
Multi-Input Functional Encryption for Inner Products:
Function-Hiding Realizations and Constructions without Pairings

Michel Abdalla1, Dario Catalano2, Dario Fiore3, Romain Gay1, and Bogdan Ursu4

1 Département informatique de l’ENS, École normale supérieure, CNRS, PSL Research University, 75005 Paris,
France, and INRIA

{michel.abdalla,romain.gay}@ens.fr
2 Dipartimento di Matematica e Informatica, Università di Catania, Italy.

catalano@dmi.unict.it
3 IMDEA Software Institute, Madrid, Spain.

dario.fiore@imdea.org
4 KIT, Karlsruhe, Germany.

bogdanbear@live.com

Abstract. We present new constructions of multi-input functional encryption (MIFE) schemes for
the inner-product functionality that improve the state of the art solution of Abdalla et al. (Eurocrypt
2017) in two main directions.
First, we put forward a novel methodology to convert single-input functional encryption for inner
products into multi-input schemes for the same functionality. Our transformation is surprisingly simple,
general, and efficient. In particular, it does not require pairings and it can be instantiated with all known
single-input schemes. This leads to two main advances. First, we enlarge the set of assumptions this
primitive can be based on, notably obtaining new MIFEs for inner products from plain DDH, LWE and
Composite Residuosity. Second, we obtain the first MIFE schemes from standard assumptions where
decryption works efficiently even for messages of super-polynomial size.
Our second main contribution is the first function-hiding MIFE scheme for inner products based on
standard assumptions. To this end, we show how to extend the original, pairing-based, MIFE by Abdalla
et al. in order to make it function hiding, thus obtaining a function-hiding MIFE from the MDDH
assumption.

1 Introduction . 1
1.1 Our Contributions . 2

2 Preliminaries . 4
3 From Single to Multi-Input FE for Inner Product . 11

3.1 Our Transformation for Inner Product over ZL . 11
3.2 Our Transformation for Inner Product over Z . 12

4 Concrete instances of FE for Inner Product . 18
4.1 Inner Product FE from MDDH . 18
4.2 Inner Product FE from LWE . 19
4.3 Inner Product FE from Paillier . 20

5 Function-Hiding Multi-Input FE for Inner Product . 21
Acknowledgments . 34
A One-AD-SIM security of the MIFE . 36
B From Weak to Full Function-Hiding . 38
C Appendix - Adaptive (Non-Function-Hiding) Multi-Input Scheme . 39

mailto:michel.abdalla@ens.fr,romain.gay@ens.fr
mailto:catalano@dmi.unict.it
mailto:dario.fiore@imdea.org
mailto:bogdanbear@live.com

1 Introduction
Functional Encryption (FE) [15,8] is an emerging cryptographic paradigm that allows fine-grained
access control over encrypted data. Functional encryption schemes come equipped with a key gen-
eration mechanism that allows the owner of a master secret key to generate decryption keys that
have a somehow restricted capability. Namely, each decryption key skf is associated with a function
f and using skf to decrypt a ciphertext Enc(x) allows for recovering f(x), with the guarantee that
no more information about x is revealed. The basic notion of functional encryption considers func-
tionalities where all the inputs are provided and encrypted by a single party. The more general case
of multi-input functionalities is captured by the notion of multi-input functional encryption (MIFE,
for short) [11]. Informally, this notion can be thought of as an FE scheme where n encryption slots
are explicitly given, in the sense that a user who is assigned the i-th slot can, independently, create
a ciphertext Enc(xi) from his own plaintext xi. Given ciphertexts Enc(x1), . . . ,Enc(xn), one can
use a secret key skf to retrieve f(x1, . . . , xn), similarly to the basic FE notion. This multi-input
capability makes MIFE particularly well suited for many real life scenarios (such as data mining
over encrypted data or multi-client delegation of computation) where the (encrypted) data may
come from different and unrelated sources.

The security requirement for both FE and MIFE imposes that decryption keys should be collu-
sion resistant. This means that a group of users, holding different decryption keys, should not be able
to gain information about the encrypted messages, beyond the union of what they can individually
learn. More precisely, the standard notion of security for functional encryption is indistinguishabil-
ity. Informally, this states that an adversary that obtains the secret keys corresponding to functions
f1, . . . , fn should not be able to decide which of the challenge messages x0, x1 was encrypted, as
long as fi(x0) = fi(x1) for all i. This indistinguishability notion has been put forward in [8,14]
and it has been shown inadequate for certain cases (see [8,14] for details). They also proposed an
alternative simulation-based security notion which is also problematic as, for instance, it cannot be
satisfied in general.

As an additional security property, functional encryption schemes might also be required to
guarantee so-called function hiding. Intuitively, this means that a secret key skf should not reveal
information about the function f it encodes, beyond what is implicitly leaked by f(x). Slightly
more in detail, in the indistinguishability setting, this is formalized by imposing that the adversary

should not be able to decide for which of the challenge functions f
(0)
i , f

(1)
i it is holding secret keys,

as long as as f
(0)
i (x0) = f

(1)
i (x1) for all i.

Over the last few years functional encryption has attracted a lot of interest both in its basic
and in its multi-input incarnations. Known results can be broadly categorized as focusing on (1)
feasibility results for general functionalities, and on (2) concrete, efficient, realizations for restricted
functionalities of practical interest.

For the specific case of MIFE, which is the focus of this paper, constructions of the first type
[11,7,6,9] all rely on quite unstable assumptions such as indistinguishability obfuscation or mul-
tilinear maps5. The only known construction of the second category has been recently proposed
by Abdalla et al. in [3]. There, they propose a (secret-key) MIFE scheme for the inner product
functionality that relies on the standard k-linear assumption in (prime-order) bilinear groups6. Re-

5Here we only consider schemes where unbounded collusions are allowed. See [9] and references therein for the
bounded collusions case.

6As discussed in detail in [3], we stress that in the public key setting MIFE for inner products is both easy to
achieve (from its single-input counterpart) and of very limited interest, because of its inherent leakage.

1

markably, their scheme allows for unbounded collusions and supports any (polynomially bounded)
number of encryption slots. On the negative side, as in previous discrete-log-based constructions of
functional inner-product encryption schemes, it employs an inefficient decryption procedure that
requires to extract discrete logarithms and thus imposes serious restrictions on the size of supported
messages. Moreover, the scheme is not function hiding as decryption requires the function f to be
provided explicitly in the clear.

1.1 Our Contributions

In this paper we propose new constructions of multi-input functional encryption schemes for the
inner product functionality that address the aforementioned shortcomings of the state-of-the-art
solution of Abdalla et al. [3].

MIFE for inner products without pairings. Our first contribution consists of (secret-key)
MIFE schemes for inner products based on a variety of assumptions, notably without the need
of bilinear maps, and where decryption works efficiently, even for messages of super-polynomial
size. We achieve this result by proposing a generic construction of MIFE from any single-input FE
(for inner products) in which the encryption algorithm is public key and linearly-homomorphic.
Our transformation is surprisingly simple, general and efficient. In particular, it does not require
pairings (as in the case of [3]), and it can be instantiated with all known single-input functional
encryption schemes (e.g., [1,2,5]). This allows us to obtain new MIFE for inner products from
plain DDH, composite residuosity, and LWE. Beyond the obvious advantage of enlarging the set
of assumptions on which MIFE can be based, this result yields schemes that can be used with a
much larger message space. Indeed, dropping the bilinear groups requirement allows us to employ
schemes where the decryption time is polynomial, rather than exponential, in the message bit
size. From a more theoretical perspective, our results also show that, contrary to what previously
conjectured [3], MIFE for inner product does not need any (qualitatively) stronger assumption than
their single-input counterpart.

Our solution, in more detail. To better describe our solution, let us first explain the basic ideas
behind Abdalla et al.’s scheme [3]. Informally, the latter builds upon a clever two-step decryption
blueprint. The ciphertexts ct1 = Enc(x1), . . . , ctn = Enc(xn) (corresponding to slots 1, . . . , n) are
all created using different instances of a single-input FE. Decryption is performed in two stages.
One first decrypts each single cti separately using the secret key skyi of the underlying single-input
FE, and then the outputs of these decryptions are added up to get the final result.

The main technical challenge of this approach is that the stage one of the above decryption
algorithm leaks information on each partial inner product 〈xi,yi〉. To avoid this leakage, their idea
is to let source i encrypt its plaintext vector xi augmented with some fixed (random) value ui, which
is part of the secret key. Moreover, skyi are built by running the single-input FE key generation
algorithm on input yi||r, i.e., the vector yi augmented with fresh randomness r.

By these modifications, and skipping many technical details, stage-one decryption then consists
of using pairings to compute, in GT , the values7 [〈xi,yi〉 + uir]T for every slot i. From these
quantities, the result [〈x,y〉]T is obtained as

n∏
i=1

[〈xi,yi〉+ uir]T · [−(
n∑
i=1

ui)r]T

7Here we implicitly adopt the, by now standard, bracket notation from [10].

2

which can be easily computed if [−(
∑n

i=1 ui)r]T is included in the secret key.
Intuitively, the scheme is secure as the quantities [uir]T are all indistinguishable from random

(under the DDH assumption) and thus hide all the partial information [〈xi,yi〉+ uir]T may leak.
Notice that, in order for this argument to go through, it is crucial that the quantities [〈xi,yi〉+uir]T
are all encoded in the exponent, and thus decoding is possible only for small norm exponents.
Furthermore, this technique seems to inherently require pairings, as both ui and r have to remain
hidden while allowing to compute an encoding of their product at decryption time. This is why the
possibility of a scheme without pairings was considered as “quite surprising” in [3].

We overcome these difficulties via a new FE to MIFE transform. Our transformation follows a
similar decryption blueprint but manages to avoid leakage in a much simpler and efficient way. To
better explain our methods, let us first consider a simplified scheme where one single ciphertext
query is allowed and messages live in the ring ZL, for some integer L. In this setting, let us consider
the following multi-input scheme. For each slot i the (master) secret key for slot i consists of one
random vector ui ∈ ZmL . Encrypting xi merely consists in computing ci = xi+ui mod L. The secret
key for function y = (y1, . . . , yn), is just zy =

∑n
i=1〈ui,yi〉 mod L. To decrypt, one computes

〈x,y〉 mod L = 〈(c1, . . . , cn),y〉 − zy mod L

Security comes from the fact that, if only one single ciphertext query is allowed, the above can be
seen as the functional encryption equivalent of the one time pad8.

To guarantee security in the more challenging setting where many ciphertext queries are allowed,
we just add a layer of (functional) encryption on top of the above one-time encryption. Specifically,
we encrypt each ci using a public-key FE (supporting inner products) that is both linearly homo-
morphic and whose message space is compatible with L. So, given ciphertexts {cti = Enc(ci)} and
secret key sky = ({skyi}i, zy), one can first obtain {〈ci,yi〉 = Dec(cti, skyi)}, and then extract the
result as 〈x,y〉 =

∑n
i=1〈ci,yi〉 − 〈u,y〉.

Our transformation actually comes in two flavors: the first one addresses the case where the
underlying FE computes inner products over some finite ring ZL; the second one instead considers
FE schemes that compute bounded-norm inner products over the integers. In both cases the trans-
formations are generic enough to be instantiated with virtually all known single-input FE schemes
for inner products. This gives us new MIFE relying on plain DDH [1], LWE [5] and Composite
residuosity [5,2]. Moreover, the proposed transform is security-preserving in the sense that, if the
underlying FE achieves adaptive security, so does our resulting MIFE.

Function-Hiding MIFE for inner products. Our second contribution are new MIFE schemes
for inner products that achieve function hiding. Our constructions build on the pairings-based
solution from [3] and, as such, they also rely on pairings. More precisely, we propose transformations
that, starting from the MIFE from [3], build function hiding MIFEs using single input FE for inner
products as additional building block. With respect to this latter component our transforms are
generic, in the sense that they can be instantiated using any single input FE satisfying some natural
additional requirement.

Our methods build from the two-layer encryption technique recently developed by Lin [12] to
generically achieve function hiding in the context of (single input) FE for inner products. Intuitively,
Lin’s idea consists in doing similar operations both at encryption and at key derivation time.

8We remark that a similar information theoretic construction was put forward by Wee in [16] as a warm-up
scheme towards a FE for inner products achieving simulation security

3

Starting from two independent instances of the underlying FE, an “inner” one and an “outer”
one, the idea is to encrypt the plaintext x in two steps. One first uses the “inner” FE to compute
ct1 = Enc(msk1,x) and then “extracts” the key corresponding to ct1, i.e., ct2 = KeyGen(msk2, ct1).
Key derivation is done similarly, one first computes sk1 = KeyGen(msk1,y) and then encrypts sk1
using the outer scheme, i.e., sk2 = Enc(msk2, sk1).

If one encodes ciphertexts in G1 and secret keys in G2, then one can use pairings to compute
an encoding, in GT , of [〈ct2, sk2〉]T . Since decryption essentially performs inner product, the latter
computation actually decrypts also the inner ct1 component using secret key sk1, thus yielding
an encoding of 〈x,y〉. Moreover, since now y is encrypted, the FE security also provides function
hiding9.

An obvious drawback of Lin’s transformation is that, when applied generically, it would induce
an extra-level of multilinearity in the process. This means that, starting from a pairings-free FE
for inner products, one ends up with a scheme that is function hiding but also pairings-based.

We propose similar two-layer encryption techniques that do not, inherently, induce extra levels
of multi-linearity with respect to those of the underlying primitives. Our transforms achieve this
by using the MIFE from [3] as inner scheme and, several instances of, a single input FE, one for
each encryption slot, as outer schemes. In particular, by carefully exploiting the specific algebraic
properties of the MIFE, we manage to achieve function hiding from the Matrix Decisional Diffie
Hellman assumption over standard bilinear groups (i.e., without resorting to multi-linear maps).
Specifically, our schemes come in two flavors: a simpler one for selective security and a more convo-
luted one achieving adaptive security. An high level overview of our technique appears in Section 5.
Compared to the MIFE schemes from [12] that are selective-secure from multilinear maps, ours
support a polynomial number of inputs and achieve adaptive-security, while being based only on
standard assumptions.

Generality of our approach. As mentioned above, our function-hiding transforms are not
entirely generic as they impose restrictions on the underlying MIFE. These restrictions, while
compatible with the pairings based realization from [3], do not cope well with our newly constructed
MIFEs without pairings. Very informally, this is due to the fact that our transform relies on the two-
steps decryption blueprint in which one learns [〈xi,yi〉+zi], and each zi is “sufficiently” random to
guarantee security in the MIFE security experiment. Specifically, in Abdalla et al.’s scheme zi = uir
whereas in our new scheme zi = 〈ui,yi〉. While the latter value is sufficiently random in the MIFE
indistinguishability experiment, this is no longer the case in the function-hiding experiment, where
the adversary asks for pairs of keys (y0,y1), and zi = 〈ui,yβi 〉 may actually leak information about
which of the two keys was chosen. With a different interpretation, if one sees [〈xi,yi〉+zi] as a secret
sharing of 〈x,y〉, then in our new scheme this secret sharing depends on the function y whereas in
[3] this is function independent and more suitable for function-hiding. We believe that coming up
with more powerful transforms, capable of exploiting the potential of our efficient MIFEs, is a very
natural and interesting open problem.

2 Preliminaries

Notation. We denote with λ ∈ N a security parameter. A probabilistic polynomial time (PPT)
algorithm A is a randomized algorithm for which there exists a polynomial p(·) such that for every
input x the running time of A(x) is bounded by p(|x|). We say that a function ε : N → R+

9Actually the transform sketched here only manages to guarantee, only a weaker form of function hiding. However
this can generically be turned into standard function hiding [13].

4

is negligible if for every positive polynomial p(λ) there exists λ0 ∈ N such that for all λ > λ0:
ε(λ) < 1/p(λ). If S is a set, x ←r S denotes the process of selecting x uniformly at random in S.
If A is a probabilistic algorithm, y ←r A(·) denotes the process of running A on some appropriate
input and assigning its output to y. For a positive integer n, we denote by [n] the set {1, . . . , n}.
We denote vectors x = (xi) and matrices A = (ai,j) in bold. For a set S (resp. vector x) |S| (resp.
|x|) denotes its cardinality (resp. number of entries). Also, given two vectors x and x′ we denote
by x‖x′ their concatenation. By ≡, we denote the equality of statistical distributions, and for any
ε > 0, we denote by ≈ε the ε-statistical difference of two distributions.

2.1 Definitions for Multi-Input Functional Encryption

In this section we recall the definitions of multi-input functional encryption [11] specialized to the
private-key setting, as this is the one relevant for our constructions.

Definition 1 (Multi-input Function Encryption). Let F = {Fn}n∈N be an ensemble where
each Fn is a family of n-ary functions. A function f ∈ Fn is defined as follows f : X1×. . .×Xn → Y.
A multi-input functional encryption scheme MIFE for F consists of the following algorithms:

– Setup(1λ,Fn) takes as input the security parameter λ and a description of Fn ∈ F , and outputs
a master public key mpk10 and a master secret key msk. The master public key mpk is assumed
to be part of the input of all the remaining algorithms.

– Enc(msk, i, xi) takes as input the master secret key msk, an index i ∈ [n], and a message xi ∈ Xi,
and it outputs a ciphertext ct. Each ciphertext is assumed to be associated with an index i
denoting for which slot this ciphertext can be used for. When n = 1, the input i is omitted.

– KeyGen(msk, f) takes as input the master secret key msk and a function f ∈ Fn, and it outputs
a decryption key skf .

– Dec(skf , ct1, . . . , ctn) takes as input a decryption key skf for function f and n ciphertexts, and
it outputs a value y ∈ Y.

A scheme MIFE as defined above is correct if for all n ∈ N, f ∈ Fn and all xi ∈ Xi for
1 ≤ i ≤ n, we have

Pr

[
(mpk,msk)← Setup(1λ,Fn); skf ← KeyGen(msk, f);

Dec(skf ,Enc(msk, 1, x1), . . . ,Enc(msk, n, xn)) = f(x1, . . . , xn)

]
= 1,

where the probability is taken over the coins of Setup, KeyGen and Enc.

Security notions. Here we recall the definitions of security for multi-input functional encryption.
We give both simulation- and indistinguishability-based security definitions. Specifically, following
[4], we consider several security notions denoted xx-yy-zzz, where: xx ∈ {one,many} denotes the
number of challenge ciphertexts that can be requested by the adversary; yy ∈ {SEL,AD} denotes
if encryption queries are made in a selective or adaptive manner; zzz ∈ {SIM, IND} refers to
simulation- or indistinguishability-based security model.

Definition 2 (one-SEL-SIM-secure FE). A multi-input functional encryptionMIFE for func-

tion Fn is one-SEL-SIM-secure if there exist PPT simulator algorithms11 (S̃etup, Ẽnc, K̃eyGen) such
that for every PPT (stateful) adversary A and every λ ∈ N, the following two distributions are com-
putationally indistinguishable:

10In the private key setting, we think of mpk as some public parameters common to all algorithms.
11That is, S̃etup, Ẽnc, K̃eyGen correspond respectively to the simulated Setup,Enc,KeyGen.

5

Experiment REALMIFESEL (1λ,A):

{xi}i∈[n] ← A(1λ,Fn)

(mpk,msk)← Setup(1λ,Fn)
For all i ∈ [n], cti ← Enc(msk, i, xi)
α← AKeyGen(msk,·)(mpk, {cti}i∈[n])
Output: α

Experiment IDEALMIFESEL (1λ,A):

{xi}i∈[n] ← A(1λ,Fn)

(m̃pk, m̃sk)← S̃etup(1λ,Fn)

For all i ∈ [n], cti ← Ẽnc(m̃sk, i)

α← AO(·)(m̃pk, {cti}i∈[n])
Output: α

The oracle O(·) in the ideal experiment above is given access to another oracle that, given f ∈ Fn,

returns f(x1, . . . , xn), and then O(·) returns K̃eyGen(m̃sk, f, f(x1, . . . , xn)).
For every stateful adversary A, we define its advantage as

Advone-SEL-SIM
MIFE,A (λ)

=
∣∣∣Pr
[
REALMIFESEL (1λ,A) = 1

]
− Pr

[
IDEALMIFESEL (1λ,A) = 1

]∣∣∣ ,
and we require that for every PPT A, there exists a negligible function negl such that for all

λ ∈ N, Advone-SEL-SIM
FE,A (λ) = negl(λ).

In what follows we give the definition of indistinguishability-based security.

Definition 3 (xx-AD-IND-secure MIFE). For every multi-input functional encryptionMIFE
for F , every stateful adversary A, every security parameter λ ∈ N, and every xx ∈ {one,many}, we
define the following experiments for β ∈ {0, 1}:

Experiment xx-AD-INDMIFEβ (1λ,A):

(mpk,msk)← Setup(1λ,Fn)
α← AKeyGen(msk,·),Enc(·,·,·) (mpk)
Output: α

where Enc is an oracle that on input (i, x0i , x
1
i) outputs Enc(msk, i, xβi). Also, A is restricted to

only make queries f to KeyGen(msk, ·) satisfying

f(xj1,01 , . . . , xjn,0n) = f(xj1,11 , . . . , xjn,1n)

for all j1, . . . , jn ∈ [Q1] × · · · × [Qn], where for all i ∈ [n], Qi denotes the number of encryption
queries for input slot i. We denote by Qf the number of key queries. Note that w.l.o.g. (as shown
in [3, Lemma 3]), we can assume that for all i ∈ [n], Qi > 0. When xx = one, we also require that
A queries Enc(i, ·, ·) once per slot, namely that Qi = 1, for all i ∈ [n].

For every A, we define its advantage as:

Advxx-AD-IND
MIFE (λ,A) =∣∣Pr
[
xx-AD-INDMIFE0 (1λ,A) = 1

]
− Pr

[
xx-AD-INDMIFE1 (1λ,A) = 1

]∣∣
A private key multi-input functional encryption MIFE for F is xx-AD-IND-secure if for every

PPT adversary A, there exists a negligible function negl such that for every λ ∈ N,

6

Advxx-AD-IND
MIFE (λ,A) = negl(λ).

Remark 1 (winning condition). The winning condition may not always efficiently checkable because
of the combinatorial explosion in the restrictions on the queries.

Definition 4 (xx-SEL-IND-secure MIFE). For every multi-input functional encryptionMIFE
for F , every stateful adversary A, every security parameter λ ∈ N, and every xx ∈ {one,many}, we
define the following experiments for β ∈ {0, 1}:

Experiment xx-SEL-INDMIFEβ (1λ,A):

{xj,bi }i∈[n],j∈[Qi],b∈{0,1} ← A(1λ,Fn)

(mpk,msk)← Setup(1λ,Fn)

ctji := Enc(msk, xj,βi)

α← AKeyGen(msk,·)
(
mpk, {ctji}i∈[n],j∈[Qi]

)
Output: α

where A is restricted to only make queries f to KeyGen(msk, ·) satisfying

f(xj1,01 , . . . , xjn,0n) = f(xj1,11 , . . . , xjn,1n)

for all j1, . . . , jn ∈ [Q1]× · · · × [Qn]. When xx = one, we also require that Qi = 1, for all i ∈ [n].

For every A, we define its advantage as

Advxx-SEL-IND
MIFE,A (λ) =∣∣Pr

[
xx-SEL-INDMIFE0 (1λ,A) = 1

]
− Pr

[
xx-SEL-INDMIFE1 (1λ,A) = 1

]∣∣.
A private key multi-input functional encryptionMIFE for F is xx-SEL-IND-secure if for every

PPT adversary A, there exists a negligible function negl such that for all λ ∈ N,

Advxx-SEL-IND
MIFE (λ,A) = negl(λ).

2.2 Function-Hiding Multi-Input Functional Encryption

For function-hiding, we focus on indistinguishability security notions. This is because even single-
input function-hiding inner-product encryption is known to be unrealizable in a simulation sense
under standard assumptions.

Definition 5 (xx-SEL-Function-hiding MIFE). For every multi-input functional encryption
MIFE := (Setup,Enc,KeyGen,Dec) for F , every security parameter λ, every stateful adversary A,
and every xx ∈ {one,many}, the advantage of A is defined as

Advxx-SEL-FH-IND
MIFE,A (λ) =

∣∣Pr
[
xx-SEL-FH-INDMIFE0 (1λ,A) = 1

]
− Pr

[
xx-SEL-FH-INDMIFE1 (1λ,A) = 1

]∣∣
where the experiments are defined as follows:

7

Experiment xx-SEL-FH-INDMIFEβ (1λ,A):

{xj,bi }i∈[n],j∈[Qi],b∈{0,1} ← A(1λ,Fn)

{f j,b}j∈[Qf],b∈{0,1} ← A(1λ,Fn)

(mpk,msk)← Setup(1λ,Fn)

ctji ← Enc(msk, i, xj,βi) ∀i ∈ [n], j ∈ [Qi]
skj ← KeyGen(msk, f j,β) ∀j ∈ [Qf]

α← A
(
mpk, (ctji)i∈[n],j∈[Qi], (sk

j)j∈[Qf]

)
Output: α

where A only makes Qi selective queries of plaintext pairs (xji,0i , xji,1i) and Qf selective queries
of key pairs (f jf ,0, f jf ,1), that must satisfy:

f jf ,0(xj1,01 , . . . , xjn,0n) = f jf ,1(xj1,11 , . . . , xjn,1n)

for all j1, . . . , jn ∈ [Q1]× · · · × [Qn] and for all jf ∈ [Qf].
The private key multi-input functional encryptionMIFE is xx-SEL-FH-IND-secure if for every

PPT adversary A, there exists a negligible function negl such that for all λ ∈ N:

Advxx-SEL-FH-IND
MIFE,A (λ) = negl(λ).

Definition 6 (xx-AD-Function-hiding MIFE). For every multi-input functional encryption
MIFE := (Setup,Enc,KeyGen,Dec) for F , every security parameter λ, every stateful adversary A,
and every xx ∈ {one,many}, the advantage of A is defined as

Advxx-AD-FH-IND
MIFE,A (λ) =

∣∣∣Pr
[
xx-AD-FH-INDMIFE0 (1λ,A) = 1

]
− Pr

[
xx-AD-FH-INDMIFE1 (1λ,A) = 1

]∣∣
where the experiments are defined as follows:

Experiment xx-AD-FH-INDMIFEβ (1λ,A):

(mpk,msk)← Setup(1λ,Fn)
β′ ← AKeyGen(msk,·,·),Enc(msk,·,·) (mpk)
Output: α

where Enc is an oracle that on input (i, x0i , x
1
i) outputs Enc(msk, i, xβi) and KeyGen is an oracle that

on input (f0, f1) outputs KeyGen(msk, fβ). Additionally, A queries must satisfy:

f jf ,0(xj1,01 , . . . , xjn,0n) = f jf ,1(xj1,11 , . . . , xjn,1n)

for all j1, . . . , jn ∈ [Q1]× · · · × [Qn] and for all jf ∈ [Qf].
The private key multi-input functional encryption MIFE is xx-AD-FH-IND-secure if for every

PPT adversary A, there exists a negligible function negl such that for all λ ∈ N: Advxx-AD-FH-IND
MIFE,A (λ) =

negl(λ).

Definition 7 (Weak function hiding MIFE). Following the approach from [13], we define
the notion of weak function hiding (denoted xx-yy-wFH-IND) in the multi-input case, which is

8

as in Definitions 5 and 6, with the exception that the previous constraints on ciphertext and key
challenges:

f jf ,0(xj1,01 , . . . , xjn,0n) =f jf ,1(xj1,11 , . . . , xjn,1n),

for all j1, . . . , jn ∈ [Q1]× · · · × [Qn] and for all jf ∈ [Qf]

are extended with additional constraints to help with our hybrid proof:

f jf ,0(xj1,01 , . . . , xjn,0n) =f jf ,0(xj1,11 , . . . , xjn,1n) = f jf ,1(xj1,11 , . . . , xjn,1n),

for all j1, . . . , jn ∈ [Q1]× · · · × [Qn] and for all jf ∈ [Qf].

2.3 Inner product functionality

In this paper we construct multi-input functional encryption schemes that support the following
two variants of the multi-input inner product functionality:

Multi-Input Inner Product over ZL. This is a family of functions that is defined as FmL,n = {fy1,...,yn :
(ZmL)n → ZL} where

fy1,...,yn(x1, . . . ,xn) =
n∑
i=1

〈xi,yi〉 mod L.

Multi-Input Bounded-Norm Inner Product over Z. This is defined as Fm,X,Yn = {fy1,...,yn : (Zm)n →
Z} where fy1,...,yn(x1, . . . ,xn) is the same as above except that the result is not reduced mod L,
and vectors are required to satisfy the following bounds: ‖x‖∞ < X, ‖y‖∞ < Y .

2.4 Computational assumptions

Prime-order groups. Let GGen be a probabilistic polynomial time (PPT) algorithm that on input
1λ returns a description G = (G, p, P) of an additive cyclic group G of order p for a 2λ-bit prime p,
whose generator is P .

We use implicit representation of group elements as introduced in [10]. For a ∈ Zp, define
[a] = aP ∈ G as the implicit representation of a in G. More generally, for a matrix A = (aij) ∈ Zn×mp

we define [A] as the implicit representation of A in G:

[A] :=

a11P ... a1mP

an1P ... anmP

 ∈ Gn×m

We will always use this implicit notation of elements in G, i.e., we let [a] ∈ G be an element in
G. Note that from a random [a] ∈ G it is generally hard to compute the value a (discrete logarithm
problem in G). Obviously, given [a], [b] ∈ G and a scalar x ∈ Zp, one can efficiently compute
[ax] ∈ G and [a+ b] ∈ G.

Matrix Diffie-Hellman Assumption for prime-order groups. We recall the definition of the
Matrix Decision Diffie-Hellman (MDDH) Assumption [10].

Definition 8 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distribution if it outputs

matrices in Z(k+1)×k
p of full rank k in polynomial time.

9

W.l.o.g. we assume the first k rows of A ←r Dk+1,k form an invertible matrix. The Dk-Matrix
Diffie-Hellman problem is to distinguish the two distributions ([A], [Aw]) and ([A], [u]) where
A←r D`,k, w ←r Zkp and u←r Z`p.

Definition 9 (Dk-Matrix Diffie-Hellman (Dk-MDDH) assumption in prime-order groups).
Let Dk be a matrix distribution. The Dk-Matrix Diffie-Hellman (Dk-MDDH) assumption holds rel-
ative to GGen if for all PPT adversaries A,

AdvDk-mddh
GGen,A (λ) := |Pr[A(G, [A], [Aw]) = 1]− Pr[A(G, [A], [u]) = 1]| = negl(λ),

where probabilities are over G ←r GGen(1λ), A←r Dk,w ←r Zkp,u←r Zk+1
p .

Pairing groups. Let PGGen be a probabilistic polynomial time (PPT) algorithm that on input
1λ returns a description PG = (G1,G2, q, P1, P2) of asymmetric pairing groups where G1, G2,
GT are cyclic group of order p for a 2λ-bit prime p, P1 and P2 are generators of G1 and G2,
respectively, and e : G1 × G2 → GT is an efficiently computable (non-degenerate) bilinear map.
Define PT := e(P1, P2), which is a generator of GT . We again use implicit representation of group
elements. For s ∈ 1, 2, T and a ∈ Zp, define [a]s = aPs ∈ Gs as the implicit representation of a in
Gs . Given [a]1, [a]2, one can efficiently compute [ab]T using the pairing e. For two matrices A, B
with matching dimensions define e([A]1, [B]2) := [AB]T ∈ GT .

We define the Dk-MDDH assumption in pairing groups similarly than in prime-order groups
(see Definition 9).

Definition 10 (Dk-MDDH assumption in pairing groups). Let Dk be a matrix distribution.
The Dk-MDDH assumption holds relative to PGGen in Gs, for s ∈ {1, 2, T}, if for all PPT adver-
saries A, the following is negl(λ):

AdvDk-mddh
PGGen,A (λ) := |Pr[A(PG, [A]s, [Aw]s) = 1]− Pr[A(PG, [A]s, [u]s) = 1]|

where probabilities are over PG ←r PGGen(1λ), A←r Dk,w ←r Zkp,u←r Zk+1
p .

Next, we recall a result on the uniform distribution over full-rank matrices:

Definition 11 (Uniform distribution). Let `, k ∈ N, with ` > k. We denote by U`,k the uniform
distribution over all full-rank `× k matrices over Zp.

Among all possible matrix distributions Dk, the uniform matrix distribution U`,k is the hardest
possible instance, so in particular k-Lin ⇒ Uk-MDDH, as stated in Lemma 1.

Lemma 1 (Dk-MDDH ⇒ U`,k-MDDH, [10]). Let `, k ∈ N and Dk a matrix distribution. For
any PPT adversary A, there exists a PPT B such that

Adv
U`,k-mddh
PGGen,Gs,B(λ) ≤ AdvDk-mddh

PGGen,Dk,Gs,A(λ).

10

3 From Single to Multi-Input FE for Inner Product

In this section we give a generic construction of MIFE for inner product from any single-input FE
(Setup,Enc,KeyGen,Dec) for the same functionality in which the encryption algorithm is public key
and linearly-homomorphic. More precisely, we show two transformations: the first one addresses
FE schemes that compute the inner product functionality over a finite ring ZL for some integer L,
while the second transformation addresses FE schemes for bounded-norm inner product. The two
transformations are almost the same, and the only difference is that in the case of bounded-norm
inner product we require additional structural properties on the single-input FE. Yet we stress that
these properties are satisfied by all existing constructions.

3.1 Our Transformation for Inner Product over ZL

We present our private-key multi-input schemeMIFE for the class FmL,n in Figure 1. The construc-
tion relies on any public-key (single-input) FE for the class FmL,1 in which the encryption algorithm
is linearly-homomorphic. Namely, given mpk and a ciphertext Enc(mpk,x), one can efficiently gen-
erate a fresh encryption Enc(mpk,x+x′) for any vector x′. This property is only used in the security
proof.

Setup′(1λ,FmL,n):

For all i ∈ [n], (mpki,mski)← Setup(1λ,FmL,1), ui ←r ZmL
(mpk,msk) :=

(
{mpki}i∈[n], {mski,ui}i∈[n]

)
Return (mpk,msk)

Enc′(msk, i,xi):

Return Enc(mpki,xi + ui mod L)

KeyGen′(msk,y1‖ · · · ‖yn):

For all i ∈ [n], ski ← KeyGen(mski,yi), z :=
∑
i∈[n]〈ui,yi〉 mod L

sky1‖···‖yn :=
(
{ski}i∈[n], z

)
Return sky1‖···‖yn

Dec′
(
({ski}i∈[n], z), ct1, . . . , ctn):

For all i ∈ [n], Di ← Dec(ski, cti)
Return

∑
i∈[n]Di − z mod L

Fig. 1. Private-key, multi-input functional encryption scheme MIFE := (Setup′,Enc′,KeyGen′,Dec′) for the class
FmL,n from a public-key, single-input FE FE := (Setup,Enc,KeyGen,Dec) for the class FmL,1.

The correctness of MIFE follows from the correctness of the single-input scheme. Indeed,
the latter implies that, for all i = 1 to n, Di = 〈xi + ui,yi〉 mod L, and thus

∑
i∈[n]Di − z =∑

i∈[n]〈xi,yi〉 mod L.

For the security we state the following theorem:

Theorem 1. If the public-key, single-input FE, FE, is many-AD-IND-secure, then the private-key,
multi-input FE, MIFE, described in Figure 1, is many-AD-IND-secure.

11

Since the proof of the above theorem is almost the same as the one for the case of bounded-norm
inner product, we only provide an overview here, and defer to the proof of Theorem 2 for further
details.

Proof overview. The proof goes in two steps.

Step 1. We prove one-AD-SIM security ofMIFE using the fact that each ui acts as one-time pads
of xi. Thus, the only information revealed about the {xi}i∈[n] is

∑
i〈xi,yi〉, for each queried

sky1‖···‖yn , which is exactly what the ideal functionality leaks.

Step 2. As in [3], we show thatMIFE is many-AD-IND secure if it is one-AD-IND secure (implied
by one-AD-SIM security), and if the underlying scheme FE is many-AD-IND-secure. For this
proof, we first switch encryptions of x1,0

1 , . . . ,x1,0
n to those of x1,1

1 , . . . ,x1,1
n , using the one-AD-

IND security if FE . For the remaining ciphertexts, we switch from an encryption of xj,0i =

(xj,0i − x
1,0
i) + x1,0

i to that of (xj,0i − x
1,0
i) + x1,1

i . In this step we use the fact that one can

compute an encryption of (xj,0i −x
1,0
i) +x1,0

i from an encryption x1,0
i , because FE is public key

and linearly homomorphic. Finally, we apply a hybrid argument across the slots to switch from
encryptions of

(x2,0
i − x

1,0
i) + x1,1

i , . . . , (xQi,0i − x1,0
i) + x1,1

i

to those of

(x2,1
i − x

1,1
i) + x1,1

i , . . . , (xQi,1i − x1,1
i) + x1,1

i ,

using the many-AD-IND security of FE .

Instantiations. The construction in Figure 1 can be instantiated using the single-input FE schemes
of Agrawal, Libert, and Stehlé [5] that are many-AD-IND-secure and allow for computing inner
products over a finite ring. Specifically, we obtain:

– An MIFE for inner product over Zp for a prime p, based on the LWE assumption. This is
obtained by using the LWE-based scheme of Agrawal et al. [5, Section 4.2].

– An MIFE for inner product over ZN where N is an RSA modulus, based on the Composite
Residuosity assumption. This is obtained by using the Paillier-based scheme of Agrawal et al.
[5, Section 5.2].

We note that since both these schemes in [5] have a stateful key generation, our MIFE inherit this
stateful property. Stateless MIFE instantiations are obtained from the transformation in the next
section.

3.2 Our Transformation for Inner Product over Z

Here we present our transformation for the case of bounded-norm inner product. In particular, in
Figure 2 we present a multi-input schemeMIFE for the class Fm,X,Yn from a (single-input) scheme
FE for the class Fm,X,Y1 . In addition to needing FE to be public key and linearly-homomorphic as
in the previous section, we also require it to satisfy a property that we call two-steps decryption.
This property intuitively says that the FE decryption algorithm works in two steps: the first step
uses the secret key to output an encoding of the result, while the second step returns the actual
result 〈x,y〉 provided that the bounds ‖x‖∞ < X, ‖y‖∞ < Y hold.

Two-steps decryption is formally defined as follows.

12

Property 1 (Two-steps decryption). A public-key FE scheme FE = (Setup,Enc, KeyGen,Dec) satis-
fies two-steps decryption if it admits PPT algorithms Setup?, Dec1,Dec2 and an encoding function
E such that:

1. For all λ,m, n,X, Y ∈ N, Setup?(1λ,Fm,X,Y1 , 1n) outputs (msk,mpk) where mpk includes a
bound B ∈ N, and the description of a group G (with group law ◦) of order L > n ·m ·X · Y ,
which define the encoding function E : ZL × Z→ G.

2. For all (msk,mpk) ← Setup?(1λ,Fm,X,Y1 , 1n), x ∈ Zm, ct ← Enc(mpk,x), y ∈ Zm, and sk ←
KeyGen(msk,y), we have

Dec1(ct, sk) = E(〈x,y〉 mod L, noise),

for some noise ∈ N that depends on ct and sk. Furthermore, it holds Pr[noise < B] = 1−negl(λ),
where the probability is taken over the random coins of Setup? and KeyGen. Note that there is
no restriction on the norm of 〈x,y〉 here.

3. Given any γ ∈ ZL, and mpk, one can efficiently compute E(γ, 0).
4. The encoding E is linear, that is: for all γ, γ′ ∈ ZL, , noise, noise′ ∈ Z, we have

E(γ, noise) ◦ E(γ′, noise′) = E(γ + γ′ mod L, noise + noise′).

5. For all γ < n ·m ·X · Y , and noise < n ·B, Dec2
(
E(γ, noise)

)
= γ.

Instantiations. It is not hard to check that two-steps decryption is satisfied by most of the existing
functional encryption schemes for (bounded-norm) inner product. In particular, in Section 4 we
show that this is satisfied by the many-AD-IND secure FE schemes of Agrawal, Libert and Stehlé
[5]. This allows us to obtain MIFE schemes for bounded-norm inner product based on a variety of
assumptions such as plain DDH, Composite Residuosity, and LWE. In addition to obtaining the
first schemes without the need of pairing groups, we also obtain schemes where decryption works
efficiently even for large outputs. This stands in contrast to the previous result [3] where decryption
requires to extract discrete logarithms.

Correctness. The correctness of the scheme MIFE follows from the correctness and two-steps
decryption (Property 1) of the single-input scheme.

More precisely, consider any vectors x := x1‖ · · · ‖xn ∈ (Zm)n, y ∈ Zmn, such that ‖x‖∞ <
X, ‖y‖∞ < Y , and let (mpk,msk) ← Setup′(1λ,Fm,X,Yn), sky ← KeyGen′(msk,y), and cti ←
Enc′(msk, i,xi) for all i ∈ [n].

By (2) of Property 1, the decryption algorithm Dec′(sky, ct1, . . . , ctn) computes
E(〈xi + ui,yi〉 mod L, noisei) ← Dec1(ski, cti) where for all i ∈ [n], noisei < B, with probabil-
ity 1− negl(λ).

By (4) of Property 1 (linearity of E), we have:

E(〈x1 + u1,y1〉 mod L, noise1) ◦ · · · ◦ E(〈xn + un,yn〉 mod L, noisen)◦

◦ E(−
∑
i∈[n]

〈ui,yi〉 mod L, 0) = E(〈x,y〉 mod L,
∑
i∈[n]

noisei).

Since 〈x,y〉 < n ·m ·X · Y < L and
∑

i∈[n] noisei < n ·B, we have

Dec2
(
E(〈x,y〉 mod L,

∑
i∈[n]

noisei)
)

= 〈x,y〉,

13

Setup′(1λ,Fm,X,Yn):

For all i ∈ [n], (mpki,mski)← Setup?(1λ,Fm,X,Y1 , 1n), ui ←r ZmL
(mpk,msk) :=

(
{mpki}i∈[n], {mski,ui}i∈[n]

)
Return (mpk,msk)

Enc′(msk, i,xi):

Return Enc(mpki,xi + ui mod L)

KeyGen′(msk,y1‖ · · · ‖yn):

For all i ∈ [n], ski ← KeyGen(mski,yi), z :=
∑
i∈[n]〈ui,yi〉 mod L

sky1‖···‖yn :=
(
{ski}i∈[n], z

)
Return sky1‖···‖yn

Dec′
(
({ski}i∈[n], z), ct1, . . . , ctn):

For all i ∈ [n], E(〈xi + ui,yi〉 mod L, noisei)← Dec1(ski, cti)
Return Dec2

(
E(〈x1 + u1,y1〉 mod L, noise1) ◦ · · · ◦ E(〈xn + un,yn〉 mod L, noisen) ◦ E(−z, 0)

)
Fig. 2. Private-key, multi-input FE scheme MIFE = (Setup′,Enc′,KeyGen′,Dec′) for the class Fm,X,Yn from public-
key, single-input FE scheme FE = (Setup,Enc,KeyGen,Dec) for the class Fm,X,Y1 .

by (5) of Property 1.

Proof of Security. In the following theorem we show that our construction is a many-AD-IND-
secure MIFE assuming that the underlying single-input FE scheme is many-AD-IND-secure.

Theorem 2. Assume that FE is many-AD-IND-secure. Then the multi-input FE MIFE in Fig-
ure 2 is many-AD-IND-secure.

The proof is obtained by combining two lemmas, following a strategy similar to [3]. The first
one (Lemma 2) shows thatMIFE is a one-AD-IND-secure MIFE, unconditionally. Next, Lemma 3
shows that MIFE is many-AD-IND-secure provided that it is itself one-AD-IND-secure and that
the single-input scheme FE is many-AD-IND-secure.

Lemma 2. The MIFE described in Figure 2 is one-AD-IND secure. Namely, for any adversary A,
Advone-AD-IND

MIFE,A (λ) = 0.

Proof. Let A be an adversary against the one-AD-IND security of the MIFE. First, we use com-
plexity leveraging to build an adversary B such that:

Advone-AD-IND
MIFE,A (λ) ≤ L−2nm · Advone-AD-IND

MIFE,B (λ).

The adversary B simply guesses the challenge {xbi}i∈[n],b∈{0,1} in advance, then simulate A’s exper-
iment using its own selective experiment. When B receives A’s challenge, it checks if the guess was
successful: if it was, it continues simulating A’s experiment, otherwise, it returns 0.

It remains to prove that the MIFE presented in Figure 2 satisfies perfect one-SEL-IND security,
namely, for any adversary B, Advone-AD-IND

MIFE,B (λ) = 0. To do so, we introduce hybrid games Hβ(1λ,B)

described in Figure 3, and we prove that for all β ∈ {0, 1}, Hβ(1λ,B) is identical to the experiment

one-SEL-INDMIFEβ (1λ,B). This can be seen using the fact that for all {xβi ∈ Zm}i∈[n], the following

distributions are identical: {ui mod L}i∈[n] and {ui − xβi mod L}i∈[n], with ui ←r ZmL . Note that

the independence of the xβi from the ui is only true in the selective security game. Finally, we show

14

HYBβ(1λ,B):

{xbi}i∈[n],b∈{0,1} ← B(1λ,Fm,X,Y1)
For all i ∈ [n],

(mpki,mski)← Setup?(1λ,Fm,X,Y1 , 1n),
ui ←r ZmL

For all i ∈ [n],
cti ← Enc(mpki,ui mod L)

α← BOH (·)(mpk, {cti}i∈[`])
Output α

OH(y):

For all i ∈ [n],
ski ← KeyGen(mski,yi)

z :=
∑
i∈[n]〈ui,yi〉 − 〈x

β
i ,yi〉 mod L

sky :=
(
{ski}i∈[n], z

)
Return sky

Fig. 3. Experiment for the proof of Lemma 2.

that B’s view in Hβ(1λ,B) is independent of β. Indeed, the only information about β that leaks in

this experiment is
∑

i〈x
β
i ,yi〉, which is independent of β by definition of the security game.

ut

Remark 2 (one-AD-SIM security). We can actually show that a stronger security notion, namely,
one-AD-SIM, holds unconditionally for the MIFE presented in Figure 2. We present only the one-
AD-IND security proof here, since it is simpler and it is enough to bootstrap to the many-AD-
IND security in Lemma 3. We give the definition of one-AD-SIM security definition and proof in
Appendix A.

Lemma 3. Assume that the single-input FE is many-AD-IND-secure and the multi-input FE is
one-AD-IND-secure. Then the multi-input FE is many-AD-IND-secure. Namely, for any PPT ad-
versary A, there exist PPT adversaries B and B′ such that

Advmany-AD-IND
MIFE,A (λ) ≤ Advone-AD-IND

MIFE,B (λ) + n · Advmany-AD-IND
FE,B′ (λ).

Proof of Lemma 3. The proof is similar to that of Theorem 4 in [3], we provide it here for
completeness. The main differences lie in the different way the encryption algorithm is defined
(i.e., a secret random vector is summed up instead of concatenated), which thus requires a slightly
different use of the FE malleability property. The proof proceeds by a sequence of games where G0

is the many-AD-INDMIFE0 (1λ,A) experiment. A formal description of all the experiments used
in this proof is given in Figure 4. For any Gi, we denote by Advi(A) the advantage of A in Gi, that
is, Pr[Gi(1

λ,A) = 1], where the probability is taken over the random coins of Gi and A. In what
follows we adopt the same notation from [3] for queried plaintexts, namely (xj,0i ,xj,1i) denotes the
j-th encryption query on the i-th slot.

G1: Here we change the way the challenge ciphertexts are created. In particular, for all slots and all
queries simultaneously, we switch from Enc′(msk, i,xj,0i −x

1,0
i +x1,0

i) to Enc′(msk, i,xj,0i −x
1,0
i +x1,1

i).

G1 can be proved indistinguishable from G0 by relying on the one-time security of the multi-input
scheme. More formally,

Lemma 4. There exists a PPT adversary B1 against the one-AD-IND security of the MIFE
scheme such that

|Adv0(A)−Adv1(A)| ≤ Advone-AD-IND
MIFE,B1 (λ).

15

Proof. Here we replace encryptions of xj,0i − x
1,0
i + x1,0

i with encryptions of xj,0i − x
1,0
i + x1,1

i

in all slots simultaneously. The argument relies both on the one-AD-IND security of the multi-
input schemeMIFE and on the fact that the underlying single input FE scheme FE we are using
as basic building block is both public key and linearly homomorphic. This means that, for all i,
given xj,0i − x

1,0
i and encryptions of x1,β

i , for unknown β, one can easily compute encryptions of

xj,0i − x
1,0
i + x1,β

i . This simulation corresponds exactly to the distribution of challenge ciphertexts
in Gβ.

More in detail, we build the adversary B1 so that it simulates Gβ to A when interacting with
experiment one-AD-INDMIFEβ .

Initially B1 receives the public parameters mpk and hands them to A. Also, whenever A asks a
key derivation query, B1 uses its own oracle to answer it.

When A asks encryption queries, B1 proceeds as follows. For each slot i, when receiving the first
query (i,x1,0

i ,x1,1
i), it computes the challenge ciphertext, for slot i, by invoking its own encryption

oracle on the same input. Let us call ct1i = Enc′(msk, i,x1,β
i) = Enc(mpki,x

1,β
i + ui mod L).

Subsequent queries, on slot i, are answered as follows. B1 produces ctji (for j > 1) by first

encrypting xj,0i − x
1,0
i mod L (using mpki) and then by homomorphically adding this to ct1i .

Finally, B1 outputs 1 iff A outputs 1. By the reasonings above we can conclude that:

|Adv0(A)−Adv1(A)| ≤ Advone-AD-IND
MIFE,B1 (λ).

ut

G2: Here we change again the way the challenge ciphertexts are created. In particular, for all slots i
and all queries j, we switch ctji from Enc′(msk, i,xj,0i −x

1,0
i +x1,1

i) to Enc′(msk, i,xj,1i −x
1,1
i +x1,1

i).

G2 can be proved indistinguishable from G1 via an hybrid argument over the n slots, relying on
the security of the underlying single-input scheme.

By looking at the games defined in Figure 4, one can see that

|Adv1(A)−Adv2(A)| =
n∑
`=1

|Adv1,`−1(A)−Adv1,`(A)|

since G1 corresponds to game G1.0 and whereas G2 is identical to game G1.n.

Therefore, for every ` we bound the difference between each consecutive pair of games in the
following lemma:

Lemma 5. For every ` ∈ [n], there exist a PPT adversary B1.` against the many-AD-IND security
of the single-input scheme FE such that

|Adv1,`−1(A)−Adv1,`(A)| ≤ Advmany-AD-IND
FE,B1.` (λ).

Proof. Here we replace encryptions of xj,0i − x
1,0
i + x1,1

i with encryptions of xj,1i − x
1,1
i + x1,1

i

in all slots. The argument relies on (1) the many-AD-IND security of the underlying single input
scheme FE := (Setup,KeyGen,Enc,Dec), (2) the fact that the latter is public key and linearly
homomorphic, and (3) the restrictions imposed by the security game (see [3]). As for this latter
point we notice that, indeed, the security experiment restriction in the case of the inner product

16

G0(1λ,A):

(mpk,msk)← Setup′(1λ,Fm,X,Yn)

β′ ← AKeyGen′(msk,·),EncO′(·,·,·)(mpk)
return β′

EncO′(i,xj,0i ,xj,1i)
return Enc′(msk, i,xj,0i − x1,0

i + x1,0
i)

KeyGen′(msk,y)
return sky

G1(1λ,A):

(mpk,msk)← Setup′(1λ,Fm,X,Yn)

β′ ← AKeyGen′(msk,·),EncO′(·,·,·)(mpk)
return β′

EncO′(i,xj,0i ,xj,1i)
return Enc′(msk, i,xj,0i − x1,0

i + x1,1
i)

KeyGen′(msk,y)
return sky

G1.`(1
λ,A):

(mpk,msk)← Setup′(1λ,Fm,X,Yn)

β′ ← AKeyGen′(msk,·),EncO′(·,·,·)(mpk)
return β′

EncO′(i,xj,0i ,xj,1i)
If i ≤ ` return

Enc′(msk, i,xj,1i − x1,1
i + x1,1

i)
If i > ` return

Enc′(msk, i,xj,0i − x1,0
i + x1,1

i)

KeyGen′(msk,y)
return sky

G2(1λ,A):

(mpk,msk)← Setup′(1λ,Fm,X,Yn)

β′ ← AKeyGen′(msk,·),EncO′(·,·,·)(mpk)
return β′

EncO′(i,xj,0i ,xj,1i)
return Enc′(msk, i,xj,1i − x1,1

i + x1,1
i)

KeyGen′(msk,y)
return sky

Fig. 4. Experiments for the proof of Lemma 3.

17

functionality imposes that it must be the case that 〈xj,0i −x
1,0
i ,yi〉 = 〈xj,1i −x

1,1
i ,yi〉. In our scheme

this becomes 〈xj,0i − x
1,0
i ,yi〉 mod L = 〈xj,1i − x

1,1
i ,yi〉 mod L, which in turn is equivalent to

〈xj,0i − x
1,0
i + x1,1

i + u,yi〉 mod L = 〈xj,1i − x
1,1
i + x1,1

i + u,yi〉 mod L.

More formally, we build an adversary B1.` that simulates G1.`−1+β to A when interacting with
experiment many-AD-INDFEβ .
B1.` starts by receiving a public key for the scheme FE , which is set to be the key mpk` for the

`-th instance of FE . Next, it randomly chooses ui ∈ ZmL for all i ∈ [n]. Also, for i 6= ` it runs Setup
to get (mpki,mski). It outputs (mpk1, . . . ,mpkn) to A.
B1.` answers key derivation queries y = y1|| . . . ||yn by first running ski ← KeyGen(mski, yi)

for i 6= `. Also it invokes its own key generation oracle on y`, to get sk`. Finally, it computes
z =

∑
i∈[n]〈ui,yi〉 mod L (recall that B1.` knows all the ui). This key material is then sent to A.

B1.` answers encryption queries (i,xj,0i ,xj,1i) to Enc′ as follows. If i < ` it simply computes

Enc(mpki,x
j,1
i + ui). If i > ` it computes Enc(mpki,x

j,0
i − x

1,0
i + x1,1

i + ui). If, on the other hand,

i = `, B1.` queries its own oracle on input (xj,0` −x
1,0
` ,xj,1` −x

1,1
`) to get back Enc(mpk`,x

j,β
` −x

1,β
`)

from the experiment many-AD-INDFEβ . Then, using mpk`, B1.` computes Enc(mpk`,x
1,1
` + u`),

and homomorphically adds these encryption to get ctj` := Enc(mpk`,x
j,β
` − x

1,β
` + x1,1

` + u`), and

sends ctj` to A. Notice that this behavior corresponds to that prescribed by game G1.`−1+β.
Finally, B1.` outputs the same bit β′ returned by A. Thus:

|Adv1.`−1(A)−Adv1.`(A)| ≤ Advmany-AD-IND
FE,B1.` (λ).

ut
The proof of Lemma 3 follows by combining the bounds obtained in the previous lemmas. ut

4 Concrete instances of FE for Inner Product

In this section we discuss three instantiations of our generic construction from Section 3.2. In
particular, we show that the existing (single-input) FE schemes proposed by Agrawal et al. [5]
(that are proven many-AD-IND-secure) satisfy our two-steps decryption property.12

4.1 Inner Product FE from MDDH

Here we show that the many-AD-IND secure Inner Product FE from [5, Section 3], generalized to
the Dk-MDDH setting, as in [3, Figure 15], and recalled in Figure 5, satisfies our Property 1.

Two-step property.

1. The algorithm Setup?(1λ,Fm,X,Y1 , 1n) works the same as Setup except that it additionally uses
n to ensure that n ·m ·X · Y = poly(λ) (which implies n ·m ·X · Y < p). Also, it returns the
bound B := 0, L := p, G as the same group of order p generated by GGen(1λ), and the encoding
function E : Zp × Z→ G defined for all γ ∈ Zq, noise ∈ Z as

E(γ, noise) := [γ].

We let Dec1 and Dec2 be the first and second line of Dec in Figure 5 respectively.

12The fact that these three schemes are public-key and linearly-homomorphic is easy by inspection.

18

Setup(1λ,Fm,X,Y1 , `):

G := (G, p, P)← GGen(1λ), A←r Dk, W←r Zm×(k+1)
p , mpk := (G, [A], [WA]), msk := W

Return (mpk,msk)

Enc(mpk,x ∈ Zmp):

r ←r Zkp, c :=

(
−Ar

x + WAr

)
Return ctx := [c] ∈ Gk+m

KeyGen(msk,y ∈ Zmp):

Return sky :=

(
W>y
y

)
∈ Zk+mp

Dec(mpk, ctx := [c], sky):

C := [c>sky]
Return log(C)

Fig. 5. Functional encryption scheme for the class Fm,X,Y1 , based the Dk-MDDH assumption.

2. We have for all x,y ∈ Zm,

Dec1
(
sky, ctx := [c]

)
:= [c]>sky = [〈x,y〉] = E(〈x,y〉 mod p, 0).

3. It is straightforward to see that E(γ, 0) is efficiently and publicly computable.
4. It is also easy to see that E is linear.
5. Finally, for all γ ∈ Z such that γ < n ·m ·X · Y ,

Dec2(E(γ mod p, 0)) := log([γ mod p]) = γ mod p = γ,

where the log can be computed efficiently since γ < n ·m ·X ·Y is assumed to lie in a polynomial
size range.

4.2 Inner Product FE from LWE

Here we show that the many-AD-IND secure Inner Product FE from [5, Section 4.1] and recalled
in Figure 6, satisfies our Property 1.

Two-steps property.

1. The algorithm Setup?(1λ,Fm,X,Y1 , 1n) works the same as Setup except that it uses n to set
K := n ·m ·X · Y ,13 and it also returns the bound B :=

⌊ q
K

⌋
, L := q, G := (Zq,+), and the

encoding function E : Zq × Z→ G defined for all γ ∈ Zq, noise ∈ Z as

E(γ mod q, noise) := γ ·
⌊ q
K

⌋
+ noise mod q.

We let Dec1 and Dec2 be the first and second line of Dec in Figure 6 respectively.

13Also, parameters M, q, α and distribution D as chosen as explained in [5] as if working with input vectors of
dimension n ·m.

19

Setup(1λ,Fm,X,Y1):

Let N = N(λ), and set integers M, q ≥ 2, real α ∈ (0, 1), and distribution D over Zm×M as explained in
[5]; set K := m ·X · Y , A←r ZM×Nq , Z←r D, U := ZA ∈ Zm×Nq , mpk := (K,A,U), msk := Z.
Return (mpk,msk)

Enc(mpk,x ∈ Zm):

s←r ZNq , e0 ←r D
M
Z,αq, e1 ←r D

m
Z,αq

c0 := As + e0 ∈ ZMq
c1 := Us + e1 + x ·

⌊
q
K

⌋
∈ Zmq

Return ctx := (c0, c1)

KeyGen(msk,y ∈ Zm):

Return sky :=

(
Z>y
y

)
Dec

(
sky, ctx):

µ′ :=

(
c0
c1

)>

sky mod q.

Return µ ∈ {−K + 1, . . . ,K − 1} that minimizes
∣∣b q
K
cµ− µ′

∣∣.
Fig. 6. Functional encryption scheme for the class Fm,X,Y1 , based on the LWE assumption.

2. We have for all x,y ∈ Zm,

Dec1
(
sky, ctx := (c0, c1)

)
=

(
c0
c1

)>
sky mod q

= 〈x,y〉 ·
⌊ q
K

⌋
+ y>e1 − e>0Z>y mod q

= E(〈x,y〉 mod q, noise),

where noise := y>e1 − e>0Z>y, and Pr[noise < B] = 1− negl(λ).

3. It is straightforward to see that E(γ, 0) is efficiently and publicly computable.

4. It is also easy to see that E is linear.

5. Finally, for all γ ∈ Z such that γ < n ·m ·X · Y , and noise < n ·B,

Dec2(E(γ mod q, noise)) = γ,

follows by the same decryption correctness argument in [5], with the only difference that here
we used a larger bound K.

4.3 Inner Product FE from Paillier

Here we show that the Inner Product FE from [5, Section 5.1] and recalled in Figure 7 satisfies our
Property 1.

Two-steps property.

1. The algorithm Setup?(1λ,Fm,X,Y1 , 1n) works the same as Setup except that it additionally uses
n to ensure n ·m ·X · Y < N . Also, it returns the bound B := 0, L := N , G as the subgroup of

20

Setup(1λ,Fm,X,Y1):

Choose primes p = 2p′ + 1, q = q′ + 1 with prime p′, q′ > 2l(λ) for an l(λ) = poly(λ) such that factoring

is λ-hard, and set N := pq ensuring that m · X · Y < N . Sample g′ ←r Z∗N2 , g := g′
2N

mod N2,

s ←r DZm,σ, for standard deviation σ >
√
λ · N5/2, and for all j ∈ [m], hj := gsj mod N2.

(mpk,msk) :=
(
(N, g, {hj}j∈[m], X, Y), {sj}j∈[m]

)
Return (mpk,msk)

Enc(mpk,x ∈ Zm):

r ←r {0, . . . , bN/4c}, C0 := gr mod N2, for all j ∈ [m], Cj := (1 + yjN) · hrj mod N2

Return ctx := (C0, . . . , Cm) ∈ Zm+1
N2

KeyGen(msk,y ∈ Zm):

d :=
∑
j∈[m] yjsj over Z.

Return sky := (d,y)

Dec
(
sky := (d,y), ctx):

C :=
(∏

j∈[m] C
yj
j

)
· C−d0 mod N2.

Return log(1+N)(C) := C−1 mod N2

N
.

Fig. 7. Functional encryption scheme for the class Fm,X,Y1 , based on the Paillier cryptosystem.

Z∗N2 of order N generated by (1 + N), and the encoding function E : ZN × Z → G defined for
all γ ∈ ZN , noise ∈ Z as

E(γ, noise) := 1 + γ ·N mod N2.

We let Dec1 and Dec2 be the first and second line of Dec in Figure 7.
2. We have for all x,y ∈ Zm,

Dec1(sky := (d,y), ctx) :=

 ∏
j∈[m]

C
yj
j

 · C−d0 mod N2 = E(〈x,y〉 mod N, 0).

3. It is straightforward to see that see that E(γ, 0) can be efficiently computed from public infor-
mation.

4. It is also easy to see that E is linear.
5. Finally, for all γ ∈ Z such that γ ≤ n ·m ·X · Y < N , it holds

Dec2(E(γ, 0)) := E(γ,0)−1 mod N2

N = γ.

5 Function-Hiding Multi-Input FE for Inner Product

In this section, we propose a construction of a MIFE scheme that is function-hiding. Our construc-
tion builds in a semi-generic way upon the MIFE scheme for inner product proposed by Abdalla et
al. in [3], and uses a double layered encryption approach similar to the one of Lin [12] in order to
make it function-hiding. Unlike the results in Section 3 that can be instantiated without pairings,
for function-hiding we rely on pairing groups. In Section 5.1 we prove that our construction is
function-hiding in a selective-secure sense. We give a proof of adaptive-secure function-hiding in
Section 5.2, considering a specific instantiation of our construction.

21

Our construction. We present our function-hiding schemeMIFE in Figure 9. The construction
relies on a single-input FE for inner product FE (satisfying a number of requirements listed below)
and the multi-input schemeMIFE ′ of Abdalla et al. [3] that is recalled in Figure 8, which in turn
also builds on a single-input scheme FE .

Before giving the main ideas of our construction, we first list the structural requirements that
must be satisfied by the underlying single-input FE.

Additional requirements. The single-input FE scheme (FE .Setup,FE .Enc,FE .KeyGen,FE .Dec)
used in the construction in Figure 9 must satisfy the following properties:

– The scheme can be instantiated over Gs for s ∈ {1, 2}, where for all x ∈ Zm, ctx = [c]s ∈ G`
s

and for all y ∈ Zm, sky ∈ Z`p, for some dimension ` ∈ N. Moreover, the decryption algorithm

FE .Dec(sky, [c]s) is simply a linear function: [c>sky]s = [x>y]s. As used in our construction,
this linear property implies that decryption can be computed using a pairing when ciphertexts
and secret keys are given in G1 and G2, i.e., FE .Dec([sky]2, [c]1) = [c>sky]T = [x>y]T .

– FE .Enc(mpk, ·) (resp. FE .KeyGen(msk, ·)) can be computed using mpk (resp. msk) and [x]s
(resp. [y]s), for s ∈ {1, 2} (i.e., they can also be computed by having a group encoding instead
of their integer inputs).

– FE .Enc(mpk, ·) is linearly homomorphic, namely given mpk,Enc(mpk,x),x′, one can generate
a fresh random encryption of x+ x′, i.e., Enc(mpk,x+ x′).

– Consider the stateful simulator (S̃etup, Ẽnc, K̃eyGen) for the one-SEL-SIM security of the single-

input inner-product FE scheme. K̃eyGen(m̃sk, ·, ·) must be linear in its inputs (y, a), allowing to

compute K̃eyGen(m̃sk, [y]2, [a]2) = [K̃eyGen(m̃sk,y, a)]2. We require this property in the proof
of Lemma 9.

It is not hard to see that the above structural requirements are satisfied by several existing schemes
based on DDH. Specifically, since we also need this FE to be one-SEL-SIM secure, these properties
are satisfied by a scheme based on the MDDH assumption given in [16] and recalled in [3]: for this
scheme we have `(m) = m+ k + 1, where k depends on the Dk-MDDH assumption.

Outline of the construction. Our starting point is the MIFE scheme for inner-products from
[3], denoted by MIFE ′ := (Setup′,Enc′,KeyGen′,Dec′) and recalled in Figure 8. This scheme is
clearly not function-hiding, as the yi values are given in the clear as part of skini in order to make
decryption possible. In order to avoid the leakage of y, we employ an approach similar to the one
proposed in [12], which intuitively consists into adding a layer of encryption on top of the MIFE
keys and ciphertexts; this is done by using a single-input inner product encryption scheme FE .
Slightly more in detail, using the FE and MIFE ′ schemes, we design our new function-hiding
multi-input scheme MIFE as follows.

We generate master keys (mpki,mski) ← FE .Setup(1λ,F `1) for computing inner products on
vectors of dimension `. To encrypt xi ∈ Zmp for each slot i ∈ [n], we first compute [ctini]1 using

MIFE ′, and then we compute [ctouti]1 := FE .KeyGen(mski, [ct
in
i]). To generate a key for y :=

(y1‖ · · · ‖yn) ∈ Znmp , we first compute the keys skin from MIFE ′, and then we would like to
encrypt these keys using FE in order to hide information about y. A generic way to do it would
be to set our secret key to be Enc(mski, sk

in), for all possible i ∈ [n], so that we can compute the
inner product of ctini with skin for all i ∈ [n]. But that would yield keys of size O(n2m). We can do
better, however. If we consider the specificMIFE ′ scheme from [3], a secret key skin for y consists
of the components ([skin1 ‖ . . . ‖skinn]2, [z]T), where each [skini]2 only depends on yi and is of size O(m),

22

while [z]T ∈ GT does not depend on y at all. Hence, we encrypt each value [skini]2 in G2 to obtain

[skouti]2 := FE .Enc(mpki, [sk
in
i]2), which gives us a secret key skout :=

(
{[skini]2}i∈[n], [z]T

)
of total

size O(nm).

In this way, decrypting the outer layer as FE .Dec([skouti]2, [ct
out
i]1) yields [〈skini , ctini 〉]T , which

by our first requirement is FE .Dec([skini]2, [ct
in
i]1). The latter value is what needs to be computed

in the MIFE ′ decryption algorithm Dec′. More precisely, correctness of MIFE follows from the
correctness of FE , and the structural requirement of FE .Dec that is used in theMIFE ′ decryption
algorithm, namely:

MIFE .Dec({[skouti]2}i∈[n], [z]T , {[ctouti]2}i∈[n])

=
n∏
i=1

FE .Dec([ctouti]1, [sk
out
i]2)/[z]T =

n∏
i=1

[〈skini , ctini 〉]T /[z]T

=MIFE ′.Dec({[skini]2}i∈[n], [z]T , {ctini }i∈[n]).

Multi-input scheme MIFE ′[3]
Setup′(1λ,Fm,X,Yn):

∀i ∈ [n]:
(mpk′i,msk′i)← FE .Setup(1λ,Fm+k,X,Y

1)
∀i ∈ [n] : zi ←r Zkq
mpk′ :=

(
{mpki}i∈[n]

)
msk′ :=

(
{mski,zi}i∈[n]

)
return (mpk′,msk′)

Dec′
((
{[skini]2}i∈[n], [z]T

)
, {[ctini]1}i∈[n]

)
:

∀i ∈ [n] : [ai]T ← FE .Dec([skini]2, [ct
in
i]1)

return the discrete log of
(∏n

i=1[ai]T
)
/[z]T

Enc′(msk, i,xi):

[ctini]1 := FE .Enc(mpk′i,xi‖zi)
return [ctini]1

KeyGen′(msk,y1‖ · · · ‖yn):

r ←r Zkq
∀i ∈ [n] :

skini ← FE .KeyGen(msk′i,yi‖r)
z := 〈z1 + · · ·+ zn, r〉
sky1‖···‖yn :=

(
{[skini]2}i∈[n], [z]T

)
return sky1‖···‖yn

Fig. 8. Many-SEL-IND secure, private-key, multi-input, FE for Fm,X,Yn , due to [3]. Here FE :=
(FE .Setup,FE .Enc,FE .KeyGen,FE .Dec) is a one-SEL-SIM secure, public-key, single-input FE for Fm+k,X,Y

1 .

5.1 Proof of Selective Security

In the following theorem we state the selective security of our schemeMIFE . Precisely, the theorem
proves that our scheme is weakly function-hiding. We stress that this does not entail any limitation
in the final result, as full fledged function-hiding can be achieved in a generic way via a simple
transformation, proposed in [13] (for single-input FE). The main idea is to work with slightly larger
vectors where both input vectors x and secret-key vectors y are padded with zeros. In Appendix B
we show how to do this transformation in the multi-input setting.

Theorem 3 (many-SEL-wFH-IND security). LetMIFE ′ be the many-SEL-IND secure multi-
input FE from Figure 8. Suppose the single-input FE := (FE .Setup,FE .Enc,FE .KeyGen,FE .Dec)
is one-SEL-SIM-secure. Then the multi-input scheme MIFE := (Setup,Enc,KeyGen,Dec) in Fig-
ure 9 is many-SEL-wFH-IND-secure.

23

New function-hiding scheme MIFE

Setup(1λ,Fm,X,Yn):

(mpk′,msk′)← Setup′(1λ,Fm,X,Yn)
∀i ∈ [n] : (mpki,mski)← FE .Setup(1λ,F`,X,Y1)
mpk :=

(
{mpki}i∈[n],mpk′

)
, msk :=

(
{mski}i∈[n],msk′

)
return (mpk,msk)

Enc(msk, i,xi):

[ctini]1 := Enc′(msk′, i,xi)
[ctouti]1 := FE .KeyGen(mski, [ct

in
i]1)

return [ctouti]1

KeyGen(msk,y1‖ · · · ‖yn):

({[skini]2}i∈[n], [z]T)← KeyGen′
(
msk′,y1‖ · · · ‖yn

)
∀i ∈ [n] : [skouti]2 ← FE .Enc(mpki, [sk

in
i]2)

sky1‖···‖yn :=
(
{[skouti]2}i∈[n], [z]T

)
return sky1‖···‖yn

Dec
((
{[skouti]2}i∈[n], [z]T

)
, {[ctouti]1}i∈[n]

)
:

∀i ∈ [n] : [ai]T ← FE .Dec([ctouti]1, [sk
out
i]2)

return the discrete log of
(∏n

i=1[ai]T
)
/[z]T

Fig. 9. Many-SEL-wFH-IND secure, private-key, multi-input, FE for the class Fm,X,Yn . Here FE :=
(FE .Setup,FE .Enc,FE .KeyGen,FE .Dec) is a one-SEL-SIM secure, public-key, single-input FE for F`,X,Y1 , where
` we denote the output size of Enc′ and KeyGen′, and MIFE ′ := (Setup′,Enc′,KeyGen′,Dec′) is the many-AD-IND
secure, private-key, multi-input FE from Figure 8.

Proof Overview. The proof is done via an hybrid argument that consists of two main phases: we
first switch the ciphertexts from encryptions of xji,0i to encryptions of xji,1i for all slots i ∈ [n], and
ciphertext query ji ∈ [Qi], where Qi denotes the number of ciphertext query on the i’th slot. This
change is justified by the many-SEL-SIM security of the underlyingMIFE ′ in a black box manner.
In addition, this change relies on the weak-function-hiding property that imposes the constraints∑n

i=1〈x
ji,0
i ,y

jf ,0
i 〉 =

∑n
i=1〈x

ji,1
i ,y

jf ,0
i 〉 =

∑n
i=1〈x

ji,1
i ,y

jf ,1
i 〉, which thus disallow the adversary from

trivially distinguishing the two games.

The second main change in the proof is to switch the decryption keys from keys corresponding
to yj,01 ‖ . . . ‖y

j,0
n to keys corresponding to yj,11 ‖ . . . ‖y

j,1
n for every j ∈ [Qf]. This in turn requires a

hybrid argument over all decryption keys, changing one key at a time. To switch the ρ’th key, we use
the selective simulation security of the underlying FE to embed the value 〈xj,1i ,yρ,βi 〉+ 〈rρ, zi〉 in

the ciphertext ctji , for all j ∈ [Qi]. Next, we use the Dk-MDDH assumption to argue that [〈rρ, zi〉]T
is indistinguishable from a uniform random value and thus hides perfectly 〈x1,1

i ,yρ,βi 〉 for the first

ciphertext of each slot: ct1i . For all the other remaining 〈xj,1i ,yρ,βi 〉, for j ∈ [Qi], j > 1, we use the

fact that 〈xj,1i − x
1,1
i ,yρ,0i 〉 = 〈xj,1i − x

1,1
i ,yρ,1i 〉, as implied by the game’s restrictions.

Proof of Theorem 3. We proceed via a series of Games G0,G1,G1.ρ, for ρ ∈ [Qf + 1], described
in Figure 10. Let A be a PPT adversary, and λ ∈ N be the security parameter. We denote by
AdvGi(A) the advantage of A in game Gi.

G0: is the experiment many-SEL-wFH-INDMIFE0 (see Definition 7).

24

G1: we replace the inner encryption of xj,0i by encryptions of xj,1i , for all i ∈ [n], j ∈ [Qi],
using the many-SEL-IND security of MIFE ′. This is possible due to the weak function-hiding

constraint, which states that
∑n

i=1〈x
ji,0
i ,y

jf ,0
i 〉 =

∑n
i=1〈x

ji,1
i ,y

jf ,0
i 〉 =

∑n
i=1〈x

ji,1
i ,y

jf ,1
i 〉, for all

indices ji ∈ [Qi], jf ∈ [Qf].

G1.ρ: for the first ρ− 1 queries to KeyGen, we replace inner secret key KeyGen′
(
msk′,y01‖ · · · ‖y0n

)
,

by KeyGen′
(
msk′,y11‖ · · · ‖y1n

)
. Note that G1 is the same as G1.1, and G1.Qf+1 is the same as

many-SEL-wFH-INDMIFE1 .

We prove G0 ≈c G1 in Lemma 6, and G1.ρ ≈c G1.ρ+1 for all ρ ∈ [Qf] in Lemma 7. ut

G0, G1, G1.ρ , for ρ ∈ [Qf + 1]:

{xj,βi }i∈[n],j∈[Qi],β∈{0,1}, {y
j,β
i }i∈[n],j∈[Qf],β∈{0,1} ← A(1λ,Fm,X,Yn)

(mpk′,msk′)← Setup′(1λ,Fm,X,Yn)
∀i ∈ [n] : (mpki,mski)← FE .Setup(1λ,F`,X,Y1)
mpk :=

(
{mpki}i∈[n],mpk′

)
, msk :=

(
{mski}i∈[n],msk′

)
∀i ∈ [n], j ∈ [Qi]:

[ctin,ji]1 := Enc′(msk′, i,xj,0i), [ctin,ji]1 := Enc′(msk′, i,xj,1i)

[ctout,ji]1 := FE .KeyGen(mski, [ct
in,j
i]1)

α← AKeyGen(msk,·) (mpk, {[ctout,ji]1}i∈[n],j∈[Qi]

)
Output: α.

KeyGen
(
msk, (yj,β1 ‖ · · · ‖yj,βn)β∈{0,1}

)
:(

{[skini]2}i∈[n], [z]T
)
← KeyGen′

(
msk′,y0

1‖ · · · ‖y0
n

)
If j < ρ:

(
{[skini]2}i∈[n], [z]T

)
← KeyGen′

(
msk′,y1

1‖ · · · ‖y1
n

)
[skouti]2 ← FE .Enc(mpki, [sk

in
i]2)

sky1‖···‖yn :=
(
{[skouti]2}i∈[n], [z]T

)
return sky1‖···‖yn

Fig. 10. Games for the proof of Theorem 3. In each procedure, the components inside a solid (dotted) frame are only
present in the games marked by a solid (dotted) frame.

Lemma 6 (G0 to G1). There exists a PPT adversary B1 such that

AdvG0(A)− AdvG1(A) ≤ Advmany-SEL-IND
MIFE ′,B1 (λ).

Proof. In order to show that we can switch xj,0i to xj,1i , we rely on the security of the underlying
MIFE ′ scheme. Intuitively, adding an additional layer of encryption on the decryption keys skini
cannot invalidate the security of the underlying MIFE ′.

More formally, we design an adversary B1 against the many-SEL-IND security of MIFE ′.
Adversary B1 draws public and secret keys for the outer encryption layer and then uses its own
experiment to simulate either G0 or G1. We describe adversary B1 in Figure 11 and give a textual
description here.

25

Simulation of master public key mpk. Since the game is selective, the adversary B1 first
gets the challenges {xj,bi }i∈[n],j∈[Qi],b∈{0,1} from A, and it sends them to its experiment many-SEL-

INDMIFE
′

β . Then, B1 receives the public key mpk′ of the MIFE ′ scheme. To construct the full

public key, it draws (mpki,mski) ← FE .Setup(1κ,F `,X,Y1), for all slots i ∈ [n], independently. It
then sets mpk := {mpki}i∈[n] ∪ {mpk′} and returns mpk to adversary A.

Simulation of the challenge ciphertexts. The adversary B1 receives [ctin,ji]1 from the encryption
oracle of the experiment many-SEL-INDMIFE

′

β , for all i ∈ [n]. This corresponds to encryptions of

either xj,0i or of xj,1i . Since it knows mski, it computes [ctout,ji]1 := FE .KeyGen(mski, [ct
in,j
i]1) for all

i ∈ [n] and returns {[ctout,ji]1}i∈[n] to A.

Simulation of KeyGen(msk, ·). On every secret key query (yb1‖ . . . ‖ybn)b∈{0,1}, adversary B1
queries the KeyGen′ oracle of the experiment many-SEL-INDMIFE

′

β on y01‖ . . . ‖y0n. It obtains

{[skini]2}i∈[n], [z]T . Finally, it computes [skouti]2 := FE .Enc(mpki, sk
in
i) and returns ({[skouti]2}i∈[n], [z]T)

to A.

B1

(
1λ, {xj,bi }i∈[n],j∈[Qi],b∈{0,1}, {y

j,b
i }i∈[n],j∈[Qf],b∈{0,1}

)
:

-Simulation of the master public key mpk:
sends {xj,bi }i∈[n],j∈[Qi],b∈{0,1} to Exp

(mpki,mski)← FE .Setup(1λ,F`,X,Y1)
it receives mpk′ from Exp
mpk := {mpki}i∈[n] ∪ {mpk′}
return mpk

-Simulation of ciphertexts:
receives [ctin,ji]1 from Exp
[ctout,ji]1 := FE .KeyGen(mski, [ct

in,j
i]1)

return [ctout,ji]1
-Simulation of KeyGen

(
msk, (yj,b1 ‖ · · · ‖yj,bn)b∈{0,1}

)
:

receive ({[skin,ji]2}i∈[n], [z]T) from Exp

[skout,ji]2 := FE .Enc(mpki, [sk
in,j
i]2)

return sky1‖···‖yn :=
(
[skout,ji]2, [z]T

)
Fig. 11. Adversary B1 distinguishes between two cases, case 1: Exp = many-SEL-INDMIFE

′

0 , [ctin,ji]1 :=

Enc′(msk′, i,xj,0i) and case 2: Exp = many-SEL-INDMIFE
′

1 , [ctin,ji]1 := Enc′(msk′, i,xj,1i). KeyGen queries are
answered identically in both cases without knowing msk′ by calling the KeyGen′ oracle of Exp and encrypting the
skin,ji responses under mpki.

ut

Lemma 7 (G1.ρ to G1.ρ+1). For all ρ ∈ [Qf], there exist PPT adversaries Bρ and B′ρ such that

AdvG1.ρ(A)− AdvG1.ρ+1(A) ≤ 2n · Advone-SEL-SIM
FE,Bρ (λ,) + 2 ·AdvDk-mddh

PGGen,B′ρ
(λ).

Proof of Lemma 7. We proceed via a series of Games Hρ,Hρ.β,H
′
ρ.β, for ρ ∈ [Qf +1], and β ∈ {0, 1},

described in Figure 13. Note that Hρ is G1.ρ. We prove that:

G1,ρ ≡ Hρ ≈c Hρ,0 ≈c H′ρ,0 ≡ H′ρ,1 ≈c Hρ,1 ≈c Hρ+1 ≡ G1,ρ+1.

26

Hρ to Hρ.0: we replace (FE .Setup,FE .KeyGen,FE .Enc) by the efficient simulator (FE .S̃etup,
FE .K̃eyGen,FE .Ẽnc), using the one-SEL-SIM security of the single-input FE, via a hybrid ar-
gument across all slots i ∈ [n].

Lemma 8 (Hρ ≈c Hρ.0:). There exists a PPT adversary B1.ρ such that

AdvHρ(A)− AdvHρ.0(A) ≤ n · Advone-SEL-SIM
FE,B1.ρ (λ)

Proof. We use a hybrid argument over all slots t ∈ [n]. That is, we define Hρ.1.t for t ∈ [n], where the

for the first t slots, (FE .Setup,FE .KeyGen,FE .Enc) is replaced with (FE .S̃etup,FE .K̃eyGen,FE .Ẽnc)
(the games are described in Figure 12).

Hρ.0.t for ρ ∈ [Qf + 1], t ∈ [n+ 1] :

{xj,bi }i∈[n],j∈[Qi],b∈{0,1}, {y
jf ,b

i }i∈[n],jf∈[Qf],b∈{0,1} ← A(1λ,Fm,X,Yn)(
mpk′ :=

(
{mpk′i}i∈[n]

)
,msk′ :=

(
{msk′i,zi}i∈[n]

))
← Setup′(1λ,Fm,X,Yn)

∀i < t :
(
m̃pki, m̃ski

)
← FE .S̃etup(1λ,F`,X,Y1)

∀j ∈ [Qi]: [ctout,ji]1 := FE .K̃eyGen(m̃ski, [ct
in,j
i]1, [〈xj,1i ,yβi 〉+ 〈zi, rρ〉]1)

∀i ≥ t : (mpki,mski)← FE .Setup(1λ,F`,X,Y1)

∀j ∈ [Qi]: [ctout,ji]1 := FE .KeyGen(mski, [ct
in,j
i]1)

mpk :=
(
{m̃pki}i≤t ∪ {mpki}i>t,mpk′

)
msk :=

(
{m̃ski}i≤t ∪ {mski}i>t,msk′

)
α← AKeyGen(msk,·) (mpk, {[ctout,ji]1}i∈[n],j∈[Qi]

)
Output: α.

KeyGen
(
msk, (yj,b1 ‖ · · · ‖yj,bn)b∈{0,1} ∈ (Zm)n

)
:

On the j’th query, j < ρ:(
{[skini]2 := FE .KeyGen(msk′i,y

1
i ‖rj)}i∈[n]

[z]T := [
∑
i〈zi, r

j〉]T

)
← KeyGen′

(
msk′,y1

1‖ · · · ‖y1
n

)
∀i ∈ [n] : [skouti]2 ← FE .Enc(mpki, [sk

in
i]2)

On the j’th query, j > ρ:(
{[skini]2 := FE .KeyGen(msk′i,y

0
i ‖rj)}i∈[n]

[z]T := [
∑
i〈zi, r

j〉]T

)
← KeyGen′

(
msk′,y0

1‖ · · · ‖y0
n

)
∀i ∈ [n] : [skouti]2 ← FE .Enc(mpki, [sk

in
i]2)

On the j’th query, j = ρ:
for i < t: ∀i ∈ [n] : [skouti]2 ← FE .Ẽnc(m̃ski)
for i ≥ t: [skini]2 ← KeyGen′

(
msk′,y0

1‖ · · · ‖y0
n

)
[skouti]2 ← FE .Enc(mpki, [sk

in
i]2)

Return sky1‖···‖yn :=
(
{[skouti]2}i∈[n], [z]T

)

Fig. 12. Games for the proof of Lemma 8.

Note that Hρ.0.0 is Hρ and Hρ.0.n is Hρ.0. Using the one-SEL-SIM security of FE , we have

AdvHρ.0.t(A)− AdvHρ.0.t+1(A) ≤ Advone-SEL-SIM
FE,Bρ.t (λ).

27

The reduction showing adversary Bρ.t is rather straightforward and is omitted. The idea is that
Bρ.t generates all the keys involved in the scheme, except for (mpkt,mskt). For the t-th one, it plugs

the one it receives from the one-SEL-SIMFE experiment, i.e., either mpkt or m̃pkt; this allows it to
perfectly simulate the view of A. ut

Hρ.β ≈c H′
ρ.β, for all β ∈ {0, 1}: we replace {[zi]1, [〈zi, rρ〉]1}i∈[n] by {[zi]1, [z̃i]1}i∈[n], where

rρ ←r Zkp is the randomness picked by KeyGen on its ρ’th query, zi ←r Zkp, and z̃i ←r Zp. This is
justified using the Dk-MDDH assumption in G1.

Lemma 9 (From Hρ.β to H′ρ.β). For all ρ ∈ [Qf], β ∈ {0, 1}, there exists a PPT adversary Bρ.β
such that

AdvHρ.β (A)− AdvH′ρ.β (A) ≤ AdvDk-mddh
PGGen,Bρ.β (λ) + k

p .

Proof. Precisely we first build an adversary B′ρ,β against Un,k-MDDH, and then the proof is ob-
tained by applying Lemma 1. Such adversary can be defined quite straightforwardly so that it
provides either {[zi]1, [〈zi, rρ〉]1}i∈[n] or {[zi]1, [z̃i]1}i∈[n] to A (thus simulating either Hρ.β or H′ρ.β
respectively) according to the distribution of its own input. The only observation is that by the
Un,k-MDDH definition,

(
z1‖ · · · ‖zn

)>
is uniformly random over full-rank matrices in Zn×kp , whereas

in the simulated experiment it is supposed to be uniformly random over Zn×kp . However, these two
distributions are k/p-close (assuming n > k). ut

Lemma 10 (H′ρ.0 ≡ H′ρ.1).

AdvH′ρ.0(A) = AdvH′ρ.1(A)

Proof. We argue that these games are the same, using the change of variable: z̃i → z̃i−〈x1,1
i ,yρ,bi 〉,

and the fact that
∑

i〈x
1,1
i ,yρ,bi 〉 is independent of b ∈ {0, 1}. The fact that our games are selective

allows us to perform this change of variables, since z̃i is independent of the x or y values. Moreover,
for all i ∈ [n], j ∈ [Qi], 〈xj,1i −x

1,1
i ,yρ,bi 〉 is independent of b ∈ {0, 1}, by the definition of the security

game. ut

Lemma 11 (From Hρ.1 to Hρ+1). There exists a PPT adversary B′′ρ+1 such that

AdvHρ.1(A)− AdvHρ+1(A) ≤ n · Advone-SEL-SIM
FE,B′′ρ+1

(λ)

This transition is symmetric to the transition between G1.ρ and G1.ρ.1.0, upper-bounded in Lemma 8.

Namely, we replace (FE .S̃etup,FE .K̃eyGen,FE .Ẽnc) by (FE .Setup,FE .KeyGen,FE .Enc), using the
one-SEL-SIM security of the single-input FE, via a hybrid argument across all slots i ∈ [n].

Summing up, obtain |AdvG1.ρ(A)−AdvG1.ρ+1(A)| ≤ 2n·Advone-SEL-SIM
FE,B1.ρ (λ,)+2·AdvDk-mddh

PGGen,B′1.ρ
(λ)+

2k
p , which implies that G1.ρ ≈c G1.ρ+1. ut

28

Hρ , Hρ.β , H′ρ.β for ρ ∈ [Qf + 1], β ∈ {0, 1} :

{xj,bi }i∈[n],j∈[Qi],b∈{0,1}, {y
jf ,b

i }i∈[n],jf∈[Qf],b∈{0,1} ← A(1λ,Fm,X,Yn)(
mpk′ :=

(
{mpk′i}i∈[n]

)
,msk′ :=

(
{msk′i,zi}i∈[n]

))
← Setup′(1λ,Fm,X,Yn)

∀i ∈ [n] : (mpki,mski)← FE .Setup(1λ,F`,X,Y1)

∀i ∈ [n] :
(
m̃pki, m̃ski

)
← FE .S̃etup(1λ,F`,X,Y1)

mpk :=
(
{mpki}i∈[n],mpk′

)
, msk :=

(
{mski}i∈[n],msk′

)
∀i ∈ [n], j ∈ [Qi]: [ctin,ji]1 := Enc′(msk′, i,xj,1i)
[ctout,ji]1 := FE .KeyGen(mski, [ct

in,j
i]1)

[ctout,ji]1 := FE .K̃eyGen(m̃ski, [ct
in,j
i]1, [〈xj,1i ,yβi 〉+ 〈zi, rρ〉]1)

[ctout,ji]1 := FE .K̃eyGen(m̃ski, [ct
in,j
i]1, [〈xj,1i ,yβi 〉+ z̃i]1)

α← AKeyGen(msk,·) (mpk, {[ctout,ji]1}i∈[n],j∈[Qi]

)
Output: α.

KeyGen
(
msk, (yj,b1 ‖ · · · ‖yj,bn)b∈{0,1} ∈ (Zm)n

)
:

On the j’th query, j < ρ:(
{[skini]2 := FE .KeyGen(msk′i,y

1
i ‖rj)}i∈[n]

[z]T := [
∑
i〈zi, r

j〉]T

)
← KeyGen′

(
msk′,y1

1‖ · · · ‖y1
n

)
∀i ∈ [n] : [skouti]2 ← FE .Enc(mpki, [sk

in
i]2)

On the j’th query, j > ρ:(
{[skini]2 := FE .KeyGen(msk′i,y

0
i ‖rj)}i∈[n]

[z]T := [
∑
i〈zi, r

j〉]T

)
← KeyGen′

(
msk′,y0

1‖ · · · ‖y0
n

)
∀i ∈ [n] : [skouti]2 ← FE .Enc(mpki, [sk

in
i]2)

On the j’th query, j = ρ:(
{[skini]2 := FE .KeyGen(msk′i,y

0
i ‖rρ)}i∈[n]

[z]T := [
∑
i〈zi, r

ρ〉]T

)
← KeyGen′

(
msk′,y0

1‖ · · · ‖y0
n

)
∀i ∈ [n] : [skouti]2 ← FE .Enc(mpki, [sk

in
i]2)

∀i ∈ [n] : [skouti]2 ← FE .Ẽnc(m̃ski)

Return sky1‖···‖yn :=
(
{[skouti]2}i∈[n], [z]T

)
Fig. 13. Games for the proof of Lemma 7. In each procedure, the components inside a solid (dotted, gray) frame are
only present in the games marked by a solid (dotted, gray) frame.

5.2 Adaptive-secure, Multi-input, Function-Hiding FE for Inner Product

In this section, we prove that if we instantiate the construction described in Figure 9 (Section 5),
with the many-AD-IND-secure, public-key, single-input FE from [5], we obtain an adaptively se-
cure function-hiding MIFE. Specifically, we consider the generalized version of single-input FE, as
described in [3] (recalled in Figure 5). For completeness, we present this new MIFE instantiation
in Figure 14.

The challenge of proving adaptive security for our construction in a generic way is that it would
require the underlying FE to achieve strong security notions, such as one-AD-SIM (which is not
achieved by any known scheme). We overcome this issue, managing to prove adaptive security of
our concrete MIFE in Figure 9, using non-generic techniques inspired by [3].

29

Setup(1λ,Fm,X,Yn):

PG ←r GGen(1λ),A1,B1, . . . ,An,Bn ←r Dk, U1, . . . ,Un ←r Z(k+m)×(k+1)
p , V1, . . . ,Vn ←r Z(2k+m+1)×(k+1)

p

z1, . . . , zn ←r Zkp
mpk := PG
msk := {Ai,Bi,Ui,Vi,zi}i∈[n]
return (mpk,msk)

Enc(msk, i,xi ∈ Zmp):

si ←r Zkp, ci := Aisi, c
′
i :=

(
xi
zi

)
+ UiAisi, c

′′
i :=

(
ci
c′i

)>
Vi

return ([ci]1, [c
′
i]1, [c

′′
i]1)

KeyGen(msk,y1‖ · · · ‖yn ∈ (Zmp)n):

r ←r Zkp, z := 〈z1 + · · ·+ zn, r〉

∀i ∈ [n] : ti ←r Zkp, di := Biti, d′i :=

−U
>
i

(
yi
r

)
(
yi
r

)
+ ViBiti

return
(
{[di]2, [d′i]2}i∈[n], [z]T

)
Dec

((
{[di]2, [d′i]2}i∈[n], [z]T

)
, {[ci]1, [c′i]1, [c′′i]1}i∈[n]

)
:

out←

(∏
i

(
e

([
ci
c′i

]>
1

, [d′i]2

)
/e ([c′′i]1, [di]2)

))
/[z]T

return discrete log of out

Fig. 14. Many-AD-IND-wFH secure, private-key, multi-input FE scheme for the class Fm,X,Yn (self-contained de-
scription).

Theorem 4 (many-AD-IND-wFH security). If the Dk-MDDH assumption holds in G1 and
G2, then the private-key, multi-input FE for Fm,X,Yn described in Figure 14 is many-AD-IND-wFH-
secure.

Proof overview. Similarly to the selective-security proof presented in Section 5.1, we prove weakly-
function-hiding. This is sufficient, since it can be transformed generically into a fully function-hiding
MIFE by using techniques from [13] (see Appendix B for more details).

To prove weak function-hiding we proceed in two stages. First, we switch from Enc(msk, i,xj,0i)

to Enc(msk, i,xj,1i) for all slots i ∈ [n] and all queries j ∈ [Qi] simultaneously, using the many-AD-
IND security ofMIFE ′ (the underlying MIFE from [3]). For completeness, we also give a concrete
description of MIFE ′ in Figure 20, Appendix C.

Secondly, we use a hybrid argument over all Qf queried keys, switching them one by one
from KeyGen(msk,y01‖ · · · ‖y0n) to KeyGen(msk,y11‖ · · · ‖y1n). To switch the ρ’th key, we use the
security of FE in a non-generic way. Structurally, we do a proof similar to the selective one of the
previous section. In order to apply complexity leveraging, we first do all the computational steps.
Afterwards, only at some particular transition in the proof (transition from H′′ρ.0 to H′′ρ.1 in the proof
of Lemma 16), we use complexity leveraging, and we simulate the selective proof arguments. This
multiplies the security loss by an exponential factor. We can do so here because this particular
transition is perfect: the exponential term is multiplied by a zero advantage.

30

Although this proof strategy shares similarities with the adaptive security proof the MIFE in
[3], our proof has some crucial differences: mainly, the role of the keys and ciphertexts in our proof is
switched. Since the multi-input model is asymmetric with respect to the ciphertexts and decryption
keys (only ciphertexts can be mixed-and-matched), this results in a different proof strategy.
Proof of Theorem 4. We proceed via a series of Games G0,G1,G1.ρ, for ρ ∈ [Qf + 1], described in
Figure 16. Let A be a PPT adversary, and λ ∈ N be the security parameter. For all games Gi, we
denote by AdvGi(A) the advantage of A in Gi.

G0: is the experiment many-AD-wFH-INDMIFE0 (see Definition 6).

G1: we replace the inner encryption of xj,0i by encryptions of xj,1i , for all i ∈ [n], j ∈ [Qi], using
the many-AD-IND security of MIFE := (Setup′,Enc′,KeyGen′,Dec′).

G1.ρ: for the first ρ − 1 queries to KeyGen, we replace the inner secret key KeyGen′
(
msk′,y01‖

· · · ‖y0n
)
, by KeyGen′

(
msk′,y11‖ · · · ‖y1n

)
. Note that Game1 is the same as Game1.1, and Game1.Qf+1

is the same as many-AD-wFH-INDMIFE1 .
We prove G0 ≈c G1 in Lemma 12, and G1.ρ ≈c G1.ρ+1 for all ρ ∈ [Qf] in Lemma 13. ut

Lemma 12 (G0 to G1). There exists a PPT adversary B0 such that

|AdvG0(A)− AdvG1(A)| ≤ Advmany-AD-IND
MIFE,B0 (λ).

Proof. This proof is very similar to the proof of Lemma 6. We design an adversary B0 against
the many-AD-IND security of the scheme from Figure 20 (which is many-AD-IND-secure by The-
orem 5).

Note that the vectors [ci]1, [c
′
i]1 output by Enc (see Figure 14) exactly correspond to a ciphertext

for the MIFE scheme from [3]. Thus, using the many-AD-IND security of the latter, we can switch
encryption of xj,0i into encryption of xj,1i for all i ∈ [n], j ∈ [Qi]. We now describe how B1 simulates
A’s view.

Simulation of the public key. Given the mpk := PG, B0 draws matrices Bi ←r Dk, Vi ←r

Z(2k+m+1)×(k+1)
p , and forwards the public key PG to A.

Simulation of the ciphertexts. Consider the case when A makes a plaintext query (xj,0i ,xj,1i)
to B1. Adversary B0 forwards the queries to the many-AD-IND challenger, which replies with

([ci]1, [c
′
i]1). B1 simply computes [c′′i]1 :=

[
ci
c′i

]>
1

·Vi and sends ([ci]1, [c
′
i]1, [c

′′
i]1) to A.

Simulation of the decryption keys. Upon receiving a query (yj,01 ‖ . . . ‖y
j,0
n ,yj,11 ‖ . . . ‖y

j,1
n), B1

forwards it to the many-AD-IND challenger. It obtains back ({[skini]2}i∈[n], [z]T). It then draws

ti ←r Zkp and computes [di]2 = [Biti]2 and [d′i] := [skini]2 + [ViBiti]2. It sends ([di]2, [d
′
i]2, [z]T)

back to A.
ut

31

Lemma 13 (G1.ρ to G1.ρ+1). For all ρ ∈ [Qf], there exist PPT adversaries Bρ, B′ρ and B′ρ,β such
that:

|AdvG1.ρ(A)− AdvG1.ρ+1(A)| ≤

≤ n ·AdvDk-mddh
G2,Bρ (λ) + n ·AdvDk-mddh

G2,B′ρ
(λ) + 2n

p + 2 ·Adv
Un,k-MDDH
G1,Bρ,β (λ).

Proof of Lemma 13. We proceed via a series of games Hρ, Hρ.β, H′ρ.β, H′′ρ.β for ρ ∈ [Qf + 1] and
β ∈ {0, 1} described in Figure 17. Note that Hρ is G1.ρ. We summarize our sequence of hybrids
between G1,ρ and G1,ρ+1 in Figure 15.

G1,ρ ≡ Hρ ≈c Hρ,0 ≡ H′ρ,0 ≈c H′′ρ,0 ≡ H′′ρ,1 ≈c H′ρ,1 ≡ Hρ,1 ≈c Hρ+1 ≡ G1,ρ+1

Fig. 15. Summary of the sequence of hybrids in the proof of Lemma 13

Hρ ≈c Hρ.0: we change the distribution of the vectors [ci]1 computed by Enc(i, ·, ·), for all slots
i ∈ [n], using the Dk-MDDH assumption (cf Lemma 12).

Lemma 14 (Hρ to Hρ.0). For all ρ ∈ [Qf], there exists a PPT adversary Bρ such that:

AdvHρ(A)− AdvHρ.0(A) ≤ n ·AdvDk-mddh
G2,Bρ (λ) + n

p .

Proof of Lemma 12. Here, we switch ([Bi]2, [Bisi]2) computed by Enc(i, ·, ·) to ([Bi]2, [Bisi+ ui]2),

where Bi ←r Dk, ui ←r Zk+1
p \ span(Bi), and si ←r Zkp. We do so for all input slots i ∈ [n], using

a hybrid argument. This change is justified by the facts that:

– By the Dk-MDDH assumption, we can switch ([Bi]2, [Bisi]2) to ([Bi]2, [Bisi + ui]2), where

Bi ←r Dk, si ←r Zkp, and ui ←r Zk+1
p .

– The uniform distribution over Zk+1
p and Zk+1

p \ span(Bi) are 1
p -close, for all Bi of rank k.

Combining these facts, we obtain a PPT adversary Bρ such that

AdvHρ(A)− AdvHρ.0(A) ≤ n ·AdvDk-mddh
G2,Bρ (λ) + n

p .

ut

Hρ.β ≡ H′
ρ.β, for all β ∈ {0, 1}: here, for all slots i ∈ [n], we replace the way the vec-

tor [d′i]1 is computed by KeyGen(msk, ·) on its ρ’th query, using an information theoretic argu-
ment. Looking ahead, we want to make it possible to simulate the adversary’s view only knowing
[rρ]1, [zi]1, [〈zi, rρ〉]T , and not [rρ]2. This is in order to apply Dk-MDDH in H′ρ.β in the next tran-
sition.

Lemma 15 (Hρ.β to H′ρ.β, for all β ∈ {0, 1}). For all β ∈ {0, 1}, ρ ∈ [Qf],

AdvHρ.β (A) = AdvH′ρ.β (A).

32

Proof of Lemma 15. We argue that Hρ.β and H′ρ.β are the same, using the fact that for all i ∈ [n],

Bi ∈ Z(k+1)×k
p , b⊥i ∈ orth(Bi), Ui ∈ Z(k+m)×(k+1)

p and all rρ ∈ Zkp, the following distributions are
identical:

Vi and Vi −

−U>i

(
0
rρ

)
(

0
rρ

)
 (b⊥i)>,

where Vi ←r Z(2k+m+1)×(k+1)
p . This way, we obtain

d′i :=

−U>i

(
yρ,bi
0

)
(
yρ,bi
0

)
+ Vidi and c′′i :=

(
ci
c′i

)>
Vi + 〈zi, rρ〉 · (b⊥i)>,

as in H′ρ.β. ut

H′
ρ.β ≈c H′′

ρ.β: we replace {[zi]1, [〈zi, rρ〉]1}i∈[n] to {[zi]1, [z̃i]1}i∈[n], where z̃i ←r Zp, using the
Dk-MDDH assumption.

Lemma 16 (From H′ρ.β to H′′ρ.β). For all β ∈ {0, 1}, ρ ∈ [Qf], there exists a PPT adversary Bρ,β
such that:

AdvH′ρ.β (A)− AdvH′′ρ.β (A) ≤ Adv
Un,k-MDDH
G1,Bρ,β (λ) + k

p .

Proof. This proof is very similar to the proof of Lemma 9. We design an adversary B′ρ,β against

Uk+n,k-MDDH, such that AdvH′ρ.β (A)−AdvH′′ρ.β (A) ≤ Adv
Un,k-mddh
PGGen,G1,Bρ,β (λ). The lemma then follows

from Lemma 1.
More precisely, note that

(
z1‖ · · · ‖zn

)>
is uniformly random over Zn×kp , which is k

p -close to
uniformly random over full-rank n times k matrices over Zp (assuming n > k). Thus, using the
Un,k-MDDH assumption, we can switch {[zi]1, [〈zi, rρ〉]1}i∈[n] to {[zi]1, [z̃i]1}i∈[n], where z̃i ←r Zp.

ut

H′′
ρ.0 ≡ H′′

ρ.1: we go the selective variant of H′′ρ.0, called H?ρ.0, via complexity leveraging, then use
the following change of variables:

Vi → Vi +

−U>i

(
yρ,1i − y

ρ,0
i

0

)
(
yρ,1i − y

ρ,0
i

0

)
 (b⊥i)>,

and
z̃i ≡ z̃i−〈x1,1

i ,yρ,1i −y
ρ,0
i 〉 to switch to H?ρ.1. We use the fact that

∑
i〈x

1,1
i ,yρ,1i −y

ρ,0
i 〉 = 0, and

that for all i ∈ [n], j ∈ [Qi], we have: 〈xj,1i −x
1,1
i ,yρ,1i −y

ρ,0
i 〉 = 0, by definition of the security game.

We switch back to the adaptive variant, H′′ρ.1, ”unguessing”, which incurs an exponential security
loss, multiplied by zero.

33

Summing up, we have G1.ρ ≈c G1.ρ+1 (see Figure 15 for a summary of the hybrids).

ut

G0, G1, G1.ρ for ρ ∈ [Qf + 1]:

PG ←r GGen(1λ),A1,B1, . . . ,An,Bn ←r Dk, U1, . . . ,Un,←r Z(k+m)×(k+1)
p , V1, . . . ,Vn,←r Z(2k+m+1)×(k+1)

p

z1, . . . , zn ←r Zkp
mpk := PG
msk := {Ai,Bi,Ui,Vi,zi}i∈[n]
α← AKeyGen(msk,·),Enc(·,·,·) (mpk)
Output: α.

Enc
(
i, (xj,bi)b∈{0,1}

)
:

si ←r Zkp, ci := Aisi

c′i :=

(
xj,0i
zi

)
+ UiAisi, c′i :=

(
xj,1i
zi

)
+ UiAisi

ctini :=

(
ci
c′i

)
c′′i :=

(
ci
c′i

)>
Vi

Return cti := ([ci]1, [c
′
i]1, [c

′′
i]1)

KeyGen
(
msk, (yj,b1 ‖ · · · ‖yj,bn)b∈{0,1}

)
:

rj ←r Zkp, z := 〈z1 + · · ·+ zn, r
j〉

∀i ∈ [n] : ti ←r Zkp, di := Biti

d′i :=

−U
>
i

(
yj,0i
rj

)
(
yj,0i
rj

)
+ ViBiti, If j < ρ: d′i :=

−U
>
i

(
yj,1i
rj

)
(
yj,1i
rj

)
+ ViBiti

return
(
{[di]2, [d′i]2}i∈[n], [z]T

)

Fig. 16. G0, G1.ρ for ρ ∈ [Qf + 1], for the proof of . In each procedure, the components inside a solid (dotted) frame
are only present in the games marked by a solid (dotted) frame.

Acknowledgments

Michel Abdalla is supported in part by SAFEcrypto (H2020 ICT-644729). The research of Dario
Fiore is partially supported by the European Union’s Horizon 2020 Research and Innovation Pro-
gramme under grant agreement 688722 (NEXTLEAP), the Spanish Ministry of Economy under
project references TIN2015-70713-R (DEDETIS), RTC-2016-4930-7 (DataMantium), and under a
Juan de la Cierva fellowship to Dario Fiore, and by the Madrid Regional Government under project
N-Greens (ref. S2013/ICE-2731). Romain Gay is partly supported by a Google PhD Fellowship in
Privacy and Security, and by the ERC Project aSCEND (H2020 639554). Bogdan Ursu is partially
supported by ANR-14-CE28-0003 (Project EnBiD).

34

Hρ, Hρ.β , H′ρ.β , H′′ρ.β for ρ ∈ [Qf + 1] and β ∈ {0, 1}:

PG ←r GGen(1λ),A1,B1, . . . ,An,Bn ←r Dk, U1, . . . ,Un,←r Z(k+m)×(k+1)
p , V1, . . . ,Vn,←r Z(2k+m+1)×(k+1)

p

z1, . . . , zn ←r Zkp
∀i ∈ [n] : ui ←r Zk+1

p \ span(Bi), b
⊥
i ←r orth(Bi) s.t. 〈ui, b⊥i 〉 = 1

z̃1, . . . , z̃n ←r Zp
mpk := PG
msk := {Ai,Bi,Ui,Vi,zi}i∈[n]
α← AKeyGen(msk,·),Enc(·,·,·) (mpk)
Output: α.

Enc
(
i, (xj,bi)b∈{0,1}

)
:

si ←r Zkp, ci := Aisi

c′i :=

(
xj,1i
zi

)
+ UiAisi

c′′i :=

(
ci
c′i

)>
Vi + 〈zi, rρ〉 · (b⊥i)> , c′′i :=

(
ci
c′i

)>
Vi + z̃i · (b⊥i)>

Return ctji := ([ci]1, [c
′
i]1, [c

′′
i]1)

KeyGen
(
msk, (yj,b1 ‖ · · · ‖yj,bn)b∈{0,1}

)
:

If j < ρ:

rj ←r Zkp, z := 〈z1 + · · ·+ zn, r
j〉

∀i ∈ [n] : ti ←r Zkp, di := Biti

d′i :=

−U
>
i

(
yj,1i
rj

)
(
yj,1i
rj

)
+ Vidi

If j > ρ:

rj ←r Zkp, z := 〈z1 + · · ·+ zn, r
j〉

∀i ∈ [n] : ti ←r Zkp, di := Biti

d′i :=

−U
>
i

(
yj,0i
rj

)
(
yj,0i
rj

)
+ Vidi

If j = ρ:

rρ ←r Zkp, z := 〈z1 + · · ·+ zn, r
ρ〉 , z :=

∑
i∈[n] z̃i

∀i ∈ [n] : ti ←r Zkp, di := Biti + ui

d′i :=

−U
>
i

(
yρ,0i
rρ

)
(
yρ,0i
rρ

)
+ Vidi, d′i :=

−U
>
i

(
yρ,βi
rρ

)
(
yρ,βi
rρ

)
+ Vidi , d′i :=

−U
>
i

(
yρ,βi
0

)
(
yρ,βi
0

)
+ Vidi

Return
(
{[di]2, [d′i]2}i∈[n], [z]T

)

Fig. 17. Hρ, Hρ.β , H′ρ.β , H′′ρ.β for ρ ∈ [Qf + 1] and β ∈ {0, 1}, for the proof of Lemma 13. In each procedure, the
components inside a solid (dotted, gray) frame are only present in the games marked by a solid (dotted, gray) frame.

References

1. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple functional encryption schemes
for inner products. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 733–751. Springer,
Heidelberg, March / April 2015. (Pages 2 and 3.)

35

2. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Better security for functional encryption
for inner product evaluations. Cryptology ePrint Archive, Report 2016/011, 2016. http://eprint.iacr.org/

2016/011. (Pages 2 and 3.)
3. Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-input inner-product functional en-

cryption from pairings. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I,
volume 10210 of LNCS, pages 601–626. Springer, Heidelberg, May 2017. (Pages 1, 2, 3, 4, 6, 12, 13, 14, 15, 16,
18, 21, 22, 23, 29, 30, 31, 39, and 40.)

4. Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption: New
perspectives and lower bounds. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 500–518. Springer, Heidelberg, August 2013. (Page 5.)

5. Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional encryption for inner products, from
standard assumptions. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816
of LNCS, pages 333–362. Springer, Heidelberg, August 2016. (Pages 2, 3, 12, 13, 18, 19, 20, and 29.)

6. Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact functional encryption.
In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages
308–326. Springer, Heidelberg, August 2015. (Page 1.)

7. Saikrishna Badrinarayanan, Divya Gupta, Abhishek Jain, and Amit Sahai. Multi-input functional encryption
for unbounded arity functions. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume
9452 of LNCS, pages 27–51. Springer, Heidelberg, November / December 2015. (Page 1.)

8. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In Yuval Ishai,
editor, TCC 2011, volume 6597 of LNCS, pages 253–273. Springer, Heidelberg, March 2011. (Page 1.)

9. Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input functional encryption in the private-key set-
ting: Stronger security from weaker assumptions. In Marc Fischlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part II, volume 9666 of LNCS, pages 852–880. Springer, Heidelberg, May 2016. (Page 1.)

10. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic framework for Diffie-
Hellman assumptions. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of
LNCS, pages 129–147. Springer, Heidelberg, August 2013. (Pages 2, 9, and 10.)

11. Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao Liu, Amit Sahai,
Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In Phong Q. Nguyen and Elisabeth
Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 578–602. Springer, Heidelberg, May 2014.
(Pages 1 and 5.)

12. Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 599–629. Springer,
Heidelberg, August 2017. (Pages 3, 4, 21, and 22.)

13. Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-like assumptions on constant-
degree graded encodings. In Irit Dinur, editor, 57th FOCS, pages 11–20. IEEE Computer Society Press, October
2016. (Pages 4, 8, 23, 30, and 38.)

14. Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556, 2010.
http://eprint.iacr.org/2010/556. (Page 1.)

15. Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg, May 2005. (Page 1.)

16. Hoeteck Wee. Attribute-hiding predicate encryption in bilinear groups, revisited. Theory of Cryptography Con-
ference (TCC), 2017, 2017. To appear. (Pages 3 and 22.)

A One-AD-SIM security of the MIFE

Here we give the definition of one-AD-SIM security for a multi-input functional encryption scheme.
Then we show that the MIFE described in Figure 2 satisfies this security notion, which implies the
weaker one-AD-IND security notion presented in Definition 3.

Definition 12 (one-AD-SIM-secure FE). A multi-input functional encryptionMIFE for func-

tion Fn is one-AD-SIM-secure if there exist PPT simulator algorithms (S̃etup, Ẽnc, K̃eyGen1, K̃eyGen2)
such that for every PPT (stateful) adversary A and every λ ∈ N, the following two distributions
are computationally indistinguishable:

36

http://eprint.iacr.org/2016/011
http://eprint.iacr.org/2016/011
http://eprint.iacr.org/2010/556

Experiment REALMIFEAD (1λ,A):

(mpk,msk)← Setup(1λ,Fn)
{xi}i∈[n] ← AKeyGen(msk,·)(mpk)

For all i ∈ [n], cti ← Enc(msk, i, xi)
α← AKeyGen(msk,·)(mpk, {cti}i∈[n])
Output: α

Experiment IDEALMIFEAD (1λ,A):

(m̃pk, m̃sk)← S̃etup(1λ,Fn)

{xi}i∈[n] ← AK̃eyGen1(m̃sk,·)(m̃pk)
Let f1, sk1, . . . , fQ, skQ be A’s oracle queries/answers
V ← {fj(x1, . . . , xn), fj , skj}j∈[Q]

For all i ∈ [n], cti ← Ẽnc(m̃sk, i,V)

α← AO(·)(m̃pk, {cti}i∈[n])
Output: α

The oracle O(·) in the ideal experiment above is given access to another oracle that, given f ∈ Fn,

returns f(x1, . . . , xn), and then O(·) returns K̃eyGen2(m̃sk, f, f(x1, . . . , x`)).
For every stateful adversary A,we define its advantage as

Advone-AD-SIM
MIFE,A (λ)

=
∣∣∣Pr
[
REALMIFEAD (1λ,A) = 1

]
− Pr

[
IDEALMIFEAD (1λ,A) = 1

]∣∣∣ ,
and we require that for every PPT A, there exists a negligible function negl such that for all

λ ∈ N, Advone-AD-SIM
FE,A (λ) = negl(λ).

Lemma 17. The MIFE described in Figure 2 is one-AD-SIM secure. Namely, for any adversary
A, Advone-AD-SIM

MIFE,A (λ) = 0.

Proof. We first prove perfect one-SEL-SIM security of the MIFE described in Figure 2, that is: for
all adversaries B, Advone-SEL-SIM

MIFE,B (λ) = 0.
Then, we use complexity leveraging to show the one-AD-SIM security (the proof appears slightly

below).

Perfect one-SEL-SIM security. Let us define the simulator algorithms as follows: S̃etup = Setup?,

Ẽnc(m̃sk, i) = Enc(mpki,ui), and K̃eyGen(m̃sk,y, aux) → sky :=
(
{ski}i∈[n], z

)
, where ski ←

KeyGen(mski,yi) for all i ∈ [n], and z :=
∑

i∈[n]〈ui,yi〉 − aux mod L.
Next, we use the fact that for all {xi ∈ Zm}i∈[`], the following distributions are identical:

{ui mod L}i∈[n] and {ui − xi mod L}i∈[n], with ui ←r ZmL . Note that the independence of the xi
from the ui is only true in the selective security game. Therefore, using this fact we can rewrite
the experiment REALMIFESEL (1λ,B) as HYB(1λ,B) in Figure 18. This hybrid is also identical to
the experiment IDEALMIFESEL (1λ,B) when executed with our simulator algorithms. In particular,

observe that the oracle OH corresponds to the oracle O(·) which returns K̃eyGen(m̃sk,y, 〈x,y〉) for
every queried y. Thus, we obtain: Advone-SEL-SIM

MIFE,B (λ) = 0.

Complexity leveraging. Let A be a PPT adversary. We now build an adversary B such that:
Advone-AD-SIM

MIFE,A (λ) ≤ Lnm · Advone-SEL-SIM
MIFE,B (λ).

As we have shown one-SEL-SIM security ofMIFE , we know there exist efficient simulator algo-

rithms (S̃etup, K̃eyGen, Ẽnc) for one-SEL-SIM security. We use them to build simulator algorithms

(S̃etup
′
, K̃eyGen1, K̃eyGen2, Ẽnc

′
) for one-AD-SIM security as follows:

37

HYB(1λ,B):

{xi}i∈[n] ← B(1λ,Fm,X,Y1)
For all i ∈ [n],

(mpki,mski)← Setup?(1λ,Fm,X,Y1 , 1n),
ui ←r ZmL

For all i ∈ [n],
cti ← Enc(mpki,ui mod L)

α← BOH (·)(mpk, {cti}i∈[`])
Output α

OH(y):

For all i ∈ [n],
ski ← KeyGen(mski,yi)

z :=
∑
i∈[n]〈ui,yi〉 − 〈x,y〉 mod L

sky :=
(
{ski}i∈[n], z

)
Return sky

Fig. 18. Experiment for the proof of Lemma 17.

– S̃etup
′

simply invokes (m̃pk, m̃sk) ←r S̃etup(1λ,Fm,X,Yn), samples x̃ ←r ZnmL and outputs

m̃sk
′
:= (x̃, m̃sk) and m̃pk

′
= m̃pk.

– K̃eyGen1(m̃sk
′
,y) outputs K̃eyGen(m̃sk,y, 〈x̃,y〉).

– K̃eyGen2(m̃sk
′
,y) = K̃eyGen(m̃sk,y, 〈x̃,y〉).

– Ẽnc
′
(m̃sk

′
, i,V) outputs Ẽnc(m̃sk, i).

Now we show how B simulates A’s view. First, B samples x̃ ←r ZmnL , which it sends to its

experiment, to get back m̃pk, and {cti}i∈[n]. When A asks for key queries for y ∈ Zmn before
sending its challenge {xi}i∈[n], B uses it own oracle O(y) which returns either KeyGen(msk,y) (if

B is playing against the real experiment), or K̃eyGen(m̃sk,y, 〈x̃,y〉), if B is playing against the
ideal experiment. B forwards the output to A. Then, A sends it challenge {xi}i∈[n]. B checks that
x mod L = x̃. If this is not the case, B outputs α = 0, and the experiment it is playing against
will simply output α = 0. Otherwise, B sends {cti}i∈[n] to A and keeps on simulating A’s view.
Whenever A asks for a secret key query y, B forwards the answer O(y) from its own oracle.

Note that when x̃ = x mod L, Pr
[
IDEALMIFESEL (1λ,B) = 1

]
= Pr

[
IDEALMIFEAD (1λ,A) = 1

]
,

and Pr
[
REALMIFESEL (1λ,B) = 1

]
= Pr

[
REALMIFEAD (1λ,A) = 1

]
. Since for all x ∈ ZnmL , the prob-

ability of a successful guess x̃←r ZnmL is L−mn, we have

Advone-AD-SIM
MIFE,A (λ) ≤ Lnm · Advone-SEL-SIM

MIFE,B (λ).

ut

B From Weak to Full Function-Hiding

In [13], the authors propose a simple transformation for turning a weak function-hiding FE scheme
into a full-fledged function hiding one. In this section, we show that the same transformation is
applicable in the multi-input case. For brevity, we use xi‖0 to denote that xi ∈ Zmp is padded with
m trailing zero. The new scheme consists in using the originalMIFE scheme to encrypt x′i = xi‖0
instead of xi, for every slot i ∈ [n]. Likewise, instead of generating keys for y = y1‖ . . . ‖yn, the keys
will be generated for y′ = (y1‖0)‖ . . . ‖(yn‖0). This does not change the result of the decryption,
since: ∑

i

〈xi‖0,yi‖0〉 =
∑
i

〈xi,yi〉.

38

Security is justified via a hybrid argument over Games 0 to 3. For every i ∈ {0, 1, 2}, the
advantage of an adversary A distinguishing between Gamei and Gamei+1 is negligible based on the
weak function-hiding security property. More precisely, we have the following transitions:

Game x′i y′i justification/remark

0 x0
i ‖0 y0

i ‖0 many-zzz-FH0 security game, zzz ∈{SEL, AD}

1 x0
i ‖x1

i 0‖y1
i weak function-hiding of the underlying scheme

2 x1
i ‖x1

i y1
i ‖0 weak function-hiding of the underlying scheme

3 x1
i ‖0 y1

i ‖0
weak function-hiding of the underlying scheme

many-zzz-FH1 security game, zzz ∈{SEL, AD}

Fig. 19. Sequence of games for transforming a weak multi-input function-hiding inner-product encryption scheme
into a full function-hiding one.

Notice that for every i ∈ {0, 1, 2}, Gamei can be argued computationally indistinguishable from
Gamei+1 based only on the weak function-hiding property. For example, for Game0 and Game1,
〈x′0,y′0〉 = 〈x′1,y′0〉 = 〈x′1,y′1〉, which implies that Game0 and Game1 are computationally
indistinguishable only due to the weak function-hiding of the underlying scheme. Applying the
same argument for i ∈ {1, 2}, we get that the scheme using paddings is fully function-hiding.

C Appendix - Adaptive (Non-Function-Hiding) Multi-Input Scheme

In this section we recall the adaptively-secure multi-input encryption scheme from [3], where it was
proven to be many-AD-IND-secure. This ensures that encryptions of xj,0i are indistinguishable from

encryptions of xj,1i , for all slots i ∈ [n], and queries j ∈ [Qi] (in the presence of the constraints from
Definition 3, which avoid trivial attacks). Nevertheless, the scheme is not function hiding, since the
y values are encoded directly in the exponent (in Zp). In order to prove the many-AD-FH security
of our new scheme (see Figure 14), we will need to use the following result, proven in [3]:

Theorem 5 (many-AD-IND security). Suppose the Dk-MDDH assumption holds in G1 and
G2. Then, the multi-input FE in Figure 20 is one-AD-IND-secure.

39

Setup(1λ,Fm,X,Yn):

PG ←r GGen(1λ)
A1 . . . ,An ←r Dk
U1, . . . ,Un ←r Z(k+m)×(k+1)

p

z1, . . . , zn ←r Zkp
mpk := PG
msk := {Ai,Ui,zi}i∈[n]
return (mpk,msk)

Dec
((
{[ski]2}i∈[n], [z]T

)
, {[ci]1, [c′i]1}i∈[n]

)
:

out←

(∏
i e

([
ci
c′i

]>
1

, [ski]2

))
/[z]T

return discrete log of out

KeyGen(msk,y1‖ · · · ‖yn ∈ (Zmp)n):

r ←r Zkp, z := 〈z1 + · · ·+ zn, r〉
∀i ∈ [n] : ti ←r Zkp

ski :=

−U
>
i

(
yi
r

)
(
yi
r

)


return
(
{[ski]2}i∈[n], [z]T

)
Enc(msk, i,xi ∈ Zmp):

si ←r Zkp, ci := Aisi

c′i :=

(
xi
zi

)
+ UiAisi

return ([ci]1, [c
′
i]1)

Fig. 20. Many-AD-IND secure, private-key, multi-input FE scheme for the class Fm,X,Yn (self-contained description
from [3]).

40

	Introduction
	Preliminaries
	From Single to Multi-Input FE for Inner Product
	Concrete instances of FE for Inner Product
	Function-Hiding Multi-Input FE for Inner Product
	Acknowledgments
	One-AD-SIM security of the MIFE
	From Weak to Full Function-Hiding
	Appendix - Adaptive (Non-Function-Hiding) Multi-Input Scheme

