/
(
K
c

)
]fβ(c)− fβ(`− c) c < `

where fβ(d) = min(1, (d+βNdN−1)).

Proof. Let u0, u1 be the challenge users and let b be the
challenge bit. Moreover, let t0 be the time the challenge
message is sent by ub and let r = t0 + t be the time it is
received by the recipient, where t is the delivery time decided
by the oracle O.

We distinguish two cases, depending on ` and c: 1) First,
where the number of compromised parties c is at least as large
as the maximal latency `. In this case, all parties on the path
of the challenge message could be compromised. 2) Second,
where all parties on the path of the challenge message can
not be compromised. And hence, the analysis focuses on the
arrival times of messages from u1−b. For a graphical depiction
of the relationship between the rounds a message from u1−b
arrives and it satisfying Invariant 1 we refer to Figure 5.

1) Case c ≥ `. We know, ` ≥ t holds by definition. The
invariant is true if and only if u1−b sends at least one message
in one of the rounds between (r − `) and (r − 1) and for the
first of those messages, arriving at time t1, there is at least one
non-compromised party on the path between t1 and r. Note
that, K ≥ c ≥ `.Also remember from Section IV that Apaths
picks the c parties uniformly at random from K parties. Hence,

Pr [Invariant 1 is true]

≤
∑t0

j=r−`
Pr [u1−b.sent(j) ∧ ¬u1−b.sent(j + 1, t0)]

· Pr [¬Cmpr(t)]

+
∑r

j=t0+1
Pr [u1−b.sent(j) ∧ ¬u1−b.sent(r − `, j − 1)]

· Pr [¬Cmpr(r − j + 1)]

≤ Pr [¬Cmpr(`)] · Pr [u1−b.sent(r − `, r − 1)]

≤ [1−
(c
`

)
/
(K
`

)
] ·min(1, ((`+ βN`)/(N− 1))).

Case c ≥ `:

r − c r − ` t0 r
t

`

c

Case c < t < `:

r − ` t0 r − c r
t

c

`

Case t < c < `:

r − ` r − c t0 r
t

c

`

Arriving messages satisfy Invariant 1.

Arriving messages satisfy Invariant 1 depending on Pc.

Arriving messages don’t satisfy Invariant 1.

Fig. 5. Satisfying Invariant 1 depending on the arrival time of messages from
u1−b in the cases of the proof for Theorem 3.

Since by Claim 1 the adversary wins whenever Invariant 1
is not true, we know that the probability that the adversary
guesses incorrectly is bounded by:
Pr [0 = Apaths|b = 1] = Pr [1 = Apaths|b = 0]

≤ 1
2Pr [Invariant 1 is true] ≤ 1

2 [1−
(c
`

)
/
(K
t

)
] ·min(1, (`+βN`N−1)).

Thus, δ ≥ 1− [1−
(c
`

)
/
(K
`

)
] ·min(1, (`+β·N`−1N−1)).

2) Case c ≤ `: The probability that all parties on the
mutual path of the challenge message and a message from the
alternative sender u1−b are compromised now mainly depends
on the arrival time of the messages from u1−b. We distinguish
two sub-cases depending on the oracle’s choice for t:

2a) Case c ≤ t:
Pr [Invariant 1 is true]

≤ Pr [u1−b.sent(r − `, r − c)] + Pr [¬u1−b.sent(r − `, r − c)]

· Pr [u1−b.sent(r − c, r)] · Pr [¬Cmpr(c)]

≤ min(1, (
(`−c)+βN(`−c)−1

N−1))

+ min(1, (
N−(`−c)−βN(`−c)

N−1)(c+βNc
N−(`−c)−βN(`−c)))[1−

1

(Kc)
]

≤ fβ(`− c) + fβ(c)[1− 1/
(K
c

)
].

Note that the probability that there are no messages from
u1−b in [(r− `), (r−c)] and that there is at least one message
from u1−b in [(r− c), r] are not independent from each other.
The best thing a protocol can do with the noise messages is
to have Nβ` unique users, different from the ` users who send
their actual message, send the noise messages. Thus, if a user
sends a message in [(r−`), (r−c)], he can not send a message
in [(r−c), r]. The above calculations are done considering that
best scenario. Also note that the value of K may be larger or

10

smaller than ` and t, but as long as c ≤ K, the bound given
above holds. Hence, δ ≥ 1− fβ(`− c)− [1− 1/

(
K
c

)
] · fβ(c).

2b) Case t < c :
Pr [Invariant 1 is true]

≤ Pr [u1−b.sent(r − `, r − c)] · Pr [¬Cmpr(t)]
+ Pr [¬u1−b.sent(r − `, r − c)]

· Pr [u1−b.sent(r − c), r)] · Pr [¬Cmpr(t)]
≤ Pr [u1−b.sent(r − `, r − c)] + Pr [¬u1−b.sent(r − `, r − c)]

· Pr [u1−b.sent(r − c, r)] · Pr [¬Cmpr(t)]

The event expression above is the same as in the previous
case (t > c). The bound on δ thus follows analogously.

B. Impossibility for Strong Anonymity

Theorem 4. For user distribution UB with K ∈ poly(η), K >
c ≥ ` , ` < N AND βN ≥ 1 , no protocol ∈M can achieve
strong anonymity if 2`β < 1 − ε(η) OR ` ∈ O(1), where
ε(η) = 1/ηd for a positive constant d.

We refer to Appendix B for the proof. To achieve strong
anonymity against Apaths, we need ` ∈ ω(1), additional to the
constraint of 2`β > 1−neg(η). We now focus on the constraint
` ∈ ω(1) and refer to Section V-B for a comprehensive case
study on the other constraint.
Case Study. Now we are going to discuss a few interesting
cases for different values of `, c, and K.

1) ` = η and K/c = constant: In this case we have,(
c
`

)
/
(
K
`

)
= c(c−1)...(c−`+1)

K(K−1)...(K−`+1)
< (c/K)` = (c/K)η. Hence,

(
c
`

)
/
(
K
`

)
becomes negligible and strong anonymity is possible. Even
though c has a high value, because of the high value of ` it is
highly likely that the challenge message will meet a message
from u1−b at some honest node, given a high value of β such
that 2`β > 1− neg(η).

2) ` = O(1), c = O(1): Now we have,
(
c
`

)
/
(
K
`

)
=

c(c−1)...(c−`+1)
K(K−1)...(K−`+1)

> ((c− `)/(K− `))`. But K ∈ poly(η), and c
and ` can only have integer values. Hence ((c− `)/(K− `))` is
non-negligible, and hence

(
c
`

)
/
(
K
`

)
is also non-negligible. Even

though c has a small value, ` is also small. Hence, it is unlikely
that the challenge message will mix with a message from
u1−b at some honest node. Thus, strong anonymity cannot
be achieved.

Theorem 5. For user distribution UB with K ∈ poly(η),
constant c, K > ` > c, ` < N AND βN ≥ 1, no protocol
can achieve strong anonymity if 2(`− c)β < 1− ε(η), where
ε(η) = 1

ηd
for a positive constant d.

We refer to Appendix B for the proof. The constraint
2(`− c)β < 1− ε(η) is necessary for anonymity, but it is not
a sufficient condition. The analysis in this case is exactly same
as Section V-B, except that here we need to consider the slice
of (`− c) rounds instead of ` rounds.

VII. UNSYNCHRONIZED USERS WITH
NON-COMPROMISING ADVERSARIES

In this and the subsequent section we use an unsynchronised
user distribution UP : In each round, independent of other

users and other rounds, each client tosses a biased coin
with success probability p. On a success the client sends a
message in that round, otherwise it does not send a message.
Consequently, the number of messages per round follows
Binomial distribution Binom(N, p) if the number of users
N is large and p sufficiently small, the resulting binomial
distribution reduces to a Poisson distribution, which is a close
approximation of real-life traffic patterns.

For a protocol with bandwidth overhead β, we distinguish
between the actual probability that users want to send mes-
sages p′ and the value for p that we use in our analysis, i.e., we
set p = p′+β. In this unsynchronised scenario the bandwidth
of genuine messages contributes to the anonymity bound. As
in Section V we consider a non-compromising adversary.

A. Lower Bound on Adversarial Advantage

Theorem 6. No protocol Π ∈M can provide δ-sender anony-
mity for the user distribution UP , for any δ < 1−

(
1
2 + fp(`)

)
,

where fp(d) = min(1/2, 1− (1− p)d) for a positive integer d.

Proof. Similar to Section V, we calculate the advantage of
Apaths against Πideal, and that bound is valid against any other
protocol in our model. Since we consider a non-compromising
adversary, Pr [Invariant 1 is True] = Pr [T is not empty] ,
where T is defined as in Invariant 1.

Let us consider the random variables X(1), X(2), . . . , X(N),
where X(i) denotes the event of the ith user sending her own
message within a given interval of ` rounds [a, b], with (b −
a) = `. All X(i)s are mutually independent and we have,

X(i) =

{
0 with probability (1− p)`
1 with probability (1− (1− p)`).

Next, let X =
∑N
i=1X

(i) be a random variable representing
the number of users that send messages in an interval of `
rounds. We calculate for the expected value E[X] of X ,

E[X] = E[
∑N
i=1 X

(i)] =
∑N
i=1 E[X

(i)]

= N(1− (1− p)`) = µ.

Using the Chernoff Bound on the random variable X we
derive Pr [X − µ ≥ Na] ≤ exp(−2a2N), which for a = µ

N lets
us estimate, Pr [X ≥ 2µ] ≤ exp (−2µ2/N2N). For brevity in the
following calculation we denote, Pr [X ≥ 2µ] by E and the
event that T is non-empty by Y and since all users are acting
independently from each other we get for d ∈ {0, . . . ,N},
Pr [Y |X = d] = 1− Pr [¬Y |X = d] = d

N
.

For 2µ ≤ N, we have,
Pr [Y]

=Pr [X ≥ 2µ] · Pr [Y |X ≥ 2µ] + Pr [X < 2µ] · Pr [Y |X < 2µ]

≤Pr [X ≥ 2µ] · Pr [Y |X = N] + Pr [X < 2µ] · Pr [Y |X = 2µ]

=E · Pr [Y |X = N] + (1− E) · Pr [Y |X = 2µ]

=E · N
N

+ (1− E) · 2µ
N

= 1− (1− E) (1− 2fp(`)) .

If 2µ > N, we get with f(`) = min
(
1
2 , 1− (1− p)`

)
,

Pr [Y] ≤ E + (1− E) 1 ≤ 1 ≤ 1− (1− E) (1− 2fp(`)).
Thus, δ ≥ 1−Pr [Y] ≥ (1−E) (1− 2fp(`)) . We now use

Markov’s Inequality on X and derive E = Pr [X ≥ 2µ] ≤ 1
2 ,

which means, δ ≥ 1
2 (1− 2fp(`)) ≥ 1

2 − fp(`).

11

Note that in proof of Theorem 6, in case p is a constant and
N is a very high value, then E goes towards zero and instead
of using Markov’s inequality, we can derive δ ≥ 1− 2fp(`).

Also note that, the random variable X can be defined over
any interval d, not necessarily `; and we can calculate fp(d).

B. Impossibility for Strong Anonymity

Theorem 7. For user distribution UP and p > 0, no protocol
can achieve strong anonymity if 2`p < 1 − ε(η), where
ε(η) = 1/ηd for a positive constant d.

We refer to Appendix B for the proof. For strong anonymity,
we need 2`p > 1 − neg(η). Note that, this is a necessary
constraint for anonymity, not a sufficient condition. There can
exist ` and p such that 2`p > 1−neg(η), but still no protocol
can achieve strong anonymity.

Case Study. Now we are going to discuss a few interesting
cases for different values of `, p, and N.

1) p = 1
η , ` = η : Here, fp(`) = 1− (1− p)` > 1− e > 1

2 .

Hence, δ ≥ 1
2 − fp(`) = 0. Since p` = 1, in ` rounds the

protocol has 1 message per user on an average. So, the protocol
has a high chance of winning. Whereas in Section V-B, we
saw that Πideal can win with absolute certainty in this case.

2) p = 1
2η , ` = η: even for η > 2, fp(`) = 1 − (1− p)` <

0.45. Hence, δ ≥ 1
2 − fp(`) > 0.05. Even though 2`p =

1, strong anonymity can not be achieved in this case. In an
expected scenario, in a slice of ` rounds only p` = 1

2 portion of
the total users send messages, and hence there is a significant
chance that u1−b is in the other half. Note that this is different
from the scenario with synchronised users where Πideal could
achieve strong anonymity in this case (c.f. Section V-B).

3) p = 1
2 , ` = 1: We have, fp(`) = 1−(1− p)` = 1

2 . Hence,
δ ≥ 0. Although we have 2`p = 1, because of low `(= 1),
u1−b does not send a message with high probability(= 1

2).
This case again highlights that the requirement 2`p ≥ 1−ε(η)
is not necessarily sufficient: As in Section V-B, Πideal can not
achieve strong anonymity in such a situation.

4) p = 1
9 , ` = 3: Here, fp(`) = 1−(1− p)` = 1−

(
8
9

)3
< 0.29,

and δ ≥ 1
2 − fp(`) > 0.21; because of low values of both p

and ` only a few users send messages within the interval of `
rounds, and hence the protocol has a really less chance to win.
As in Section V-B, Πideal can not achieve strong anonymity
in this case, since the necessary constraints are not satisfied.

VIII. UNSYNCHRONIZED USERS WITH PARTIALLY
COMPROMISING ADVERSARIES

Finally, we consider partially compromising adversaries that
can compromise a set of c parties Pc ⊂ P for the user
distribution UP defined in Section VII.

A. Lower Bound on Adversarial Advantage

Theorem 8. Any protocol Π ∈ M cannot provide δ-sender
anonymity for the user distribution UP , for any

δ <

1− [1−

(
c
`

)
/
(
K
`

)
][12 + fp(`)] c ≥ `

(1− [1− 1/
(
K
c

)
][12 + fp(c)])

· (1− [1/2 + fp(`− c)]) c < `
where fp(d) = min(1/2, 1− (1− p)d) for a positive integer d.

We derive the bound in Theorem 8 by combining the
techniques presented in Section VI and Section VII. Since
the proof does not introduce novel techniques, we omit it and
instead refer the interested reader to Appendix B for the proof.

B. Impossibility for Strong Anonymity

To analyze the negligibility condition of δ in this scenario,
we heavily borrow the analyses that we already have in
Section VII-B and Section VI-B. We are going to analyze
this scenario in two parts:

Case c ≥ `: We have, δ ≥ 1− [1−
(
c
`

)
/
(
K
`

)
]
[

1
2
+ fp(`)

]
.

To make δ negligible, both the factors [1 −
(
c
`

)
/
(
K
`

)
] and

[1/2 + fp(`)] have to become overwhelming. From Theorem 4,
we know that we need ` ∈ ω(1) to make [1 −

(
c
`

)
/
(
K
`

)
]

overwhelming. This is a necessary condition, but not sufficient.
For a detailed case study refer to Section VI-B. From Sec-
tion VII-B we know that the necessary condition for [1/2+fp(`)]
to be overwhelming is 2`p > 1−neg(η). Hence, both conditions
are necessary to achieve strong anonymity.

Case c < `: We have,
δ ≥ (1− [1/2 + fp(`− c)])(1− [1− 1/

(
K
c

)
][1/2 + fp(c)]).

In the above expression, we can see two factors:
(i) F1 = (1−[1

2
+fp(`−c)]), (ii) F2 = (1−[1−1/

(
K
c

)
][1

2
+fp(c)]).

To make δ negligible, it suffices that F1 or F2 become
negligible. Unlike Section VI, here fp(` − c) and fp(c) are
independent, which allows us to analyze F1 and F2 inde-
pendently. First, F1 is similar to the δ-bound in Section VII,
except that we consider fp(` − c) instead of fp(`). Hence,
the analysis of F1 is analogous to Section VII-B. Second,
F2 is negligible if both [1 − 1/

(
K
c

)
] and [1/2 + fp(c)] are

overwhelming. From Section VI-B we know that [1 − 1/
(
K
c

)
]

can not be overwhelming for a constant c. Moreover, fp(c)
can be analyzed exactly as fp(`) in Section VII-B.

IX. RECIPIENT ANONYMITY

For recipient anonymity, we analyze the adversary’s success
in determining the recipient of a particular message sent by
a user. Technically, instead of selecting one sender of the
adversary’s choice at random, the challenger selects a recipient
at random. Moreover, the adversary is naturally not informed
about the delivery of the challenge message by a recipient, but
of the sending of the challenge message by a user.

We derive impossibility results analogous to our results
for sender anonymity via the same strategy we employed
in the previous sections. In this case, instead of ignoring
all internally generated messages in Claim 2 we ignore all
internally terminating messages. Note that this gives β a
slightly different flavor.
Synchronized Users. We slightly tweak the user distribution
to suit the definition of recipient anonymity. We assume
that all the input messages come within R rounds, exactly

12

one message per round, following a random permutation
the assigns one round to each recipient. In a given round,
exactly one sender sends a message to the assigned recip-
ient. Then, the protocol decides when to deliver the mes-
sage to the recipient, but not delaying more than ` rounds.
Let UB be the user distribution as discussed above and let
fRA
β (d) = min

(
1,
(

(d+`)+2(d+`)βR
R

))
. Then we get for non-

compromising adversaries, that no protocol Π ∈ M can
provide δ-recipient anonymity in the following cases:
• Without compromisation: δ < 1− fRA

β (`).
• For adversaries that compromise up to c parties:

– if c ≥ `: δ < 1− [1−
(
c
`

)
/
(
K
`

)
]fRA
β (`).

– if c < `: δ < 1− [1− 1/
(
K
c

)
]fRA
β (c)− fRA

β (`− c).
Moreover, no protocol M with K ∈ poly(η) can achieve strong
recipient anonymity when ` < N and βN ≥ 1 in the following
cases, where ε(η) = 1/ηd for a positive constant d:
• Without compromisation: if 4`β < 1− ε(η),
• For adversaries that compromise up to c parties:

– if K > c ≥ `: 4`β < 1− ε(η) OR ` ∈ O(1).
– if K > ` > c: 4(`− c)β < 1− ε(η).

Unsynchronized Users. Similar to the previous case, here
also we borrow the definition of user distribution from Sec-
tion VII, with a minor modification. The biased coins are now
associated with recipients instead of senders - in each round
a sender sends a message for a recipient, with probability
p. Let, fRA

p (d) = min(1/2, 1 − (1 − p)`+d). Then we get for
non-compromising adversaries, that No protocol Π ∈ M can
provide δ-recipient anonymity for UP in the following cases:
• Without compromisation: δ < 1− (1/2 + fRA

p (`)).
• For adversaries that compromise up to c parties:

– If c ≥ `: δ < [1−
(
c
`

)
/
(
K
`

)
][1/2 + fRA

p (`)].
– If c < `: δ < (1− [1/2 + fRA

p (`− c)])

·(1− [1/2 + fRA
p (c)][1− 1/

(
K
c

)
]).

Moreover, For user distribution UP and p > 0, no protocol
can achieve strong recipient anonymity if 2`p < 1 − ε(η),
where ε(η) = 1/ηd for a positive constant d.

X. IMPLICATIONS

To put our result into perspective, we discuss whether
our trilemma excludes strong anonymity for ten different AC
protocols from the literature. More precisely, this section ex-
emplarily applies the results from Theorem 2 and Theorem 7,
i.e., with synchronized and unsynchronized user distributions
and a global network-level, non-compromising adversary. We
use both results since for some AC protocols (e.g., DC-
nets [15]) the synchronized user distribution is more accurate
and for other protocols (e.g., Tor [10]) the unsynchronized user
distribution is more accurate. Our constraints mark an area
on a 2D graph (see Figure 6) with latency overhead (x-axis)
versus bandwidth overhead (y-axis) where strong anonymity is
impossible. As the latency of some AC protocols depends on
system parameters and we want to place the protocols in a 2D
graph, we carefully choose system parameters and make a few
simplifying assumptions, which are subsequently described.

This section is solely intended to put our impossibility result
into perspectiveby discussing how we estimated the bandwidth
β and latency ` bounds in the sense of this work. It is not meant
and not qualified to be a performance and scalability compar-
ison of the discussed AC protocols, which would have to take
many other dimensions into account, e.g., the communication
and computation complexity of the servers and the receivers,
the computation complexity of the senders and the different
kinds of functionalities that are offered by the different AC
protocols (e.g., group communication vs. internet-like visitor-
webpage communication). Table I summarizes the different
bounds on the bandwidth β and latency overhead ` (in the
sense of this work).

Technically, this section considers translations of AC pro-
tocols into our protocol modeland estimates the latency and
bandwidth overhead of these translations. As these translations
do not provide any additional insights, we do not present
the full translated protocols but only the abstraction steps.
We abstract away the cryptographic instantiation of messages
including the bandwidth overhead they introduce over the
plaintext. We assume an upper bound on the latency of the
protocol and are oblivious to server-side noise (see Claim 2).
Moreover, recall that we are only interested in the question
whether our trilemma excludes strong anonymity the ten AC
protocols from the literature; hence, we consider the upper
bound on the latency and bandwidth overhead for deterministic
latency. For randomized latency, such as Loopix [24], we list
for simplicity the expected delay as the latency bound.
Low-latency protocols. Tor [10], Hornet [47], and Herd [48]
are low-latency AC protocols, i.e., they immediately forward
messages. While Tor and Hornet do not produce asymp-
totically more than a constant amount of both bandwidth
overhead and latency overhead and thus cannot provide strong
anonymity, Herd produces dummy traffic linearly proportional
to the number of users (bandwidth overhead β ∈ θ(N/N)),
thus the trilemma does not exclude strong anonymity for Herd.
Riposte. Riposte [49] uses secure multiparty computation and
a variant of PIR to implement an anonymous bulletin board.
Riposte operates in epochs and for each epoch the set of users
is public. Hence, Riposte is expected to be run with long
epochs to maximize the number of users that participate in
an epoch, which leads us to estimating the latency overhead
to be ` ∈ θ(N). To counter traffic analysis attacks, Riposte
clients send constant dummy traffic, resulting in a bandwidth
overhead of β ∈ θ(N/N). Thus, the trilemma does not exclude
strong anonymity for Riposte.
Vuvuzela. Vuvuzela [20] is a mix net that is tailored towards
messengers. Clients communicate by deposing their encrypted
messages in one of the mix net nodes. To achieve strong
resistance against compromised servers, Vuvuzela takes a path
through all servers, resulting in a latency overhead of ` ∈ θ(K)
(for K servers). Additionally, Vuvuzela utilizes constant traffic,
leading to a bandwidth overhead of β ∈ θ(N/N), and has the
potential for strong anonymity.
Riffle. Riffle [21] uses a verifiable mix-net, however not only

13

TABLE I
Latency vs. bandwidth vs. strong anonymity of AC protocols, with the

number of protocol-nodes K, number of clients N, and message-threshold
T , expected latency `′ per node, dummy-message rate β.

Protocol Latency Bandwidth Strong Anonymity
Tor [10] θ(1) θ(1/N) impossible
Hornet [47] θ(1) θ(1/N) impossible
Herd [48] θ(1) θ(N/N) possible
Riposte [49] θ(N) θ(N/N) possible
Vuvuzula [20] θ(K) θ(N/N) possible
Riffle [21] θ(K) θ(N/N) possible
Threshold mixes [14] θ(T · K) θ(1/N) impossible∗

Loopix [24] θ(
√
K · `′) θ(β) possible

DC-Net [15], [46] θ(1) θ(N/N) possible
Dissent-AT [22] θ(1) θ(N/N) possible
DiceMix [16] θ(1) θ(N/N) possible
∗ if T in o(poly(η))

1p
⌘

1

poly(⌘)

p

`

1

log(⌘)

1

Tor

log(⌘)
p
⌘ poly(⌘)

Dissent-AT

Threshold Mix

Dicemix Vuvuzela

Hornet

Riffle
DC-Net
Herd

Threshold Mix sec

1

Loopix

2`p 1 � 1

poly(⌘)

Riposte

Fig. 6. Asymptotic latency and bandwidth overhead bounds against 2`p ≤
1 − ε(η), with p = β in Theorem 2, p = β + p′ Theorem 7), a rate p′ at
which users are sending messages, the bandwidth overhead β, and the security
parameter η. This graph assumes N is ca. poly(η), the number of nodes K is
ca. log η. The threshold for Threshold Mix T = 1 and for Threshold Mixsec
T = N = poly(η).

for messenger communication but also for normal client-server
web traffic. Just as Vuvuzela, Riffle also chooses paths that
traverse all K servers, leading to ` ∈ θ(K) and if we assume
K ∈ θ(log(η)), we get ` ∈ θ(log(η)). We assume that the
clients send dummy traffic up to a constant rate (depending
on the user’s sending rate p′), so we have β ∈ θ(N/N) and
the potential for strong anonymity.

Threshold mix nets. In a Threshold mix net, each of the
K mix servers waits until it received up to a threshold T
many messages before relaying the messages to the next
mix, resulting in ` ∈ θ(T · K). Threshold mixes [14] do
not provide strong anonymity unless their threshold T is
of the order of the number of users N . As such a large
threshold are impractical for a large number of users, we
judge it impossible to achieve strong anonymity for practical
deploymentsof Threshold mixes.

Loopix. Loopix [24] is a mix net that combines exponentially

distributed delays at each mix-node and dummy messages
from each user. Ignoring so-called loop messages (meant to
counter active attacks), Loopix naturally enforces our unsyn-
chronised user distribution: the rate at which Loopix clients
send messages is the sum of a dummy-message rate (β) and
a payload message rate (p′), which are system parameters.
We assume that the path lengths in Loopix’ stratified topol-
ogy is

√
K with the number of nodes K ∈ θ(log(η)). If

β+p′ ≥ 1/
√
η, and if every hop introduces an expected delay

of `′ ≥
√
η√
K

, the expected latency overhead is ` =
√
K · `′, in

particular ` ∈ θ(
√

(η)). We get (p′ + β)` = 1√
η ·
√
η = 1 and

the trilemma does not exclude strong anonymity for Loopix,
which grants the protocol an interesting spot in our figure.

AC protocols based on DC-nets. In a DC-net [15], [46]
each party broadcasts either a dummy or real message in
every round to every other party. As our bandwidth overhead
only counts dummy-message rates, it does not capture the
broadcast, thus β ∈ θ(N/N). DC-nets use a combination
operation (a simple XOR in Chaum’s original paper) that
causes dummy messages to cancel out. Then, all parties output
the resulting bitstring. If only one real message is sent, the
bitstring equals this message. As Theorem 7 already assumes
a synchronized user distribution, each round only one party
sends a message; hence, in our model we treat the latency
overhead as ` ∈ θ(1).

The Dissent-AT [22] scheme (the AnyTrust-variant of Dis-
sent) improves on the performance of DC-nets by relying on
dedicated servers. Instead of sending in each round fake or
real ciphertexts to every other client, clients in Dissent-AT
send these messages to at least one of these dedicated servers.
These servers then perform a DC-net communication round.
Abstracting from an initial set-up phase and only counting the
client-messages, Dissent-AT has β ∈ θ(N/N) for the clients
(assuming that each client communicates to one server), and
` ∈ θ(1).

Dicemix [16] is a peer-to-peer AC protocol that is based on
the DC-net approach. While Dicemix includes a self-healing
mechanism that leads to 4 + 2f communication rounds for
one message if f peers are malicious, this mechanism does not
kick in if all peers are honest, leading to only 4 communication
rounds. The authors additionally had the insight that a trusted
party, i.e., a bulleting board, can be used for the broadcast. This
party can even be malicious in which case the bulleting board
can stop the protocol but not deanonymize the parties. This
bulleting boards keeps the latency at 4, which is in θ(1).As
every party sends a message in every round β ∈ θ(N/N).

XI. CONCLUSION & FUTURE WORK

This paper proves the anonymity trilemma: strong anony-
mity, low bandwidth, low latency—choose two! We derive
necessary constraints for sender anonymity and recipient ano-
nymity, and thereby presents necessary constraints that are
crucial for understanding bi-directional anonymous commu-
nication: sender anonymity for hiding the sender and recipient
anonymity for hiding the recipient of a message. To put

14

our result in perspective, we evaluate how ten relevant AC
protocols from the literature cope with the trilemma.

For future work, we plan to extend the work in four
natural directions: (i) derive tighter bounds by using more
sophisticated attackers, (ii) derive bounds for other anonymity
notions (e.g., unlinkability and relationship anonymity), (iii)
extend the protocol mode with a notion of a throughput
limitation, (iv) relax the requirement that messages are sent
with certainty and allow for unreliable channels. For example,
for the first direction, we plan to take the same steps as
outlined in Section II-B. Here, we will have to formulate an
invariant, construct a protocol optimal w.r.t. this invariant, and
then compute the advantage of the more sophisticated attacker
against this protocol.

Acknowledgments. We thank the reviewers for their valuable
comments. This work has been partially supported by the
Zurich Information Security Center (ZISC), the European
Commission through H2020-DS-2014-653497 PANORAMIX,
the EPSRC Grant EP/M013-286/1, and the National Science
Foundation (NSF) under grant CNS-1719196.

REFERENCES

[1] T. T. Project, “The Tor Project,” https://www.torproject.org/, accessed in
May 2014.

[2] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson, “Users get
routed: Traffic correlation on tor by realistic adversaries,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 2013, pp. 337–348.

[3] L. Øverlier and P. F. Syverson, “Locating Hidden Servers,” in Proc. 27th
IEEE Symposium on Security and Privacy, 2006, pp. 100–114.

[4] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of Tor,” in
Proceedings of the 2005 IEEE Symposium on Security and Privacy.
IEEE CS, May 2005.

[5] K. S. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. C. Sicker,
“Low-resource routing attacks against tor,” in Proc. 6th ACM Workshop
on Privacy in the Electronic Society (WPES), 2007, pp. 11–20.

[6] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford, M. Chiang, and
P. Mittal, “RAPTOR: Routing attacks on privacy in Tor,” in Proceedings
of the 24th USENIX Security Symposium, August 2015.

[7] R. Jansen, F. Tschorsch, A. Johnson, and B. Scheuermann, “The sniper
attack: Anonymously deanonymizing and disabling the Tor network,”
in Proceedings of the Network and Distributed Security Symposium -
NDSS ’14. IEEE, February 2014.

[8] Y. Gilad and A. Herzberg, “Spying in the Dark: TCP and Tor Traffic
Analysis,” in Proceedings of the 12th Privacy Enhancing Technologies
Symposium (PETS 2012). Springer, July 2012.

[9] The Tor Blog, “One cell is enough to break Tor’s anonymity,”
https://blog.torproject.org/blog/one-cell-enough, 2009, accessed May
2017.

[10] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-
Generation Onion Router,” in Proc. 13th USENIX Security Symposium
(USENIX), 2004, pp. 303–320.

[11] S. Chakravarty, M. V. Barbera, G. Portokalidis, M. Polychronakis,
and A. D. Keromytis, “On the effectiveness of traffic analysis against
anonymity networks using flow records,” in Proceedings of the 15th
International Conference on Passive and Active Measurement - Volume
8362, ser. PAM 2014, 2014, pp. 247–257.

[12] N. Gelernter and A. Herzberg, “On the limits of provable anonymity,”
in Proceedings of the Workshop on Privacy in the Electronic Society
(WPES 2013), 2013, pp. 225–236.

[13] A. Hevia and D. Micciancio, “An indistinguishability-based character-
ization of anonymous channels,” in Proceedings of the Eighth Inter-
national Symposium on Privacy Enhancing Technologies (PETS 2008),
N. Borisov and I. Goldberg, Eds. Springer, July 2008, pp. 24–43.

[14] A. Serjantov, R. Dingledine, and P. Syverson, “From a trickle to a
flood: Active attacks on several mix types,” in Information Hiding: 5th
International Workshop (IH 2002). Springer Berlin Heidelberg, 2003,
pp. 36–52.

[15] D. Chaum, “The dining cryptographers problem: Unconditional sender
and recipient untraceability,” Journal of Cryptology, vol. 1, no. 1, pp.
65–75, 1988.

[16] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “P2P Mixing and Unlink-
able Bitcoin Transactions,” in Proc. 25th Annual Network & Distributed
System Security Symposium (NDSS). Internet Society, 2017.

[17] H. Corrigan-Gibbs and B. Ford, “Dissent: Accountable Anonymous
Group Messaging,” in Proc. 17th ACM Conference on Computer and
Communication Security (CCS), 2010, pp. 340–350.

[18] P. Golle and A. Juels, “Dining cryptographers revisited,” in Proceedings
of Eurocrypt 2004, May 2004.

[19] H. Corrigan-Gibbs, D. I. Wolinsky, and B. Ford, “Proactively Account-
able Anonymous Messaging in Verdict,” in Presented as part of the 22nd
USENIX Security Symposium (USENIX Security 13). USENIX, 2013,
pp. 147–162.

[20] J. van den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich, “Vuvuzela:
Scalable private messaging resistant to traffic analysis,” in Proceedings
of the 25th ACM Symposium on Operating Systems Principles (SOSP
2015), Monterey, California, October 2015.

[21] A. Kwon, D. Lazar, S. Devadas, and B. Ford, “Riffle: An Efficient Com-
munication System With Strong Anonymity,” Proceedings on Privacy
Enhancing Technologies, vol. 2016, no. 2, pp. 115–134, 2016.

[22] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson, “Dissent
in Numbers: Making Strong Anonymity Scale,” in 10th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 12).
USENIX, 2012, pp. 179–182.

[23] S. Le Blond, D. Choffnes, W. Zhou, P. Druschel, H. Ballani, and
P. Francis, “Towards Efficient Traffic-analysis Resistant Anonymity
Networks,” in Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM. ACM Press, 2013, pp. 303–314.

[24] A. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and G. Danezis,
“The loopix anonymity system,” in 26th USENIX Security Symposium
(USENIX Security 17). USENIX Association, 2017.

[25] S. L. Blond, D. Choffnes, W. Caldwell, P. Druschel, and N. Merritt,
“Herd: A scalable, traffic analysis resistant anonymity network for voip
systems,” in Proceedings of the ACM SIGCOMM 2015 Conference,
August 2015.

[26] M. Backes, A. Kate, P. Manoharan, S. Meiser, and E. Mohammadi,
“Anoa: A framework for analyzing anonymous communication proto-
cols,” in Computer Security Foundations Symposium (CSF), 2013 IEEE
26th. IEEE, 2013, pp. 163–178.

[27] K. Jensen, Colored Petri Nets (Vol. 3), 1997.
[28] W. Reisig, Primer in Petri Net Design, 1st ed., 1992.
[29] T. K. Srikanth and S. Toueg, “Simulating authenticated broadcasts to

derive simple fault-tolerant algorithms,” Distributed Computing, vol. 2,
no. 2, pp. 80–94, 1987.

[30] R. Gennaro, M. O. Rabin, and T. Rabin, “Simplified VSS and fact-track
multiparty computations with applications to threshold cryptography,”
in Proceedings of the ACM PODC, 1998, pp. 101–111.

[31] “Anonymity trilemma: Strong anonymity, low bandwidth,
low latency—choose two (anonymized extended version),”
https://drive.google.com/open?id=0B3uYynryZcHiM0JySk5oX25kWVk.

[32] J. Feigenbaum, A. Johnson, and P. Syverson, “A probabilistic analysis
of onion routing in a black-box model,” in Proceedings of the Workshop
on Privacy in the Electronic Society (WPES 2007), October 2007.

[33] M. Backes, A. Kate, P. Manoharan, and E. M. Sebastian Meiser, “AnoA:
A Framework For Analyzing Anonymous Communication Protocols,”
in Proceedings of the of the 26th IEEE Computer Security Foundations
Symposium (CSF), June 2013, pp. 163–178.

[34] D. Wikström, “A Universally Composable Mix-Net,” in Proc. of the 1st
Theory of Cryptography Conference (TCC), 2004, pp. 317–335.

[35] J. Camenisch and A. Lysyanskaya, “A formal treatment of onion
routing,” in Proceedings of CRYPTO 2005, V. Shoup, Ed. Springer-
Verlag, LNCS 3621, August 2005, pp. 169–187.

[36] N. Kiyavash, A. Houmansadr, and N. Borisov, “Multi-flow Attacks
Against Network Flow Watermarking Schemes,” in Proceedings of the
17th USENIX Security Symposium, 2008.

[37] C. T. Simon Oya and F. Pérez-González, “Do dummies pay off?
limits of dummy traffic protection in anonymous communications,” in

15

Proceedings of the 14th Privacy Enhancing Technologies Symposium
(PETS 2014), July 2014.

[38] G. Danezis, “Statistical disclosure attacks: Traffic confirmation in open
environments,” in Proceedings of Security and Privacy in the Age of
Uncertainty, (SEC2003), Gritzalis, Vimercati, Samarati, and Katsikas,
Eds., IFIP TC11. Kluwer, May 2003, pp. 421–426.

[39] G. Danezis and A. Serjantov, “Statistical disclosure or intersection
attacks on anonymity systems,” in Proceedings of 6th Information
Hiding Workshop (IH 2004), ser. LNCS, May 2004.

[40] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching
and set intersection,” in Proceedings of EUROCRYPT 2004, May 2004.

[41] F. Pérez-González and C. Troncoso, “Understanding statistical disclo-
sure: A least squares approach,” in Proceedings of the 12th International
Symposium Privacy Enhancing Technologies (PETS 2012). Springer
Berlin Heidelberg, 2012, pp. 38–57.

[42] D. Dolev, R. Reischuk, and H. R. Strong, “Early stopping in byzantine
agreement,” J. ACM, vol. 37, no. 4, pp. 720–741, 1990.

[43] D. Kesdogan, J. Egner, and R. Büschkes, “Stop-and-go MIXes: Pro-
viding probabilistic anonymity in an open system,” in Proceedings of
Information Hiding Workshop (IH 1998). Springer-Verlag, LNCS 1525,
1998.

[44] G. Danezis, C. Diaz, C. Troncoso, and B. Laurie, “Drac: An architecture
for anonymous low-volume communications,” in Proceedings of the 10th
Privacy Enhancing Technologies Symposium (PETS 2010), July 2010.

[45] P. Mittal, M. Wright, and N. Borisov, “Pisces: Anonymous communica-
tion using social networks,” in Proceedings of the 20th Annual Network
and Distributed System Security Symposium (NDSS2013). The Internet
Society 2013, February 2013.

[46] P. Golle and A. Juels, “Dining cryptographers revisited,” in Proceedings
of EUROCRYPT 2004. Springer Berlin Heidelberg, 2004, pp. 456–473.

[47] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and A. Perrig, “HORNET:
High-speed onion routing at the network layer,” in Proceedings of the
ACM Conference on Computer and Communications Security (CCS).
ACM Press, 2015, pp. 1441–1454.

[48] S. Le Blond, D. Choffnes, W. Caldwell, P. Druschel, and N. Merritt,
“Herd: A Scalable, Traffic Analysis Resistant Anonymity Network for
VoIP Systems,” in Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication. ACM Press, 2015, pp. 639–
652.

[49] H. Corrigan-Gibbs, D. Boneh, and D. Mazières, “Riposte: An anony-
mous messaging system handling millions of users,” in Proceedings of
the 36th IEEE Symposium on Security and Privacy (S&P 2015). IEEE
Computer Society, May 2015, pp. 321–338.

APPENDIX A
PROTOCOL MODEL REVISITED

A. Validity of the Protocol Model (Contd.)

Lemma 2. Let Π be a protocol ∈ M with K parties with
parameters β and `. Then: 1) Messages are delivered within
` steps. 2) The protocol adds (for the unsynchronised case on
average) a maximum of β noise messages per user per round.
3) Whenever a party in S ∪ P sends a message to another
party in P∪R, the adversary learns that and in which round
this happens. 4) For every message that leaves the network
(received by R), the adversary additionally learns whether
the message is the target message. 5) For every compromised
party, the adversary learns the mapping between the input
messages and the output messages.

Proof. Let Π be a protocol ∈ M with K parties with param-
eters β and `. We analyze the lemma part by part.

1) Messages are delivered within ` steps.
2) The protocol adds (for the unsynchronised case on aver-

age) a maximum of β noise messages per user per round.

3) Whenever a party in S ∪ P sends a message to another
party in P ∪ R, the adversary learns that and in which
round this happens.

4) For every message that leaves the network (received by
R), the adversary additionally learns whether the message
is the target message.

5) For every compromised party, the adversary learns the
mapping between the input messages and the output
messages.

Part (2) of the Lemma holds, since we restrict the user
distributions accordingly and since the none of the transitions
in the petri-net can create more tokens within the network than
it consumes from its input place.

We show the part (1) of the lemma via structural induction
over fired transitions of the petri net. We additionally add to
the induction invariant that all tokens that are not in S have a
timestamp for their next transition of ts = 1 and a remaining
time of tr > 0 and there are at least tr rounds left in which
the token can be delivered.

Induction base: The protocol is initialized and no transi-
tions have happened. Thus, no messages have been sent so far,
i.e., there is no message that has not been delivered within `
steps. The only transition that can fire is TS and for ` > 0,
the message introduced into the network in this way does not
need to be delivered already (0 < tr = `). Moreover, TS sets
the timestamp of this message token to ts = 1

Induction step: Let tr be any execution trace s.t. the
induction invariant is satisfied and let t be an arbitrary possible
transition that extends tr to tr :: t.

We distinguish two cases for t: In case t is TS , it consumes
a token from PS and puts this token into a place Pi and, by
definition we have tr > 0 and ts = 1. Otherwise, the transition
is TPi

for some i and consumes a token from Pi accordingly.
By the induction invariant, the token has tr > 0. If this token
has tr−1 = 0, the transition delivers the token to R. Otherwise,
t decreases tr by one (thus fulfilling the condition that there
are at least tr rounds left in which the token can be delivered)
and sets ts = 1. Since every token in any place Pi needs to be
consumed in every round, the protocol delivers every message
in at most ` steps.

Other parts of the lemma: By definition of our petri net,
whenever a transition fires, an element (t, r) is placed into
Tokens, containing the public fields of t, such as t.prev and
t.next, as well as the current round number r, which fulfills
part (3). Moreover, whenever the transition places the token
in R, the adversary can additionally see the field t.msg and no
transition can change the field msg, which allows the adversary
to effectively tag and recognize the challenge message and thus
fulfills part (4). Finally, if any party Pi is compromised, Pi
does not modify the unique (and otherwise freshly sampled)
field t.IDt, which allows the adversary to map incoming and
outgoing messages.

Since the transitions discussed here are the only way for
messages to be sent to a recipient, the model correctly enforces
the conditions from the lemma.

16

B. Expressing Protocols in the petri net model

Modeling DC net. Here we show how to model an actual
DC net type protocol using our petri net model M as defined
in Section IV. Specifically we pick up the short DC net
protocol proposed by Golle and Juels [46], and present MDC

which models the aforementioned protocol.
We model a DC net protocol with N participants, where

S = P, |S| = |P| = N. We denote the parties with P1, . . . , PN .
The protocol can be denoted by ΠDC ={paramgen, keydist,
post, verify, extract}6 - as described below.
• paramgen: In protDC , paramgen is executed by a trusted

entity and the output is published. Since we are mainly
interested in the anonymity game, we consider that paramgen
step is executed by our honest challenger and happens outside
the protocol run, and the output is globally known (to all the
transitions TPi).
• keydist: using the output of paramgen, this step yields for

each party Pi a private key xi and a corresponding public
key yi. In protDC , the above key generation part is done
by a trusted entity, and hence we consider that it is done by
our honest challenger and for each party Pi the public-private
keypair xi, yi is already known to the corresponding transition
function TPi . As part of protocol each party Pi publishes its
public key yi. Additionally, each party Pj receives from Pi
a share of private key xi,j and a share of public key yi,j ,
where the keys are shared in a (k,N) threshold manner for a
parameter k ≤ N.
• post: Each player Pi generates a vector of random pads

Wi = {Wi(1),Wi(2), . . . ,Wi(N)}7 using xi. ΠDC does not
handle collisions, instead assumes that the players decide
their positions by a consensus protocol. Similarly our model
assumes that each party Pi knows its position, and assume
the position is qi (but not known to the adversary). Then each
player Pi computes the vector Vi such that Vi(w) = Wi(w)
for all w 6= i and Vi(w) = Wi(w) ⊕mi for w = qi, where
mi is the message of Pi. Also, each player Pi computes
σi = {σi(1), σi(2), . . . , σi(N)}, where σi includes the identity
of player Pi and a proof of valid formatting of Vi. Then Pi
publishes both the vectors Vi and σi. Our model assumes the
pair (Vi(w), σi(w)) for each position w as a single message,
where Vi(w) is a message content and σi(w) becomes a part
of meta field. For each position w player Pi generates one
such message, and publishes the message to all other players.
• verify and extract are local computations after a party Pi

receives messages from all other parties.
Although the protocol model assumes that the adversary can

not read the contents of any message, here we shall model
ΠDC along with its cryptographic primitives to demonstrate
the expressiveness of our model. Alternatively, to get rid of
all the cryptographic primitives, the parties can send a dummy

6Since we are mainly interested in the anonymity property, we don’t need
to model the part of the protocol where the protocol parties reconstructs the
keys in case of a failure. But it is easy to extend MDC to include that step
by adding one more round to the current model.

7The anonymity game does not include multiple sessions. Also, in our
model all the N players participate in a protocol run.

message (= 0) whenever Vi(w) = Wi(w), and the actual
message mi whenever Vi(w) 6= Wi(w).

As per our anonymity definition in Section III, we assume
that up to (N−2) users can be compromised, which necessarily
makes up to (N − 2) protocol parties compromised. The
adversary chooses two challenge users, and one of them sends
the challenge message depending on the challenge bit b. All
other (N − 1) users send dummy messages.

In MDC we model ΠDC as a two round protocol. The
challenger sets the initial configuration of the petri-net with the
messages to be sent by each party. In the first round, each party
Pi sends two kinds messages: (1) publishes the public key
message yi and (2) sends share of the public-private keypair
(xi,j , yi,j) to Pj for all j 6= i. Here, one party can publish a
message to (N −1) other parties by sending (N −1) separate
messages. In the second round, each party Pi publishes N
messages: one message for each position, only one of them
contains his own message. After second round, every party
receives messages from every other party, and then does local
computations to verify and extract the original messages.

For ΠDC , we do not actually need a separate recipient R
in ΠDC , if we make R = P. But, to be consistent with M ,
in MDC we keep a separate recipient. In the second round
whenever a party Pi publishes a message, Pi also sends a
copy to R. This easily models the fact that the adversary knows
whenever a message is published, but avoids the complication
of modeling a subset of compromised recipients.

The meta fields of the tokens contains the following sub-
fields: (1) stage, (2) position, (3) sigma. stage can have three
possible values identifying three possible cases: (1) public
key distribution, (2) share of the public-private keypair, (3)
message. When it is message, the user posts Vi(w), and
position takes the value of w. sigma includes the identity of
the sender and a proof of computation whenever necessary.

If we want to analyze the user distribution for ΠDC , we
do not count the first round since it is used only for key
exchangeand no user message is sent. Note that, if we get
rid of the cryptographic primitives, we do not require the first
round. If we assume that all the users are ready with their
messages at the begining, the latency overhead of ΠDC is 1,
and bandwidth overhead is ≥ (N − 1) per user.
Modeling Tor. Now we shall demonstrate that onion routing
protocols like Tor can be easily modeled using our petri net
model M . We want to stress here that we only consider sender
anonymity game against a global passive adversary, and hence,
we shall not model any sophisticated features like hidden
services, congestion control etc.

Since Tor does not operate in rounds, embedding it into our
model is not straight forward. Suppose, a Tor node takes at
least x milliseconds to process a message when it receives a
message, and it takes at least y milliseconds for a message
to travel from one node to the next node over a network
link. Then we define one round as x + y milliseconds. We
assume a perfect condition where each node takes exactly

17

equal computation time for one message, and each link has
exactly same delay. 8

Tor nodes and recipients are separate entities and hence, S,
P and R are mutually exclusive. Whenever a Tor node receives
a message, the node immediately processes and forwards that
message to the next node or recipient. We can either model
the latency overhead ` of Tor by estimating the time messages
spend within the network that exceeds the (minimal) round
length x+y from above, or we set it to the number of hops, i.e.,
` = 3. In either case, we assume that ` does not increase with
η and thus get a latency overhead ` ∈ O(1). For analyzing Tor
with a variable number h of hops, we can instead set ` = h.
When a party Pi receives a message, TPi

can retrieve the next
hop from the meta field of the message. Since Tor does not
add any noise messages, the bandwidth overhead is β = 0.

APPENDIX B
DELAYED PROOFS

Proof of Claim 1. We distinguish two cases, depending on T :
either T is empty, or T is non-empty.

If the set T is empty, then S1−b is empty as well. However,
by construction of our protocol mode, the set Sb is always non-
empty. Consequently, the adversary Apaths will output b and
thus win with probability 1. If T is not empty, the following
cases can occur:

1) The challenge message never passes through an honest
node: In this case, the field IDt of the message never changes
for the tokens. By definition of the sets Sj , the tokens can only
be combined if either there is no corresponding token with the
same value for IDt, or by extending the path by exactly this
token. Thus, Sb will have exactly one element, and S1−b will
be an empty set, and consequently Apaths wins.

2) The challenge message passes through one or more
honest nodes at times t′, such that t′ < min(T), but not
afterwards. Following the same reasoning as above, we see
that paths before min(T) can be ambiguous, but none of them
leads to u1−b. Hence, Sb can have multiple elements, but S1−b
will still be an empty set. Thus, Apaths wins.

3) The challenge message passes through an honest node
at time t′ with t′ ≥ min(T). In this case, the invariant is true.

In all of the above mentioned cases either the invariant is
true, or the adversary wins with probability 1.

Proof of Theorem 2. For strong anonymity, we require:
δ(η) = neg(η), and we know that for Πideal we have:
δ(η) ≥ 1−fβ(`) =

(
N−`−βN`

N−1

)
≥
(

N−`−βN`
N

)
≥ 1− `

N −β`.
We assume for contradiction that there is a protocol limited
by ` and β such that 2`β < 1− ε(η) that still achieves strong

8In the real world, delays and computation times are less stable, but can
be estimated by an adversary. Instead of analyzing this, we instead allow the
messages to remain within the node for the respective time.
anonymity. Since δ(η) = neg(η), we know that ε(η) > δ(η).

ε(η) > δ(η) =⇒ ε(η) > 1− `

N
− β`

=⇒ ε(η) > 1− `

N
− 1

2
(1− ε(η))

⇐⇒ 2` > N (1− ε(η))
Nβ≥1
=⇒ 2`β > 1− ε(η)

The above contradicts the assumption that 2`β < 1− ε(η).
Note: In case βN < 1, no noise messages are allowed per

round (i.e., β = 0) and thus δ(η) ≥ 1 − `/N, which is not
negligible unless ` = N, since N = poly(η).

Proof of Theorem 4. When c > `: δ ≥ 1−
[
1− (c

`)
(K
`)

]
fβ(`).

For δ to become neg(η), we need both [1 −
(
c
`

)
/
(
K
`

)
]

and fβ(`) to become overwhelming. From Theorem 2 and
Theorem 1, we know that 2`β > 1− neg(η) is a necessary
condition for fβ(`) to become overwhelming. Now, we are left
with the factor [1−

(
c
`

)
/
(
K
`

)
]. This can become overwhelming

iff [
(
c
`

)
/
(
K
`

)
] becomes negligible. We know that K > c ≥ `

and K ∈ poly(η). Hence, for some constant x,

c− `
K− ` >

1

ηx
⇐⇒

(
c− `
K− `

)`
>

(
1

ηx

)`
=⇒ c(c− 1) . . . (c− `)

K(K− 1) . . . (K− `) >
(

c− `
K− `

)`
>

(
1

ηx

)`
⇐⇒

(
c
`

)(
K
`

) > (1

ηx

)`
.

For any ` ∈ O(1), (1/ηx)
` is non-negligible.

Proof of Theorem 5. When c < `:
δ ≥ 1−

[
1− 1/

(
K
c

)]
fβ(c)− fβ(`− c).

First consider the factor [1 − 1/
(
K
c

)
]. Since K = poly(η)

and c = constant, [1/
(
K
c

)
] can never be negligible. And thus,

[1− 1/
(
K
c

)
] can never be overwhelming. So, [1− 1/

(
K
c

)
]fβ(c)

can never be overwhelming as well, since fβ(c) ≤ 1.
Now, let’s consider fβ(` − c) and fβ(c) . Note that, these

two factors represent the probabilities of two dependent but
mutually exclusive events, and hence fβ(c) + fβ(` − c) ≤ 1.
And we already know that [1 − 1/

(
K
c

)
] can never be over-

whelming. Thus, the only way δ can become negligible is if
fβ(`− c) becomes overwhelming. Note that, if a+ b ≤ 1 and
c < 1, the only way ac+ b = 1 is possible if b = 1.

Now we can follow exactly the same procedure as in
the proof of Theorem 2 to say: fβ(` − c) can not become
overwhelming if 2(`− c)β < 1− ε(η).

Proof of Theorem 7. We know 0 ≤ E ≤ 1/2. When 2µ ≤ N,

δ ≥(1− E) (1− 2fp(`)) ≥ 1/2
(

2 (1− p)` − 1
)

≥1/2 (2 (1− `p)− 1) = 1/2 (1− 2`p) .

Thus, if 2`p < 1− ε(η),

2`p < 1− ε(η) ⇐⇒ 1− 2`p > ε(η)

=⇒ δ > 1/2 · ε(η) = non-negligible.

Thus, when 2µ ≤ N, a necessary condition for δ to become
negligible is 2`p > 1− neg(η).

When 2µ > N, using µ = N(1− (1− p)`) we get:

2N(1− (1− p)`) > N =⇒ (1− p)` < 1/2

=⇒ 1− p` < 1/2 ⇐⇒ 2p` > 1.

18

Proof of Theorem 8. As in the proofs for Theorems 1, 3 and 6
we calculate the advantage of Apaths against Πideal to derive
a bound against any protocol in our model.

As in the proof for Theorem 6 we define the random vari-
ables X(1)(d), X(2)(d), . . . , X(N)(d), where X(i)(d) denotes
the event of the ith user sending her own message in an
interval of d rounds [a, b], with (b − a) = d. All X(i)(d) are
mutually independent. Note that we here consider intervals d
that are not necessarily of size `.

X(i)(d) =

{
0 with (1− p)d

1 with
(

1− (1− p)d
)

As before, we make use of the sum X(d) =
∑N
i=1X

(i)(d)
over all users and calculate the expected value of X(d) as

E[X(d)] = E

[
N∑
i=1

X(i)(d)

]
=

N∑
i=1

E
[
X(i)(d)

]
= N

(
1− (1− p)d

)
= µ(d)

Using the Chernoff Bound on the random variable X(d)
calculate Pr [X(d)− µ(d) ≥ Na] ≤ exp(−2a2N), and for
a = µ(d)

N , we define E(d) as :

E(d) = Pr [X(d) ≥ 2µ(d)] ≤ exp (−2µ(d)2/N2 · N)

≤ exp (−2(1− (1− p)d)2N).

We denote the event that sender u1−b sends at least one mes-
sage in an interval of size d by Y (d) and since all users are act-
ing independently from each other we get for i ∈ {0, . . . ,N},
Pr [Y (d)|X(d) = i] = 1−Pr [¬Y |X(d) = i] = i

N . Moreover,
for any value of d with 2µ(d) ≤ N,

Pr [Y (d)] = Pr [X(d) ≥ 2µ(d)] · Pr [Y (d)|X(d) ≥ 2µ(d)]

+ Pr [X(d) < 2µ(d)] · Pr [Y (d)|X(d) < 2µ(d)]

≤ Pr [X(d) ≥ 2µ(d)] · Pr [Y (d)|X(d) = N]

+ Pr [X(d) < 2µ(d)] · Pr [Y (d)|X(d) = 2µ(d)]

= E(d)Pr [Y |X(d) = N]

+ (1− E(d)) Pr [Y |X(d) = 2µ(d)]

= E(d) (N/N) + (1− E(d)) (2µ(d)/N)

= 1− (1− E(d))
(
1− 2

(
1− (1− p)d

))
.

If 2µ(d) > N, we get with f(d) = min
(
1
2 , 1− (1− p)d

)
:

Pr [Y (d)] ≤ E(d) + (1− E(d)) · 1 ≤ 1

≤ 1− (1− E(d)) (1− 2f(d)) .

Now, we calculate the probability of Invariant 1 being true,
under our protocol Πideal and as in the proof for Theorem 3
we distinguish two cases depending on c and `:

Case 1): c > `

Pr [Invariant 1 is true]

≤ Pr [¬Cmpr(`)] · Pr [u1−b.sent(r − `, r − 1)]

= Pr [¬compromised(`)] · Pr [Y (`)]

≤
[
1−

(
c

`

)
/
(
K

`

)] [
1−

(
1− E(`)

)(
1− 2fp(`)

)]
.

By applying Markov’s inequality on the random variable
X(d), we get E(d) = Pr [X(d) ≥ 2µ(d)] ≤ 1

2 . Thus, we
derive for δ: δ ≥ 1−

[
1− (c

`

)
/
(K
`

)] [
1
2 + fp(`)

]
.

Case 2): c < `. As for the proof of Theorem 3 we split this
case into two sub-cases, depending on t and c.

Case 2a): c < t

Pr [Invariant 1 is true]

≤ Pr [u1−b.sent(r − `, r − c)] + Pr [¬u1−b.sent(r − `, r − c)]

· Pr [u1−b.sent(r − c, r)] · Pr [¬Cmpr(c)]

= Pr [Y (`− c)] + [1− Pr [Y (`− c)]] Pr [Y (c)] Pr [¬Cmpr(c)]
≤ [1− (1− E(`− c)) (1− 2fp(`− c))]

+ [(1− E(`− c)) (1− 2fp(`− c))]

· [1− (1− E(c)) (1− 2fp(c))]
[
1− 1/

(
K

c

)]
.

Thus, for the adversarial advantage δ we derive,
δ ≥ 1− Pr [Invariant 1 is true]
≥ 1− [1− (1− E(`− c)) (1− 2fp(`− c))]

− [(1− E(`− c)) (1− 2fp(`− c))]

· [1− (1− E(c)) (1− 2fp(c))]
[
1−

(c
c

)
/
(K
c

)]
= [(1− E(`− c)) (1− 2fp(`− c))]

·
(
1− [1− (1− E(c)) (1− 2fp(c))]

[
1− 1/

(K
c

)])
≥
(
1−

[
1
2 + fp(`− c)

]) (
1−

[
1
2 + fp(c)

] [
1− 1/

(K
c

)])
.

We again use Markov’s inequality to replace E(d) by 1/2.
Case 2b): t ≤ c

Pr [Invariant 1 is true]

≤ Pr [u1−b.sent(r − `, r − c)] · Pr [¬Cmpr(t)]
+ Pr [¬u1−b.sent(r − `, r − c)]

· Pr [u1−b.sent(r − c, r)] · Pr [¬Cmpr(c)]
≤ Pr [u1−b.sent(r − `, r − c)] + Pr [¬u1−b.sent(r − `, r − c)]

· Pr [u1−b.sent(r − c, r)] Pr [¬Cmpr(c)]
The above event expression is exactly same as the expression
we had in the previous case (t > c). Thus, the rest of the
calculations and bounds are exactly same as the previous case.

APPENDIX C
RECIPIENT ANONYMITY

Both the protocol model and our adversarial strategy Apaths
remain unchanged for recipient anonymity with the exception
that we require noise messages to adhere to the latency bound
`. Also, now we assume that there are R recipients in R.
Since, we are not concerned about distinguishing senders, we
can assume that there is only once sender in S .
Necessary invariant for recipient anonymity. For recipient
anonymity it is necessary that at least both challenge recipients
receive messages in the ` rounds after the challenge message
was sent. Moreover, on the path of the actual challenge mes-
sage, there needs to be at least one honest (non-compromised)
party, as otherwise the adversary can track the challenge
message from the sender to the recipient (Sb will have exactly

19

one element and S1−b will be empty). Those two conditions
together form our necessary protocol invariant.

Invariant 2. Let R0 and R1 be the challenge recipients;
let b be the challenge bit; and let s be the time when the
sender u sends the challenge message towards Rb. Assume
that messages for R1−b (including noise messages) are re-
ceived by R1−b at times VRA = {t1, t2, t3, . . . , tk}. Now, let
TRA = {t : t ∈ VRA ∧ s < t ≤ (s+ `)}. Then,

(i) the set TRA is not empty, and
(ii) the challenge message passes through at least one honest

node at some time t′ such that s ≤ t′ ≤ max(T).

The invariant is very similar to Invariant 1 with the only
difference that we consider messages sent towards recipients
(instead of messages sent by users). In contrast, for sender
anonymity, where sending messages was the main criteria,
for recipient anonymity analogously receiving messages is the
main criteria and the times at which messages are received
can be (partially) controlled by the protocol.

Claim 5 (Invariant 2 is necessary for anonymity). Let Π be
any protocol ∈ M with latency overhead ` and bandwidth
overhead β. Let u,R0, R1, b and TRA be defined as in Invari-
ant 2. If Invariant 2 is not satisfied, then our adversary Apaths
as in Definition 5 wins (against recipient anonymity).

Proof sketch. The proof for this claim is analogous to the
proof for Invariant 1:

(i) If the set TRA is empty, the recipient R1−b does not
receive a message in time s+ 1, . . . , s+ `. Thus, the set
S1−b is empty and the adversary wins.

(ii) If the challenge message does not pass through at least
one honest node at some time t′ such that s ≤ t′ ≤
max(T), then the adversary can clearly distinguish be-
tween the challenge message and messages received
by R1−b (again, the set S1−b is empty) and thus the
adversary wins.

Claim 6 (Internally terminated noise does not influence Invari-
ant 2). Any message that is not delivered to a recipient R ∈ R
does not influence the probability for Invariant 2 being true.

The proof for this claim is analogous to the proof for
Claim 2, where instead of considering the sending of mes-
sages, we are concerned with receiving messages.

Claim 7 (Ideal protocol is ideal for the invariant). Πideal

satisfies Invariant 2 with a probability at least as high as any
other protocol in M , against the given adversary Apaths.

The proof is analogous to the proof for Claim 3.

Claim 8 (Ideal protocol wins). If Πideal satisfies Invariant 2,
Apaths has an advantage of zero:

Pr[b = Apaths | Invariant 2 holds] = 1
2

The proof is analogous to the proof for Claim 4.

A. Recipient Anonymity of Synchronized Users with Non-
compromising Adversaries

As for our first scenario for sender anonymity, we investi-
gate an ideal user distribution where inputs from all users are
globally synchronized.

We assume that all the input messages come within R
rounds, exactly one message per round, following a random
permutation the assigns one round to each recipient. Formally
we group together all users that send messages into one sender
that sends all the messages. In a given round, the sender should
send a message for the assigned recipient. Then, the protocol
decides when to deliver the message to the recipient, but not
delaying more than ` rounds.

We denote this user distribution with UB . Since, we are
considering a globally controlled user distribution, we are
considering a globally controlled noise as well. The protocol
can add a maximum of B = βR noise messages per round, or
β noise messages per recipient per round, where 0 ≤ β ≤ 1.
We consider a non-compromising passive adversary that can
observe all network traffic.

Theorem 9. No protocol Π ∈ M can provide δ-recipient
anonymity for the user distribution UB , where δ < 1−fRA

β (`),

where fRA
β (d) = min

(
1,
(

(`+d)+(`+d)βR
R

))
.

Proof. By Claim 7, we know that Πideal is the optimal
protocol against Apaths. Thus, it suffices to calculate the
advantage of Apaths against Πideal as a lower bound of the
adversary’s advantage against any protocol.

Let, R0 and R1 be the recipients chosen by the adversary
and let b be the challenge bit. Let s be the round in which the
sender sends the challenge message.

Recall that Invariant 2 is necessary for the protocol to pro-
vide anonymity. Since we are considering a non-compromising
adversary, Pr [Invariant 2 is true] = Pr [T is not empty]. If a
message is sent for the recipient R1−b (enters the protocol) in
[s − `, s + ` − 1], it has a possibility to populate an element
in TRA. With the above in mind, let us define the following
events:
H1: Within 2` rounds a noise message is sent to R1−b.
H2: Within 2` rounds a user sends a real message to R1−b.
H3: Invariant 2 is true.
We proceed analogously to the proof for Theorem 1 and get:

Pr [H2] ≤ 2`
R .

Similarly, in each round noise messages are sent to βN
unique users in such a way that no real message is scheduled
for them. Thus, Pr [H1] ≤ 2`βN

R .
We combine these insights to yield a bound.

Pr [H3] = Pr [H1 ∨H2]

= min (1,Pr [H1 ∨H2])

≤ min (1,Pr [H1] + Pr [H2])

≤ min

(
1,

2`+ 2`βN

R

)
.

And thus, since δ ≥ Pr[0 = Apaths|b = 0] − Pr[0 =
Apaths|b = 1], δ ≥ 1− fRA

β (`).

20

Impossibility for Strong Recipient Anonymity. We now
investigate under which constraints for ` and β Theorem 9
rules out strong recipient anonymity.

Theorem 10. For user distribution UB with ` < N and
βN ≥ 1, no protocol in M can achieve strong recipient
anonymity if 4`β < 1− ε(η), where ε(η) = 1

ηd
for a positive

constant d.

The proof follows analogously to the proof of Theorem 2.

B. Recipient Anonymity of Synchronized Users with Partially
Compromising Adversaries

Now we extend our analysis for recipient anonymity against
partially compromising adversaries, with the same user distri-
bution as the previous section.

Theorem 11. No protocol Π ∈ M can provide δ-recipient
anonymity for the user distribution UB , where

δ <

1−

[
1− (c

`)
(K
`)

]
fRA
β (`) c ≥ `

1−
[
1− 1

(K
c)

]
fRA
β (c)− fRA

β (`− c) c < `

where fRA
β (d) = min

(
1,
(

(`+d)+(`+d)βR
R

))
.

Proof. Let R0, R1 be the challenge users and let b be the
challenge bit. Moreover, let s0 be the time the challenge
message is sent for Rb and let r = s0 + t be the time it is
received by the recipient, where t is the delivery time decided
by the oracle O for the challenge message.

We distinguish two cases, depending on ` and c: 1) First,
where the number of compromised parties c is at least as large
as the maximal latency `. In this case, all parties on the path
of the challenge message could be compromised. 2) Second,
where all parties on the path of the challenge message can
not be compromised. And hence, the analysis focuses on the
delivery times of messages for R1−b.

1) Case c ≥ `. We know, ` ≥ t holds by definition. The
invariant is true if and only if R1−b receives at least one
message in one of the rounds between (s0 + 1) and (s0 + `)
and for the last of those messages, delivered at time tlast, there
is at least one non-compromised party on the path between t0
and tlast. Hence,

Pr [Invariant 2 is true]

= Pr [R1−b receives at least one message in [s0, s0 + `]]

· Pr [NOT all the c parties are compromised]

≤ fRA
β (`)

[
1−

(
c
`

)(
K
`

)] .
Hence, δ ≥ 1−

[
1− (c

`)
(K
`)

]
fRA
β (`)

2) Case c ≤ `:
The probability that all parties on the mutual path of the

challenge message and a message for the alternative recipient
R1−b are compromised now mainly depends on the delivery
time of the messages for R1−b. We distinguish two sub-cases
depending on the oracle’s choice for t:

2a) Case c ≤ t:
Pr [Invariant 2 is true]

≤ Pr [R1−b receives at least one message in [s0 + c, s0 + `]]

+ Pr [R1−b does NOT receive a message in [s0 + c, s0 + `]]

· Pr [R1−b receives at least one message in [s0, s0 + c]]

· Pr [NOT all the c parties are compromised]

≤ fRA
β (`− c) + fRA

β (c)

[
1− 1(

K
c

)] .
Hence, δ ≥ 1−

[
1− 1

(K
c)

]
fRA
β (c)− fRA

β (`− c).

2b) Case t < c :

Pr [Invariant 2 is true]

≤ Pr [R1−b receives at least one message in [s0 + c, s0 + `]]

· Pr [NOT all the t parties are compromised]

+ Pr [R1−b does NOT receive any message in [s0, s0 + `]]

· Pr [R1−b receives at least one message in [s0, s0 + c]]

· Pr [NOT all the t parties are compromised]

≤ Pr [R1−b receives at least one message in [s0 + c, s0 + `]]

+ Pr [R1−b does NOT receive any message in [s0, s0 + `]]

· Pr [R1−b receives at least one message in [s0, s0 + c]]

· Pr [NOT all the t parties are compromised]

The above event expression is exactly the same as the
expression we had in the previous case (t > c). The bound on
δ thus follows analogously.

Impossibility for Strong Recipient Anonymity. We now
investigate under which constraints for c, ` and β Theorem 9
rules out strong recipient anonymity.

Theorem 12. For user distribution UB with K ∈ poly(η),
K > c ≥ ` , ` < N AND βN ≥ 1 , no protocol can achieve
strong anonymity if 4`β < 1 − ε(η) OR ` ∈ O(1), where
ε(η) = 1/ηd for a positive constant d.

The proof follows analogously to the proof of Theorem 4.

Theorem 13. For user distribution UB with K ∈ poly(η),
constant c, K > ` > c, ` < N AND βN ≥ 1, no protocol
can achieve strong anonymity if 4(`− c)β < 1− ε(η), where
ε(η) = 1

ηd
for a positive constant d.

The proof follows analogously to the proof of Theorem 5.

C. Recipient Anonymity of Unsynchronized Users with Non-
compromising Adversaries

Now we shall consider unsynchronized user distribution,
which is similar to the unsynchronized user distribution for
sender anonymity, but with a few changes. Our unified sender
has a biased coin corresponding to each recipient with success
probability p. In each round, he decides to send a message
for a recipient by tossing the biased coin, independent of
other recipients as well as other rounds. We denote this user

21

distribution with UP . We consider a non-compromising passive
adversary similar to Section C-A.

Theorem 14. No protocol Π ∈ M can provide δ-recipient
anonymity for the user distribution UP ,
for any δ < 1−

(
1
2 + fRA

p (`)
)
,

where fRA
p (d) = min

(
1
2 , 1− (1− p)`+d

)
for integer d ≥ 1.

Proof. By Claim 7, we know that Πideal is the optimal
protocol against Apaths. Thus, it suffices to calculate the
advantage of Apaths against Πideal as a lower bound of the
adversary’s advantage against any protocol.

Let, R0 and R1 be the recipients chosen by the adversary
and let b be the challenge bit. Let s be the round in which the
sender sends the challenge message.

Recall that Invariant 2 is necessary for the protocol to pro-
vide anonymity. Since we are considering a non-compromising
adversary, Pr [Invariant 2 is true] = Pr [TRA is not empty].
Note that, If a message is sent for the recipient R1−b (enters
the protocol) in [s−`, s+`−1], it has a possibility to populate
an element in TRA.

We follow the same calculations as in the proof of Theo-
rem 6, and derive:

Pr [Y (d)] = 1− (1− E(d)) (1− 2fp(d)),
Where fp(d) is defined as in Theorem 6, And Y (d) denotes
the event that at least one message is sent for a given recipient
within an interval of d rounds.

Pr [TRA is not empty]

≤Y (2`)

≤1− (1− E(2`)) (1− 2fp(2`))

≤1− 1

2
(1− 2fp(2`))

=1− 1

2

(
1− 2fRA

p (`)
)

=
1

2
+ fRA

p (`).

Hence, δ ≥ 1−Pr [TRA is not empty] ≥ 1−
[
1
2 + fRA

p (`)
]
.

Impossibility for Strong Recipient Anonymity. We now
investigate under which constraints for ` and β Theorem 9
rules out strong recipient anonymity.

Theorem 15. For user distribution UP and p > 0, no protocol
can achieve strong anonymity recipient if 2`p < 1 − ε(η),
where ε(η) = 1/ηd for a positive constant d.

The proof follows analogously to the proof of Theorem 7.

D. Recipient Anonymity of Unsynchronized Users with Par-
tially Compromising Adversaries

Now we extend our analysis for recipient anonymity against
partially compromising adversaries, with the same user distri-
bution as the previous section.

Theorem 16. No protocol Π ∈ M can provide δ-recipient
anonymity for the user distribution UP , when

δ <

[
1− (c`)

(K`)

] [
1
2 + fRA

p (`)
]

c ≥ `(
1−

[
1
2 + fRA

p (`− c)
])(

1−
[
1
2 + fRA

p (c)
] [

1− 1

(Kc)

])
c < `

where fRA
p (d) = min

(
1
2 , 1− (1− p)`+d

)
for integer d ≥ 1.

Proof. Let R0, R1 be the challenge users and let b be the
challenge bit. Moreover, let s0 be the time the challenge
message is sent for Rb and let r = s0 + t be the time it is
received by the recipient, where t is the delivery time decided
by the oracle O for the challenge message.

As in proofs for Theorems 8 and 14, we define Y (d) as the
event that at least one message is sent for a given recipient
within an interval of d rounds; and we derive:

Pr [Y (d)] ≤ 1− 1
2 (1− 2fp(d)) = 1

2 + fRA
p (d2).

We distinguish two cases, depending on ` and c: 1) First,
where the number of compromised parties c is at least as large
as the maximal latency `. In this case, all parties on the path
of the challenge message could be compromised. 2) Second,
where all parties on the path of the challenge message can
not be compromised. And hence, the analysis focuses on the
delivery times of messages for R1−b.

1) Case c ≥ `. We know, ` ≥ t holds by definition. The
invariant is true if and only if R1−b receives at least one
message in one of the rounds between (s0 + 1) and (s0 + `)
and for the last of those messages, delivered at time tlast, there
is at least one non-compromised party on the path between t0
and tlast. Hence,

Pr [Invariant 2 is true]

≤ Pr [R1−b receives at least one message in [s0, s0 + `]]

· Pr [NOT all the c parties are compromised]

≤ Pr [Y (2`)] ·
[

1−
(
c
`

)(
K
`

)] =

[
1

2
+ fRA

p (`)

][
1−

(
c
`

)(
K
`

)] .
Therefore, δ ≥ 1−

[
1− (c

`)
(K
`)

] [
1
2 + fRA

p (`)
]
.

2) Case c ≤ `:
The probability that all parties on the mutual path of the

challenge message and a message for the alternative recipient
R1−b are compromised now mainly depends on the delivery
time of the messages for R1−b. We distinguish two sub-cases
depending on the oracle’s choice for t:

2a) Case c ≤ t:
Pr [Invariant 2 is true]

≤ Pr [R1−b receives at least one message in [s0 + c, s0 + `]]

+ Pr [R1−b does NOT receive a message in [s0 + c, s0 + `]]

· Pr [R1−b receives at least one message in [s0, s0 + c]]

· Pr [NOT all the c parties are compromised]

≤ Pr [Y (2`− c)] + (1− Pr [Y (2`− c)]) · Pr [Y (`+ c)]

[
1− 1(K

c

)]

22

Therefore, since δ = 1− Pr [Invariant 2 is true], we have:

δ ≥
(
1− Pr [Y (2`− c)]

)(
1− Pr [Y (`+ c)]

[
1− 1(K

c

)])

≥
(
1−

[
1

2
+ fp(2`− c)

])(
1−

[
1

2
+ fp(`+ c)

] [
1− 1(K

c

)])

≥
(
1−

[
1

2
+ fRA

p (`− c)
])(

1−
[
1

2
+ fRA

p (c)
] [

1− 1(K
c

)]) .
2b) Case t < c :

Pr [Invariant 2 is true]

≤ Pr [R1−b receives at least one message in [s0 + c, s0 + `]]

· Pr [NOT all the t parties are compromised]

+ Pr [R1−b does NOT receive any message in [s0, s0 + `]]

· Pr [R1−b receives at least one message in [s0, s0 + c]]

· Pr [NOT all the t parties are compromised]

≤ Pr [R1−b receives at least one message in [s0 + c, s0 + `]]

+ Pr [R1−b does NOT receive any message in [s0, s0 + `]]

· Pr [R1−b receives at least one message in [s0, s0 + c]]

· Pr [NOT all the t parties are compromised]

The above event expression is exactly the same as the expres-
sion we had in the previous case (t > c). The bound on δ thus
follows analogously.

E. Impossibility for Strong Anonymity

The bound for δ is in this scenario is exactly similar to the
counterpart of sender anonymity results (Section VIII). Hence,
the analysis follows analogously.

23

