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Abstract. The deployment of Genome-wide association studies (GWASs)
requires genomic information of a large population to produce reliable
results. This raises significant privacy concerns, making people hesitate
to contribute their genetic information to such studies. We propose two
provably secure solutions to address this challenge: (1) a somewhat homo-
morphic encryption approach, and (2) a secure multiparty computation
approach. Unlike previous work, our approach does not rely on adding
noise to the input data, nor does it reveal any information about the
patients. Our protocols calculate the χ2 statistic in a privacy-preserving
manner, without revealing any information other than the significance
of the statistic; hence not even the statistic value itself. We significantly
increased the efficiency of our protocols by introducing a new mask-
ing technique to perform the secure comparison. Our implementations
demonstrated that both approaches are efficient. The secure multiparty
computation technique completes its execution in approximately 2 ms
for data contributed by one million subjects.

1 Introduction

The goal of a genome-wide association study (GWAS) is to identify genetic
variants that are associated with traits. Typically, GWASs focus on the associa-
tions between single nucleotide polymorphisms (SNPs), and a particular disease.
A common approach is to divide the population into a disease, and a healthy
group based on whether the individual has the particular disease. Each individ-
ual gives a sample DNA from which millions of genetic variants (i.e., SNPs) are
identified. If a variant is more frequent in individuals with the disease it will be
associated with the specific genetic disorder. The final assessment for each SNP
is carried out using statistical methods, such as the χ2 test.

In recent years the development of cheap next generation sequencing (NGS)
has greatly boosted the number of GWASs. Having a large population size is
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crucial for a GWAS because it allows to improve the accuracy of identified asso-
ciations, especially for rare genetic disorders. Another promising direction is the
creation of distributed genomic databases that enables pooling of data from many
hospitals, and research centers, further increasing the population sizes of the
studies by 10-50 times [ASD+14], [fGH16]. Several such distributed databases
have recently been proposed, including NGS-Logistics [ASD+14], Elixir, and
GA4GH Beacon [fGH16].

However, privacy issues with such distributed databases are paramount. The
privacy concerns arise even if only aggregated SNP frequencies at the population
level (necessary for χ2 testing) are disclosed. This was first noticed by Homer
et al. [HSR+08]. Even access to aggregate statistics of SNPs, such as frequency,
allows a researcher to identify whether an individual was present in the study.
This is a major privacy concern, because the aggregated statistics cover both
SNP, and disease data of the individuals. The attack by Homer et al. [HSR+08]
can firstly reveal whether the person participated in the GWAS, and secondly
whether the person was in the disease or the healthy group.

A classical solution to the privacy problem involves a trusted third party who
first collects both the SNP, and the trait data, then carries out the statistical
test, and finally either a) only reveals the very few SNPs that have statistically
significant association or b) reveals all aggregate data on SNPs but masks them
with sufficient noise to guarantee differential privacy, for example by using a
differentially private χ2 test, such as the ones proposed by Uhlerop et al. [USF13]
or by Simmons and Berger [SB16].

However, setting up such a trusted third party has significant legal, and tech-
nical difficulties given the sensitive nature of the underlying data. Additionally,
the trusted third party approach does not provide defense against malicious
agents or operating system bugs. This can lead to the disclosure of the aggre-
gated SNP data or trait data, which as mentioned before, can be used to reveal
personal details of the participants of the study.

To solve this issue we propose a cryptographic approach, where the trusted
third party is replaced by a privacy-preserving system, which receives the input
in encrypted (protected) form from a set of distributed parties (e.g., hospitals),
performs the χ2 test, and only discloses whether the current test is significant
or not. Since nothing except the final answer is revealed during the execution
of our protocols, the proposed system enjoys various security guarantees, even
against malicious agents who gain access to the servers executing the system.
Even though a cryptographically secure system for GWAS-like problems has been
proposed before by Kamm et al. [KBLV13], its application has been limited to
small datasets only, containing up to one thousand patients, reaching only tens
of SNP-trait hypotheses per day (based on Table 4 in [KBLV13]). In contrast,
our work can scale up to millions of patients, and perform millions or tens of
millions of hypothesis tests per day. This enables the execution of a large-scale
distributed GWAS without a trusted central third party.

To allow for a privacy-preserving system addressing our challenges, we pro-
pose two secure approaches: one based on homomorphic encryption (HE), and
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one based on multiparty computation (MPC). We also compare their security
guarantees, and their efficiency in terms of execution time of practical imple-
mentations. Homomorphic encryption refers to a set of cryptographic tools that
allow certain computations to take place in the encrypted domain, while the re-
sulting ciphertext, when decrypted, is the expected (correct) result of operations
on the plaintext data. Secure multiparty computation aims at allowing a similar
functionality, amongst several mutually distrusted parties, who wish to compute
a function without revealing their private inputs. With the latter approach com-
munication between the computing parties is required for the execution of the
cryptographic protocols.

An important feature of our work is that it provides provable security guar-
antees (unlike the differential privacy techniques). In the MPC setting, there are
two main security models used, offering passive, or active security, respectively.
Passive security, also known as security in the semi-honest model, assumes that
the protocol participants are honest-but-curious. This means that they are try-
ing to collect as much information as possible from the protocol execution, but
they do follow the protocol instructions honestly. Active security, also known as
malicious security, offers stronger security guarantees, assuming that adversaries
or corrupted protocol participants may arbitrarily deviate from the protocol in-
structions. In both security models we can build protocols assuming an honest
majority of the protocol participants, or a dishonest majority. Our solution of-
fers the highest security guarantees being built in the malicious model, with
dishonest majority.

Specifically, we make the following contributions:

– We propose the first somewhat homomorphic encryption approach to with-
stand GWAS attacks such as the ones described by Homer et al. [HSR+08]

– We develop a multiparty computation solution for GWAS that is efficient for
realistic sample sizes

– We propose a new masking technique to allow efficient secure comparisons

– We compare on a real-life application the security, and efficiency of HE and
MPC

– We demonstrate the practicality of our solutions, based on their short run-
ning times, which are in the range of 1.4-2.2 ms for the MPC approach

– We show that our solution scales logarithmically in the number of subjects
contributing their genetic information, allowing us to treat current full-scale
GWAS, and being able to scale to larger (future) GWASs for millions of
people

In the following section we discuss related work. Next we review the general
scenario for which we propose the two aforementioned solutions. In Section 4 the
solution based on homomorphic encryption is detailed, together with its technical
description, implementation details, and performance analysis. In Section 5 the
secure multiparty computation approach is explained in a similar fashion as the
homomorphic encryption approach. Section 6 concludes our work, and provides
a comparison of the two approaches.
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2 Related Work

2.1 Homomorphic Encryption Approach

There has already been some work on using homomorphic encryption to preserve
the privacy of the patients while performing statistics on genome data. Kim
et al. [KL15] present the computation of minor allelle frequencies and the χ2

statistic with the use of the homomorphic BVG and YASHE encryption schemes.
They use a specific encoding technique to improve on the work of Lauter et
al. [LLAN14]. However, they only compute the allele counts homomorphically,
and execute the other operations on the decrypted data.

Another work on GWASs using fully homomorphic encryption was published
by Lu et al. [LYS15]. They also start from encrypted genotype/phenotype in-
formation that is uploaded to a cloud for each person seperately. Then they
perform the minimal operations necessary to provide someone with access to the
decryption key with the necessary values to construct the contingency table for
the requested case based on the data present on the cloud. Hence, when per-
forming a request, the scientist gets three encrypted values, and based on those
he can, after decryption, reconstruct the contingency table, and compute the χ2

statistic in the clear. These solutions are not resistant to attacks like the one
described by Homer et al. [HSR+08]. Our solution improves on these previous
works by performing the χ2 computation in the encrypted domain and revealing
only whether or not the χ2 value is significant for this case, which makes the
previously mentioned attacks impossible.
Sadat et al. [SAM+17] propose a hybrid system called SAFETY to compute
various statistical values over genomic data. This hybrid system consists of a
combination of the partially homomorphic Paillier scheme with the secure hard-
ware component of Intel Software Guard Extensions (Intel SGX) to ensure both
high efficiency, and privacy. With this hybrid system they propose a more effi-
cient way to get the total counts of all patients for a specific case. By using the
additive property of the homomorphic Paillier scheme, they reduce the compu-
tational overhead of decrypting all individual encrypted outputs received from
the different servers. Afterwards it uses the Intel SGX component to perform the
χ2 computations. Even though the results of this system scale well for increasing
amount of servers that provide data for the computation, the system does not
provide the same functionality as our solution. Sadat et al. [SAM+17] mention
that the only privacy guarantee for the final computation result against the at-
tack described by [HSR+08] is the assumption that the researcher decrypting
the result is semi-honest. This is the main difference with our work: with our
solution the reasearcher will only find out whether this case is significant, and
not the χ2 value itself.

2.2 Secure Multiparty Computation Approach

Kamm et al. [KBLV13] propose a solution to address the privacy challenges in
genome-wide association studies. Their application scenarios, much like ours, fo-
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cus on large data collections from several biobanks, and their solutions are based
on the same fundamental techniques as ours. However, Kamm et al.’s [KBLV13]
setting requires all raw genotype, phenotype, and clinical data to be entered to
the secure shared database. To the contrary, our setting assumes that only the
aggregate values, necessary to identify the significance of a gene-disease relation-
ship (i.e., the contingency tables recording the counts of genotypes vs. pheno-
types), are contributed by each biobank. This is a simpler, and more realistic
setting, which not only is likely to be implemented in the near future, but also
alleviates the computational cost of the proposed solutions. Unlike the approach
of Kamm et al. [KBLV13], and the alternatives that they suggest, our solution
achieves active security with dishonest majority (contrary to the semi-honest se-
curity suggested). This means that our protocols tolerate dishonest behavior by
the majority of the computing parties, while preserving privacy, and still guar-
antee the correctness of accepted results. Kamm et al.’s protocols assume that
the computing parties -the biobanks- cannot be corrupted, which we consider to
be a strong assumption.

Constable et al. [CTW+15] present a garbled-circuit based MPC approach
to perform GWAS. Their solution can compute in a privacy-preserving man-
ner the minor allele frequency (MAF), and the χ2 statistic. Similarly to Kamm
et al.’s [KBLV13] work, the framework of Constable et al. [CTW+15] requires
the raw genotype, and phenotype data, increasing the workload of the pro-
posed privacy-preserving system. In contrast to our solution, which can scale
to hundreds of medical centers contributing data to the GWAS, the solution
of Constable et al. [CTW+15] only works for two medical centers. Despite the
strong security guarantees that our approach offers, which generally presents
itself as a tradeoff to efficiency, our proposal is faster than that of Constable et
al. [CTW+15]. This is also due to the fact that we have optimized the compu-
tations of the χ2 statistic, in such a way that the expensive computations in the
privacy-preserving domain, are avoided to the maximum extent possible.

Zhang et al. [ZBA15] propose a secret-sharing based MPC approach to solve
the same GWAS problem as Constable et al. [CTW+15]. Although Zhang et
al.’s solution can scale to more than two medical centers contributing data to
the GWAS, the approach has the same inherent limitations (e.g., requiring raw
genomic data as input) that their application scenario incurs. None of the re-
lated works has considered protecting the aggregate statistic result of the private
computation, which –as Homer et al. [HSR+08] showed– can be used to breach
an individual’s privacy. We are the first to additionally protect the aggregate
statistic result, while at the same time allowing for a public list to be created,
showing which SNPs are significant for a certain disease.

3 Distributed GWAS Scenario

In this paper we aim at identifying which mutations are linked to which diseases,
without compromising the privacy of the patients. Specifically, there are K cen-
ters (hospitals) who each have genotype (SNP), and phenotype (trait) data. For
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a single genotype-phenotype pair a center k has a 2 × 2 contingency table6 of
the counts of patients for all 4 possible combinations of genotype, and pheno-
type (see Table 1). The goal is to perform a privacy-preserving computation that
adds together all contingency tables from individual centers, then computes the
Pearson’s χ2 test statistic [Pea00], and finally reveals a boolean value indicat-
ing whether the computed statistic is larger than a predetermined significance
threshold t. This threshold is chosen based on the p-value, and the correction
for multiple hypothesis testing. For example, using significance level 0.01 with
Bonferroni correction for 10 million tests results in t = 37.3, and for 100 million
tests t = 41.8.

We propose two different methods for carrying out the χ2 test without dis-
closing the input, and intermediate values. The first method performs all compu-
tations on homomorphically encrypted data, while the second applies techniques
of secure multiparty computation to achieve the same goal. Both methods follow
the same general outline, presented below. The first step is to encrypt (or secret
share) all the input tables from the centers, and securely compute the aggregate
contingency table

Oij =

K∑
k=1

O
(k)
ij , (1)

where O
(k)
ij is the data from k-th center. This step is straightforward in both

methods.

Next to determine the significance of the relation between a mutation, and
a disease, we calculate the Pearson’s χ2 test statistic [Pea00] on the aggregated
contingency table O, and check whether this value is above the threshold t. The
Pearson’s χ2 statistic is given by the following formula:

χ2 =
∑

i,j∈{1,2}

(Oij −modelij)2

modelij
, (2)

where modelij = (RTi · CTj)/N with RTi = Oi,1 + Oi,2 being the row total,
CTj = O1,j +O2,j being the column total, and N the total number of patients.

phenotype ¬phenotype
genotype O1,1 O1,2 RT1

¬genotype O2,1 O2,2 RT2

CT1 CT2 N

Table 1: Representation of a contingency table

6 Our method can be also extended to contingency tables of larger size.
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Since division is a costly operation in both the homomorphic domain, and
secret shared domain, we will rewrite the formula of the χ2 statistic as follows:

χ2 =
RT1 · CT1 · (N ·O2,2 −RT2 · CT2)2 +RT1 · CT2 · (N ·O2,1 −RT2 · CT1)2

N ·RT1 ·RT2 · CT1 · CT2

+
RT2 · CT1 · (N ·O1,2 −RT1 · CT2)2 +RT2 · CT2 · (N ·O1,1 −RT1 · CT1)2

N ·RT1 ·RT2 · CT1 · CT2
.

(3)

As a final step, we would need to compare whether χ2 ≥ t. To do that,
we calculate the numerator, and denominator of the fraction in Equation (3),
separately. Subsequently, we multiply the denominator of the fraction with the
threshold value t, and finally check inequality (4), without revealing any of the
private inputs in the contingency tables.

RT1 · CT1 · (N ·O2,2 −RT2 · CT2)2 +RT1 · CT2 · (N ·O2,1 −RT2 · CT1)2

+RT2 · CT1 · (N ·O1,2 −RT1 · CT2)2 +RT2 · CT2 · (N ·O1,1 −RT1 · CT1)2

?
≥ t · (N ·RT1 ·RT2 · CT1 · CT2)

(4)

3.1 Efficient Masking-Based Comparison

To the best of our knowledge the state-of-the-art techniques to perform secure
comparisons, both in the homomorphic, and in the secret shared domain, require
bitwise operations on the secret inputs. These operations have a high total cost,
as their complexity is at best logarithmic in the number of bits per input. To
allow for a practically efficient implementation of our solution, we consider a
masking technique to perform the comparison instead of the bit-decomposition
of our inputs. This masking technique works as follows: Consider [[x]] to be either
the homomorphic encryption of x or its secret shared value, where x is assumed

to be an integer. We check the inequality [[x]]
?
≥ [[y]] by computing [[x̂− y]] =

[[r]]·[[x−y]]+[[r′]], with r and r′ random numbers satisfying the following condition:
We have to choose r and r′ such that the computation [[r]] ·[[x−y]]+[[r′]] preserves
the relation between x and y. To do that we select r to be a positive integer
number (bounded properly so as to fit the largest possible input sizes we can
handle), and r′ < r . Afterwards we reveal the masked value by respectively
decoding or opening the calculated value. Depending on the sign of r ·(x̂− y)+r′

we can deduce the relationship between x and y (i.e., if r · (x̂− y) + r′ > 0 then
x > y, otherwise x < y).

The proposed type of masking, which allows us to perform the comparison,
could leak information about the secret input to the inequality, which in our
case is the difference x− y. The leakage occurs if a party observing the masked
result of the inequality check can submit multiple queries on the same inputs.
This is possible because after several queries, if we select the maximum masked
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value observed, it will be close to the bound set for the randomness r times
the difference (x− y). Hence, by deduction, if we divide the maximum observed
masked value by the upper bound on r, we will get a good approximation of
the value x − y. To avoid such leakage, we require the random values r and
r′ to be selected once per query, and be thereafter fixed, until the contents of
the query (i.e., the real inputs to the protocol) change. Note that in our setting
the protocols will be only executed once every three months; only then may
the input change. At this point we select new random values per query. This
approach makes the aforementioned attack impossible in practice.

4 Homomorphic Encryption Approach

4.1 Setup and security assumptions

To solve the problem described in Section 3 with homomorphic encryption, we
need multiple parties, as indicated in Figure 1. The steps of the process depicted
in Figure 1 are as follows. In the first step, the decryptor will select the secret
key, and associated public key for the homomorphic encryption, and make the
public key available to all medical centers. Then, all the medical centers will
encrypt their contingency tables with the given public key, and send these en-
cryptions to the computation server. Upon receiving all contingency tables, the
computation server will first add them to construct the aggregated contingency
table, and subsequently perform the operations of the Pearson χ2 test. Then,
the computation server will send the result, which is masked with the technique
described in Section 3.1 to the decryptor, who uses the secret key to decrypt the
masked value, and performs the comparison.
It is important to note that in this model we completely trust the decryptor to

decrypt the result, and to post the corresponding value into the public table. To
avoid this single point of trust, we can introduce a multiparty computation to
perform the decryption based on a secret shared decryption key.
Other than that, the solution based on homomorphic encryption relies on the
following two security assumptions:

– The computation server is honest but curious: It will follow the stated pro-
tocol to provide the desired functionality, and will not deviate, nor fail to
return the results. The computation server can however monitor the result
of every operation it performs.

– We only need the decryptor to perform the comparison, but he should not
know anything about the input values. Therefore we presume that the com-
munication between the centers, and the computation server is private. This
can be achieved by performing the communication over authenticated, secure
channels.

The honest but curious assumption for the computation server is reasonable to
model an economically motivated cloud service provider. The cloud is motivated
to provide excellent service, yet would take advantage of extra available infor-
mation.
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yes/no answer

Fig. 1: A schematic representation of the homomorphic scenario.

For the homomorphic evaluation of the χ2 statistic we use the FV scheme, in-
troduced by Fan and Vercauteren [FV12]. Moreover we base our implementation
on the FV-NFLlib software library [Cry16] in which the FV homomorphic en-
cryption scheme is implemented using the NFLlib software library developed
for performing polynomial arithmetic computations (as described in [MBG+16],
and released in [CIQ16]).

4.2 Preliminaries

The Fan-Vercauteren SHE scheme The Fan-Vercauteren SHE scheme is
a scale invariant SHE scheme whose hardness is based on the ring learning
with error problem (RLWE) [LPR13]. It operates on polynomials of the ring
R = Z[X]/(f(X)) with f(X) = Xd + 1 for d = 2n.
The FV scheme makes use of a plaintext space Rt with R the polynomial ring
defined above, and t > 1 a small integer modulus. Each coefficient of a plaintext
polynomial is computed modulo t. The ciphertext space consists of a pair of
elements of Rq with R the polynomial ring defined above, and q > 1, an integer
modulus much larger than the plaintext modulus t. A homomorphic encryption
scheme consists of a standard encryption scheme specifically constructed to en-
able additions, and multiplications in the ciphertext domain. The key generation,
and encryption algorithms require elements sampled from two probability distri-
butions defined on R. The secret key of our scheme is sampled from χkey, and for
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encryption some error polynomials are sampled from an error distribution χerr.
These probability distributions in combination with the degree d of the defining
polynomial f of R, and the size of the integer q determine the security of the
FV scheme.
Given the parameters d, q, and t, and distributions χkey, and χerr, and using
bold notation for a vector of two polynomials, we define the encryption, and
decryption mechanism of the homomorphic encrytion scheme introduced by Fan
and Vercauteren:

– Encrypt(pk,m): By multiplying the message m ∈ Rt with ∆ = bq/tc we
transfer the message m to the ring Rq. To hide the message we sample the
error polynomials e1, e2 ∈ χerr, and u ∈ χkey, and compute the polynomials
c0 = ∆ · m + bu + e1, and c1 = au + e2. Both the polynomials c0, and c1
belong to Rq, and together they form the ciphertext c = (c0, c1) of the FV
scheme.

– Decrypt(sk, c): First compute m̃ = [c0 + s · c1]q, then by scaling down the
coefficients of m̃ by ∆, and rounding the results we recover the message m.

Given a ciphertext c = (c1, c2) we can write the m̃ of the decryption algorithm
as [c0 + c1s]q = ∆ ·m+ e, with e the noise in the ciphertext. From this equation
one can clearly see that if the noise e grows too large, the decryption algorithm
will fail to output the original message m correctly. The property of ensuring
that decryption results in the original message is called the correctness of the
encryption scheme.
Every homomorphic operation will cause the noise in the ciphertexts to increase.
Knowing the computations we want to perform in advance enables us to optimize
the order of the computations for the sake of minimizing the noise growth. In
addition it enables us to make an estimation of the noise present in the result,
and hence allows us to determine parameters that can deal with this noise.

Preprocessing of the data to improve the performance of the ho-
momorphic computations The plaintext space of the FV scheme consists
of the polynomial ring Rt. Hence the first thing that needs to be done is en-
code the given integer data values into polynomials in the ring Rt. We achieve
this by applying the w-NIBNAF encoding introduced in [BBB+17]. The main
idea of w-NIBNAF encoding goes back to Dowlin et al. [DGBL+15] (see also
[DGL+16,LLAN15,NLV11]), and was analyzed in more detail by Costache et
al. [CSVW16]. It consists of expanding the given number θ with respect to a
base bw, and replacing this base with the symbol X. So the encoding of a num-
ber θ is given by:

θ = arX
r+ar−1X

r−1 + · · ·+a1X+a0−a−1Xd−1−a−2Xd−2−· · ·−a−sXd−s .

For our encoding we use a well chosen non-integral base such that the encoding
of an input value results in a polynomial with coefficients in the set {−1, 0, 1},
with the property that each set of w consecutive coefficients has no more than
one non-zero coefficient. Hence encoding our inputs with w-NIBNAF leads to
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sparse polynomials.
Starting our computations with sparse polynomials with coefficients in the set
{−1, 0, 1} leads to small coefficients in the resulting polynomial. Therefore it
enables us to work with a smaller plaintext modulus t, which improves the per-
formance of the homomorphic encryption scheme. Bigger values for w leads to
longer, and sparser encodings, which reduce the minimum size for t even further.
However we have to ensure that when all the computations are done, decoding
will still provide the correct answer. Therefore we need to carfully select our base
bw, which also determines the value of w.

Selecting the optimal parameters The three main concepts that will affect
the selection of our parameters are:

– the security of the somewhat homomorphic FV scheme

– the correctness of the somewhat homomorphic FV scheme

– the correctness of the w-NIBNAF encoding

To take the security restrictions into account we rely on the work by Albrecht,
Player, and Scott [APS15], and the open source LWE hardness estimator im-
plemented by Albrecht [Alb04]. The latter estimates the hardness of the LWE
problem based on three given parameters: the dimension d, the ciphertext mod-
ulus q, and a parameter α, which is related to the error distribution χerr. It takes
into account the currently known attacks on the learning with error problem.
The parameters that satisfy the restriction of the security implications of a se-
curity level of 90 bits are q = 2186, d = 4096, σ = 2657. From the description
of the FV scheme in Section 4.2, we know that for a ciphertext to be decrypted
correctly the error cannot grow too much. Therefore we make an estimation of
the infinity norm of the error in the ciphertext resulting from computing our
circuit, and select parameters that keep the error small enough. This results in
an upper bound for t. Since this upper bound is constructed specifically for our
circuit it will depend amongst other things on the number of centers that deliver
data to the computation server.
For correctness of the w-NIBNAF decoding it is important to estimate the size
of the coefficients of the encodings after performing the necessary operations.
This leads to a lower bound on the plaintext modulus t. The security, and cor-
rectness of the FV scheme on one hand, and the correctness of the w-NIBNAF
encoding on the other hand, set conflicting requirements for t. In order to solve
this conflict we make use of the Chinese Remainder Theorem to decompose
the plaintext space, following the idea of [BLLN13, §5.5]. This implies that
we choose t to be the product of small prime numbers t1, t2, . . . , tn, with
∀i ∈ {1, . . . , n} : ti ≤ tmax, and t =

∏n
i=1 ti ≥ tmin, where tmax is determined

by the security, and correctness of the FV scheme, and tmin by the correctness
of the w−NIBNAF decoding.

7 σ determines the error distribution χerr.
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4.3 Privacy-Preserving Homomorphic Chi-Squared Thresholding
Algorithm and Parameters

In this section we combine all information given before in order to construct
the algorithm needed to perform the privacy-preserving χ2 thresholding in the
homomorphic setting. Algorithm 1 lists the computations for the algorithm cor-
responding to the order in which they need to be performed, and mentions the
parties that need to perform them. Hence the steps from Figure 1 are described
in more detail in Algorithm 1, and the combination of these two gives a clear
picture of our homomorphic solution for the privacy-preserving χ2 thresholding.

Algorithm 1 Privacy-preserving Homomorphic Chi-squaredTest

Medical center:
input: O[2][2] = the observed values of the 2× 2 contingency table (mutation vs.
disease)

for Ck medical center k do
1. Encode each value Ok

i,j for i = 1, 2; j = 1, 2 using the w-NIBNAF encoding
technique

.

2. Transform this encoding to the plaintext ring Rti for all i such that t =
∏

i ti.
3. Encrypt the plaintext polynomials using the Fan-Vercauteren SHE scheme to ob-

tain ciphertexts cki,j.
end for
Computation center:

input: encrypted contigency table values cki,j, for k = 1, ..., Nc, with Nc the number
of centers contributing data

4. Compute the four values of the aggregated contingency table cm,n =
∑Nc

k=1 c
k
m,n .

5. Compute the χ2 numerator α and denominator β homomorphically
6. Compute the difference of the χ2 numerator and the product of the encrypted χ2

threshold T and denominator, and mask the computed difference with the random
values r and r′: MR = r · (α− T · β) + r′

Decryptor:
input: MR the encrypted masked output value of the homomorphic circuit
7. Decrypt the masked result MR
8. Use the inverse CRT ring isomorphism to transfer the plaintext polynomials to

the ring Rt.
9. Decode the w-NIBNAF polynomial, and evaluate the result in the correct basis
bw to get the value MaskedDifference of the masked result.

10. Determine the significance based on the sign of MaskedDifference:
if MaskedDifference > 0 then

return 1
else

return 0
end if

For the homomorphic solution we consider two scenarios: (1) the case in which
we compute the numerator and denominator of the χ2 statistic seperately, and
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decrypt them both, and (2) the case where we use the masking technique, and
decode the masked value to determine the “True/False” answer to the signifi-
cance question. As mentioned before there are many parameters we need to set,
and their values depend highly on the homomorphic circuit we perform, and
the values of other parameters. We selected parameters for different scenarios
in which we fix the number of patients per center to 10000 and vary the num-
ber of centers from 20 to 100. The parameters are listed in Table 2 and 3. We
use these paramters in our implementation later to assess the performance by
measuring the computation time, and communication cost for each of the three
parties mentioned in Algorithm 1.
The value of w and the splitting degree are dependent on the size of the num-
bers we need to encode, but independent of the number of centers included in
the calculation. Therefore the value of w and the splitting degree will be the
same for all scenarios. Without comparison, they are respectively w = 271, and
splitting degree = 3166. The parameters that differ for different number of cen-
ters in scenario (1) is the value for t, and its CRT factors. These are listed in
Table 2. For scenario (2) in which we perform the masked comparison, the value
of w will be different for each different number of centers participating in the
computations, because we have to encode the random variables r and r′, which
have sizes depending on the number of centers included in the computations.
The parameters for the second scenario are listed in Table 3.

Table 2: Parameter selection for scenario (1)

Centers Patients t

20 200000 17431 · 17443 · 17449
40 400000 1718713 · 1718719 · 1718723
60 600000 1558103 · 1558129 · 1558177
80 800000 1453043 · 1453057 · 1453061
100 1000000 1376213 · 1376231 · 1376237

Table 3: Parameter selection for scenario (2)

Centers Patients bit-length random value w splitting degree t

20 200000 100 118 3625 12253 · 12263 · 12269
40 400000 106 113 3629 885127 · 885133 · 885161
60 600000 110 111 3644 802651 · 802661 · 802667
80 800000 112 110 3653 747811 · 747827 · 747829
100 100000 114 108 3651 707801 · 70813 · 707827
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4.4 Implementation and performance analysis

In order to assess the practical performance, and verify the correctness of the
selected parameters of the homomorphic scenario, we implemented the privacy-
preserving χ2 computation using the FV-NFLlib software library [Cry16]. Our
presented timings are obtained by running the implementation on a computer
equipped with an Intel Core i5-4590 CPU, runnning at 3.30 GHz. We executed
the program 10 times per case, and calculated the average execution time for
our timing results. To evaluate the scalability of our protocol we have considered
the cases where our system receives data from 20, 40, 60, 80, and 100 medical
centers, respectively. We assume each medical center to contribute data of 10000
subjects (i.e., the total number of subjects per case is 200000, 400000, 600000,
800000, and 1000000, respectively). In order to measure these timings we used
the parameter set corresponding to the same scenario, so Table 2 for scenario
(1) and Table 3 for scenario (2).

For scenario (1) we compute the numerator and denominator seperately, and
do not perform the masked comparison with the threshold value. The CPU time
needed for the hospitals to encrypt the four values of the contingency table is the
same for any number of centers considered in the experiment. For our selected
parameters this is 15.2 ms. Also the time to decrypt the numerator and denom-
inator of the χ2 value is the same for any number of centers contributing to the
experiment. The average time we measured during our experiments is 38.8 ms.
The timings of the computation server in scenario (1) are the times needed to
perform the calculations for computing the numerator and denominator of the
χ2 statistic. These timings are dependent on the number of centers that partic-
ipate in the computation. Therefore we list them in Table 4. We see that the
timings for increasing centers do not differ significantly. This is consitent with
the fact that homomorphic additions are not the most time consuming part of
our computations.

For scenario (2) the encryption time does not depend on the number of centers
either, since the centers can perform the encryption in parallel. The measured
encryption time for one contingency table in scenario (2) is 17.1 ms. The time
to decrypt the result does not depend on the number of centers participating in
the computation either. However it is smaller than for scenario (1), since now we
only have to decrypt one value instead of two. The measured decryption time
for scenario (2) is 21.1 ms. The timings for the computation server are listed
in Table 4, since these timings are dependent of the number of medical centers
participating. Here we see the same trend as for scenario (1): the timings do not
increase linearly in the number of medical centers.

From Table 4 one sees that the timings for the computation server do not
differ much between both scenarios. This is because addition and multiplication
with a constant (which are the extra operations we need to compute the masked
value) are not the most time consuming homomorphic operations. Hence our
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masked comparison gives an efficient solution for keeping the χ2 value private.
We can also conclude that considering CPU time, our solution scales really well
for increasing number of medical centers participating in the computation.

Table 4: CPU time computation server

Centers Patients scenario (1) scenario (2)

20 200000 1.40 ms 1.48 ms
40 400000 1.48 ms 1.52 ms
60 600000 1.44 ms 1.53 ms
80 800000 1.47 ms 1.56 ms
100 100000 1.49 ms 1.56 ms

For the homomorphic setup, there is no communication cost during the com-
putations. The communication cost comes from sending values from each of the
three parties to the next. We have three points of communication: the public
key has to be sent from the decryptor to the medical centers; the encrypted
values of the contingency tables have to be sent from the medical centers to the
computation server; and the result has to be sent from the computation server
to the decryptor. The communication cost is similar for both scenarios since for
both scenarios the size of one ciphertext will be the same, and we only need to
sent ciphertexts form one party to another. The size of the public key that needs
to be sent to the different medical centers is 186 kB. The data needed to send
one contingency table to the computation server is 2.1 MB. The communication
cost between the medical centers, and the computation server is the number of
centers participating times the number of data needed to send one contingency
table. So this communication cost increases linearly in the number of centers
contributing to the computation. In scenario (1) we send both the numerator as
the denominator from the computation server to the decryptor, which results in
a communication cost of 1.8 MB. In scenario (2) we only have to send one value,
which gives a communication cost of 0.54 MB.

5 Secure Multiparty Computation Approach

To address the challenge of disease gene identification using secure multiparty
computation techniques, in the setting described in Section 3, we deploy MAS-
COT [KOS16]. We selected MASCOT [KOS16] as the most suitable multiparty
computation solution, because it is currently the most efficient proposal, offering
malicious static security with a dishonest majority. This means that any number
of the computing parties may deviate from the protocol execution, and this will
be detected without leaking information, other than what the correct protocol
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execution would reveal. Corruption may only occur prior to the beginning of the
protocol execution, affecting up to n− 1 (out of the n) computing parties.

5.1 Setup and Security Assumptions

For our multiparty computation approach, we first need to determine the number
of computation servers n (n ≥ 2) that we have at our disposal. Given that the
underlying protocol offers security against any coalition of n − 1 computation
servers, we consider the security of the whole system to increase as the number
of computation servers increases. However, the number of computation servers
is inversly proportional to the efficiency of the solution. Therefore, we consider
that three computation servers is an adequate number of servers, both from an
efficiency/plausibility perspective, and from a security perspective. If any two
of the three computation servers that we assume get compromised, or otherwise
behave dishonestly, or even collude, the solution still guarantees input privacy,
and does not accept incorrect results.

We assume a preprocessing phase that can take place offline, at any moment
prior to the actual protocol execution. This is to create the necessary randomness
for the medical centers to contribute their inputs in a secret shared manner to the
computation servers. In addition, the preprocessing phase creates authenticated
randomness to be used in the online phase, so as to boost the efficiency of
computing multiplications on the shares, which requires interaction amongst the
servers.

The medical centers that wish to contribute their private inputs, first need
to agree on a common format for this data (e.g., what is the order of sending
the contingency tables). Then, they need to secret share their contingency ta-
bles to the three computation servers, which can also be pushed to an offline,
preprocessing phase. Given that all contributing medical centers have shared
their private contingency tables to the computation servers, the online phase
starts. During the online phase the servers perform both local, and interactive
secure computations, and they finally reveal per contingency table whether the
relationship between a mutation at a certain DNA position, and a disease is sig-
nificant or not, without disclosing further information on the underlying data.
A schematic representation of this approach is presented in Figure 2.

5.2 Preliminaries

Additive Secret Sharing A secret sharing scheme is a protocol, which allows
(some of) the protocol participants to share their secret inputs amongst all other
protocol participants, in such a way that nothing is revealed to the individual
participants about the secret input. In some instances of secret sharing schemes,
a subset of the protocol participants, called the qualified set, can reconstruct the
original secret input, when they engage in the reconstruction protocol. Other
schemes, such as additive secret sharing, require all protocol participants to
contribute their shares for the reconstruction protocol to work.
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Fig. 2: A schematic representation of the multiparty computation scenario.

Additive secret sharing is essentially masking the input of a protocol partic-
ipant x by subtracting a random value r from it. Given that the value of r is
only known to the inputting participant, and that the rest of the participants
hold shares [[r]] of this value (which can be done in a preprocessing stage), secure
shares of x can be created as follows: The inputting party computes ε = x − r,
and broadcasts it to the rest of the participants. All other parties can now com-
pute their own shares of the input x as [[x]] = [[r]] + ε . It is easy to see that this
scheme enjoys an additively homomorphic property, allowing additions of shares,
and linear functions to be directly computed locally on the shares. Hence, no
communication amongst the protocol participants is required to perform addi-
tions on these additively secret shared values.

Oblivious Transfer Oblivious Transfer (OT) is a cryptographic primitive,
which allows a sender to transfer only one (or none) out of many values to
a receiver, while remaining oblivious as to which value has been received (if
any). Oblivious transfer was introduced by Rabin [Rab81] in 1981. Basic OT
constructions make use of public key encryption primitives to allow the afore-
mentioned functionality. More precisely, an 1-out-of-2 OT requires the sender to
be in possession of a public/private key pair, generate, and send two random
messages to the receiver, decrypt two messages, and send two messages to the
receiver. The receiver obtains the public key of the sender, along with the two



18

random messages that the latter has selected, performs one encryption, and one
blinding, sends the resulting message to the sender, and finally inverts the blind-
ing to retrieve the desired message. For more information on basic OT, we refer
the reader to the work of Even et al. [EGL85].

Many works have considered extending OT so as to make it practically effi-
cient, with the most notable work of Ishai et al. [IKNP03]. Under the assumption
that a random oracle H, which can be instantiated by a hash function family,
exists, Ishai et al. [IKNP03] show how to perform only a few OTs from scratch,
and then be able to perform many additional OTs at the cost of a constant
number of invocations of the random oracle. The actively secure version of their
protocol comes with an increase at the cost of the protocol by a factor σ, for σ
a statistical security parameter. More recently, Keller et al. [KOS15] presented
an actively secure OT extension protocol, where malicious security comes at
negligible extra cost.

Correlated Oblivious Product Evaluation - COPE The Correlated Obliv-
ious Product Evaluation (COPE) protocol presented by Keller et al. [KOS16] is
essentially a generalization of Ishai et al.’s protocol [IKNP03] to the arithmetic
case (instead of the original binary). The protocol is executed between two par-
ties, and allows them to obtain an additive sharing of the product x ·∆, where
the sender holds x ∈ F, and the receiver holds ∆ ∈ F. COPE is based on Gilboa’s
oblivious product evaluation [Gil99], where the parties run k sets of 1-out-of-2
OTs, on k-bit inputs. The proposed product evaluation is correlated in the sense
that the one party’s input ∆ is fixed at the beginning of the protocol for many
protocol runs. After a one-time expensive initialization of the COPE protocol,
the extension step, generating fresh OTs without the public-key crypto extensive
costs, can be repeated several times on new inputs x.

MASCOT Online Phase The online phase of MASCOT [KOS16] is essen-
tially the same as the one of the SPDZ protocol [DPSZ12,DKL+13]. This family
of protocols uses additive secret sharing, allowing additions, and linear functions
to be computed locally by the protocol participants, without requiring commu-
nication. To achieve active security, information-theoretic MACs are being used,
which provide authenticity, and integrity of the messages. A secret shared value
x, shared amongst n parties, is represented as follows:

[[x]] = (x(1), ..., x(n),m(1), ...,m(n), ∆(1), ...,∆(n)), (5)

where, x(i) is the random share, m(i) is the random MAC share, and ∆(i) is the
MAC key share, such that m = x ·∆.

To perform multiplications of secret shared values, multiplication triples à
la Beaver [Bea91] from the preprocessing phase are required, with which the
parties can compute shares of the required product. The multiplication triples
are of the form: ([[a]], [[b]], [[c]]), with a, b uniformly random, and c = a · b. More
precisely, to compute [[z]] = [[x · y]], on input [[x]], [[y]], and given a multiplication
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triple ([[a]], [[b]], [[c]]), the parties compute ε = [[x]] − [[a]], and ρ = [[y]] − [[b]], and
open these two values. Then, they compute [[z]] = [[c]] + ε · [[b]] + ρ · [[a]] + ε · ρ .

MASCOT Offline Phase - Preprocessing The goal of the preprocessing
phase is to generate random values for the parties who wish to contribute in-
puts –so as to allow them to mask their inputs in an authenticated manner–,
and multiplication triples –so that multiplication of secret shared values can be
efficiently implemented in the online phase–.

The preprocessing is based on Oblivious Transfer techniques, and more pre-
cisely the authors of MASCOT [KOS16], have generalized the OT extension idea
presented by Ishai et al. [IKNP03] to the arithmetic circuit case. For every party
that wishes to contribute an input, the COPE protocol is executed, to create an
authenticated version of the input, based on the global MAC key ∆. Creation of
(authenticated) additive shares is straightforward. Recall that both the shares,
and their MACs are linear. Hence, computing linear functions on (authenticated)
shared values is also straightforward. To ensure active security, the party that
wishes to contribute an input first authenticates a random input x0 together
with the actual inputs m. Then, the party opens a random linear combination
of the inputs including x0, and all other parties check the MAC on this linear
combination. This way the party contributing input is committed to them, and
the actual inputs are masked by the random input x0.

For the triple generation, the parties invoke an OT to compute the secret
sharing of b ∈ F, and a ∈ Fτ , where τ ≥ 3 is a security related parameter,
meaning that they run τ copies of the basic two-party COPE per pair of parties.
This ensures that a has enough randomness to produce a triple. To protect
against malicious behavior, the parties sample two sets of random coefficients r,
and r̂ ∈ Fτ , from which they generate two triples with the same b component.
Upon authentication of their shares, the parties ensure correctness of one of the
triples, by sacrificing the other triple.

5.3 Privacy-Preserving Chi-Squared Thresholding Protocol

Our protocol calculates the units of inequality (4) using MASCOT [KOS16].
For the inequality check, we apply the masking technique described in Section
3.1. In addition to the masking-based comparison, we have also implemented
the protocol using the standard, bit-decomposition based secure comparison, as
implemented in SPDZ-2 [Bri16]. We have also made a non-secure implementation
avoiding completely the comparison. All these cases are presented in Section 5.4,
analyzing their performance. The online phase of the masking-based version of
our protocol is detailed in Algorithm 2.

In our setting, we consider the computing parties that actually execute our
protocol (i.e., the computation servers), different from the parties contributing
their inputs (i.e., the medical centers), as shown in Figure 2. For the offline
phase, together with the preparation of the triples, and randomness discussed
in Section 5.2, we wish to perform the required preprocessing that will allow
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Algorithm 2 v ← Chi-squaredTest(Nc,N[Nc], [[O[4][Nc]]], χ2, [[r]], [[r′]])

1: Input: Nc = number of centers contributing data,
2: N[Nc] = a table of size Nc containing the total sample size Ni of every center i,
3: [[O[4][Nc]]] = secret shared observed values of the 2×2 contingency table (mutation

vs. disease), contributed by each of the Nc centers,
4: χ2 = χ2 threshold value for the significance test,
5: [[r]], [[r′]] = secret shared random values r and r′

6: Output: v = 0 or 1; 0 → non-significant relationship between mutation, and
disease, 1 → significant relationship between mutation, and disease

7: for all Pj do
8: {Each party Pj engages in the protocol}
9: for all Ci do

10: [[Ok,l]]← [[
∑Nc

i=1Ok,l]]i, k = 1, 2; l = 1, 2
11: end for
12: N ←

∑Nc
i=1Ni

13: [[RTi]]← [[Oi,1 +Oi,2]], i = 1, 2
14: [[CTi]]← [[O1,i +O2,i]], i = 1, 2
15: [[modelk,l]]← [[RTk · CTl]], k = 1, 2, l = 1, 2
16: [[square]]← [[(N ·O1,1 −model1,1)2]]
17: [[Ui,j ]]← [[square ·modeli,j ]], i = 1, 2; j = 1, 2
18: [[numerator]]← [[

∑2,2
i=1,j=1 Ui,j ]]

19: [[denominator]]← N · [[model1,1 ·model2,2]]
20: [[difference]]← [[numerator]]− χ2 · [[denominator]]
21: [[MaskedDifference]]← [[difference · r + r′]]
22: MaskedDifference← Open([[MaskedDifference]])
23: if MaskedDifference > 0 then
24: return 1
25: else
26: return 0
27: end if
28: end for
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the medical centers to correctly contribute their inputs, without compromising
privacy. To do that we use the protocols proposed by Damg̊ard et al. [DDN+15].
First we use the Output Delivery protocol to reveal a preprocessed random value
r only to the inputting party, who can then broadcast his masked input x− r to
the computing parties. Based on this value, and the preprocessed randomness r,
the servers can locally compute their share of x, as [[x]] = (x− r) + [[r]].

5.4 Implementation and Performance Analysis

We have built a proof of concept implementation of our MPC approach using
the platform provided by the authors of MASCOT [KOS16] in SPDZ-2 [Bri16].
We ran our experiments for timing the execution of our protocol on a desktop
computer equipped with an Intel(R) Core(TM) i5-3570K processor, at 3.40GHz,
with 16.00 GB RAM, and the Ubuntu 17.04 operating system.

We have only considered the online phase of the protocol, as the preprocessing
is protocol-independent, and can be executed at any moment, well before the
execution of the online phase. We note, however, that the offline phase is also
practically efficient, and we refer the reader to MASCOT [KOS16] for more
details on the throughput of the offline phase. To give an indication of the cost
of the offline phase of the protocol, we estimate the triple generation throughput,
based on the experiment results presented by Keller et al. [KOS16]. For three
computation servers, equipped with eight-core i7 3.1 GHz CPU, and 32 GB
RAM, in a local network with a 1 Gbit/s link per party, and a field Fp, with p
a 128-bit prime, approximately 2200 triples per second can be generated. Every
time we recorded timings, before the execution of the online phase, we ran the
setup script provided with the SPDZ-2 [Bri16] software. This script simulates
the offline phase, and creates all the necessary randomness for the execution of
the online phase. The fact that the offline phase is simulated does not affect the
performance, or efficiency of the online phase.

Our experiments were conducted on localhost with three computation servers.
Hence, we do not take the network latency into account in the timing results we
report. We do present the size of the data that each server has to send, as well as
the communication rounds, and we consider this information to be sufficient for
the reader to calculate the additional communication cost, based on the available
network bandwidth.

For our performance analysis we have considered the following three scenar-
ios: (1) the case where we calculate the numerator, and denominator of the χ2
statistic in the secret shared domain, and then open these two results; (2) the
case where the secure comparison is implemented as described in Section 3; and
(3) the case where we perform the secure comparison in the secret shared domain,
and then open only the “True/False” answer to this question, as implemented
in MASCOT. We selected these three scenarios, as the secure comparison is the
most costly operation we need to carry out, and we wish to assess its impact on
the performance of our protocol. Thus, with scenario (1) we completely avoid
the secure comparison by opening the numerator, and denominator separately;
with scenario (2) we perform the secure comparison using our randomization
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approach; and with scenario (3) we use the most popular method to carry out
a secure comparison (see [CDH10]), which is based on bit-decomposition –an
inherrently inefficient approach–. Note that scenario (1) does not satisfy the
security requirements of our application, and is presented only for the sake of
performance comparison.

For all our timing results we have executed our protocol 10 times per case, and
calculated the average execution time. The communication cost of the protocol is
constant. For our experiments we have established that all input data is shared
by one of the computation servers (namely Server 1), instead of the medical
centers that would contribute the data in a real setting. This is reflected in the
communication cost of the protocol for Server 1, which has to secret share all
input data. Note, that in practice the secret sharing step can be pushed to an
offline preprocessing phase.

In Table 5 we present the execution times of our approach, as well as the data
sent by Server 1 (including the sharing of the original inputs), without performing
a secure comparison (scenario 1). Server 1 is presented separately, because it has
to do some extra tasks, such as sharing the inputs, collect all the final results, and
print them, which is reflected in its execution times. The other two servers are
grouped together, as their execution times are similar. Although we would expect
the execution times to grow with the number of medical centers contributing
data, this is not the case. This is because the execution times are so small that
they can be highly affected by the computing environment. Furthermore, the
communication cost of Server 1 includes also the secret sharing of the inputs.
This is how all three scenarios have been executed. Recall, however, that the
sharing of the inputs can be performed in a preprocessing phase, prior to the
actual protocol execution, allowing the online phase to be less communication
intensive. The communication cost for the other two servers is constant –1228
bytes–, since they do not share any inputs. The protocol completes its execution
in 4 communication rounds, and consumes 9 triples, and 1 square from the
preprocessing.

Table 5: Performance with No Secure Comparison

Server 1 Server i, i 6= 1

Centers Patients CPU Time Sent Data CPU Time

20 200000 1.6 ms 4152 bytes 1.3 ms
40 400000 1.6 ms 6712 bytes 1.4 ms
60 600000 1.5 ms 9272 bytes 1.3 ms
80 800000 1.7 ms 11832 bytes 1.4 ms
100 1000000 1.7 ms 14392 bytes 1.4 ms

In Table 6 we provide the execution times of our alternative secure approach,
which is based on randomizing the difference of the two numbers to be compared
(scenario 2). Note that in the previously presented scenario (1) it is sufficient



Privacy-Preserving Genome-Wide Association Study is Practical 23

to work in a prime field of 128 bits, as the numbers we operate with never
grow larger than 114 bits. To perform the randomization of the difference of our
numbers securely, however, we need to multiply them with a (random) number
of roughly the same size. This implies that we need to work in a field of 256 bits
to be able to handle the size of our quantities. More precisely, we calculated the
largest that our quantities can grow in all cases, and we selected the random
numbers to be upper bounded by these sizes. Our numbers can grow up to
100, 106, 110, 112, and 114 bits for 20, 40, 60, 80, and 100 medical centers,
respectively. For this scenario, and the case of 20 centers, Server 1 has to send
82 (256-bit) elements (instead of 128-bit elements) to the two other servers.
The two additional elements that have to be sent are the randomness r, and
r′, which is used to mask the difference that facilitates the execution of the
secure comparison. The communication cost for Server 1 is analyzed in Table 6,
while for the other two servers is constant and equal to 1632 bytes. The protocol
completes its execution in 5 communication rounds, and consumes 10 triples,
and 1 square from the preprocessing.

Table 6: Performance with Randomized Secure Comparison

Server 1 Server i, i 6= 1

Centers Patients CPU Time Data Sent CPU Time

20 200000 1.7 ms 7616 bytes 1.4 ms
40 400000 1.7 ms 12736 bytes 1.5 ms
60 600000 1.9 ms 17856 bytes 1.7 ms
80 800000 2.1 ms 22976 bytes 1.8 ms
100 1000000 2.2 ms 28096 bytes 1.9 ms

In Table 7 we display the execution times of our protocol, using the standard,
bit-decomposition based, secure comparison (scenario 3). Similarly to the second
scenario, due to the size of our inputs (up to 114 bits), we need to scale our inputs
representation to 256 bits field elements, so as to achieve adequate statistical
security (always ≥ 40 bits). The protocol communication cost of Server 2, and
3 is constant –4244 bytes–, while for Server 1 it varies, based on the number of
inputs it has to share, as shown in Table 7. The protocol completes its execution
in 10 communication rounds, and consumes 50 triples, 1 square, and 31 bits from
the preprocessing. As expected, this is the most inefficient of the three scenarios,
both in terms of communication, and in terms of computational cost.

6 Conclusion

Our work shows that full-scale privacy-preserving GWAS deployment has be-
come practical. Our solutions provide provable security guarantees, while being
efficient for realistic sample sizes, and number of medical centers contributing
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Table 7: Performance with Standard Secure Comparison

Server 1 Server i, i 6= 1

Centers Patients CPU Time Data Sent CPU Time

20 200000 2.2 ms 12712 bytes 1.9 ms
40 400000 2.3 ms 17832 bytes 2.0 ms
60 600000 2.3 ms 22952 bytes 2.0 ms
80 800000 2.5 ms 28072 bytes 2.2 ms
100 1000000 2.4 ms 33192 bytes 2.1 ms

data to the studies. Moreover, our solutions scale logarithmically in the num-
ber of subjects contributing data to the study, which means that as GWAS
population sizes grow, our approach will remain suitable. We also propose a new
masking-based comparison method, and show that in certain application scenar-
ios, such as the GWAS scenario at hand, comparisons can be executed efficiently,
without leaking information about the underlying data.

From the setup description of both suggested techniques, one can determine
the first significant difference: in the homomorphic setting, the medical centers
only have to encrypt, and share their data with one party, namely the com-
putation server; while for the multiparty computation they have to share their
data with two or more computation servers. The execution times resulting from
our experiments show that the MPC approach is significantly faster than the
homomorphic approach. Even if we assume the encryption of the contingency
tables by the medical centers to be part of a preprocessing phase, the homo-
morphic approach will take more than a second to complete its execution, while
the computations in the MPC setup take only a few milliseconds. In terms of
communication cost, the homomorphic setup has the advantage that it needs no
communication during the computations. However, in terms of total amount of
data that has to be transferred between the different parties, the MPC setup
outperforms the homomorphic setup once more. We therefore recommend the
MPC approach, as it is the most efficient out of the two approaches, and it does
not rely on the strong assumption of semi-honest parties participating in the
protocol.
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