
An Offline Dictionary Attack against zkPAKE
Protocol

José Becerra1, Petra Sala12, and Marjan Škrobot1

1 University of Luxembourg
{petra.sala, marjan.skrobot, jose.becerra}@uni.lu,

2 École Normale Supérieure, Computer Science Department

Abstract. Password Authenticated Key Exchange (PAKE) allows a
user to establish a strong cryptographic key with a server, using only
knowledge of a pre-shared password. One of the basic security require-
ments of PAKE is to prevent offline dictionary attacks.
In this paper, we revisit zkPAKE, an augmented PAKE that has been
recently proposed by Mochetti, Resende, and Aranha (SBSeg 2015). Our
work shows that the zkPAKE protocol is prone to offline password guess-
ing attack, even in the presence of an adversary that has only eavesdrop-
ping capabilities. Therefore, zkPAKE is insecure and should not be used
as a key exchange mechanism.

Keywords: Password Authenticated Key Exchange, zkPAKE, Augmented PAKE,
Offline Dictionary Attack, Zero-knowledge Proofs.

1 Introduction

Password Authenticated Key Exchange (PAKE) is a primitive that allows two or
more users that start only from a low-entropy shared secret – which is a typical
user authentication setting today – to agree on the cryptographically strong
session key. Since the introduction of PAKE in 1992, a plethora of protocols
trying to achieve secure PAKE has been proposed. However, due to patent issues,
PAKEs only recently have started to be considered for wide-scale use (e.g., in
Firefox Sync [1] and the Thread network protocol [2]).

From deployment perspective, the biggest advantage of using PAKE com-
pared to a typical key exchange protocol is that it avoids dependence on func-
tional Public Key Infrastructure (PKI). On the downside, the use of low-entropy
secret as the primary means of authentication comes with the price: PAKEs are
inherently vulnerable to online dictionary attacks. To mount this attack, an ad-
versary only has to repeatedly send candidate passwords to the verifying server
in order to test for their validity. In practice, this type of attack can be avoided in
two-party setting by limiting the number of guesses (i.e., wrong login attempts)
which can be made in a given time frame. At the same time, a well-designed
PAKE must be resistant against offline dictionary attacks. In such attack sce-
nario, the adversary typically operates in two phases: in the first (usually online)



phase, the adversary – either by eavesdropping or impersonating a user – tries
to collect a function of the password that is being targeted to serve him as the
password verifier. Later, in the second (offline) phase, the adversary has to cor-
relate the verifier that has been collected in the first step with offline password
guesses to determine the correct password.

In terms of design, PAKEs can follow symmetric or asymmetric approach
with respect to the value that is used as an authenticator. For instance, the first
PAKE to be proposed, EKE [5], follows symmetric design strategy: Both client
and server are required to know their joint password in clear to successfully
run the EKE protocol. Such protocols are usually called balanced PAKEs. Over
time it has been realized that the risk of loosing a large number of passwords
in case of a server compromise increases if passwords are kept in clear. Damage
inflicted from such loss could be very high, especially today when most people
typically use many online services while authenticating with only a few related
passwords. One way to mitigate such treat is to use asymmetrically designed
PAKE, also known as augmented PAKE. This type of PAKE guarantees that the
password is not stored on the server side as a plaintext, but, in fact, as an image
of the password. Nevertheless, for long it has been argued, from a theoretical
perspective, that augmented PAKEs do not add much benefit over balanced
PAKEs, since the brute-force attack on a stolen password file (a list containing
password hashes) would quickly yield a number of underlying passwords. With
the introduction of sequential memory-hard hash functions such as Scrypt [17]
and Argon2 [7] and use of salt, which can be used to significantly slow down
password cracking, this may not be the case anymore.

1.1 Our contribution

Recently, Mochetti, Resende and Aranha [15] proposed (without a proof) a sim-
ple augmented PAKE called zkPAKE, which they claim is suitable for banking
applications, requiring the server to store only the image of a password under
a one way function. Their main idea was to use zero-knowledge proof of knowl-
edge (password) to design an efficient PAKE. However, here we present an offline
dictionary attack against the zkPAKE protocol. In addition, we show that the
same attack works on a slight variant of zkPAKE that has been proposed later in
[16]. Our dictionary attack can be carried out in two ways: passively - by eaves-
dropping on the zkPAKE protocol execution, or actively - by impersonating the
server and having the client attempt to log in.

1.2 Previous works

Password Authenticated Key Exchange was introduced by Bellovin and Meritt [5]
in 1992. Their EKE protocol was first to show that it is possible to securely
bootstrap a low-entropy string into a strong cryptographic key. Few years later,
Jablon proposed an alternative - the SPEKE protocol [11]. During next 25 years
plenty more PAKE proposals have surfaced [13,14,10]. In parallel, augmented
versions of different PAKEs were introduced (e.g. A-EKE[6], B-SPEKE[12]).



As explained above, augmented PAKEs have an additional security property
compared to balanced PAKEs: if implemented well, it is considered to be more
resistant to server compromise in a sense that clients’ passwords are not imme-
diately revealed once the password file is leaked, since the attacker still has to
perform password cracking.

Security of early PAKE proposals was argued only informally by showing that
protocol can withstand all known attacks. Starting from 2000, formal models of
security for PAKE appeared in [4] and [8]. More specifically, following game-
based approach Bellare, Pointcheval and Rogaway have argued in [4] that a
provably secure PAKE protocol must provide indistinguishability of the session
key and satisfy authentication property. The Real-or-Random (RoR) variant of
their model from [3], along with the Universally Composable PAKE model from
[9] are considered to be state-of-the-art models that rigorously capture PAKE
security requirements.

Since in this paper we exclusively deal with an offline dictionary attack on
zkPAKE, we keep the discussion here short and refer readers to Pointcheval’s
survey [18] for more detailed overview of PAKE research field.

1.3 Organization

The rest of the paper is organized as follows. Section 2 describes the zkPAKE
protocol and its variant. In Section 3, we present an offline dictionary attack
against the zkPAKE protocol. Finally, we conclude the paper in Section 4.

2 The zkPAKE protocol and its variant

In this section, we review the zkPAKE protocol. We will start with the variant
of zkPAKE from [16] whose description is presented in Figure 1, and then point
out the differences with the original design from [15]. The reason for this order of
presentation is because the variant of zkPAKE that is proposed later is slightly
more elaborate than the original zkPAKE, so we want to show that zkPAKE
does not stand against our attack even with proposed modification.

2.1 Protocol description

zkPAKE as described in [16] is a two-party augmented PAKE protocol meant
to provide authenticated key exchange between a server S and a client C.

Initialization phase. The protocol starts with an enrollment phase, which is
executed for every client only once. In this phase, a client and a server (e.g.,
bank) share a secret value of low entropy that can be remembered by the client.
More specifically, in case of zkPAKE, the client must remember the password
π, while the server only stores an image of the password R. Before the server
computes the corresponding image R, public parameters must be chosen and
agreed on: 1) a finite cyclic group G of prime order q and a random generator g
of the group G; 2) Hash functions H1 and H2 whose outputs are k-bit strings,
where k is the security parameter representing the length of session keys.



Protocol execution. Once the enrollment phase is executed and the public pa-
rameters are established, the zkPAKE protocol (see Figure 1) will run in three
communication rounds as follows:

Initialization

Public: G, g, q; H1, H2 : {0, 1}∗ → {0, 1}k;

Server S Client C

Secret: R := gH1(π) π

n← Zq
N := gn N

r := H1(π)

v ← Zq
t := Nv

c := H1(g, gr, t, N)

u := v −H1(c)r mod q

u,H1(c) skc := H2(c)

t′ := gunRnH1(c)

c′ := H1(g,R, t′, N)

abort if H1(c′) 6= H1(c)

sks := H2(c′) H1(sks)

abort if H1(sks) 6= H1(skc)

Fig. 1: The zkPAKE protocol.

1. First, the server S chooses a random value n from Zq, computes N that is
supposed to act both as a nonce and Diffie-Hellman value, and sends it to
the client C.

2. Now, upon receiving the nonceN , the client C inputs his password, computes
the hash of the password - r, chooses a random element v from Zq, and
computes t := Nv. Then, C computes c := H1(g, gr, t, N) and obtains u :=
v −H1(c)r that should lie in Zq. Next, C computes the session key skc :=
H2(c) and sends u and H1(c) to the S.

3. Upon receiving H1(c) and u, S recovers t′ by computing gunRnH1(c). Then,
S calculates c′ := H1(g,R, t′, N). Next, S checks if H1(c′) echoes H1(c). If
it does, S computes the session key sks := H2(c′) and sends H1(sks) to C.
Otherwise, he aborts the protocol.



4. Similarly, upon receiving H1(sks), C checks if H1(sks) and H1(skc) match.
If values are equal, C saves computed session key skc and terminates.

As we said before, the authors of zkPAKE have presented two variants of it.
The original proposal from [15] differs from the follow-up version in two places:
Nonce N is left underspecified, and value t on the client side is computed without
involving received nonce. This difference also affects the computation of t′ from
the server side. In more details, the original zkPAKE protocol runs as follows:

1. The server sends his nonce N to the client C.
2. The client calculates the hash of his password r, chooses a random parameter
v ← Zq, and computes t := gv. Then, C computes c := H1(g, gr, t, N) and
obtains u := v−H1(c)r in Zq. Next, C computes the session key skc := H2(c)
and sends u and H1(c) to the S.

3. Upon receiving H1(c) and u, S recovers t′ by computing guRH1(c). Then,
S calculates c′ := H1(g,R, t′, N). Next, S checks if H1(c′) echoes H1(c). If
it does, S computes the session key sks := H2(c′) and sends H1(sks) to C.
Otherwise, he aborts the protocol.

4. Finally, upon receivingH1(sks), C checks ifH1(sks) echoesH1(skc). If values
are equal, C saves computed session key skc and terminates.

3 Offline dictionary attack on zkPAKE

In the next section, we will show how both variants of the zkPAKE protocol are
vulnerable to an offline dictionary attack. Our attack exploits the fact that r,
which is a hash of clients password, is of low entropy.

Let the enrollment phase be established and let an attacker A be allowed only
to eavesdrop on the communication between two honest parties. The attack on
the version of zkPAKE protocol presented on Figure 1 proceeds as follows:

Step 1. The execution of the protocol starts and S sends his first message, N .
The attacker A sees the message and stores it in his memory.

Step 2. C does all the computations demanded by the protocol and sends u
and H1(c) in the second transmission to S. A observes the second message
and obtains u and H1(c).

Step 3. The adversary that now holds N , u and H1(c) from the first two mes-
sage rounds may go offline to perform a dictionary attack. His goal is to
compute a candidate c′i and then use stored H1(c) as a verifier. The adver-
sary will compute c′i by hashing H1(g, gri , t′i, N). Two intermediate inputs
to hash function are obtained by first choosing a candidate password πi,
and then computing the corresponding ri and t′i. Note that the adversary
can easily compute t′i = Nvi , since vi := u+H1(c)ri. Finally, the adversary
checks if his guess H1(c′i) echoes H1(c).



Step 4. The adversary repeats step 3 until he guesses the correct password.

As for the original zkPAKE protocol, the same attack works in a very similar
way: steps 1,2, and 4 are the same while in step 3 we need to make a minor
change:

Step 3a. The adversary that now holds N , u and H1(c) from the first two mes-
sage rounds may go offline to perform a dictionary attack. Same as above, the
adversary aims to obtain candidate c′i by computing a hash H1(g, gri , t′i, N).
Here the only difference is that t′i = gvi , while formula for computing vi
stays the same.

Note that one can mount a similar dictionary attack by impersonating a
server. In this case, the only difference with the eavesdropping attack described
above is that the value of the nonce N is picked by the attacker. Such knowl-
edge, however, does not additionally help the adversary in our attack. Once the
adversary receives clients reply, he can continue with steps 3 and 4 from the
eavesdropping attack.

4 Conclusion

In this paper, we showed that both versions of the zkPAKE protocol [15,16] are
vulnerable to offline dictionary attacks. To make matters worse, the adversary
in case of zkPAKE only needs eavesdropping capabilities to mount the attack.

Taking a wider view on zkPAKE, the problem with its design lies in a fact
that variable r, which is of low-entropy, is used as a mask for the secret value v.
In contrast, in a typical zero-knowledge proof of knowledge, which was used as
an inspiration for zkPAKE design, such value is of high entropy. By showing this
vulnerability, we hope that in future protocol designers will be more careful in
claiming the security of proposed protocols, especially when a proof of security
does not back those claims.

References

1. Firefox Sync (2015), https://www.mozilla.org/en-US/firefox/sync/

2. Thread Protocol (2015), http://threadgroup.org/

3. Abdalla, M., Fouque, P., Pointcheval, D.: Password-Based Authenticated Key Ex-
change in the Three-Party Setting. In: Vaudenay, S. (ed.) Public-Key Cryptography
– PKC 2005. LNCS, vol. 3386, pp. 65–84. Springer (2005)

4. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure
Against Dictionary Attacks. In: Advances in Cryptology – EUROCRYPT 2000.
LNCS, vol. 1807, pp. 139–155. Springer (2000)

5. Bellovin, S.M., Merritt, M.: Encrypted Key Exchange: Password-Based Protocols
Secure Against Dictionary Attacks. In: 1992 IEEE Symposium on Research in
Security and Privacy, SP 1992. pp. 72–84 (1992)

https://www.mozilla.org/en-US/firefox/sync/
http://threadgroup.org/


6. Bellovin, S.M., Merritt, M.: Augmented Encrypted Key Exchange: A Password-
Based Protocol Secure against Dictionary Attacks and Password File Compromise.
In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) CCS
’93, Proceedings of the 1st ACM Conference on Computer and Communications
Security, Fairfax, Virginia, USA, November 3-5, 1993. pp. 244–250. ACM (1993)

7. Biryukov, A., Dinu, D., Khovratovich, D.: Argon2: New Generation of Memory-
Hard Functions for Password Hashing and Other Applications. In: IEEE Euro-
pean Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany,
March 21-24, 2016. pp. 292–302. IEEE (2016)

8. Boyko, V., MacKenzie, P.D., Patel, S.: Provably Secure Password-Authenticated
Key Exchange Using Diffie-Hellman. In: Preneel, B. (ed.) Advances in Cryptology
– EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–171. Springer (2000)

9. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally Compos-
able Password-Based Key Exchange. In: Cramer, R. (ed.) Advances in Cryptology
– EUROCRYPT 2005. LNCS, vol. 3494, pp. 404–421. Springer (2005)

10. Hao, F., Ryan, P.: J-PAKE: Authenticated Key Exchange without PKI. Transac-
tions on Computational Science 11, 192–206 (2010)

11. Jablon, D.P.: Strong Password-Only Authenticated Key Exchange. ACM SIG-
COMM Computer Communication Review 26(5), 5–26 (1996)

12. Jablon, D.P.: Extended Password Key Exchange Protocols Immune to Dictionary
Attacks. In: 6th Workshop on Enabling Technologies (WET-ICE ’97), Infrastruc-
ture for Collaborative Enterprises, 18-20 June 1997, MIT, Cambridge, MA, USA,
Proceedings. pp. 248–255. IEEE Computer Society (1997)

13. Katz, J., Ostrovsky, R., Yung, M.: Efficient Password-Authenticated Key Exchange
Using Human-Memorable Passwords. In: Pfitzmann, B. (ed.) Advances in Cryp-
tology – EUROCRYPT 2001. LNCS, vol. 2045, pp. 475–494. Springer (2001)

14. MacKenzie, P.: The PAK Suite: Protocols for Password-Authenticated Key Ex-
change. DIMACS Technical Report 2002-46 (2002)

15. Mochetti, K., Resende, A., Aranha, D.: zkPAKE: A Simple Augmented PAKE
Protocol. In Brazilian Symposium on Information and Computational Systems
Security (SBSeg) (2015)

16. Mochetti, K., Resende, A., Aranha, D.: zkPAKE: A Simple Augmented PAKE
Protocol (2015), http://www2.ic.uff.br/~kmochetti/files/abs01.pdf

17. Percival, C.: Stronger Key Derivation via Sequential Memory-hard Functions. Self-
published pp. 1–16 (2009)

18. Pointcheval, D.: Password-Based Authenticated Key Exchange. In: Fischlin, M.,
Buchmann, J.A., Manulis, M. (eds.) Public Key Cryptography - PKC 2012. LNCS,
vol. 7293, pp. 390–397. Springer (2012)

http://www2.ic.uff.br/~kmochetti/files/abs01.pdf

	An Offline Dictionary Attack against zkPAKE Protocol
	Introduction
	Our contribution
	Previous works
	Organization

	The zkPAKE protocol and its variant
	Protocol description

	Offline dictionary attack on zkPAKE
	Conclusion


