
An Improved Protocol for Securely Solving the
Shortest Path Problem and its Application to

Combinatorial Auctions

Abdelrahaman Aly, Sara Cleemput

imec-COSIC, KU Leuven, ESAT
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee (Belgium)

firstname.lastname@esat.kuleuven.be

Abstract. We propose a protocol to securely compute the solution to
the (single source) Shortest Path Problem, based on Dijkstra’s algorithm
and Secure Multiparty Computation. Our protocol improves state of the
art by Aly et al. [FC 2013 & ICISC 2014] and offers perfect security
against both semi-honest and malicious adversaries. Moreover, it can
easily be adapted to form a subroutine in other combinatorial mecha-
nisms and we show how it can help solve certain combinatorial auctions.
Finally, we demonstrate the efficiency of our protocol by experiments
and benchmarking.

Keywords: shortest path problem, combinatorial auctions, secure multi-
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1 Introduction

The Shortest Path problem (SPP), i.e. computing the shortest path between two
vertices in a graph, is a common subroutine in various applications. In many
settings data related to the computation, such as elements of its configuration,
topology or associated weights, is held by competing parties. Real life exam-
ples include telecommunication networks for banking, and restricted topology
combinatorial auctions modeled as graphs. In such environments, different par-
ties could gain a competitive advantage by obtaining privately held information.
Therefore, mechanisms to ensure correctness and fairness are required.

In combinatorial auctions [1], participants can bid for individual items or for
any sub-set of items. This is particularly relevant if there are interdependencies
between the items, or if they naturally form a set, e.g. airport time slot alloca-
tions. In this paper we consider the case where the number of combinations of
items is polynomially limited and all combinations are pre-agreed by the auc-
tioneers. Thus, the combinations can be expressed as a graph with a restricted
topology, where the path of maximum weight expresses the optimal combination
of bids for the seller. Such a maximal path can be found by solving the SPP [2].
In an ideal setting, a trusted party (auctioneer) receives the (secret) bids and
returns the optimal result. In reality a trusted party is difficult to find, making
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this an ideal setting for Multiparty Computation (MPC), which encompasses a
wide collection of techniques that allow any set of parties to jointly compute any
function without disclosing privately held inputs.

In this work we introduce an MPC-based data-oblivious protocol to securely
solve the single source SPP. Using the findings of Aly et al. [3,4], we further
adapt Dijkstra’s algorithm. We consider all information related to the graph
(except its topology) to be privately held. The result of our computation is the
length of the path and/or the path composition; the parties decide whether
these are disclosed. Our protocol can be used to find the maximal path for
certain combinatorial auctions. Moreover, it can offer perfect security and its
multiplicative complexity is one order of magnitude lower than the current state
of the art [3,4], matching the O(|V |2) of the original Dijkstra protocol.

1.1 Related Work

Several protocols to securely solve linear programming problems using the sim-
plex algorithm have been proposed in the literature [5,6,7]. Toft [6] pointed
out several security weaknesses in the protocols by Li and Atallah [5] and pre-
sented termination conditions and methods for the algorithm. The Catrina and
Hoogh [7] method implements the simplex algorithm as well, but includes opti-
mized support for rational numbers.

Aly et al. [3,4] have introduced several data-oblivious protocols to solve the
SPP, including the adaptations of Dijkstra’s that this work improves. However,
their bound on the number of multiplications (i.e., effective work) is cubic,
whereas we only require a quadratic number of multiplications. Brickell and
Shmatikov [8] introduced a protocol for the SPP in a two-party setting against
semi-honest adversaries. In contrast, our solution is not limited to the two-party
case and also provides security against active adversaries. The Breadth-First-
Search (BFS) proposed by Blanton et al. [9] provides complexity bounds for a
special case of the SPP, the non-weighted graph. Conversely, we consider the
general case where the graph is weighted. Furthermore, Keller and Scholl [10]
implemented Dijkstra’s algorithm using Oblivious RAM (ORAM) based data-
structures matching the O(|V |2) complexity of the original algorithm. However,
their results show that, for certain graph sizes, the results provided by Aly et
al. [3] can out-perform their ORAM-based implementation, as ORAM’s intrinsic
overhead exceeds any asymptotic advantage.

1.2 Notation and Security

We follow the graph notation introduced by Aly et al. [3,4]. Furthermore, we
make use of the square bracket notation, for secret shared values and consider all
inputs to be elements of Zq where q is a sufficiently large prime or RSA modulus.
Complexity is measured in terms of round complexity (multiplicative depth or
latency) and multiplicative complexity (amount of work or throughput) of the
whole protocol. To represent negative numbers, we follow the convention in the
literature, i.e. the upper halve of the field represents negative numbers. Vectors
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and matrices are represented by capital letters e.g. E, where |E| denotes its
size. Finally, some common tasks used throughout our protocols are denoted as
follows: i). [z]←[c] [x] : [y] is the conditional operator, an arithmetic replacement
for the flow instruction for branching. [c] represents a selection bit: [z] takes the
value of [x] if [c] == 1 and [y] otherwise. This simple construction requires only
one communication round. ii). exchange(i, j, [X]) swaps the elements in the i-th
and j-th position of vector X. This operation is not cryptographic in nature.

The Security of MPC protocols is typically defined in the context of an ideal
functionality under the UC framework [11,12]. As in [13], we model the MPC
ideal functionality as an arithmetic black box or FABB . The FABB allows us
to store secret values and perform basic operations on them. Furthermore, values
can be extracted and made publicly available. We extend the basic functionality
provided by the FABB by adding secure comparisons to its arithmetic operations.
We can use this to build more complex functionality, that we consider as part
of the FABB . The functionality offered by our FABB is the following:

- [x]← share(x) is used to store values on the FABB .
- x← open([x]) is used to extract values from the FABB and make them publicly

available. In practice inputs are reconstructed using the underlying MPC
functionality.

- [c] ← [x]
?
< [y] returns a secret shared {0, 1} value. If [x] is smaller than [y]

the function returns [1] and otherwise [0].
- [z] ← max([E]) returns the secret shared representation of the maximal value

in E and its associated index value. This can be easliy achieved using the

[x]
?
< [y] functionality.

- [E]← permute([E]) returns a secret shared random permutation of E e.g. [14].

Several comparison methods have been proposed, with security levels rang-
ing from perfect security [15] to statistical security [7]. For secure permu-
tations, recent work has studied sorting networks, permutation networks and
permutation matrices [16,10]. Secure permutation can easily be achieved in
O(n · log(n)) rounds, n being the size of the vector to be permuted [14]. In
order for the combinatorial auction mechanism to work, we must be able to sort
the bids according to their price. Several efficient, secure sorting algorithms
have been proposed in the literature e.g. [17,18]. This modular approach to con-
structing secure functionality over MPC can be proven secure under the hybrid
model proposed by Canetti [11,12]. We proceed to define security as follows:

Definition 1. Let π be a real protocol implemented in a multiparty setting. We
say π is UC-secure if, for any adversary A , there exists a simulator S such that
the VIEWπ(Pi) of any party Pi and any environment Z , cannot be distinguished
(with non-negligible probability) from its view on the ideal functionality F .

2 Privacy Preserving SPP

Let G = (V,E) be a directed graph without negative cycles. We can then solve
the SPP from a source vertex s to any other vertex of G. G can be represented as
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a weighted adjacency matrix U where Uij is the weight of edge (i, j) ∀(i, j) ∈ E.
The intuition underlying our protocol is as follows: U is obliviously permuted
before protocol execution. We then assign temporary labels to each vertex in
G (i.e. each row in [U ]). As in [3,4], our protocol then proceeds to identify the
most suitable vertex to explore. However, unlike them, we are able to open the
temporary label, as the label itself does not convey any information other than
the position of the next row in the now permuted matrix [U ], to be analyzed. This
technique is somewhat similar to the the shuffling before sorting technique
introduced by [18].

2.1 Non-Disclosure Oblivious Dijsktra Protocol

The original protocols [3,4] use expensive mechanisms to extract the next vertex
in G to be analyzed. This overhead adds an extra order of magnitude to the
multiplicative complexity of the protocols, i.e. O(|V 3|) (for complete graphs).
As in [3,4], we consider all inputs (except |V | or an upper bound) to be secret
shared, to be integer and to be bounded by q in such a way no overflow occurs.
Protocol 1 shows the necessary changes to the implementation. We make the
same assumptions as in [4], that is to say, w.l.o.g. we consider G to be a complete
graph.

Our protocol follows the logic behind the original Dijkstra’s algorithm: it
starts at the source vertex, explores all outgoing edges, updates distances to-
wards adjacent vertices, chooses the ”closest” vertex, adds it to the shortest
path and repeats the process until the whole graph has been explored. More
specifically, Protocol 1 works as follows: in lines 1− 3 the output vectors [α] and
[D] are initialized. The element in [D] corresponding to the source node is initial-
ized as [0], all others are initialized as [>] (a constant greater than any input, but
much smaller than q, to avoid overflow). We have included a permutation (see
line 4), which has a complexity of O(n · log(n)) [14] (in this context, n stands for
vector size). The original vertex identifiers (the [P ] vector in our protocol) are
jointly permuted as well. Thus, in lines 6−11, we can use the indexes of the per-
muted inputs to identify the best vertex to explore next, without revealing any
information related to the vertex itself. This allows us to perform the exchange

operation (see line 13) in the clear. The protocol can then track [P ] and its state
(lines 14 − 19). This last step is similar to what was introduced by [3,4]. Thus,
we can achieve quadratic complexity in the number of multiplications (work),
comparisons and rounds.

Complexity: The multiplicative complexity of Protocol 1 is dominated by the
permutation. As stated before, the complexity of a secure oblivious vector per-
mutation is O(n · log(n)). However, as we are permuting a matrix instead, our
protocol requires O(|V |2 ·log(|V |)) secure multiplications (amount of work). Such
multiplications can be parallelized achieving O(|V |2) rounds of communication.
Furthermore, Protocol 1 contains two additional multiplications in line 17 and
18, which can also be parallelized. The exchange operation does not influence
the complexity of the protocol, as it is done over publicly available information.
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Protocol 1: Optimized Non-Disclosure Dijkstra Protocol (πSP)

Input: secret shared edge weights [U ]i,j for i, j ∈ {1, ..., |V |}, encoding vector
[S] where Si = 0 if i 6= s (s being the source vertex) and 1 otherwise.

Output: The vector of predecessors α and the vector of distances [D].
1 for i← 1 to |V | do
2 [α]i ← i; [D]i ←[Si] [0] : [>]; [P ]i ← [i];
3 end
4 ([P ], [D], [U ])← permute([P ], [D], [U ]);
5 for i← 1 to |V | do
6 [d′]← [>];
7 for j ← |V | to i do
8 [c]← [D]j

?
< [d′];

9 [v]←[c] j : [v];
10 [d′]←[c] [D]j : [d′];

11 end
12 v ← open([v]);
13 exchange(i, v, [P ], [D], [U ]);
14 for j ← i+ 1 to |V | do
15 [a]← [D]i + [U ]i,j ;

16 [c]← [a]
?
< [D]j ;

17 [D]j ←[c] [a] : [D]j ;
18 [α]i ←[c] [P ]j : [α]i;

19 end

20 end

Security Analysis: Our protocol does not disclose any private information
during its execution. More precisely, the call to open([v]) (in line 12 of Proto-
col 1) does not reveal the original index position of the analyzed vertex, since
the vertices are uniformly (and obliviously) permuted. The Achievable Security
of our protocol is the same as that of the underlying MPC protocols under the
correct assumptions. E.g. we can achieve perfect security assuming honest ma-
jorities and secure channels for the active and passive case [19]; or cryptographic
security assuming dishonest majorities for the active and passive case [20]. More
formally, we first proceed to define our ideal functionality as follows:

Definition 2 (Ideal Functionality FSP). Let G = (V,E) be a connected di-
rected graph. Let the elements of the weighted adjacent matrix U and the source
vertex s be elements of Zq, and let both be privately held inputs. The ideal func-
tionality FSP receives both [U ] and [s] and returns the shortest path [α] and the
distances [D] to the adversary.

We now proceed to prove security for Protocol 1 (denoted as πSP) as follows:

Theorem 1. The protocol πSP securely implements FSP in the FABB framework.

Proof. The disclosed intermediate values v do not convey any information to
the adversary, as they are indexes of the permuted matrix. Furthermore, the
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protocol flow only depends on publicly available values, i.e. the upper bound
on the number of vertices and the v values. Hence, integrity is guaranteed by
the underlying MPC protocol. The simulation of the complete protocol can be
achieved by calling the simulators available for the atomic operations in the order
fixed by the protocol flow. Since the real and ideal views for the atomic operations
are themselves equal (as they are implemented by the FABB), VIEWπSP

(Pi) ≡
VIEWFSP

(Pi), ∀ Pi ∈ P where P is the set of all parties.

3 Privacy-Preserving Combinatorial Auctions

Combinatorial auctions are a common mechanism for exchanging different sub-
sets of items. We explore how to use our protocol in this setting. More specifically,
how to find the maximal path for a topology restricted combinatorial auction
represented as a graph [2], without the need for a central auctioneer. A simi-
lar case was studied by Nojoumian and Stinson [21], using MPC and dynamic
programming. However, unlike theirs, our auction scheme offers perfect security
with no information leakeage for both the active and passive scenario.

3.1 Auction Mechanism

We formulate the problem as a directed graph, where suitable bids are repre-
sented as edges and the vertices are combinations of items. The possible combina-
tions are pre-agreed by the sellers and are not required to be exhaustive. Buyers
can submit bids for any of the pre-agreed combinations of items.Participants,
inputs and outputs can be described as follows:

Buyers/Bidders: Set of parties interested in placing bids for one or several
combinations of items. The set of all buyers is denoted by B.

Sellers: Set of parties interested in selling one or more items in various pre-
agreed combinations. The set of all sellers is denoted by A, where Ai is the
i-th seller.

Auctioneer (Automated): Party in charge of running the auction. The auc-
tioneer receives the bids and computes an outcome that maximizes the total
selling price whilst preserving privacy. In our setting this role is carried out
by a set of computational parties e.g. B ∪ A. These computational parties
will execute our protocol, guaranteeing privacy under the non-collusion as-
sumption, i.e. there exist at least as many honest parties as the underlying
MPC protocol requires.

Maximal Path: Chain of vertices maximizing the seller’s profit. The union of
combinations represented by these vertices must be a valid sub-set of all
items.

Combination Graph: Set of the possible item combinations pre-agreed by the
sellers, represented as a graph G = (V,E). Each vertex Vi ∀i ∈ V \{s, t}
represents a combination of items and each edge Ei signals a possible tran-
sition from one vertex (i.e. a set of items) to another. A path on the graph
represents the transition from the set of all items (the source s) to {∅} (the
sink t).
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Bids: Each bid contains a secret shared weighted matrix [U ]p, whose elements
Uij equal the bid price for each desired edge (i, j) and > in all other locations.
.

Accepted Bids: The output of the protocol is the maximal path α from s to t.
Each αi represents the i-th accepted combination of auctionable items. The
accepted bid prices, represented by the weights d of the edges in α, can be
disclosed as well.

Figure 3.1 shows an example of this kind of auction modeling for 4 items on 3
combinations.

s:{a, b, c, d} t:{∅}1:{abd} 2:{ab}

3:{acd}

{c} : 5$

{b} : 4$ {acd} : 10$

{d} : 3$ {ab} : 8$

Fig. 1. Restricted topology combinatorial auction modeled as a graph

The protocol to solve restricted topology combinatorial auctions is as follows:

Prerequisites: The sellers make the pre-agreed topology of G available to all
bidders in B. Bids are then transmitted to the computational parties in
secret shared form.

1. We extend the notation to denote the set of all bid prices (weights) for the
i-th edge of G as Ei. The computational parties calculate the maximum
bid price for each edge i by calculating max(Ei) and assign it as the secret
shared weight associated to the i-th edge. The protocol adds a label [p] to
the corresponding edge to mark the origin of the highest bid for this edge.

2. A secret shared unique weighted matrix [U ] is produced from the weights
selected in the previous step. Each position [Uij ] stores the weight and the
label [p].

3. The computational parties obtain a maximum path in G by calling the func-
tion
[P ], [D], [k] ← maxPath([U ], s, t). In this case [P ] is the set of all accepted
combinations and [D] the set of all accepted bid prices with their associated
[p] label.

4. The shares of [P ], [D] and the respective labels [p] are sent to all parties in
A and B at the same time for reconstruction.
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Note: Integrity, correctness and fairness are guaranteed by the underlying MPC
protocols used to implement this functionality. The complexity and security
of this basic construction is dominated by the function maxPath (imple-
mented by Protocol 1).

4 Computational Experiments

We conducted basic experiments using the open source MPC Framework pro-
vided by Aly [22]. This library provides C++ implementations for all basic func-
tionalities of the arithmetic black box abstraction. It uses BGW [19,23] as its
basic underlying MPC protocol and the Catrina and Hoogh inequality proto-
col [24] for comparisons. We use the simple and well known Batcher odd–even
mergesort network as a permutation function. The framework is secure only
against passive adversaries.

Our tests simulated a set of three parties with 32-bit inputs. We evaluated
two different instances of our protocol: with and without calling the permute op-
eration. Thus we were able to measure the overhead caused by the permutation,
which is the main adaptation of our protocol. We also measured the execution
time of the Dijkstra protocol introduced by [4], which already improved upon [3],
for benchmarking. We ran our tests on complete graphs of various sizes, rang-
ing from 4 to 32 vertices. We evaluated our protocols using a 2*2*10-cores Intel
Xeon E5-2687 at 3.1 GHz CPUs. The results can be seen in Figure 2.
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Our protocol was able to solve a 4-vertex instance in 0.0927 s., whereas it
required 5.8 s. for a 32-vertex instance. In contrast, the protocol introduced by
Aly and Van Vyve required 0.0950 s. and 6.7 s. respectively. We could observe
that a slight overhead caused by the permutation is present, despite of this, our
protocol out-perform the state of the art. More specifically, on the overhead, on
the 4-vertex instance, the permutation represented an increase by 0.0015s. and
an increase by 0.551s. for the 32-vertex instance. As expected, the results show
a decrease of computational cost with respect to the state of the art.
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5 Conclusions and Future Work

This paper introduces an improved mechanism to solve the SPP in a privacy
friendly manner. In this work we achieve quadratic complexity (of the amount
of work) by adapting the oblivious Dijkstra protocol proposed by Aly et al. [3,4].
We eliminate the need for expensive vertex extraction mechanisms, at the cost
of an oblivious permutation. Additionally, we demonstrate how our protocol can
be applied to (topology restricted) combinatorial auctions. Future work includes
secretly computing the consensus on the graph configuration and explore other
potential applications in financial scenarios as well as in networking and other
relevant areas of study in network flows.
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