
A Fast, Practical and Simple Shortest Path
Protocol for Multiparty Computation

Abdelrahaman Aly1,3, Sara Cleemput2,3

1 Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE.
2 Emweb bv, Herent, Belgium.

3 imec-COSIC, KU Leuven, Leuven, Belgium.

Abstract. We present a simple and fast protocol to securely solve the
(single source) Shortest Path Problem, based on Dijkstra’s algorithm
over Secure Multiparty Computation. Our protocol improves current
state of the art by Aly et al. [FC 2013 & ICISC 2014] and can offer
perfect security against both semi-honest and malicious adversaries. Fur-
thermore, it is the first data oblivious protocol to achieve quadratic com-
plexity in the number of communication rounds. Moreover, our protocol
can be easily be adapted to form a subroutine in other combinatorial
mechanisms. Our focus is usability; hence, we provide an open source
implementation and exhaustive benchmarking under different adversar-
ial settings and players setups.

Keywords: shortest path problem, combinatorial auctions, secure multi-
party computation

1 Introduction

The (Single Source) Shortest Path problem (SPP), i.e. computing the short-
est path between a source and all other vertices in a graph, is a commonly used
subroutine in commercial applications. In many settings data related to the com-
putation of the problem, such as elements of its configuration, graph topology or
associated weights, can be considered private. Real life examples include telecom-
munication networks for banking or restricted topology combinatorial auctions,
among others. In such environments, different parties could gain a competitive
advantage by obtaining privately held information. Therefore, mechanisms to
ensure secrecy, correctness and fairness are required.

In this work we introduce a Secure Multiparty Computation (MPC) based
data-oblivious protocol to securely solve the single source SPP. Just like in pre-
vious works, namely Aly et al. [1,2], we propose a data oblivious version of
Dijkstra’s algorithm, compatible with MPC. We consider all information related
to the graph (aside from the number of vertices) to be privately held. The re-
sult of our computation is the length of the path and/or the path composition;
the parties can then decide whether these are disclosed. Moreover, it can offer

2 Abdelrahaman Aly, Sara Cleemput

perfect security4 and its multiplicative complexity i.e. round complexity, is one
order of magnitude lower than the current state of the art [1,2].

1.1 Related Work

Aly et al. [1,2] have introduced several data-oblivious protocols to solve the SPP,
including adaptations of Dijkstra. However, their complexity bound on the num-
ber of sequential multiplications is cubic, whereas we only require a quadratic
number of such multiplications. Brickell and Shmatikov [3] introduced a pro-
tocol for the SPP in a two-party setting against semi-honest adversaries. In
contrast, our solution is not limited to the two-party case and also provides se-
curity against active adversaries. The Breadth-First-Search (BFS) proposed by
Blanton et al. [4] provides complexity bounds for a special case of the SPP
i.e. non-weighted graph. Conversely, we consider the general case where the
graph is weighted. Furthermore, Keller and Scholl [5] implemented Dijkstra’s
algorithm using Oblivious RAM (ORAM) based data-structures matching the
O(|V |2) complexity of the original algorithm. However, their results show that,
for certain graph sizes, the results provided by Aly et al. [1] can out-perform
their ORAM-based implementation, as ORAM’s intrinsic overhead exceeds any
asymptotic advantage.

1.2 Notation and Security

We make use of the square brackets notation for secret shared values e.g. [[x]].
Furthermore, we consider all inputs to be elements of Zq, where q is a suffi-
ciently large5 prime or RSA modulus. Complexity is measured in terms of round
complexity (multiplicative depth or latency) of the whole protocol. Vectors and
matrices are represented by capital letters e.g. E, where |E| denotes its size. Fi-
nally, some common encapsulations used throughout our protocols are denoted
as follows:

- [[z]] ←[[c]] [[x]] : [[y]] is the conditional operator. It can be seen as an arithmetic
replacement for the if branching instruction. Here, [[c]] represents a selection
bit and [[z]] takes the value of [[x]] if [[c]] == 1 and [[y]] otherwise. This simple
construction requires only one communication round i.e. [[c]]·([[x]]−[[y]])+[[y]].

- exchange(i, j, [[X]]) swaps the elements in the i-th and j-th position of vector
X. This operation is not cryptographic in nature.

Security of MPC protocols is typically defined in the context of an ideal func-
tionality under the UC framework [6,7]. To simplify analysis, we abstract the
required MPC ideal functionality as an arithmetic black box or FABB . Ini-
tially introduced Damg̊ard and Nielsen [8], it can be extended to support ideally

4 From an Ideal perspective, and under the adequate setting i.e. honest majority. In
practice, the protocol is as secure as the underlying MPC realization

5 It can instantiate the underlying MPC protocol

Secure Shortest Path Problem 3

modeled functionality e.g. secure comparisons. We offer a revision of our FABB ,
including corresponding UC secure realizations of all functionality in table 1. We
proceed to define security as follows:

Functionality Description Rounds Prot.
x← [[x]] Opening secret field element 1 e.g. [9,10]
[[x]]← x Storing public input in a secret field ele-

ment
1 e.g. [9,10]

[[z]]← [[x]] + [[y]] Addition: of secret inputs 0 e.g. [9,10]
[[z]]← [[x]] + y Addition: (mixed) secret and public in-

puts
0 e.g. [9,10]

[[z]]← [[x]] · [[y]] Multiplication: of secret inputs 1 e.g. [9,10]
[[z]]← [[x]] · y Multiplication: (mixed) secret and public

inputs
0 e.g. [9,10]

—Complex Building Blocks—

[[z]]← [[x]]
?
< y[[y]] Inequality Test: secret inputs 4-6 e.g. [11,12]

[[E]]← permute([[E]]) returns a secret shared random permuta-
tion of [[E]].

approx n · log(n) e.g. [13,14,15]

Table 1. Secure Arithmetic operations provided by the FABB .

Definition 1. Let π be a real protocol implemented in a multiparty setting. We
say π is UC-secure if, for any adversary A , there exists a simulator S such that
the VIEWπ(Pi) of any party Pi and any environment Z , cannot be distinguished
(with non-negligible probability) from its view on the ideal functionality F .

2 Privacy Preserving Single Source SPP

Let G = (V,E) be a directed graph without negative cycles where V is the set of
vertices and E is the set of edges. Furthermore, G is represented as a weighted
adjacency matrix [[U]] where [[U]]ij is the weight of edge (i, j) ∀(i, j) ∈ E. The
intuition underlying our protocol is as follows: [[U]] is obliviously permuted before
protocol execution. We then assign temporary labels to each vertex in G (i.e.
each row in [[U]]). Our protocol then proceeds to identify the most suitable vertex
to explore. However, unlike other works in the field, given the permutation, we
are able to open the vertex temporary label and directly explore it. Note that
the label itself does not convey any information other than the position of the
next row in the now permuted matrix [[U]] to be analyzed.

Complexity: Our protocol requires O(|V |2 · log(|V |)) secure multiplications
(amount of work). Such multiplications can be parallelized achieving O(|V |2)
rounds of communication. Furthermore, Protocol 1 contains two additional mul-
tiplications in line 17 and 18, which can also be parallelized. The exchange

operation does not influence the complexity of the protocol, as it is done over
publicly available information.

4 Abdelrahaman Aly, Sara Cleemput

Protocol 1: Optimized Non-Disclosure Dijkstra Protocol (πSP)

Input: secret shared edge weights [U]i,j for i, j ∈ {1, ..., |V |}, encoding vector
[S] where Si = 0 if i ̸= s (s being the source vertex) and 1 otherwise.

Output: The vector of predecessors α and the vector of distances [D].
1 for i← 1 to |V | do
2 [[α]]i ← i; [[D]]i ←[[Si]] [[0]] : [[⊤]]; [[P]]i ← [[i]];
3 end
4 ([[P]], [[D]], [[U]])← permute([[P]], [[D]], [[U]]);
5 for i← 1 to |V | do
6 [[d′]]← [[⊤]];
7 for j ← |V | to i do

8 [[c]]← [[D]]j
?
< [[d′]];

9 [[v]]←[[c]] j : [[v]];
10 [[d′]]←[[c]] [[D]]j : [[d′]];

11 end
12 v ← open([[v]]);
13 exchange(i, v, [[P]], [[D]], [[U]]);
14 for j ← i+ 1 to |V | do
15 [[a]]← [[D]]i + [[U]]i,j ;

16 [[c]]← [[a]]
?
< [[D]]j ;

17 [[D]]j ←[[c]] [[a]] : [[D]]j ;
18 [[α]]j ←[[c]] [[P]]i : [[α]]j ;

19 end

20 end

Security Analysis: Our protocol does not disclose any private information
during its execution. More precisely, the call to open([v]) (in line 12 of Protocol 1)
does not reveal the original index position of the analyzed vertex, since the
vertices are uniformly (and obliviously) permuted. The Achievable Security of
our protocol is the same as that of the underlying MPC protocol e.g. we can
achieve perfect security assuming honest majorities for the active and passive
case [16]; or cryptographic security assuming dishonest majorities for the active
and passive case as in(but not limited to) [17] or any SPDZ variation. More
formally, we proceed to define our ideal functionality as follows:

Definition 2 (Ideal Functionality FSP). Let G = (V,E) be a connected di-
rected graph. Let the elements of the weighted adjacent matrix U and the source
vertex s be elements of Zq, and let both be privately held inputs. The ideal func-
tionality FSP receives both [[U]] and [[s]] and returns the shortest path [[α]] and
the distances [[D]] to the adversary.

We now proceed to prove security for Protocol 1 (denoted as πSP) as follows:

Theorem 1. The protocol πSP securely implements FSP in the FABB framework.

Proof. The disclosed intermediate values v do not convey any information to
the adversary as they are indexes of the permuted matrix. Furthermore, the

Secure Shortest Path Problem 5

protocol flow only depends on publicly available values i.e. the upper bound
on the number of vertices and the v values. Hence, integrity is guaranteed by
the underlying MPC protocol. The simulation of the complete protocol can be
achieved by calling the FABB functionality available for the atomic operations
in the order fixed by the protocol flow. Since the real and ideal views for the
atomic operations are themselves equal (as they are implemented by the FABB),
VIEWπSP

(Pi) ≡ VIEWFSP
(Pi), ∀ Pi ∈ P where P is the set of all parties.

3 Computational Experiments

We built our prototype and conducted extensive experiments via the commonly
used framework SCALE-MAMBA [18]. This circuit compiler and virtual execu-
tion environment, provides users with the means to run different adversarial
settings and protocols. For the case at hand, we consider the reduced commu-
nication protocol based on Shamir by Smart and Wood [9] (honest majorities)
and, Overdrive [10] with TopGear [17], members of the SPDZ protocol family
(Full Threshold). Both provide active security. Additionally, we assume a lookup
table style permutation [15,19] (amortized). We have made our prototype fully
available as opensource6 so that it can be further used as subroutine in other
programs.

Test bed Configuraiton: Our setup consists on 5 Ubuntu 18 servers on premise.
Each one has been allocated with 512GB in RAM memory and a Intel(R)

Xeon(R) Silver 4208 @ 2.10GH CPU. Servers are connected using Gigabit
LAN connections, with a ping time of 0.15 ms in average. This way, we can
can control network latency via /sbin/tc.

Table 2. Performance evaluation (ms) with 2/3 machines (FT / Shamir)

Vertices Protocol
D=0ms D=10ms D=20ms

FT-2P FT-3P Shamir-3P FT-2P FT-3P Shamir-3P FT-2P FT-3P Shamir-3P

4 this work 19 43 18 895 909 895 1739 1744 1738

4 [2] 96 75 67 1403 1434 1402 2651 2679 2658

8 this work 72 155 88 3214 3258 3197 6183 6212 6164

8 [2] 389 579 299 4691 4869 4583 8756 8921 8798

12 this work 186 410 204 6915 7029 6884 13255 13399 13275

12 [2] 911 1303 698 9899 10288 9627 18530 19004 18403

16 this work 375 847 364 12237 12430 11956 23334 23623 23072

16 [2] 1280 1881 986 13827 14385 13429 28858 19004 25698

32 this work 458 1031 457 15247 15491 14950 29093 29450 28840

32 [2] 1688 2495 1301 18075 18812 17541 33798 26526 33571

6 https://github.com/Crypto-TII/mpc_graph_theory_lib

https://github.com/Crypto-TII/mpc_graph_theory_lib

6 Abdelrahaman Aly, Sara Cleemput

As we can see, communications dominate complexity, hence the importance
of reducing communication rounds. On benchmarking, we can appreciate how
the delta, with the previous state of the art, becomes more significant when
the number of vertices increases following the asymptotic complexity. We point
out that further experimentation showed a similar decrease of computational cost
when the graph structure is public. Note that modern compilers also use a variety
of instruction optimizers to accelerate online performance e.g. parallelize non-
linearities that are non-sequential. Its use however becomes prohibitive for large
scale circuits. In such cases, our experimentation also shows a similar increase
on performance.

References

1. Aly, A., Cuvelier, E., Mawet, S., Pereira, O., Van Vyve, M.: Securely solving simple
combinatorial graph problems. In: Financial Cryptography. (2013) 239–257

2. Aly, A., Van Vyve, M.: Securely solving classical network flow problems. In Lee,
J., Kim, J., eds.: Information Security and Cryptology - ICISC 2014. Volume 8949
of Lecture Notes in Computer Science., Springer International Publishing (2015)
205–221

3. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: ACM CCS. CCS ’07, ACM (2007) 498–507

4. Blanton, M., Steele, A., Alisagari, M.: Data-oblivious graph algorithms for secure
computation and outsourcing. In: Proceedings of the 8th ACM SIGSAC Sym-
posium on Information, Computer and Communications Security. ASIA CCS ’13,
New York, NY, USA 207–218

5. Keller, M., Scholl, P.: Efficient, oblivious data structures for mpc. In Sarkar, P.,
Iwata, T., eds.: Advances in Cryptology – ASIACRYPT 2014, Berlin, Heidelberg,
Springer Berlin Heidelberg (2014) 506–525

6. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13(1) (2000) 143–202

7. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS ’01. (2001) 136–145

8. Damg̊ard, I., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In Boneh, D., ed.: CRYPTO 2003.
Volume 2729 of LNCS., Springer, Heidelberg (August 2003) 247–264

9. Smart, N.P., Wood, T.: Error detection in monotone span programs with appli-
cation to communication-efficient multi-party computation. In Matsui, M., ed.:
CT-RSA 2019. Volume 11405 of LNCS., Springer, Heidelberg (March 2019) 210–
229

10. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making SPDZ great again. In
Nielsen, J.B., Rijmen, V., eds.: EUROCRYPT 2018, Part III. Volume 10822 of
LNCS., Springer, Heidelberg (April / May 2018) 158–189

11. Aly, A., Nawaz, K., Salazar, E., Sucasas, V.: Through the looking-glass: Bench-
marking secure multi-party computation comparisons for relu’s. Cryptology ePrint
Archive, Paper 2022/202 (2022) https://eprint.iacr.org/2022/202.

12. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer com-
putation. In Garay, J.A., Prisco, R.D., eds.: SCN 10. Volume 6280 of LNCS.,
Springer, Heidelberg (September 2010) 182–199

https://eprint.iacr.org/2022/202

Secure Shortest Path Problem 7

13. Czumaj, A., Kanarek, P., Kutylowski, M., Lorys, K.: Delayed path coupling and
generating random permutations via distributed stochastic processes. SODA ’99,
Philadelphia, PA, USA, Society for Industrial and Applied Mathematics 271–280

14. Smart, N.P., Talibi Alaoui, Y.: Distributing any elliptic curve based protocol.
In Albrecht, M., ed.: 17th IMA International Conference on Cryptography and
Coding. Volume 11929 of LNCS., Springer, Heidelberg (December 2019) 342–366

15. Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez, E., Vivek, S.: Faster
secure multi-party computation of AES and DES using lookup tables. In Gollmann,
D., Miyaji, A., Kikuchi, H., eds.: ACNS 17. Volume 10355 of LNCS., Springer,
Heidelberg (July 2017) 229–249

16. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC, ACM (1988) 1–10

17. Baum, C., Cozzo, D., Smart, N.P.: Using TopGear in overdrive: A more efficient
ZKPoK for SPDZ. In Paterson, K.G., Stebila, D., eds.: SAC 2019. Volume 11959
of LNCS., Springer, Heidelberg (August 2019) 274–302

18. Aly, A., Cong, K., Keller, M., Orsini, E., Rotaru, D., Scherer, O., Scholl, P., Smart,
N.P., Tanguy, T., Wood, T.: SCALE and MAMBA v1.14: Documentation (2021)
https://homes.esat.kuleuven.be/~nsmart/SCALE/.

19. Dhooghe, S.: Applying multiparty computation to car access provision. URL:
https://www. esat. kuleuven. be/cosic/publications/thesis-296. pdf, last checked
on (2018) 08–4

https://homes.esat.kuleuven.be/~nsmart/SCALE/

	A Fast, Practical and Simple Shortest Path Protocol for Multiparty Computation

