
Obscuro: A Bitcoin Mixer using Trusted
Execution Environments

Muoi Tran1, Loi Luu2, Min Suk Kang1, Iddo Bentov3, and Prateek Saxena1

1 National University of Singapore
2 Kyber Network

3 Cornell University

Abstract. Bitcoin provides only pseudo-anonymous transactions, which
can be exploited to link payers and payees – defeating the goal of anony-
mous payments. To thwart such attacks, several Bitcoin mixers have been
proposed, with the objective of providing unlinkability between payers
and payees. However, existing Bitcoin mixers can be regarded as either
insecure or inefficient.
We present Obscuro, a highly efficient and secure Bitcoin mixer that
utilizes trusted execution environments (TEEs). With the TEE’s confi-
dentiality and integrity guarantees for code and data, our mixer design
ensures the correct mixing operations and the protection of sensitive data
(i.e., private keys and mixing logs), ruling out coin theft and address
linking attacks by a malicious service provider. Yet, the TEE-based im-
plementation does not prevent the manipulation of inputs (e.g., deposit
submissions, blockchain feeds) to the mixer, hence Obscuro is designed
to overcome such limitations: it (1) offers an indirect deposit mecha-
nism to prevent a malicious service provider from rejecting benign user
deposits; and (2) scrutinizes blockchain feeds to prevent deposits from
being mixed more than once (thus degrading anonymity) while being
eclipsed from the main blockchain branch. In addition, Obscuro pro-
vides several unique anonymity features (e.g., minimum mixing set size
guarantee, resistant to dropping user deposits) that are not available in
existing centralized and decentralized mixers.
Our prototype of Obscuro is built using Intel SGX and we demonstrate
its effectiveness in Bitcoin Testnet. Our implementation mixes 1000 in-
puts in just 6.49 seconds, which vastly outperforms all of the existing
decentralized mixers.

1 Introduction

Bitcoin is the first widely-adopted cryptocurrency that allows users to transact
digital coins without relying on any centralized, trusted party [36]. It allows users
to have pseudonymous identities called Bitcoin addresses, which are generated
from their public keys. Users send coins by creating transactions that include one
or more inputs (i.e., references to outputs of previous transactions) and outputs
(i.e., addresses and credits that go to these addresses).



2 M. Tran et al.

Although each Bitcoin user can stay pseudo-anonymous by generating mul-
tiple cryptographic addresses that are used to receive funds, the users’ transac-
tion records are publicly available on the blockchain. In other words, Bitcoin’s
pseudo-anonymity can be regarded as publishing everyone’s credit card state-
ments, with the names redacted but the “account numbers” (i.e., cryptographic
addresses) and payment amounts visible. Since all the Bitcoin transactions can
always be linked (i.e., referenced) back to one or more previous transactions,
the privacy of Bitcoin users can be violated by an adversary who is able to
track the flow of bitcoins being transferred and further cluster Bitcoin addresses
together [7, 29,30,35,38,40,49].

Transaction traceability may be useful under some circumstances (e.g., track-
ing criminal activities); however, Bitcoin allows anyone to examine users trans-
action history (e.g., their incomes and spending habits), which may lead to
large-scale privacy invasion or surveillance. Furthermore, Bitcoin’s traceability
is considered to be harmful to its fungibility because the coins in circulation can
be considered tainted to certain degrees (see [39] for a well-known legal case).

Improving Bitcoin anonymity using mixers. In the past few years, there
have been several proposals that aim to provide better privacy for Bitcoin users
using Bitcoin mixers. These mixers take coins from multiple senders and output
the coins to determined recipients in a shuffled order. Since all the recipients
have the equal probability of being transacting with a given sender, it is difficult
to identify which sending address is actually linked to which receiving address.

Unfortunately, existing Bitcoin mixers are either known to be vulnerable to
a number of attacks that can be launched by malicious mixer service providers,
or inefficient due to prohibitive algorithmic/communication overhead for large
(e.g. hundreds or thousands) mixing set sizes. In general, some mixers require
users to send coins to a centralized service and thus a malicious service provider
can leak the links between senders and recipients, steal the coins or subtly reject
some honest users from participating to reduce anonymity set (see Section 7 for
how Mixcoin [14], BlindCoin [51] and TumbleBit [18] are vulnerable to these
attacks). Alternatively, there are several decentralized Bitcoin mixing protocols
that operate with individual peers [12,26,42,43,57]. However, decentralized mix-
ers demonstrate limited scalability (e.g., only mix among 50 peers [26, 42, 43]),
suffer from long waiting times for finding other mixing parties [12], or assume an
unrealistic fraction of honest mixing parties (e.g., 2/3 of parties are honest [57]).

Our contributions. As a new design point in the space of Bitcoin mixers, we
propose a centralized mixing system called Obscuro, which can swiftly mix a
thousand users while offering strong security and anonymity guarantees against
malicious mixer service providers, which have not been achieved by any existing
mixers.

Obscuro utilizes modern hardware-based trusted execution environments
(TEEs) to protect its mixing operations from a potentially malicious mixer ser-



Obscuro: A Bitcoin Mixer using Trusted Execution Environments 3

vice provider.4 Specifically, Obscuro (1) isolates its execution in a special mem-
ory region and prevents a malicious service provider from stealing users’ deposits
or leaking transaction links; (2) allows users to verify the correct mixing oper-
ations before they deposit their coins; and (3) maintains a TEE-based simple
protocol architecture so that its mixing set size is limited only by the inherent
Bitcoin block size. Obscuro has a generic design that is compatible with various
trusted execution environment techniques.

Moreover, Obscuro addresses a new family of attacks that aim to weaken
the anonymity guarantees of the mixer. Specifically, a malicious service provider
may block connections between some users and the mixing service to effectively
reduce the anonymity set. Also, a malicious provider can manipulate the Bitcoin
blocks fed to the mixer and create blockchain forks to make the anonymity set re-
duction attack invisible to users; see Section 2.2 for detailed attack strategies. To
handle these attacks, Obscuro removes all direct network interactions between
users and the mixer platform and guarantees benign users’ participation. Also,
Obscuro employs a stateless design and malicious blockchain fork detection.

We implement Obscuro using a recent trusted computing capability called
Intel SGX [6,27]. The Obscuro prototype demonstrates its effectiveness in terms
of mixing times for various sizes of anonymity sets on both Bitcoin Regtest and
Bitcoin Testnet. For example, Obscuro takes only 6.49 seconds to mix 1000
transactions, showing that Obscuro is efficient and ready to be deployed in
practice.

2 Problem Definition

2.1 Preliminaries

Cryptography primitives. We denote π(x1, x2, · · · , xn)← (x1, x2, · · · , xn) as
a permutation function which returns a random permutation of set (x1, x2, · · · , xn).
We utilize a digital signature DS consisting of three algorithms as follow: (addr, skDS)←
DS.GenKey() is a key generation algorithm which generates a public key (cor-
respond to a Bitcoin address addr) and a secret key skDS associates with it,
σ ← DS.Sign(skDS,m) is an algorithm which signs a message m using the secret
key skDS, and {0, 1} ← DS.Verify(addr,m, σ) can be used to verify if the sig-
nature σ is correct on message m associated with the address addr. We also
include public key encryption PE which includes three following algorithms:
(pk, skPE)← PE.GenKey() generates a public and secret key pair, δ ← PE.Enc(pk,m)
denotes the encrypting message m using public key pk, and m← PE.Dec(δ, skPE)
returns message m in plaintext after decrypting δ using secret key skPE.
Mixing operations. Let us call a sender Alice and a recipient Bob. Alice,
with the address addrA participates in a mixing round by sending a denomina-
tion of deposit, along with Bob’s withdrawal address addrB, to the mixer. After

4 For simplicity, we assume that a mixer service provider runs its mixer software on
its local machine. If a service provider outsources the mixer software to a cloud
infrastructure, our threat model includes the infrastructure as well.



4 M. Tran et al.

receiving n deposit transactions (tx1, tx2, · · · , txn) from senders with addresses
(addrA1 , addrA2 , · · · , addrAn), the mixer permutes the corresponding recipient ad-
dresses, i.e., π(addrB1 , addrB2 , · · · , addrBn) and returns coins to these addresses
in that order. The final transaction TX written into the public blockchain con-
tains the list of deposit transactions (tx1, tx2, · · · , txn) as inputs and the shuffled
recipient address list π(addrB1 , addrB2 , · · · , addrBn) as outputs.
Privacy Definition. The purpose of a mixer is to provide relationship anonymity
between any sender and recipient pair, as we define as follows [37]:

Definition 1. Relationship anonymity of a sender address addrA and a recipi-
ent address addrB means that an outsider (i.e., being neither the sender nor the
recipient) cannot distinguish whether the owners of these addresses are transact-
ing through the mixer or not. In other words, addrA and addrB are unlinkable.

2.2 Threat Model

We consider a strong adversary (e.g., a malicious mixing service provider) that
controls the mixer operations as well as the underlying privileged software run-
ning on the hosting platform (e.g., operating system (OS)). Since the adversary
can access any system resource of the mixer, she can actively modify or drop any
message received by or sent from the mixer platform. Moreover, the adversary
can observe all the transactions on the public blockchain. We also assume the
adversary can make deposits under her control (or Sybil deposits).

We consider three types of attacks against Bitcoin mixers:
Coin stealing attacks. An adversary steals user-submitted coins. The adver-
sary may trick participants to submit coins to adversary’s address or obtain the
secret key skM associated with the mixer’s address addrM.
Availability attacks. An adversary prevents some or all participants from using
a mixing service. The adversary may disrupt a sender’s access to the mixer or
the mixer’s access to the blockchain (i.e., the mixer cannot return coins to the
intended recipient).
Anonymity attacks. An adversary aims to identify the recipient address addrB
of a benign recipient Bob who is transacting with a begin sender Alice (who owns
addrA) through a mixer, i.e., break the relationship anonymity between addrB and
addrA (see Definition 1). When the adversary has access to the permutation π,
de-anonymization is trivial. Without access to π, the adversary has to guess
the correct recipient address within the anonymity set—i.e., the set of all be-
nign recipient addresses.5 Here, we present two attack strategies to reduce the
anonymity set size:

1. Participation rejection. The adversary rejects deposits from any arbitrary
benign senders to perform a mixing operation only with a few targeted be-
nign deposits and some adversary-created deposits, effectively reducing the

5 The anonymity set is defined over the recipient addresses of a mixing round. The
same for the sender addresses can be defined and their set sizes are equivalent for a
given mixing round.



Obscuro: A Bitcoin Mixer using Trusted Execution Environments 5

anonymity set. In the extreme case, only one benign deposit can be included
and its sender/recipient addresses are immediately linked.

2. Blockchain forking. By allowing indirect deposit submission via the Bit-
coin blockchain (see Section 3.3 for details), Obscuro prevents anonymity
set reduction in the valid blockchain; however, adversaries may still reduce
anonymity set in a stale chain. To be specific, the adversary can feed the
two different blockchain feeds—a stale chain and valid chain—to the mixer
to have it mix twice with the two feeds. The stale chain is an adversary-
generated one that contains only selected user deposits (thus reducing anonymity
set) whereas the valid chain has all the user-submitted deposits. This attack
makes the anonymity set reduction invisible to users. Two attack strate-
gies are available: (1) the adversary can directly tamper with the blockchain
data stored on the mixer platform, or (2) the adversary can feed a stale chain
and a valid chain to the mixer sequentially so that the stale one becomes
naturally abandoned thus invisible later.

2.3 Scope, Assumptions, and Limitations

Direct attacks against the confidentiality properties of TEE platforms are beyond
the scope of this work. Particularly, we acknowledge that several side-channel
attacks against Intel SGX have been discovered and also mitigations have been
actively studied in the last few years [23,33,45–47,53].

We assume that the mixer implementation has no malware or backdoor in-
serted by the mixer operator. The full implementation of the mixer (about ad-
ditional 2.4K source lines of code (SLoC) to the trusted computing base; see
Section 5.2) is open-sourced and available for public scrutiny. We leave a formal
verification of our implementation for future work.

Similarly to all the centralized mixing services, our mixer proposal is suscep-
tible to denial-of-service (DoS) attacks on the mixer’s platform (though users
will never lose their funds, due to a refund mechanism). Direct defenses to such
attacks are out of scope.

We aim to provide anonymity for users in a single mixing round but do
not offer special logic for better anonymity across multiple mixing rounds; e.g.,
intersection attacks [16,17,22,32].

Moreover, we do not aim to address an exceedingly powerful adversary that
can arbitrarily control the transactions of the public blockchain (e.g., via owning
or colluding with a large fraction of miners).

3 Obscuro

3.1 Solution Overview

Obscuro maintains a simple centralized mixer architecture and protocol—that
is, senders submit deposits to a single address of a mixer and then the funds
are sent to the shuffled recipient addresses. Obscuro can be robust against all
the three types of attacks while maintaining such simple mixing operations be-
cause it utilizes the confidentiality and integrity guarantees of trusted execution



6 M. Tran et al.

environments (TEE). Hardware-based TEEs (such as Intel SGX [6, 27], ARM
TrustZone [8]) provide isolated execution (i.e., the mixer execution is isolated
from all other operations in the platform including privileged software such as
OS) and remote attestation (i.e., a third party can verify the correctness of the
mixer’s operations) properties [56]. The TEE-protected mixer design prevents
adversaries from stealing participant’s coins because users can verify the mixer’s
address addrM via remote attestation and the secret key skM of the mixer is pro-
tected within TEE. Also, Obscuro does not leak the permutation π because the
shuffling operations are executed in the isolated TEE region and not accessible
to adversaries. In addition, for higher availability, Obscuro has a refund mech-
anism which is written in a simple script in the deposit transaction tx, allowing
senders to claim back the sent coins when mixing service is being denied.

Although being powerful enough to rule out the coin stealing and availability
attacks, TEE’s confidentiality and integrity guarantees alone do not necessar-
ily address the two anonymity reduction attacks (i.e., participation rejection
and blockchain forking attacks) because these attacks involve the blockchain in-
puts manipulated outside of the TEE’s protection. The participation rejection
attack drops some user deposits before the TEE-based mixer reads them, and
the blockchain forking attack presents an adversary-generated stale block to the
mixer. First, to handle the participation rejection attacks, we propose an indi-
rect participation mechanism, which enables any user to participate in a mixing
round without direct interaction with the mixer. As we remove any direct in-
teraction between users and the mixer, the adversary cannot reduce anonymity
set by disrupting their interactions with the mixer. Second, Obscuro avoids
mixing user deposits twice in a stale chain and the valid chain by protecting the
received blockchain data within TEE and ensuring any deposit transaction will
contribute in at most one mixing round.

3.2 Obscuro Protocol

We describe the architecture of Obscuro using Intel SGX [6,27] capabilities in
Figure 1. An application implemented in the SGX programming model includes
two types of components: (1) trusted components that are loaded and executed
inside an SGX enclave, a special memory region that is isolated from the un-
trusted functions including privileged software (e.g., OS), and (2) untrusted com-
ponents that operate as a non-SGX application outside of the enclave boundary.
While the code inside an enclave is able to read/write the application memory
outside of the enclave as well as the enclave data in its unencrypted form, the
non-enclave code (e.g., the OS) cannot access the enclave’s memory. At a high
level, Obscuro protocol has four phases as follows:

1. Bootstrapping and remote attestation. Obscuro starts its execution in TEE,
generates keys, and publishes its identities (i.e., Bitcoin address and public
key) so that users can verify them remotely.

2. Participation via blockchain. Users participate in a mixing round by submit-
ting deposit transactions to the mixer’s address. A transaction includes an
encrypted recipient’s address and a refund script.



Obscuro: A Bitcoin Mixer using Trusted Execution Environments 7

Verify 
deposits

Untrusted 
components

SGX Enclave

Obscuro

Create enclave Generate keys

Publish 
attestation report 
and mixer identity

Forward block 
data

blocks

Create mixed 
transaction

verified!"

#$%&', #$%)*

Forward mixed 
transaction

+,

Public 
bulletin 
boards

Intel 
Attestation 

Service

-../%,
0$%Validation 

results !"User
Bitcoin 

network
blocks

+,

Trusted 
components

Mixer platform

Legend:
Attestation 
report

(o
pt
io
na

l)

(o
pt
io
na

l)
+

-..
/%,

0$ %

-../%,
0$%+

+

Fig. 1: The Obscuro architecture. Components in the green background are trusted,
while the ones in the gray background are untrusted. The adversary controls compo-
nents in the red stripe background.

3. Deposit verification. Obscuro downloads the blockchain data, extracts the
deposit transactions, and decrypts the attached recipient addresses. Ob-
scuro also checks if the collected deposits have been mixed in another
blockchain fork to prevent blockchain tampering attacks.

4. Mixing and returning coins. Obscuro follows a set of rules to determine
when a mixing round starts and then executes the mixing operations men-
tioned in Section 2.1.

We discuss the details of the first two phases, which realize our indirect par-
ticipation mechanism against the participation rejection attacks, in Section 3.3.
The mitigations for the blockchain forking attacks are presented in Section 3.4.
Section 3.5 presents a set of parameters and rules for practical mixing operations
of Obscuro.

3.3 Indirect Participation Mechanism

All-or-none availability for Obscuro’s identity. We ensure that either all
or none of the benign users can obtain the identity of Obscuro (i.e., pkM and
addrM) to participate a mixing round via the remote attestation process as fol-
lows.

1. An initiator first begins the remote attestation of the Obscuro instance.
Ideally, any person or organization can be the initiator of a remote attes-
tation.6 When an Obscuro instance has been launched in a newly created
SGX enclave, Obscuro involves DS.GenKey() and PE.GenKey() to generate
fresh (addrM, sk

DS
M ) and (pkM, sk

PE
M ), respectively.

2. Next, the enclave provides an attestation report, which is cryptographically
signed by the attestation key of the SGX hardware. The attestation report

6 Intel suggests that the service provider of the SGX application to be the initiator [21].



8 M. Tran et al.

contains the hash of the enclave’s initial contents (i.e., the measurement
of the application instance) and the hash of some manifest data computed
inside the enclave. The manifest data includes the pkM and addrM and is sent
along with the attestation report.

3. The attestation report and the manifest data are then distributed by the ini-
tiator through some public bulletin boards (e.g., IPFS [2], public blockchains).

4. Finally, users may forward the attestation report to the Intel Attestation
Service (IAS) [21] to verify the report and the manifest data. Note, however,
that the interaction with the IAS is optional for most of the users since any
user or a third party can distribute the attestation validation result from the
IAS so that users can verify the attestation report by themselves [19].

Deposit Submission via Blockchain. Obscuro allows users to participate
in a mixing round indirectly by embedding the participation information to the
deposit transaction written on the public blockchain. In particular, a recipi-
ent (say Bob) chooses the recipient address addrB, encrypts it with the pkM of
Obscuro (i.e., δ ← PE.Enc(pkM, addrB)), and then forwards δ to a sender (say
Alice). Next, Alice constructs the deposit transaction tx that follows the prede-
fined format shown in the Appendix A. The encrypted address δ is included in
the OP RETURN field (which can carry up to 80 bytes) of the deposit transaction.
The encryption must be CCA secure because the ciphertexts will be available on
the blockchain and adversaries can modify and submit them to the oracle (i.e.,
the mixer); see Section 5 for details.

We also utilize the opcode OP CHECKLOCKTIMEVERIFY, which allows the mixer
to spend the deposit, and allows the user to claim back the deposit after a locked
time (if it has not been spent yet). Alice then broadcasts the deposit transaction
tx to the Bitcoin network.

3.4 Detection of Malicious Blockchain Forks

Obscuro detects malicious blockchain forks by employing the following design
policies. First, Obscuro does not store blockchain data outside of the protected
TEE, hence prevents an adversary from directly tampering with the blockchain
data stored on the mixer platform. Note that sealed storage [6] cannot be used
to store the blockchain data securely because the adversary can roll back the
state of the sealed storage [25,50]. Second, to prevent an adversary from loading
different blockchain data to different Obscuro instances, Obscuro generates
and uses a new address to receive deposits for every instance (see Section 5.2),
ensuring that each deposit is mixed on only one blockchain. Third, Obscuro
checks the received blockchain data to see if: (1) the blockchain contains forks;
(2) there is a deposit transaction appears on one or more forks; and (3) the
deposit transaction has been mixed before. If all the conditions are met, we
consider it as an attempt to tamper with the blockchain fed to Obscuro. Then
Obscuro abandons its current address, generates new keys, and starts a new
mixing round.



Obscuro: A Bitcoin Mixer using Trusted Execution Environments 9

...

N"#$
(e.g.,	430	transactions)

N"%&
(e.g.,	50	transactions)

Obscuro

mix	after 𝐵(#%)

never	mix

𝐵(#%) (e.g.,	100	blocks)

𝐵*+&,%-" (e.g.,	2	blocks)
Legend

Obscuro deposit

non-Obscuro
deposit

Scanning
deposits

Skipping
unconfirmed	

deposits

deposit	pool mixing	policy:	
mix	immediately

blockchain

Fig. 2: Obscuro’s mixing policy.

3.5 Collecting Deposits

To specify precisely how the deposits should be collected and when a mixing
operation is executed, we introduce four system parameters: Nmin, Nmax, Bwait, and
Bconfirm. In Figure 2, we illustrate how these parameters are used to determine
the mixing set for each round. In particular, Obscuro continuously monitors
the blockchain and collects deposits from the maximum Bwait blocks (excluding
the Bconfirm most recent blocks) since its last mixing operation, to be maintained
in the deposit pool. Obscuro decides whether to mix the deposits in the pool
based on the size of the pool and the number of blocks since the last mixing
operation as follows.

1. If there are less than Nmin deposits in the pool after scanning Bwait blocks
(since the last mix operation), no mixing is done and the deposits are re-
funded.

2. When the pool reaches Nmax deposits, the mixer immediately starts mixing
with the Nmax deposits.

3. If there exist at least Nmin deposits after reaching Bwait blocks since the last
mix operation, the mixer performs the mix with all the available deposits.

The practical value of Bwait can be the locked time of the deposits (plus the few
Bconfirm blocks for confirmation), so that the user can get refunded immediately
in the case that her deposit is not mixed. Nmax denotes the maximum capacity
of participants in a mixing round due to the underlying blockchain’s constraints
(e.g., maximum transaction size). Having a minimum mixing set size parameter
Nmin is desirable since it provides a lower bound on the quality of the mix. This
assures the users an in-protocol guarantee regarding the mixing set size even
before they send coins to the mixer, which is not supported by any centralized
mixers. Since Obscuro may finish a mixing round within 2 blocks, we use the
block confirmation parameter Bconfirm to prevent it from strictly abandoning its
address whenever there is an orphaned fork on the main blockchain.



10 M. Tran et al.

4 Security Analysis

In this section, we present how Obscuro is secure against coin stealing, avail-
ability, and anonymity attacks described in our threat model (see Section 2.2).
We assume that all the cryptographic primitives used are secure.
Coin stealing attacks. With the execution isolation guarantee of TEE, an
adversary cannot access to the mixer’s secret keys and thus cannot steal the
user-submitted coins. Moreover, an untrusted service provider or bulletin board
also cannot trick participants to deposit coins to a wrong address because any
tampering with pkM, addrM, or the attestation report will lead to a failed verifi-
cation by the IAS (see Section 3.3).
Availability attacks. Since the mixing operations are executed within the
protected TEE, we ensure that Obscuro returns coins to the recipient addresses
at the end of each mixing round. If the mixer transaction is not submitted to the
Bitcoin network, the senders can get their coins back after a determined period
thanks to the refund script in the deposit transaction. Thus, the user-submitted
coins are always available to be withdrawn from Obscuro.
Anonymity attacks. We remark that the permutation is performed within a
TEE which is not accessible to the adversary. However, with the capability of
manipulating the inputs of the mixer, an adversary can reject some benign users
by either (1) selectively disclosing the mixer’s identity (i.e., addrM and pkM)
to only an arbitrary set of benign users; or (2) selectively accepting only some
benign users’ deposit submissions.7 Our Obscuro design removes these adver-
sary’s capabilities. First, Obscuro’s all-or-none availability mechanism makes it
extremely hard for an adversary to selectively prevent benign users from learning
the identity of the mixer unless she controls all the public bulletin boards the
users can use, which is practically impossible. Second, Obscuro’s blockchain-
based deposit submission requires an adversary to own (or collude with) a signif-
icant portion of Bitcoin mining power to prevent arbitrary benign deposits from
being accepted by Obscuro on the main blockchain, which is also impractical.

We now show that the blockchain forking attack is also ineffective. First,
an adversary cannot directly tamper with the blockchain data that Obscuro is
processing since Obscuro does not store it outside TEE and data within TEE is
protected with integrity guarantee. If an adversary restarts Obscuro and feeds
a blockchain to it, Obscuro will not be able to collect the deposits from that
blockchain because its secret keys are destroyed when the previous execution is
terminated. Similarly, because the Obscuro uses a new address to receive coins
when it detects malicious blockchain forks, any deposit transaction will be used
to mix at most once, regardless on a local branch or the main branch of the
blockchain. In both attack attempts, the adversary may break the unlinkability
of some senders and their recipients in the fake blockchain; however, the recipient
addresses will never be used in the main blockchain. Instead, the affected users
will get their deposits back via our refund mechanism.

7 Note that rejecting individual users can be also considered as an availability attack;
however, its ultimate attack goal is to reduce anonymity set.



Obscuro: A Bitcoin Mixer using Trusted Execution Environments 11

5 Implementation and Evaluation

We implement a proof of concept of Obscuro on a commodity platform with
the full Intel SGX support. Our evaluation of mixing large numbers of deposits
shows that our SGX-based Bitcoin mixer is practical and incurs only negligible
overhead.

5.1 Implementation

We utilize Panoply framework [48] to port Bitcoin Core’s codebase 8 into an
Intel SGX application. We use OpenSSL library to implement our public key
encryption scheme PE, which is the Elliptic Curve Integrated Encryption Scheme
(ECIES) over the secp256k1 elliptic curve with AES counter mode and 16-byte
HMAC tag. ECIES is CCA secure [9, 15] and its ciphertexts are quite compact
(i.e., only 69 bytes) to fit in the OP RETURN field. We also port the constant-time
ECDSA library libsecp256k1 [52] into the enclave for the implementation of the
digital signature DS due to its compatibility with current Bitcoin protocol. We
implemented the shuffling function with the linear time complexity Fisher-Yates
shuffle algorithm [13] using the trusted randomness generator.

Because it is crucial to use a reliable randomness source for the cryptographic
keys and the permutation function, we increase the entropy of our random seed
in order to reduce the trust in the hardware provider (i.e., Intel in our current
implementation). Thus, in addition to the trusted hardware-based randomness
provided by the RDRAND to sgx read rand(), we concatenate extra sources
of randomness: OS provided randomness, the SGX trusted clock and the latest
block hash from the Bitcoin blockchain. To predict the random seed that we feed
to the key generator, the adversary will need to control all the components that
contribute to the seed.

5.2 Evaluation

We evaluate Obscuro on a Dell Latitude E5570 laptop that is SGX-enabled
with the 6th Generation Intel® Core™ i7-6820HQ CPU and 8GB of memory.
We configure the laptop’s BIOS to allocate 128 MB memory for each SGX en-
clave. We use the Linux 1.6 Open Source Beta version of Intel Software Guard
Extensions SDK, Intel SGX Platform Software (PSW), and a driver on Ubuntu
Desktop-14.04-LTS 64-bits with Linux kernel version 3.13. Obscuro is compiled
with GCC v4.8 and built for SGX hardware pre-release mode HW PRERELEASE
with default optimization flags.

Here, we evaluate the performance of several steps in Obscuro protocol.
We also measure the overhead caused by SGX operations by comparing two
versions of Obscuro, with and without SGX equipped. All experiments are
done 20 times in Bitcoin Regression Testing environment. Furthermore, we also
measure the transaction fees via an on-chain evaluation. Finally, we describe the
trusted computing base of Obscuro implementation.

8 Version v0.13.1: https://bitcoin.org/en/release/v0.13.1

https://bitcoin.org/en/release/v0.13.1


12 M. Tran et al.

34.55

30.01

0

5

10

15

20

25

30

35

40

With	SGX Without	SGX

minute

(a) Fetching and
verifying 200, 000
blocks.

2.39

1.99

0

0.5

1

1.5

2

2.5

3

With	SGX Without	SGX

second

(b) Scanning
transactions in
100 blocks.

Fig. 3: Measured time for fetching

blocks and scanning transactions with-

/without SGX.

●

0 200 400 600 800 1000

0
1

2
3

4
5

6
7

Input Size

M
ix

in
g 

an
d 

si
gn

in
g 

(s
ec

on
d)

● ● ●
●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●●

●

With SGX
Without SGX

Fig. 4: Obscuro signing and mixing time
with/without SGX.

Bootstrapping Bitcoin blockchain. We measure the time taken to fetch and
verify the Bitcoin blockchain since the latest checkpoint. As of this writing, the
latest block is approximately 200, 000 blocks ahead of the most recent blockchain
checkpoint.9 Figure 3a shows that it takes approximately 35 minutes. This is
easily acceptable in practice since the bootstrapping happens only once when an
Obscuro instance is launched.

Scanning for Obscuro deposits. We measure the time taken to scan Bitcoin
blocks and find valid Obscuro deposits, which also involves ECIES decryption
operations. In particular, we assume a conservative scenario in which Obscuro
should scan 100 blocks to search for 2000 Obscuro deposits among a total of
4000 transactions. Figure 3b shows that our implementation scans the deposits
very fast (2.39 seconds with SGX) and the overhead incurred by the use of SGX
is acceptable (only 0.4 seconds).

Mixing and Signing transactions. We measure the running time of the mix-
ing and signing operations and show that Obscuro is scalable and efficient in
mixing a large set of transactions and operating Obscuro with trusted hard-
ware causes negligible overhead. We test the shuffling and transaction signing
with different sizes of the mixing set, ranging from 5 to 1000 transactions. Fig-
ure 4 shows that the operation time increases as the size of the mixing set in-
creases and SGX programming model causes a very small extra execution time
(approximately 3% − 5%). Furthermore, Obscuro can mix one thousand in-
put transactions within seconds (specifically, 1000 inputs in 6.49 seconds). This
means that a practical deployment of Obscuro can handle thousands of deposits
in a mixing round. Note that the transaction signing operation is the major con-
tributor to the mixer performance and it is known to scale quadratically due to
its re-hashing mechanism.

On-blockchain evaluation. We also deploy Obscuro on Bitcoin Testnet, a
global testing environment mimicking the mainnet, having each user sends 0.01
Testnet Bitcoin through Obscuro. We have successfully mixed 430 users in a

9 Latest checkpoint is at block 295000, see chainparams.cpp in Bitcoin Core’s codebase.



Obscuro: A Bitcoin Mixer using Trusted Execution Environments 13

standard transaction10 and 1000 users in a non-standard transaction11. We set
the transaction fee to be around 22 satoshi/bytes, which make the transactions
likely to be mined instantly. Each user will need to pay the transaction fee in
the deposit transaction and partly the mixed transaction, which takes account
in total only 0.0001 BTC (0.8 USD as in April 2018).
Trusted Computing Base (TCB). We measure the size of the TCB of our
prototype. Obscuro’s trusted functions contribute 1, 150 source lines of code
(SLoC). Obscuro also requires some changes in the Bitcoin Core implementa-
tion which contribute 1, 292 SLoC. Thus, Obscuro contributes a total of 2, 442
SloC to the TCB. The entire TCB includes the Bitcoin Core implementation,
two widely used cryptographic libraries (i.e., libsecp256k1 and OpenSSL), and
the Panoply implementation, in which users can audit to verify whether they
deviate from their public codebases. 12

6 Discussion

6.1 Recipient of the Mixing Fees

Like many other mixing services, Obscuro may enforce some participation fees
(e.g., 1–3 percent of the mixing value) on top of the transaction fees to deter the
DoS and Sybil attacks [12,14,18,51,57]. However, if the recipient of the mixing
fees happens to be malicious, the deterrence does not work. For example, the
recipient of the mixing fees can generate a large number of Sybil deposits without
any mixing fees because the mixing fees will be paid to herself eventually. De-
ciding who receives the mixing fees is challenging and has been rarely addressed
in previous works.

The most secure defense against this subtle attack is to burn the mixing fees
by sending the fees to an unspendable address (similar to PeerCoin [4]). Note
that burning fee can cause a small deflation on the total supply of Bitcoin but
completely prevent the aforementioned risk. As a more economically viable solu-
tion that is less ideal in terms of security, some reputable charity organizations
or privacy advocacy organizations (e.g., EFF [1] or Tor [5]), which are believed
to be honest, can be set as the recipients of the mixing fee. It is even possible
to allow each user to choose the recipient of his mixing fee from a list of several
reputable organizations (e.g., using different identifiers in the OP RETURN output)
or the burning option.

6.2 Multiple Obscuro Instances

Obscuro is necessarily an open source project (for public scrutiny of its code)
and thus any third party can spawn an Obscuro instance simply by getting the
open-source implementation and running it on an Intel SGX platform. Conse-
quently, users may see many Obscuro instances, which have different identities

10
https://www.blocktrail.com/tBTC/tx/59e1f4ffe3e6b735f279f340a088597af45f545e6bab4542c82a24d0014b59b9

11
https://www.blocktrail.com/tBTC/tx/f5230965145ef06eb65595e41ecb701af6c128802a174f34a7b65ac7d44dc9b8

12 https://github.com/BitObscuro/Obscuro

https://www.blocktrail.com/tBTC/tx/59e1f4ffe3e6b735f279f340a088597af45f545e6bab4542c82a24d0014b59b9
https://www.blocktrail.com/tBTC/tx/f5230965145ef06eb65595e41ecb701af6c128802a174f34a7b65ac7d44dc9b8
https://github.com/BitObscuro/Obscuro


14 M. Tran et al.

Bitcoin mixers Theft
prevention

Relationship
anonymity

Participation
guarantee

Large mixing
set guarantee

Join-then-
abort

resistance

On-chain
transactions

Decentralized
CoinJoin [26] 3 73 3 small set5 7 1
CoinShuffle [42,43] 3 3 3 small set5 7 1
CoinParty [57] 31 3 3 3 7 2
Xim [12] 3 73 3 small set5 3 7

Centralized
MixCoin [14] 72 74 7 7 3 2
BlindCoin [51] 72 3 7 7 3 2
TumbleBit [18] 3 3 7 7 3 4

Obscuro 3 3 3 3 3 2

Table 1: Comparison between existing Bitcoin mixer proposals and Obscuro. 1 Coin-

Party only achieves theft prevention if 2/3 users are honest. 2 MixCoin and BlindCoin

only provide accountability.3 Users can link all senders and recipients. 4 Mixer operator

can link all senders and recipients. 5 Users know the mixing set size before mixing, but

the set size is small.

(i.e., address and public key), are successfully verified via remote attestation. In
fact, this does not provide any economic gain to the third-party service provider,
since the recipients of the mixing fees are hard-coded in Obscuro’s codebase,
which is owned and maintained by the original service provider. However, having
many Obscuro instances may cause users to become confused and deposit their
coins to third-party Obscuro instances, resulting in the shortage of deposits at
the original one.

To thwart this concern, the original operator can provide a signature that
certifies the Obscuro instance that it is operating, along with the attestation
data that is published in the public bulletin boards. Then, users are advised
to deposit coins only to the address of the Obscuro instance that is run by
the original operator, who takes the responsibility to maintain the Obscuro
codebase.

7 Related Work

Privacy of Bitcoin and altcoins have been actively studied in the past few years.
In this section, we first summarize Bitcoin-based mixer proposals and then dis-
cuss other non-Bitcoin proposals. Moreover, we outline a recent trend in utilizing
trusted hardware in cryptocurrency or, in general, blockchain applications.

7.1 Existing Bitcoin Mixer Solutions

Existing mixer proposals can be classified into two main groups based on their
design, namely centralized and decentralized mixers. We compare our scheme
Obscuro with existing proposals in various aspects (see Table 1).
Decentralized mixers. In decentralized mixing protocols, participants commu-
nicate among themselves to privately permute the ownership of their coins. In
CoinJoin, users mutually sign on a single transaction where each user controls an



Obscuro: A Bitcoin Mixer using Trusted Execution Environments 15

input and an output addresses [26]. However, CoinJoin allows every participant
to learn all the between any sender and recipient addresses. CoinShuffle [42] and
its successor CoinShuffle++ [43] use an additional overlay cryptographic mixing
protocol on top of CoinJoin to provide relationship anonymity for all sender and
recipient pairs. CoinParty [57] is another decentralized mixing protocol. However,
it relies on an assumption that 2/3 of the peers are honest, which could easily be
violated in practice. In these decentralized protocols, users are allowed to refuse
to agree on the transaction, thus coin stealing are prevented; however, a mali-
cious user can initially participate in the execution of the protocol, but aborts
before the end of the execution in order to disrupt the mixing of the honest users
(i.e.,join-then-abort attack). CoinShuffle and CoinShuffle++ can identify which
users have been aborted but the rest has to mix again. As a consequence, They
only mix among a relatively small set of users (e.g., 50 participants). To discour-
age the join-then-abort attack, XIM [12] proposes a two-party mixing protocol
where the users need to pay a participation fee and advertise themselves on the
blockchain. Nevertheless, XIM requires multiple on-chain transactions and thus
may take hours to finish a mixing round between only two participants.

Centralized mixers. In Mixcoin, users send coins to a centralized party and re-
ceive back the mixed coins [14]. Mixcoin is invulnerable to join-then-abort attack
since the users join the mix independently. Mixcoin does not achieve relation-
ship anonymity despite users cannot identify the recipient addresses of others
because the mixer operator knows all the links between senders and their recipi-
ents. Blindcoin modifies Mixcoin using blind signature scheme so that the mixer
operator cannot learn the links [51]. Since the mixer operators of MixCoin and
Blindcoin may steal users’ coins, they give users signed certificates to provide
accountability, which can damage the reputation of a malicious mixer operator.
The accountability property is far from ideal as coin theft cannot be prevented.
TumbleBit presents an untrusted intermediate payment hub between the payer
and payee, involving a cryptographic puzzle promise and solver protocol among
them to prevent coin theft [18]. While these centralized protocols can mix par-
ticipants in a large set (e.g., 800 users in TumbleBit), they fail to defend against
the participation rejection attack (see Section 2.2) because the malicious mixer
service providers can selectively reject to interact with some benign users. Also,
there is no in-protocol guarantee regarding the mixing set size and thus users
may need to participate in subsequent rounds until they are satisfied with large
enough mixing set size.

Comparison with Obscuro. From Table 1, we can see that Obscuro out-
performs all other mixers in most of the properties. In particular, Obscuro
protects the coins and ensures the unlinkability between all senders and their
recipients. We also guarantee participation for benign users and allow them to
verify the minimal size of the mixing set they will be included before they send
their deposits (see Section 3.5). Similar to other centralized mixers, there is no
coordination among users in Obscuro and a malicious participant cannot dis-
rupt others during mixing. In fact, a sender and recipient pair is only involved in



16 M. Tran et al.

two transactions, a deposit transaction and a mixed transaction, which is slightly
higher than it is in decentralized proposals.

7.2 Privacy Improvements in other Cryptocurrencies

Several privacy-enhancing cryptocurrencies have been proposed and built re-
cently such as Monero [3], ZCash [31, 44] and MimbleWimble [20]. In Monero,
ring signature is used to hide a sender’s address within a group of others. Monero
users can also use stealth addresses to hide their actual outputs while transacting,
and ring confidential transaction to hide the transferring amount of coins. Un-
fortunately, recent studies demonstrate various anonymity attacks against these
properties [22,32]. ZCash is a cryptocurrency developed from ZeroCoin [31] and
ZeroCash [44] proposals. ZCash protocol is based on a zero-knowledge proof
called SNARKs [10] where transactions reveal no information about the trans-
acting amount or recipients. However, ZCash requires a trusted setup, limiting
its large-scale adoption. MimbleWimble is an extension of Bitcoin protocol and
offers confidential transactions; however, its functionalities lack script support.
There is also a confidential transaction proposal for Bitcoin, which motivates
ValueShuffle to mix transactions with different transferring amounts [41].

In some other cryptocurrencies with no built-in privacy such as Ethereum
and Ripple, there are also some mixer proposals that aim to improve the transac-
tion anonymity. For instance, Möbius replaces a central mixer with an Ethereum
smart contract employed with ring signatures and stealth addresses so that a re-
cipient can withdraw coins without being linked with any sender [28]. PathShuffle
proposes a mixing protocol for path-based transactions in credit networks and
demonstrates mixing in Ripple [34].

While these alternative cryptocurrencies are promising, Bitcoin still remains
as the most popular cryptocurrency with the largest market capitalization. Ob-
scuro aims to provide a secure and anonymous mixing service for Bitcoin trans-
actions, without any need to modify the current protocol.

7.3 TEE for Cryptocurrency Applications

The trusted hardware has opened a new range of research problems — includ-
ing ones in cryptocurrency research. For instance, a recently proposed off-chain
micropayment channel, named Teechan, utilizes the trusted execution environ-
ment (e.g., Intel SGX) to scale up transaction throughput of Bitcoin transac-
tions to thousands per second [24]. Intel SGX is utilized in Town Crier to pro-
vide authenticated data to the Ethereum smart contracts system [54]. A recent
proposal named Tesseract uses Intel SGX to build a real-time cryptocurrency
exchange [11]. The TEE is also used to securely report CPU cycles, or a Proof-
of-Useful-Work, which is the foundation of a blockchain mining framework called
REM [55].



Obscuro: A Bitcoin Mixer using Trusted Execution Environments 17

8 Conclusion

Mixing Bitcoin transactions significantly improves the anonymity of Bitcoin by
providing relationship anonymity to transactions. Bitcoin mixers must guarantee
protection against strong adversaries (e.g., malicious service providers), provide
strong anonymity guarantees, and support large-size anonymity set and short
mixing time, which have not been completely achieved by prior work. We ex-
ploit a new security capability in emerging CPUs, trusted execution environment
(TEE), to design a secure and anonymous Bitcoin centralized mixer. Our Ob-
scuro mixer demonstrates that the strong security and anonymity guarantees
are achievable for fast and large-size mixing services.

References

1. Electronic Frontier Foundation (EFF). https://www.eff.org/
2. IPFS. https://ipfs.io/
3. Monero. https://getmonero.org/
4. PeerCoin. https://peercoin.net
5. Tor. https://www.torproject.org/
6. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU

based attestation and sealing. In: Proceedings of the 2nd international workshop
on hardware and architectural support for security and privacy. vol. 13. ACM New
York, NY, USA (2013)

7. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in bitcoin. In: International Conference on Financial Cryptography
and Data Security. pp. 34–51. Springer (2013)

8. ARM, A.: Security technology building a secure system using trustzone technology
(white paper). ARM Limited (2009)

9. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. J. Cryptology 21(4), 469–491
(2008)

10. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In: Advances in
Cryptology–CRYPTO 2013, pp. 90–108. Springer (2013)

11. Bentov, I., Ji, Y., Zhang, F., Li, Y., Zhao, X., Breidenbach, L., Daian, P., Juels,
A.: Tesseract: Real-time cryptocurrency exchange using trusted hardware (2017)

12. Bissias, G., Ozisik, A.P., Levine, B.N., Liberatore, M.: Sybil-resistant mixing for
bitcoin. In: Proceedings of the 13th Workshop on Privacy in the Electronic Society.
pp. 149–158. ACM (2014)

13. Black, P.E.: Fisher-yates shuffle. Dictionary of algorithms and data structures 19
(2005)

14. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mix-
coin: Anonymity for bitcoin with accountable mixes. In: International Conference
on Financial Cryptography and Data Security. pp. 486–504. Springer (2014)

15. Brown, D.: Standards for efficient cryptography, SEC 1: elliptic curve cryptogra-
phy. Released Standard Version 1 (2009)

16. Chandrasekaran, K., Karp, R., Moreno-Centeno, E., Vempala, S.: Algorithms for
implicit hitting set problems. In: Proceedings of the twenty-second annual ACM-
SIAM symposium on Discrete Algorithms. pp. 614–629. Society for Industrial and
Applied Mathematics (2011)

https://www.eff.org/
https://ipfs.io/
https://getmonero.org/
https://peercoin.net
https://www.torproject.org/


18 M. Tran et al.

17. Danezis, G., Serjantov, A.: Statistical disclosure or intersection attacks on
anonymity systems. In: International Workshop on Information Hiding. pp. 293–
308. Springer (2004)

18. Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: Tumblebit:
An untrusted bitcoin-compatible anonymous payment hub. Proceedings of NDSS
2017 (2017)

19. Intel: Attestation Service for Intel® Software Guard Extensions: API Documen-
tation. https://software.intel.com/sites/default/files/managed/
7e/3b/ias-api-spec.pdf (2017)

20. Jedusor, T.E.: Mimblewimble (2016)
21. Johnson, S., Scarlata, V., Rozas, C., Brickell, E., Mckeen, F.: Intel® Software

Guard Extensions: EPID Provisioning and Attestation Services. White Paper 1,
1–10 (2016)

22. Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of Monero’s
blockchain. In: European Symposium on Research in Computer Security. pp. 153–
173. Springer (2017)

23. Lee, S., Shih, M.W., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring fine-grained
control flow inside sgx enclaves with branch shadowing. In: 26th USENIX Security
Symposium, USENIX Security. pp. 16–18 (2017)

24. Lind, J., Eyal, I., Pietzuch, P., Sirer, E.G.: Teechan: Payment Channels Using
Trusted Execution Environments. In: 4th Workshop on Bitcoin and Blockchain
Research (2017)

25. Matetic, S., Ahmed, M., Kostiainen, K., Dhar, A., Sommer, D., Gervais, A.,
Juels, A., Capkun, S.: ROTE: Rollback Protection for Trusted Execution. In: 26th
USENIX Security Symposium, USENIX Security. pp. 1289–1306 (2017)

26. Maxwell, G.: Coinjoin: Bitcoin privacy for the real world. In: Post on Bitcoin forum
(2013)

27. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue,
V., Savagaonkar, U.R.: Innovative instructions and software model for isolated
execution. In: HASP@ ISCA. p. 10 (2013)

28. Meiklejohn, S., Mercer, R.: Möbius: Trustless tumbling for transaction privacy.
Proceedings on Privacy Enhancing Technologies 2018(2), 105–121 (2018)

29. Meiklejohn, S., Orlandi, C.: Privacy-enhancing overlays in bitcoin. In: International
Conference on Financial Cryptography and Data Security. pp. 127–141. Springer
(2015)

30. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of bitcoins: characterizing payments among men with no
names. In: Proceedings of the 2013 conference on Internet measurement conference.
pp. 127–140. ACM (2013)

31. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed
e-cash from bitcoin. In: Security and Privacy (SP), 2013 IEEE Symposium on. pp.
397–411. IEEE (2013)

32. Miller, A., Möser, M., Lee, K., Narayanan, A.: An empirical analysis of linkability
in the Monero blockchain. arXiv preprint arXiv:1704.04299 (2017)

33. Moghimi, A., Irazoqui, G., Eisenbarth, T.: Cachezoom: How sgx amplifies the
power of cache attacks. In: International Conference on Cryptographic Hardware
and Embedded Systems. pp. 69–90. Springer (2017)

34. Moreno-Sanchez, P., Ruffing, T., Kate, A.: Pathshuffle: Credit mixing and anony-
mous payments for ripple. Proceedings on Privacy Enhancing Technologies 2017(3),
110–129 (2017)

https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf


Obscuro: A Bitcoin Mixer using Trusted Execution Environments 19

35. Moser, M., Bohme, R., Breuker, D.: An inquiry into money laundering tools in the
bitcoin ecosystem. In: eCrime Researchers Summit (eCRS), 2013. pp. 1–14. IEEE
(2013)

36. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System. bitcoin.org (2009)
37. Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by

data minimization: Anonymity, Unlinkability, Undetectability, Unobservability,
Pseudonymity, and Identity Management (2010)

38. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Security
and privacy in social networks, pp. 197–223. Springer (2013)

39. Reid, K.: Banknotes and their vindication in eighteenth-century scotland. David
Fox and Wolfgang Ernst (eds), Money in the Western Legal Tradition (Oxford
University Press, 2014, Forthcoming); Edinburgh School of Law Research Paper
No. 2013/19 (2013)

40. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In:
International Conference on Financial Cryptography and Data Security. pp. 6–24.
Springer (2013)

41. Ruffing, T., Moreno-Sanchez, P.: Valueshuffle: Mixing confidential transactions for
comprehensive transaction privacy in bitcoin. In: International Conference on Fi-
nancial Cryptography and Data Security. pp. 133–154. Springer (2017)

42. Ruffing, T., Moreno-Sanchez, P., Kate, A.: Coinshuffle: Practical decentralized coin
mixing for bitcoin. In: European Symposium on Research in Computer Security.
pp. 345–364. Springer (2014)

43. Ruffing, T., Moreno-Sanchez, P., Kate, A.: P2P Mixing and Unlinkable Bitcoin
Transactions. IACR Cryptology ePrint Archive 2016, 824 (2016)

44. Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474. IEEE (2014)

45. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard exten-
sion: Using SGX to conceal cache attacks. In: International Conference on Detec-
tion of Intrusions and Malware, and Vulnerability Assessment. pp. 3–24. Springer
(2017)

46. Shih, M.W., Lee, S., Kim, T., Peinado, M.: T-SGX: Eradicating controlled-channel
attacks against enclave programs. In: Proceedings of the 2017 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA (2017)

47. Shinde, S., Chua, Z.L., Narayanan, V., Saxena, P.: Preventing page faults from
telling your secrets. In: Proceedings of the 11th ACM on Asia Conference on Com-
puter and Communications Security. pp. 317–328. ACM (2016)

48. Shinde, S., Tien, D., Tople, S., Saxena, P.: Panoply: Low-TCB Linux applications
with SGX enclaves. In: Proceedings of the Annual Network and Distributed System
Security Symposium (NDSS). p. 12 (2017)

49. Spagnuolo, M., Maggi, F., Zanero, S.: Bitiodine: Extracting intelligence from the
bitcoin network. In: International Conference on Financial Cryptography and Data
Security. pp. 457–468. Springer (2014)

50. Strackx, R., Piessens, F.: Ariadne: A minimal approach to state continuity. In:
USENIX Security (2016)

51. Valenta, L., Rowan, B.: Blindcoin: Blinded, accountable mixes for bitcoin. In: In-
ternational Conference on Financial Cryptography and Data Security. pp. 112–126.
Springer (2015)

52. Wuille, P., et al.: libsecp256k1: Optimized C library for EC operations on curve
secp256k1 (2015)



20 M. Tran et al.

53. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: Deterministic side chan-
nels for untrusted operating systems. In: Security and Privacy (SP), 2015 IEEE
Symposium on. pp. 640–656. IEEE (2015)

54. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town Crier: An authen-
ticated data feed for smart contracts. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. pp. 270–282. ACM (2016)

55. Zhang, F., Eyal, I., Escriva, R., Juels, A., Van Renesse, R.: REM: Resource-Efficient
Mining for Blockchains. IACR Cryptology ePrint Archive 2017, 179 (2017)

56. Zhang, F., Zhang, H.: Sok: A study of using hardware-assisted isolated execution
environments for security. In: Proceedings of the Hardware and Architectural Sup-
port for Security and Privacy 2016. p. 3. ACM (2016)

57. Ziegeldorf, J.H., Grossmann, F., Henze, M., Inden, N., Wehrle, K.: Coinparty:
Secure multi-party mixing of bitcoins. In: Proceedings of the 5th ACM Conference
on Data and Application Security and Privacy. pp. 75–86. ACM (2015)

A Structure of the Deposit Transaction

1OP_IF
2<pubkey_M> OP_CHECKSIG %public key associated with addr_M
3OP_ELSE
4<time-lock> OP_CHECKLOCKTIMEVERIFY OP_DROP
5<pubkey_A> OP_CHECKSIG %public key associated with addr_A
6OP_ENDIF

Fig. 5: Structure of the redeem script.

1Input:
2 scriptSig: <signature_A> <pubkey_A>
3Output:
4 Index: 0
5 Value: 0
6 scriptPubKey:
7 OP_RETURN <identifier> <Encrypted(addr_B)>
8
9 Index: 1

10 Value: 1000000 %The denomination is 0.01 bitcoin
11 scriptPubKey:
12 OP_HASH160 <Hash160(redeem_script)> OP_EQUAL

Fig. 6: Structure of the deposit transaction.

Here, we describe the format of the deposit transaction that the users submit
to Obscuro. Particularly, the recipient address addrB is a Pay-To-Script-Hash
(P2SH) address and is encrypted with the Obscuro’s pkM. The user then needs
to construct a redeem script that follows the format shown in Figure 5. Essen-
tially, this script allows both the mixer and the user spend the deposit transaction
but the user can only do that after 〈time− lock〉 value (e.g., 100 blocks). Next,
the user then hashes the redeem script, puts the hash in the scriptPubKey,
and broadcasts the deposit transaction to the Bitcoin network (See Figure 6).


	Obscuro: A Bitcoin Mixer using Trusted Execution Environments

